Закрыть

Как измерить емкость конденсатора: единица измерения, как измерить мультиметром

Содержание

единица измерения, как измерить мультиметром

Ёмкость — это мера способности конденсатора накапливать заряды. Ёмкость измеряется в фарадах, по имени почетного члена Петербургского университета английского физика Майкла Фарадея.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

Как измерить ёмкость конденсатора мультиметром?Как измерить ёмкость конденсатора мультиметром?

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

Как измерить ёмкость конденсатора мультиметром?Как измерить ёмкость конденсатора мультиметром?

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.

Как измерить ёмкость конденсатора мультиметром?Как измерить ёмкость конденсатора мультиметром?

Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.

Стандарт IEC использует обозначения:

  1. Кодировка из 3 цифр. 2 знака в начале — количество пФ, третий — число нулей, 9 в конце — номинал меньше 10 пФ, 0 спереди — не больше 1 пФ. Код 689 — 6,8 пФ, 152 — 1500 пФ, 333 — 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой «R». R8=0,8 пФ, 2R5 — 2,5 пФ.
  2. 4 цифры в маркировке. Последняя — число нулей. 3 первых — величина в пФ. 3353 — 335000 пФ, 335 нФ или 0,335 мкФ.
  3. Использование букв в коде. Буква µ — мкФ, n — нанофарад, p — пФ. 34p5 — 34,5 пФ, 1µ5 — 1,5 мкФ.
  4. Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 — 2400 пФ.
  5. Электролитические SMD приборы маркируются 2 способами: цифры — номинальная емкость в пФ и рядом или во 2 строчке при наличии места — значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя — количество нулей. А205 значит 10 В и 2 мкФ.
  6. Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 — 10 мкФ и 16 В.
  7. Кодировки — цветом корпуса.

Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.

Как измерить ёмкость конденсатора мультиметром?Как измерить ёмкость конденсатора мультиметром?

Вычисление с помощью формул

Вычисление номинальной емкости элемента требуется в 2 случаях:

  1. Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
  2. Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.

RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.

Как измерить ёмкость конденсатора мультиметром?

Как измерить ёмкость конденсатора мультиметром?

Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.

Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.

Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.

Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.

Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.

Как измерить ёмкость конденсатора мультиметром?

Измеряя параметры, конденсатор предварительно разряжают, замкнув выводы между собой отверткой с изоляцией на ручке. Если этого не сделать, маломощный мультиметр выйдет из строя.

Ответ на вопрос, как проверить емкость конденсатора мультиметром с режимом «Сх» такой:

  1. Включить режим «Сх» и подобрать предел замера — 2000 пФ — 20 мкФ в стандартном приборе;
  2. Вставить конденсатор в гнезда в приборе или приложить щупы к выводам конденсатора и посмотреть значение на шкале прибора.

Как измерить ёмкость конденсатора мультиметром?Как измерить ёмкость конденсатора мультиметром?

Амперовольтметром или мультиметром определяют наличие внутри корпуса короткого замыкания или обрыва.

Полярный конденсатор включают в цепь прибора с учетом направления тока. Электроды изделия производители маркируют. Конденсатор, рассчитанный для напряжения 1-3 В, при обратном токе выше нормы выйдет из строя.

Перед тем как измерить характеристики, полярный электролитический конденсатор выпаивают из платы. Включают мультиметр в режим измерения сопротивления или проверки полупроводников. Прикладывают щупы к электродам полярного конденсатора — плюс к плюсу, минус к минусу. Исправная емкость покажет плавный рост сопротивления. По мере заряда ток уменьшается, ЭДС растет и достигает напряжения источника питания.

Как измерить ёмкость конденсатора мультиметром?Как измерить ёмкость конденсатора мультиметром?

Обрыв в конденсаторе будет выглядеть на мультиметре как бесконечное сопротивление. Прибор не отреагирует или стрелка на аналоговом экземпляре едва шевельнется.

При пробое элемента измеряемый параметр не соответствует номинальному значению в меньшую сторону, пропорционально величине пробоя.

Если задаться вопросом, как измерить мультиметром комплексное или эквивалентное последовательное сопротивление (ESR конденсатора), то без приставки сделать это проблематично. Реактивные свойства конденсатор проявляет при высокочастотном токе.

Прочие способы измерения

Измеритель емкости конденсаторов своими руками собирают по схемам импульсных устройств. Последовательности RC цепей с переменными резисторами создают на выходе изделия серии сигналов со ступенчатым изменением частоты. Для наладки устройства используют мультиметр, с которым будет применяться приставка.

Набор проверенных конденсаторов поочередно подключают к конструкции и настраивают точность работы в каждом поддиапазоне.

Измеритель ёмкости полярных электролитических элементов своими руками схематически реализуется и настраивается, как часть приставки без колебательного контура. На выходе вместо импульсного — постоянное напряжение.

В цифровых измерителях ёмкости источник питания — высокостабильный. «Плавающие» параметры элементов, из которых собирается схема, дадут неприемлемую для точности измерений погрешность.

На логических элементах создаются источники переменного импульсного тока для замеров ESR.

Как измерить ёмкость конденсатора мультиметром?Как измерить ёмкость конденсатора мультиметром?

Недорогие приборы для измерения емкости конденсатора, типа мостовых RLC устройств с дополнительной функцией проверки SMD сопротивлений, сетевой зарядкой и жидкокристаллическим дисплеем, сами размером с палец. Выполняют функции профессионального метрологического комплекса. Способны выступать в роли измерителя емкости электролитических конденсаторов, как полярных, так и переменных.

Как определить емкость конденсатора: 4 рабочих способа

Основной характеристикой конденсатора является его емкость. Очень часто замеры емкости требуется проводить в электролитическом конденсаторе. В отличие от керамических и оксидных конденсаторов, которые редко выходят из строя (разве что в результате пробоя диэлектрика), электролитическим деталям свойственна потеря ёмкости из-за высыхания электролита. Поскольку работа электронных схем сильно зависит от емкостных характеристик, то необходимо знать, как определить емкость конденсатора.

Существуют разные способы определения ёмкости:

  • по кодовой или цветной маркировке деталей;
  • с помощью измерительных приборов;
  • с использованием формулы.

Измерить емкость проще всего с помощью измерителя C и ESR. Для этого контакты измерительных щупов подсоединяют к выводам конденсатора, соблюдая полярность электролитических деталей. При этом результаты измерений выводятся на дисплей. (Рисунок 1). Радиолюбители, которым часто приходится делать измерения, приобретают такой прибор или изготавливают его самостоятельно.

Измерение ёмкости с помощью измерителя C и ESRРис. 1. Измерение ёмкости с помощью измерителя C и ESR

С использованием мультиметра и формул

Если в вашем распоряжении есть мультиметр с функцией измерения параметра «Cx», то измерить ёмкость конденсатора довольно просто: следует переключить прибор в режим «Сх», после чего выбрать оптимальный диапазон измерения, соответствующий параметрам конденсатора. Ножки конденсатора вставляем в соответствующее гнездо (соблюдая полярность подключения) и считываем его параметры.

Режим "Сх" в мультиметре
Режим «Сх» в мультиметре

Менее точно можно определить ёмкость с помощью тестера, у которого нет режима «Сх». Для этого потребуется источник питания, к которому подключают конденсатор по простой схеме (рис. 2).

Схема подключения конденсатора Рис. 2. Схема подключения конденсатора

Алгоритм измерения следующий:

  1. Измерьте напряжение источника питания щупами контактов измерительного прибора.
  2. Образуйте RC-цепочку с конденсатором и выводами резистора номиналом 1 – 10 кОм.
  3. Закоротите выводы конденсатора и подключите RC-цепочку к источнику питания.
  4. Замерьте напряжение образованной цепи с помощью мультиметра.
  5. Если напряжение изменилось, необходимо подогнать его до значения, близкого к тому, которое вы получили на выходе источника питания.
  6. Вычислите 95% от полученного значения. Запишите показатели измерений.
  7. Возьмите секундомер и включите его одновременно с убиранием закоротки.
  8. Как только мультиметр покажет значение напряжения, которое вы вычислили (95%), остановите секундомер.
  9. По формуле С = t/3R, где t – время падения напряжения, вычисляем ёмкость конденсатора в фарадах, если единицы измерения сопротивление резистора выразили в омах, а время в секундах.
Измерение с помощью тестера. ПроверкаРис. 3. Измерение с помощью тестера. Проверка

Подчеркнём ещё раз, что точность измерения ёмкости данным способом не слишком высока, но определить работоспособность радиоэлемента на основании такого измерения вполне возможно. Некоторые узлы электронных приборов исправно работают, если есть небольшие отклонения от номинальных емкостей, главное, чтобы не было электрического пробоя.

Таким же методом можно вычислить параметры керамического радиоэлемента. Для этого необходимо подключить RC-цепочку через трансформатор и подать переменное напряжение. Значение ёмкости в данном случае определяем по формуле: C = 0.5*π*f*Xc , где f частота тока, а Xc ёмкостное сопротивление.

Осциллографом

С приемлемой точностью можно определить ёмкость конденсатора с помощью цифрового или обычного электронного осциллографа. Принцип похож на метод измерения ёмкости тестером. Разница только в том, что не потребуется секундомер, так как с высокой точностью время зарядки конденсатора отображается на экране осциллографа. Если применить генератор частоты и последовательную RC-цепочку (рис. 4), то ёмкость можно рассчитать по простой формуле: C = U/ UC* ( 1 / 2*π*f*R ).

Простая схемаРис. 4. Простая схема

Алгоритм вычисления простой:

  1. Подключите осциллограф к электрической схеме. При подключении щупов прибора к электролитам соблюдайте полярность электрического тока.
  2. Измерьте амплитуды напряжений на конденсаторе и на резисторе.
  3. Путём подстройки частоты генератора добивайтесь, чтобы значения амплитуд на обоих элементах сравнялись (хотя бы приблизительно).
  4. Подставьте полученные значения в формулу и вычислите ёмкость конденсатора.

При измерении ёмкостей неполярных конденсаторов часто вместо RC-цепочки собирают мостовую схему с частотным генератором (показано на рис. 5), а также другие сборки. Сопротивления резисторов подбирают в зависимости от параметров номинальных напряжений измеряемых деталей. Ёмкость вычисляют из соотношения: r/ Cx = r/ C0.

Мостовая схемаРисунок 5. Мостовая схема

Гальванометром

При наличии баллистического гальванометра также можно определить ёмкость конденсатора.  Для этого используют формулу:

C = α * Cq / U , где α –  угол отклонения гальванометра, Cq – баллистическая постоянная прибора, U – показания гальванометра.

Из-за падения сопротивления утечки ёмкость конденсаторов уменьшается. Энергия теряется вместе с током утечки.

Описанные выше методики определения ёмкости позволяют определить исправность конденсаторов. Значительное отклонение от номиналов говорит, что конденсаторы неисправны. Пробитый электролитический радиоэлемент легко определяется путём измерения сопротивления. Если сопротивление стремится к 0 – изделие закорочено, а если к бесконечности – значит, есть обрыв.

Следует опасаться сильного электрического разряда при подключениях щупов к большим электролитам. Они могут накапливать мощный электрический заряд от постоянного тока, который молниеносно высвобождается током разряда.

По маркировке

Напомним, что единицей емкости в системе СИ является фарада ( обозначается F или Ф). Это очень большая величина, поэтому на практике используются дольные величины:

  • миллифарады (mF, мФ ) = 10-3 Ф;
  • микрофарады (µF, uF, mF, мкФ) = 10-3 мФ = 10-6 Ф;
  • нанофарады (nF, нФ) = 10-3 мкФ =10-9 Ф;
  • пикофарады (pF, mmF, uuF) = 1 пФ = 10-3 нФ = 10-12 Ф.

Мы перечислили название единиц и их сокращённое обозначение потому, что они часто встречаются в маркировке крупных конденсаторов (см. рис. 6).

Маркировка крупных конденсаторовРис. 6. Маркировка крупных конденсаторов

Обратите внимание на маркировку плоского конденсатора (второй сверху): после трёхзначной цифры стоит буква М. Данная буква не обозначает единицы измерения «мегафарад» – таких просто не существует. Буквами обозначены допуски, то есть, процент отклонения от ёмкости, обозначенной на корпусе. В нашем случае отклонение составляет 20% в любую сторону. Надпись 102М на большом корпусе можно было бы написать: 102 нФ ± 20%.

Теперь расшифруем надпись на корпусе третьего изделия. 118 – 130 MFD обозначает, что перед нами конденсатор, ёмкость которого находится в пределах 118 – 130 микрофарад. В данном примере буква М уже обозначает «микро». FD – обозначает «фарады», сокращение английского слова «farad».

На этом простом примере видно, какая большая путаница в маркировке. Особенно запутана кодовая маркировка, применяемая для крохотных конденсаторов. Дело в том, что можно встретить конденсаторы, маркировка которых выполнена старым способом и детали с современной кодировкой, в соответствии со стандартом EIA. Одни и те же символы можно по-разному интерпретировать.

По стандарту EIA:

  1. Две цифры и одна буква. Цифры обозначают ёмкость, обычно в пикофарадах, а буква – допуски.
  2. Если буква стоит на первом или втором месте, то она обозначает либо десятичную запятую (символ R), либо указывает на название единицы измерения («p» – пикофарад, «n» – нанофарад, «u» – микрофарад). Например: 2R4 = 2.4 пФ; N52 = 0,52 нФ; 6u1 = 6,1 мкф.
  3. Маркировка тремя цифрами. В данном коде обращайте внимание на третью цифру. Если её значение от 0 до 6, то умножайте первые две на 10 в соответствующей степени. При этом 100 =1; 101 = 10; 102 = 100 и т. д. до 106.

Цифры от 7 до 9 указывают на показатель степени со знаком «минус»: 7 условно = 10-3; 8 = 10-2; 9 = 10-1.

Пример:

  • 256 обозначает: 25× 105 = 2500 000 пФ = 2,5 мкФ;
  • 507 обозначает: 50 × 10-3 = 50 000 пФ = 0, 05 мкФ.

Возможна и такая надпись: «1B253». При расшифровке необходимо разбить код на две части – «1B» (значение напряжения) и 253 = 25 × 103 = 25 000 пФ = 0,025 мкФ.

В кодовой маркировке используются прописные буквы латинского алфавита, указывающие допуски. Один пример мы рассмотрели, анализируя маркировку на рис. 6.

Приводим полный список символов:

  • B = ± 0,1 пФ;
  • C = ± 0,25 пФ;
  • D = ± 0,5 пФ или ± 0,5% (если емкость превышает 10 пФ).
  • F = ± 1 пФ или ± 1% (если емкость превышает 10 пФ).
  • G = ± 2 пФ или ± 2% (для конденсаторов от 10 пФ»).
  • J = ± 5%.
  • K = ± 10%.
  • M = ± 20%.
  • Z = от –20% до + 80%.

Изделия с кодовой маркировкой изображены на рис. 7.

Пример кодовой маркировкиРис. 7. Пример кодовой маркировки

Если в кодировке отсутствует символ из приведённого выше списка, а стоит другая буква, то она может единицу измерения емкости.

Важным параметром является его рабочее напряжение конденсатора. Но так как в данной статье мы ставим задачу по определению ёмкости, то пропустим описание маркировки напряжений.

Отличить электролитический конденсатор от неполярного можно по наличию символа «+» или «–» на его корпусе.

Цветовая маркировка

Описывать значение каждого цвета не имеет смысла, так как это понятно из следующей таблицы (рис. 8):

Цветовая маркировкаРис. 8. Цветовая маркировка

Запомнить символику кодовой и цветовой маркировки довольно трудно. Если вам не приходится постоянно заниматься подбором конденсаторов, то проще пользоваться справочниками или обратиться к информации, изложенной в данной статье.

Видео в помощь

Как определить емкость конденсатора мультиметром

Иногда на конденсаторе не указывается его маркировка. Как узнать тогда реальную его емкость, если специального оборудования под рукой нет, а устройство без обозначений? Тогда на помощь приходят различные подручные средства и формулы. Прежде чем приступать к работе, необходимо помнить о том, что конденсатор перед проверкой должен быть разряжен (следует разрядить его контакты). Для этого можно использовать обычную отвертку с изолированной ручкой. Держась за ручку отверткой коснуться контактов, таким образом их замыкая. Далее мы подробно расскажем, как определить емкость конденсатора мультиметром, предоставив инструкцию с видео примером.

Использование режима «Cx»

После того, как контакты закоротили, можно осуществлять определение сопротивления. Если элемент исправлен, то сразу после подключения он начнет заряжаться постоянным током. В этом случае сопротивление отобразиться минимальное и будет продолжать расти.

В случае если конденсатор неисправен, то мультиметр будет сразу указывать бесконечность или будет указывать нулевое сопротивление и при этом пищать. Такая проверка осуществляется, если конструкция полярная.

Для того чтобы узнать емкость необходимо иметь мультиметр с функцией измерения параметра «Сх».

Режим Cx

Определить емкость с помощью такого мультиметра просто: установить его в режим «Сх» и указать минимальный предел измерения, которым должен обладать данный конденсатор. В таких мультиметрах есть специальные гнезда с определенными пределами измерения. В эти гнезда вставляется конденсатор согласно его пределу измерения и происходит определение его параметров.

Если в тестере таких гнезд нет, то определить емкость можно с помощью измерительных щупов, как показано на фото ниже:

Измерение щупами

Важно! В отдельной статье мы рассказывали о том, как проверить исправность конденсатора. Рекомендуем также ознакомиться с этим материалом!

Применение формул

Что делать, если под рукой нет такого мультиметра с гнездами измерения, а есть только обычный бытовой прибор? В таком случае необходимо вспомнить законы физики, которые помогут определить емкость.

Для начала вспомним, что в случае, когда конденсатор заряжается от источника неизменного напряжения через резистор, то существует закономерность, согласно которой напряжение на устройстве будет подходить к напряжению источника и в конечном итоге сравняется с ним.

Время

Но для того чтобы этого не ожидать, можно процесс упростить. Например, за определенное время, которое равняется 3*RC, во время заряжения элемент достигает напряжения 95% примененного к RC цепи. Таким образом, по току и напряжению можно определить константу времени. А правильнее, если знать вольтаж в блоке питания, номинал самого резистора, происходит определение постоянной времени, а затем и емкости устройства.

RC цепочка

Например, есть электролитический конденсатор, узнать емкость которого можно по маркировке, где прописывается 6800 мкф 50в. Но что если устройство давно лежало без дела, а по надписи сложно определить его рабочее состояние? В этом случае лучше проверить его емкость, чтобы знать наверняка.

Для этого необходимо выполнить следующее:

  1. С помощью мультиметра измерить сопротивление резистора в 10 кОм. Например, оно получилось равно 9880 Ом.
  2. Подключаем блок питания. Мультиметр переводим в режим замера постоянного напряжения. Затем подключаем его к блоку питания (через его выводы). После этого в блоке устанавливается 12 вольт (на мультиметре должна появиться цифра 12,00 В). Если же не удалось отрегулировать напряжение в блоке питание, то тогда записываем те результаты, которые получились.
  3. С помощью конденсатора и резистора собираем электрическую RC-цепь. На схеме ниже указана простая RC-цепочка:Простая RC-цепь
  4. Закоротить конденсатор и подключить цепь к питанию. С помощью прибора еще раз определить напряжение, которое подается на цепь, и записать это значение.
  5. Затем необходимо высчитать 95% от полученного значения. К примеру, если это 12 Вольт, то это будет 11,4 В. То есть, за определенное время, которое равняется 3*RC, конденсатор получит напряжение в 11,4 В. Формула выглядит следующим образом:Изменение времени
  6. Осталось определить время. Для этого устройство раскорачиваем и с помощью секундомера производим отсчет. Определение 3*RC будет вычисляться таким образом: как только напряжение на устройстве будет равно 11,4 В, то это и будет означать нужное время.
  7. Производим определение. Для этого полученное время (в секундах) делим на сопротивление в резисторе и на три. Например, получилось 210 секунд. Эту цифру делим на 9880 и на 3. Получилось значение 0,007085. Это величина указывается в фарадах, или 7085 мкф. Допустимое отклонение может быть не более 20%. Если учитывать, что на изделии указано 6800 мкф, наши расчеты подтверждаются и укладываются в норматив.

А как определить емкость керамического конденсатора? В этом случае можно сделать определение с помощью сетевого трансформатора. Для этого RC-цепочку подсоединяем ко вторичной обмотке трансформатора, и его подсоединяют в сеть. Далее с помощью мультиметра осуществляется замер напряжения на конденсаторе и на резисторе. После этого необходимо сделать подсчеты: высчитывается ток, что проходит через резистор, затем его напряжение делится на сопротивление. Получается емкостное сопротивление Хс.

Расчет емкостного сопротивления

Если есть частота тока и Хс, можно определить емкость по формуле:

Расчет емкостной характеристики

Другие методики

Также емкость можно определить и с помощью баллистического гальванометра. Для этого используется формула:

Cx

где:

  • Cq — баллистическая постоянная гальванометра;
  • U2 — показания вольтметра;
  • a2 — угол отклонения гальванометра.

Цепь с гальванометром

Определение значения методом амперметра вольтметра осуществляется следующим образом: измеряется напряжение и ток в цепи, после чего значение емкости определяется по формуле:

Метод амперметра-вольтметра

Напряжение при таком методе определения должно быть синусоидальным.

Амперметр и вольтметр в цепи

Измерение значения возможно и при помощи мостиковой схемы. В этом случае схема моста переменного тока указывается ниже:

Мостиковая схема

Здесь одно плечо моста образуется за счет элемента, который необходимо измерить (Cx). Следующее плечо состоит из конденсатора без потерь и магазина сопротивлений. Оставшиеся два плеча состоят из магазинов сопротивлений. Подключаем в одну диагональ источник питания, в другую – нулевой индикатор. И рассчитываем значение по формуле:

Расчет по мостиковой схеме

Напоследок рекомендуем просмотреть полезное видео по теме:

Это все, что мы хотели рассказать вам о том, как определить емкость конденсатора мультиметром. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

Измеритель емкости конденсаторов своими руками: принцип, схема

Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Конденсатор

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Конденсатор 3

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Конденсатор 4

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Конденсатор 5

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Конденсатор 6

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

 Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

Конденсатор 7

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

Конденсатор 8

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Конденсатор 9

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Конденсатор 10

Видео по теме

Хорошая реклама

 

В чём измеряется ёмкость конденсатора: как измерить

Конденсаторы являются важнейшими пассивными компонентами электрических цепей. Любая электрическая схема содержит в своем составе такие элементы различных типов и номиналов.

Что это такое

Конденсатор — электрический двухполюсник (элемент с двумя выводами) с постоянным или изменяемым значением емкости. Обладает бесконечно большим сопротивлением постоянному току.

Простейший конденсатор

Важно! Бесконечно большим сопротивлением обладает идеальный конденсатор. Реальные устройства имеют ток утечки, который необходимо учитывать.

Основное назначение устройства — накопление энергии электрического поля и заряда.

Несмотря на то, что конденсаторы являются самостоятельными элементами, емкостью обладают любые другие устройства, даже диод и транзистор.

Характеристики

Как элемент электрической цепи, конденсатор имеет такие параметры:

  • Электрическая емкость, которая характеризуется свойством накапливания электрического заряда.
  • Номинальное напряжение. Значение напряжения на обкладках, при котором элемент в течении срока службы сохраняет свои параметры.

При работе с электрическими цепями необходимо учитывать паразитные параметры, которые являются нежелательными:

  • Ток утечки, который появляется из-за несовершенства диэлектрика, качества изоляции обкладок.
  • Последовательное эквивалентное сопротивление, которое складывается из сопротивления выводов, сопротивление контакта вывод-обкладка, внутренних свойств диэлектрика.
  • Эквивалентная индуктивность, в которую входят индуктивность выводов и обкладок.
  • Тангенс угла диэлектрических потерь, характеризующий электрические потери в конденсаторе на высоких частотах.
  • Температурный коэффициент емкости, показывающий, как она меняется в зависимости от температуры.
  • Паразитный пьезоэффект, проявляющийся как генерация напряжения при физическом воздействии на диэлектрик (тряска, вибрация).
Эквивалентная схема

Устройство конденсатора

Простейший конденсатор состоит из двух металлических пластин (обкладок), разделенных слоем диэлектрика. Емкость (способность накапливать электрический заряд) увеличивается с ростом площади пластин и с уменьшением толщины изолирующего слоя.

Параметры простейшей конструкции слишком малы. Для ее увеличения есть два пути:

  • Увеличение площади обкладок, что приводит к увеличению габаритов.
  • Уменьшение толщины диэлектрика, приводящее к снижению номинального рабочего напряжения из-за электрического пробоя.

Для того, чтобы избежать перечисленных проблем, разработаны специальные конструкции. Например, если сделать обкладки небольшой ширины и большой длины, их можно вместе с гибким диэлектриком свернуть в плотный цилиндр, получится цилиндрический конденсатор. Размещая пластины с диэлектриком попеременно, в виде слоеного пирога и чередуя подключение к выводам, получается прямоугольный компонент с большой эффективной площадью обкладок.

Разные типы конструкции

Еще один путь — использование в качестве диэлектрика тонкого оксидного слоя на поверхности металлической фольги и раствора проводящего электролита в качестве второй обкладки. Таким образом получается электролитический конденсатор, конструкция которого обладает самой большой емкостью.

Важно! Такие устройства имеют недостаток — соблюдение полярности подключения, что ограничивает их применение: оно возможно только в цепях постоянного тока в качестве сглаживающих фильтров.

В чем измеряется

Единицей емкости служит фарада. Но это очень большая величина и лишь некоторые специальные типы устройств имеют величину несколько фарад.

Обычно используются кратные величины:

  • Микрофарада — 10-6 фарады— мкФ, µF.
  • Нанофарада — 10-9 фарады— нФ, nF.
  • Пикофарада — 10-12 фарады— пФ, pF.

Довольно часто в устройствах встречается последовательное и параллельное соединение. Как определить емкость соединенных конденсаторов? Результирующее значение для таких соединений рассчитывается по-разному.

Параллельное и последовательное соединение

Параллельное соединение

При параллельном соединении емкости всех элементов суммируется. Номинальное рабочее напряжение равняется наименьшему из соединенных элементов

Последовательное соединение

В данном случае, чтобы узнать результирующую емкость, придется прибегнуть к расчетам.

Для двух элементов:

С = С1·С2/(С1+С2)

Для трех элементов:

С=(С1·С2+С1·С3+С2·С3)/(С1+С2+С3)

Напряжение равняется сумме напряжений на каждом элементе.

Важно! Напряжение на отдельных конденсаторах распределяется неравномерно, а пропорционально емкости.

Приборы для измерения емкости

Специальные приборы для измерения емкости используют различные принципы. Наиболее распространены такие:

  • Измерение реактивного сопротивления;
  • Измерение частоты резонанса колебательного контура.

Первый тип приборов наиболее распространен. Принцип их работы основан на том, что конденсатор обладает реактивным сопротивлением, обратно пропорциональным частоте приложенного напряжения. То есть, чем выше частота сигнала, тем меньше сопротивление. На клеммах прибора присутствует напряжение заданной величины и частота, а шкала уже откалибрована в единицах емкости, поэтому никаких вычислений производить не надо, за исключением учета положения входных переключателей.

Цифровые приборы для измерения емкости в эксплуатации еще проще. На цифровом индикаторе сразу показывается значение измеряемого параметра.

Цифровой измеритель

Для устройств второго типа используется явление резонанса — скачкообразное измерение параметров колебательного контура из соединенных конденсатора и катушки индуктивности.

Для определения емкости измеряемый элемент подключается к катушке индуктивности с точно определенными параметрами. Изменяя частоту сигнала, добиваются резонанса и отсчитывают в этот момент емкость конденсатора на шкале прибора.

Также как и первые, эти устройства могут быть аналоговыми или цифровыми.

Наиболее часто используются комбинированные измерительные устройства, которыми можно измерять дополнительно индуктивность и сопротивление — RLC-метры.

Измеритель RLC

Специальный измеритель может определять эквивалентное последовательное сопротивление (ЭПС, ESR) и тангенс угла потерь.

Оценить емкость электролитического конденсатора можно, используя обычный мультиметр в режиме измерения сопротивления. Время заряда косвенно будет свидетельствовать о величине емкости (Чем больше величина, тем медленнее будут изменения показаний).

Как правильно измерять емкость

Как измерить ёмкость конденсатора, не имея специального оборудования? Нужно определить величину тока, протекающую через цепь с конденсатором и падение напряжения на нем. Значение измеряемого параметра вычисляют на основании формулы:

Xc = 1/2·π·f·C,

Где Хс — реактивное сопротивление конденсатора,

π — число пи, равное 3.14,

f — частота тока.

Из приведенной формулы можно найти значение емкости:

С = 1/2·π·f·Хс

Реактивное сопротивление Хс находят из показаний измерительных приборов:

Хс = U/I.

Самостоятельное измерение емкости конденсаторов при помощи простейших приборов достаточно трудоемкое и не дает необходимой точности. Лучшие результаты можно получить, используя специализированные измерительные устройства.

Схема и измерения емкости конденсатора

В лабораториях и на промышленных предприятиях используется измеритель ёмкости конденсаторов. Работая с двухполюсниками, возникает необходимость точного определения электрической ёмкости. Для этого доступны различные инструменты, необходимо учитывать их принцип работы и особенности.

Что такое конденсатор

Прежде чем переходить к измерительным приборам, необходимо разобрать понятие конденсатора. Элементы называют двухполюсниками, они накапливают в себе заряд. Поскольку они содержат энергию, есть возможность определить электрическую ёмкость.

Измеритель ёмкости конденсаторов

В электроприборах конденсатор выступает электронным компонентом, который состоит из пластин.

Важно! Внутри корпуса они находятся в диэлектрике и таким образом являются изолированными. Распространенными считаются компоненты цилиндрической формы.

Картинка 2 Вид конденсатора

Принцип работы

Принцип работы конденсатора построен на контроле тока саморазряда. Когда на цепь подаётся электричество, заряд двухполюсника понижается. Уровень саморазряда также понижается, однако проводимость диэлектрика растет. В такой среде напряжение повышается согласно экспоненциальному закону. Определяющим фактором является уровень сопротивления двухполюсника.

Интересный факт! Если в цепи используются конденсаторы высокой емкости, в ней процесс саморазряда отнимает больше времени и на этом можно сыграть.

Измерения с помощью формул электротехники

Для расчёта емкости двухполюсника используется формула:

Rс =1/6,28*f*C

В формуле f — это средняя частота в цепи, а C — уровень сопротивления. Значение «6,28» взято из расчёта математической постоянной.

Картинка 3 Проверка емкости

Измерения с помощью приборов

Чтобы измерить емкость конденсатора, необходимо использовать мультиметр. Варианты на выбор:

  • мультиметр;
  • прибор ESR;
  • С — метр.

Приборы отличаются по конструкции и принципу действия. При рассмотрении оборудования учитываются характеристики, правила использования.

Картинка 4 Тестеры в электронике

Мультиметр

Если требуется узнать точную ёмкость конденсатора, используется мультиметр. В научной среде по-другому он может называться авометром. Электроизмерительный прибор сочетает в себе вольтметр, а также амперметр. Стандартная модель изготавливается с двумя щупами. Встречаются цифровые и аналоговые приборы, которые отличаются по принципу действия.

Учитывается параметр погрешности, точности и разрядности. Цифровой аппарат работает по принципу отслеживания сопротивления. При подключении к цепи постоянного, переменного тока происходит улавливание частоты и периода. Через плату управления удаётся определить показатель ёмкости элемента.

Картинка 5 Мультиметр

Интересно! Аналоговые приборы имеют массу недостатков, однако используются в промышленной среде. Основной проблемой считается низкая точность измерений.

По структуре используется набор резисторов, шунт и магнитоэлектрический элемент. Принцип работы построен на реагировании колебаний электрического тока. Низкоомный резистор подаёт сигналы на катушку, их улавливает проводник. Через диоды происходит преобразование в импульс, и стрелка мультиметра отклоняется в сторону.

Прибор ESR

Для измерения емкости двухполюсников разработан измерительный прибор ESR. Преимущество кроется в том, что его можно использовать без отключения элементов из цепи. Он прост в обслуживании, подходит для лабораторного тестирования.

Картинка 6 Прибор ESR

Принцип работы строится на электролитических свойствах конденсатора. Учитывается уровень нежелательного сопротивления, а также пропускная способность элемента. Прибор способен отслеживать электрический ток в определенном периоде времени, и рассчитывается уровень разряда. Полученное напряжение делится на ток, на цифровом дисплее отображается емкость конденсатора.

Недостаток кроется в том, что прибор подходит для использования лишь в цепи с переменным током. Измерители этого типа изготавливаются в Америке и Европе. Тестер активно используется радиолюбителями. Современные модели способны определить следующие параметры:

  • средняя частота;
  • характеристики транзистора;
  • проводимость диода;
  • сопротивление отдельных компонентов.

За основу у многих моделей взят микроконтроллер ATmega 328. Он отличается низким разрядом, способен долго прослужит. Выключение происходит после трех минут режима ожидания. Для определения рабочей частоты используется частотомер, который генерирует импульсы.

Картинка 7 Прибор частотомер

Важно!Современные модификации функционируют в режиме самотестирования, производя самодиагностику. Таким образом, калибровка не отнимает много времени. Модели поставляются с дисплеями, есть возможность выбирать единицы измерения.

Тестеры могут быть установлены на стол, планку. В комплекте к некоторым товарам предоставляется площадка. Чтобы определить показатель напряжения, необходимо подключить клеммники. Перед использованием прибор калибруется. В меню предусмотрены опции на выбор. С целью замыкания контактов используются перемычки. Устройства отличаются по параметру памяти, точности.

Картинка 8 Работа тестера

Учитывается рабочий температурный диапазон и проводимость. В качестве источника питания могут использоваться аккумуляторы типа «Крона». Средний показатель напряжение на блоках питания 9 вольт. Востребованными остаются варианты со штекером и без него.

С — метр

LC-метра подходят не только для измерения емкости конденсаторов, но и определения уровня индуктивности. По внешнему виду они схожи с мультиметром, однако отличаются принципом работы. Когда тестер замыкает цепь, отслеживается показатель напряжения. Измеряемая ёмкость вычисляется с высокой погрешностью, за счет использования выпрямителя.

Картинка 9 LC-метр

Даже работая с импортными конденсаторами, расчёт производится с учетом применения любого электролита. Сигнал о частоте напряжения и токе поступает на катушку индуктивности. Прибор является универсальным, однако есть недостаток. Для определения ёмкости двухполюсника требуется снять конденсатор. Распространенным вариантом является товар MY6243, это продукция китайского производителя. Она имеет следующие особенности:

  • высокая допустимая емкость;
  • большая стабильность;
  • батарея 9 вольт;
  • ручной выбор диапазона;
  • имеется экран.

Устройство способно определить индуктивность низкого заряда. Модель является узкоспециализированной и востребована в лабораториях и промышленной среде. У нее используется защищенный корпус, на панели расположен круговой переключатель. На экране виден текущий режим, разрешается изменять функции.

Картинка 10 Экран тестера

Прибор автономен, используется емкостный аккумулятор. В комплекте товара предусмотрена батарея, инструкция и щупы. Также продаются высокоточные приборы класса LC200А. У них высокая разрядность, предусмотрена функция автовыключения. Гарантия на продукцию — 3 месяца, используется защищенный корпус.

Минимальная тестовая частота — от 10 Герц. Показатель ёмкости двухполюсника появляется на экране. С целью подключения измерительного прибора к технике, предусмотрен порт mini-USB. В комплекте предоставляется паспорт, кабель USB и зажимы.

Схема измерения емкости

Схема измерителя емкости электролитических конденсаторов включает множество элементов:

  • переключатель;
  • тумблер;
  • подстроечный резистор;
  • батарея питания.

Картинка 11 Схема измерителя

Также распространенными являются схемы с микросхемой К140УД608. У варианта с тестером используются биполярные транзисторы, набор диодов. Есть светодиоды, батарея питания. По схеме имеется два переключателя, предусмотрен микроамперметр.

Выше описаны измерители емкости конденсаторов. Рассмотрено понятие двухполюсника и формула нахождения значения. Также раскрыт принцип работы мультиметра, прибора ESR, LC-метра.

Прибор для проверки конденсаторов: схема, без выпайки

Чтобы убедиться в исправности конденсаторов, необходимо провести определение их исправности и соответствия номинальных параметров. Для этой цели можно использовать тестер конденсаторов. Существует несколько видов таких приборов. Для определения исправности этих деталей возможно использовать более простые способы.

Что такое тестер конденсаторов

Конденсатор представляет собой радиодеталь, состоящую из двух обкладок, сделанных из проводников и диэлектрического слоя между ними. Электрическая емкость элемента измеряется в фарадах. Эта величина очень большая, поэтому на практике используются микрофарады или пикофарады.

Выполнение измерения емкости

Конденсаторы обычно бывают электролитическими или пленочными. В последних параметры мало меняются с течением времени. У электролитических ситуация другая. Жидкий состав, находящийся внутри, постепенно высыхает, и деталь теряет свои полезные свойства. Часто по внешнему виду нельзя судить по его исправности. Для проверки его нужно выпаивать.

Другая ситуация, когда важно проверить емкость, — это нарушение его работы от различных причин случайного характера — скачков напряжения или работы в условиях повышенной температуры. Неисправный элемент может послужить причиной неисправной работы всего устройства.

Чтобы изучить ситуацию, необходимо определить, соответствует ли емкость конденсатора номинальному значению. Для этой цели применяют тестеры конденсаторов.

Они могут быть цифровыми или аналоговыми. Во время проверки может определяться емкость или ESR, параметр, который представляет собой последовательное эквивалентное сопротивление.

Высокоточное измерение

В некоторых мультиметрах имеется возможность непосредственной проверки емкости.

ESR-измерители производят определение эквивалентного последовательного сопротивления. Здесь речь идет о реактивном сопротивлении, которое обусловлено емкостью. Оно может существенно возрастать при увеличении частоты. Этот параметр оценивают с помощью сложных алгоритмов. Если он принимает слишком большую величину, то в некоторых ситуациях может быть нарушен температурный режим работы элемента. Это особенно опасно для электролитических элементов.

Существуют специальные измерители емкости.

Аналоговое устройство

ESR-метр

Такой измерительный прибор оснащен жидкокристаллическим дисплеем. У него имеются 2 щупа: красный и черный. Первый считается положительным, второй — отрицательным. Перед тем, как проверять, элемент разряжают, закорачивая выводы друг на друга. Чтобы провести измерение, щупы соединяют с выводами конденсатора. Если используется полярная модель, необходимо при этом учитывать полярность щупов.

Затем прибор включают и через несколько секунд на экране появляются величины емкости и параметра ESR.

Измеритель емкости

Мультиметр

Для определения исправности конденсатора мультиметр можно перевести в режим определения сопротивления. Переключатель нужно установить на 2 МОм или 200 Ком. Нужно подобрать этот параметр таким образом, чтобы зарядка происходила не сразу, а в течение нескольких секунд.

К его выводам элемента, который нужно выпаять из схемы, подключают красный и черный щупы. Теперь необходимо следить за данными на дисплее. Если там 0, то это означает обрыв контактов или другое механическое повреждение. Если tester показывает увеличивающиеся цифры и в конце концов появляется 1, то это говорит о работоспособности детали. Если сразу появляется единица, то это означает, что в конденсаторе произошел пробой.

При использовании аналогового прибора у исправной детали можно будет увидеть постепенное движение стрелки. Мгновенная установка минимального значения говорит об обрыве, а максимального — свидетельствует о пробое.

В мультиметре предусмотрена возможность непосредственного измерения емкости. Для этого нужно установить переключатель аппарата для ее измерения и выбрать наиболее подходящую шкалу. Обычно для контактов конденсатора предусматриваются особые клеммы. Если их нет, надо воспользоваться красным и черными щупами. В последнем случае необходимо воспользоваться такими же клеммами, как при измерении сопротивления.

Если значение емкости равно или близко к номинальному, то элемент исправен и может быть использован. В противном случае он неработоспособен. Считается, что совпадение с разницей не более 20% говорит о радиотехнической пригодности детали.

Протечка электролита

Принцип действия прибора для проверки конденсаторов

Перед тем, как производить измерение, нужно выполнить разрядку конденсатора. Для этого его выводы соединяют друг с другом.

Щупы мультиметра обеспечивают разность потенциалов, которая может быть использована для зарядки конденсатора. По времени зарядки можно приблизительно оценить емкость. Измеряя сопротивление, можно определить наличие повреждений или пробой конденсатора.

При измерении параметра ESR используются сложные алгоритмы. В таком тестере используются специальные микросхемы для управления процессом проверки.

Виды конденсаторов

Параметры приборов

У каждого конденсатора предусмотрено использование номинального напряжения. При тестировании его работы нужно, чтобы измерительный прибор был настроен именно на эту величину.

Для косвенных измерений можно использовать омметр или вольтметр. Некоторые радиолюбители собирают самодельный измерительный прибор.

Как сделать прибор для проверки конденсаторов своими руками

Провести измерение емкости можно с помощью несложного прибора. Для него необходимы следующие детали:

  • источник постоянного тока;
  • резистор;
  • конденсатор;
  • вольтметр.

Эта схема подойдет для проверки электролитических конденсаторов. Нужно выбрать входное напряжение таким, чтобы оно было немного меньше по сравнению с номинальным напряжением конденсатора. Один из выводов конденсатора к источнику питания подсоединяют через резистор. Вольтметр присоединяют к выводам конденсатора.

Схема проверки

После подключения измерителя начинается процесс зарядки конденсатора. Нужно засечь время, в течение которого он будет длиться. Величину сопротивления можно подобрать в значительной степени произвольно. При этом нужно ориентироваться на скорость зарядки. Нужно, чтобы она была такой, которую удобно измерять.

При проведении зарядки на вольтметре можно будет увидеть возрастание напряжения. В какой-то момент оно достигнет предельной величины и перестанет расти. Это будет конечный момент отсчета времени. Для вычисления емкости достаточно воспользоваться формулой: t=RC. В ней известно время и величина сопротивления резистора. Емкость можно определить из соотношения C=t/R.

Использование мультиметра

Проверяют конденсатор на наличие пробоя с помощью схемы самоделки — последовательно соединенной с ним лампочки 40 Вт, включенных в обычную сеть переменного тока. Если лампочка светит в половину накала, то деталь исправна. При ярком свете имеется пробой, при отсутствии — повреждены контакты.

Как правильно использовать прибор

Если номинальное напряжение неизвестно, то можно действовать исходя из того, что оно составляет 10-12 В. Обычно используют резисторы, имеющие сопротивление 5-10 КОм.

Чтобы проверить деталь, не выпаивая ее из схемы, параллельно с ней можно подсоединить конденсатор с такими же параметрами в рабочем состоянии. Если схема восстановит свою работу, то это означает, что деталь была неисправна и ее следует заменить.

Мостовая схема

Измерение емкости без выпаивания с платы сложно и доступно только профессиональному специалисту. Прибор для проверки электролитических конденсаторов без выпайки может быть использован только с учетом схемы подключения конденсатора. Дело в том, что полученный результат будет существенно зависеть от способа подключения детали и в различных ситуациях может показать труднообъяснимые результаты. Например, если параллельно с ним включена катушка, то при измерении емкости без выпайки будет показано нулевое сопротивление.

Если неисправен конденсатор, надо его проверить, применив один из имеющихся методов. В случае неисправности потребуется его заменить, чтобы плата восстановила свою работоспособность.

Емкость конденсатора Формула

Capacitance of a capacitor Емкость конденсатора - это способность конденсатора накапливать электрический заряд на единицу напряжения на его пластинах конденсатора. Емкость определяется путем деления электрического заряда с напряжением по формуле C = Q / V. Его подразделение - Фарад.

Формула

Его формула имеет вид:

C = Q / V

Где C - емкость, Q - напряжение, а V - напряжение. Мы также можем найти заряд Q и напряжение V, изменив приведенную выше формулу следующим образом:

Q = CV

V = Q / C

Фарад - это единица измерения емкости.Один Фарад - это величина емкости, когда один кулон заряда хранится с одним вольт на пластинах.

Большинство конденсаторов, которые используются в электронике, имеют значения емкости, которые указаны в микрофарадах (мкФ) и пикофарадах (пФ). Микрофарад - это одна миллионная часть фарада, а пикофарад - одна триллионная часть фарада.

Какие факторы влияют на емкость конденсатора?

Это зависит от следующих факторов:

Площадь пластин

plate area

Емкость прямо пропорциональна физическому размеру пластин, определяемому площадью пластинки, A.Чем больше площадь пластины, тем больше емкость и меньше емкость. На фиг. (А) показано, что площадь пластины конденсатора с параллельными пластинами - это площадь одной из пластин. Если пластины перемещаются относительно друг друга, как показано на рис. (B), площадь перекрытия определяет эффективную площадь пластины. Это изменение эффективной площади пластины является основным для определенного типа переменного конденсатора.

Разделение пластин

plate seperation

`Емкость обратно пропорциональна расстоянию между пластинами.Разделение пластин обозначено d, как показано на рис. (А). Большее разделение пластин приводит к меньшей емкости, как показано на рис. (Б). Как обсуждалось ранее, напряжение пробоя прямо пропорционально разделению пластины. Чем дальше пластины разделены, тем больше напряжение пробоя .

Диэлектрическая постоянная материала

Как известно, изолирующий материал между пластинами конденсатора называется диэлектриком. Диэлектрические материалы имеют тенденцию уменьшать напряжение между пластинами для данного заряда и, таким образом, увеличивать емкость.Если напряжение фиксировано, из-за наличия диэлектрика может накапливаться больше заряда, чем может храниться без диэлектрика. Мера способности материала устанавливать электрическое поле называется диэлектрической проницаемостью или относительной диэлектрической проницаемостью, обозначаемой как r .

Емкость прямо пропорциональна диэлектрической проницаемости. Диэлектрическая проницаемость вакуума определяется как 1, а диэлектрическая проницаемость воздуха очень близка к 1. Эти значения используются в качестве эталона, и все другие материалы имеют значения ∈ r, указанные относительно значения вакуума или воздуха.Например, материал с ∈r = 8 может привести к емкости, в восемь раз большей, чем у воздуха, при прочих равных условиях.

Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈ 0 , выраженное следующей формулой:

r = ∈ / ∈ 0

Ниже приведены некоторые общие диэлектрические материалы и типичные диэлектрические постоянные для каждого.Значения могут варьироваться, поскольку они зависят от конкретного состава материала.

Материал Типичные значения rr

  • Воздух 1.0
  • Тефлон 2.0
  • Бумага 2.5
  • Масло 4.0
  • Слюда 5,0
  • Стекло 7,5
  • Керамика 1200

Диэлектрическая проницаемость εr безразмерна, поскольку она относительная мера.Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈ 0, выраженное следующей формулой:

∈r = ∈ / ∈0

Значение ∈ 0 равно 8,85 × 10-12 ф / м.

Формула емкости в терминах физических параметров

Вы видели, как емкость напрямую связана с площадью пластины, A и диэлектрической проницаемостью, r, и обратно связана с разделением пластины, d. Точная формула для расчета емкости в терминах этих трех величин:

C = A ∈ r ∈ / d

где ∈ = ∈ r 0 = ∈r (8.85 × 10-12F / м)

Емкость конденсатора с параллельными пластинами

Рассмотрим конденсатор с параллельными пластинами. Размер пластины велик, а расстояние между пластинами очень мало, поэтому электрическое поле между пластинами однородно.

capacitance of parallel plate capacitor

Электрическое поле «Е» между конденсаторами с параллельными пластинами:

relation of parallel plate capacitor

Емкость цилиндрических конденсаторов физика

Рассмотрим цилиндрический конденсатор длиной L, образованный двумя коаксиальными цилиндрами радиусов «а» и « б.Предположим, что L >> b такое, что на концах цилиндров нет краевого поля.

capacitance of cylindrical capacitor

Пусть «q» - заряд в конденсаторе, а «V» - разность потенциалов между пластинами. Внутренний цилиндр заряжен положительно, а внешний цилиндр заряжен отрицательно. Мы хотим выяснить выражение емкости для цилиндрического конденсатора. Для этого рассмотрим цилиндрическую гауссову поверхность радиуса ‘r’, такую ​​что a << b.

Если «Е» - напряженность электрического поля в любой точке цилиндрической гауссовой поверхности, то по закону Гаусса:

Если «V» - разность потенциалов между пластинами, то

relation of capacitance of cylindrical capacitor

Это отношение для емкость цилиндрического конденсатора.

Емкость сферического конденсатора

relation of capacitance of spherical capacitor

Емкость изолированного сферического конденсатора

capacitance of isolated sphere

Внешний источник
https://en.wikipedia.org/wiki/Capacitance.

Как работают конденсаторы? - Объясните, что материал

Крис Вудфорд. Последнее обновление: 10 июля 2020 г.

Большую часть дня смотрите в небо, и вы увидите огромные конденсаторы. парящий над головой Конденсаторы (иногда называемые конденсаторами) являются накопителями энергии, которые широко используются в телевизорах, радиоприемники и другие виды электронного оборудования. Настройте радио на станция, сделайте флеш фото с цифровым камера или щелкнуть каналы на вашем HDTV, и вы делаете хорошо использование конденсаторов. конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они абсолютно гигантские по сравнению с конденсаторами, которые мы используем в электронике они накапливают энергию точно так же. Давайте принимать подробнее рассмотрим конденсаторы и то, как они работают!

Фото: типичный конденсатор, используемый в электронных схемах. Этот называется электролитическим конденсатором, и его номинал составляет 4,7 мкФ (4,7 мкФ), с рабочим напряжением 350 вольт (350 В).

Что такое конденсатор?

Фото: небольшой конденсатор в транзисторной радиосистеме.

Возьмите два электрических проводника (вещи, которые позволяют электричеству течь через них) и разделить их изолятором (материал который не дает электричеству течь очень хорошо) и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электрической энергии к конденсатору называется зарядка ; высвобождая энергию из конденсатор известен как разряда .

Конденсатор немного похож на батарею, но у него другая работа делать.Аккумулятор использует химические вещества для хранения электрической энергии и выпуска это очень медленно по кругу; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно выпускает его энергия намного быстрее - часто за секунды или меньше. Если вы принимаете например, для съемки фотографии со вспышкой Огромный всплеск света за доли секунды. Конденсатор прилагается вспышка заряжается в течение нескольких секунд, используя энергию от вашего батареи камеры. (Требуется время для зарядки конденсатора, и это почему вы обычно должны немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию через мгновение через ксеноновую лампочку. Zap!

Конденсаторы бывают всех форм и размеров, но они обычно имеют те же основные компоненты. Есть два проводника (известные как пластины , в основном по историческим причинам) и между ними есть изолятор их (называемый диэлектрик ). Две пластины внутри конденсатора подключены к двум электрическим соединения снаружи называются клеммами , которые похожи тонкие металлические ножки можно зацепить в электрическую цепь.

Фото: внутри электролитический конденсатор немного похож на швейцарский рулон. «Пластины» - это два очень тонких листа металла; диэлектрик между ними маслянистая пластиковая пленка. Все это завернуто в компактный цилиндр и покрыто защитным металлическим корпусом. ВНИМАНИЕ: Открывать конденсаторы может быть опасно. Во-первых, они могут держать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь вашу кожу.

Работа: Как изготовить электролитический конденсатор, свернув листы алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае, бумаги или тонкой марли, пропитанной кислотой или другим органическим химикатом).Листы фольги подключаются к клеммам (синего цвета) сверху, чтобы конденсатор можно было подключить к цепи. Произведение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор, автор: Frank Clark, General Electric, 10 августа 1937 года.

Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. Когда вы включаете питание, электрический заряд постепенно накапливается на тарелках. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если Вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если вы подключите конденсатор для второй цепи, содержащей что-то вроде электрического двигатель или вспышка, заряд будет течь от конденсатора через двигатель или лампа, пока на пластинах не осталось ничего.

Хотя конденсаторы эффективно выполняют только одну работу (хранение заряд), они могут быть использованы для различного использования в электрических схем. Они могут быть использованы в качестве устройства синхронизации (потому что это занимает определенное, предсказуемое время для их зарядки) в качестве фильтров (схемы, которые позволяют только определенным сигналам течь), для сглаживания напряжение в цепях, для настройки (в радио и телевизорах), а также для множество других целей.Большие суперконденсаторы также могут быть используется вместо батарей.

Что такое емкость?

Количество электрической энергии, которое может хранить конденсатор, зависит от его емкость . Емкость конденсатора немного похожа размер ведра: чем больше ведро, тем больше воды оно может хранить; чем больше емкость, тем больше электричества может конденсатор хранить. Есть три способа увеличить емкость конденсатор. Одним из них является увеличение размера тарелок.Другой, чтобы переместите пластины ближе друг к другу. Третий способ - сделать диэлектрик как можно лучше изолятор. Использование конденсаторов диэлектрики из всех видов материалов. В транзисторных радиоприемниках, настройка осуществляется большим переменным конденсатором , который не имеет ничего, кроме воздуха между пластинами. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майларовое.

Фото: этот переменный конденсатор подключен к основному колесу настройки в транзисторной радиосистеме.Когда вы поворачиваете диск пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, вкрученных между ними. Степень перекрытия между пластинами изменяет емкость, и это то, что настраивает радио на определенную станцию.

Как мы измеряем емкость?

Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электричества Майкла Фарадея (1791–1867).Один Фарад это огромное количество емкости так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада - как правило, микрофарады (миллионные доли фарада, в мкФ), нанофарады (тысячные миллионы фарадов, написанных нФ), и пикофарады (миллионные миллионы фарада, написано pF). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарад.

Почему конденсаторы накапливают энергию?

Если вы находите конденсаторы таинственными и странными, и они не имеют для вас никакого смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите на дне некоторых шагов и вы решили начать лазить. Вы должны поднять свое тело против гравитации Земли, которая является привлекательной (тянущей) силой. Как говорят физики, чтобы "лазить" надо "делать работу" лестница (работа против силы тяжести) и использование энергии. Используемая вами энергия не теряется, но сохраняются вашим телом как гравитационная потенциальная энергия, которую вы могли бы использовать для других целей (просвистывая слайд обратно, например, на уровень земли).

То, что вы делаете, когда поднимаетесь по ступенькам, лестницам, горам или чему-то еще, - это работа против гравитационное поле.Очень похожая вещь происходит в конденсаторе. Если у вас есть положительный электрический заряд и отрицательный электрический заряд, они притягивают друг друга, как противоположный полюса двух магнитов - или как ваше тело и Земля. Если вы раздвинете их, вы должны «сделать работу» против этого электростатического сила. Опять же, как и в случае с восхождением, энергия, которую вы используете, не теряется, а аккумулируется зарядами, поскольку они отдельно. На этот раз это называется электрической потенциальной энергии . И это, если вы не догадались к настоящему времени это энергия, которую хранит конденсатор.Его две пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.

Почему конденсаторы имеют две пластины?

Фото: очень необычный, регулируемый параллельный пластинчатый конденсатор, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году. Точное расстояние между пластины можно регулировать (и измерять) с помощью микрометрического винта.Фото любезно предоставлено Национальным институтом цифровых коллекций стандартов и технологий, Гейтерсберг, MD 20899.

Как мы уже видели, конденсаторы имеют две проводящие пластины разделены изолятором. Чем больше тарелки, тем ближе они и чем лучше изолятор между ними, тем больше заряд конденсатор можно хранить. Но почему все это правда? Почему не конденсаторы просто есть одна большая пластина? Давайте попробуем найти простой и удовлетворительное объяснение.

Предположим, у вас есть большая металлическая сфера, установленная на изолирующей поверхности, деревянная подставка.Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше его радиус), тем больше заряд вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. В конце концов, однако, вы достигнете Точка, где, если вы добавите столько, сколько один дополнительный электрон ( наименьшая возможная единица заряда), конденсатор перестанет работать. Воздух вокруг него будет разрушаться, превращаясь из изолятора в проводник: заряд будет проноситься через воздух на Землю (землю) или другой соседний проводник в виде искры - электрический ток - в мини заряд молнии.Максимальная сумма заряда, которую вы можете хранить на сфера - это то, что мы подразумеваем под своей емкостью. Напряжение (В), заряд (Q) и емкость связаны очень простым уравнением:

C = Q / V

Таким образом, чем больше заряда вы можете хранить при данном напряжении, не вызывая Воздух ломается и искрится, чем выше емкость. Если бы ты мог каким-то образом хранить больше заряда на сфере, не достигая точки где вы создали искру, вы бы эффективно увеличить ее емкость. Как ты мог это сделать?

Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд хранится на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы принесете вторую идентичную пластину близко к это, вы найдете, вы можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое «вызывает» равный и противоположный заряд на второй тарелке. Следовательно, вторая пластина снижает напряжение из первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим зарядом (Q) хранится точно так же напряжение (V), уравнение C & равно; Q / V говорит нам, что мы увеличили емкость нашего устройства накопления заряда путем добавления второй пластины, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина имеет огромное значение , что Вот почему все практические конденсаторы имеют две пластины.

Как мы можем увеличить емкость?

Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (как если бы вы сделали шкаф больше, вы можете заполнить больше вещи внутри него).Таким образом, увеличивая площадь пластин также увеличивает емкость. Менее очевидно, если мы сократим расстояние между пластинами, что также увеличивает емкость. Это потому что чем короче расстояние между пластинами, тем больше эффект тарелки имеют друг на друга. Вторая тарелка, будучи ближе, уменьшает потенциал первой пластины еще больше, и это увеличивает емкость.

Artwork: Диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между его пластинами, таким образом уменьшая потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при том же напряжении. Электрическое поле в этом конденсаторе проходит от положительной пластины слева на отрицательную пластину справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в противоположную сторону - и это то, что уменьшает поле.

Последнее, что мы можем сделать, чтобы увеличить емкость, это изменить диэлектрик (материал между пластинами). Воздух работает довольно хорошо, но другие материалы еще лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки, используя обычное стекло в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и трудно втиснуть в маленькие места. Вощеная бумага примерно в 4 раза лучше, чем воздух, очень тонкая, дешевая, легко сделать в больших кусках, и легко катиться, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом на одной стороне и более отрицательный электрический заряд с другой).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают с заряды направлены против поля, что эффективно его уменьшает. Это уменьшает потенциал на пластинах и, как и прежде, увеличивает их емкость. Теоретически, вода, которая сделана из очень маленькой полярные молекулы, сделали бы отличный диэлектрик, примерно в 80 раз лучше воздуха Практически, однако, это не так хорошо (он протекает и высыхает и изменяется от жидкости до льда или пара при относительно скромные температуры), поэтому он не используется в реальных конденсаторах.

Диаграмма

: Различные материалы создают лучшие или худшие диэлектрики в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком и имеет относительную диэлектрическую проницаемость 1. Другие диэлектрики измеряются относительно (сравнивая их) с вакуумом. Воздух примерно одинаков. Бумага примерно в 3 раза лучше.Алкоголь и вода, которые имеют полярные молекулы, создают особенно хорошие диэлектрики.

,

Страница не найдена | MIT

Перейти к содержанию ↓
  • образование
  • Исследовательская работа
  • новаторство
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Alumni
  • О MIT
  • Больше ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Alumni
    • О MIT
Меню ↓ Поиск Меню О, похоже, мы не смогли найти то, что искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Посмотреть больше результатов

Предложения или отзывы?

,

Что такое конденсатор (C)

Что такое конденсатор и расчеты конденсаторов.

Что такое конденсатор

Конденсатор - это электронный компонент, который хранит электрический заряд. Конденсатор состоит из 2-х тесных проводников (обычно пластин), которые разделены диэлектрическим материалом. Пластины накапливаются электрический заряд при подключении к источнику питания. Одна тарелка накапливает положительный заряд, а другая пластина накапливает отрицательный заряд.

Емкость - это количество электрического заряда, который накапливается в конденсаторе при напряжении 1 Вольт.

Емкость измеряется в единицах Фарад (F).

Конденсатор отключает ток в цепях постоянного тока (DC) и короткое замыкание в цепях переменного тока (AC).

Конденсаторные картинки

Конденсаторные символы

Емкость

Емкость (C) конденсатора равна электрическому заряду (Q), деленному на напряжение (V):

C - емкость в Фарадах (F)

Q - электрический заряд в кулонах (С), который накапливается на конденсаторе

В - напряжение между обкладками конденсатора в вольтах (В)

Емкость пластин емкостных

Емкость (C) конденсатора пластин равна диэлектрической проницаемости (ε), умноженной на площадь пластины (A), деленную на зазор или расстояние между пластинами (d):

C - емкость конденсатора, в Фарадах (F).

ε - диэлектрическая проницаемость конденсаторного материала в Фарадах на метр (Ф / м).

A - площадь пластины конденсатора в квадратных метрах (м 2 ).

d - расстояние между пластинами конденсатора в метрах (м).

Конденсаторы в серии

Общая емкость конденсаторов последовательно, C1, C2, C3, ..:

Конденсаторы параллельно

Общая емкость конденсаторов параллельно, C1, C2, C3 ,., :

C Итого = C 1 + C 2 + C 3 + ...

Ток конденсатора

Моментальный ток конденсатора i c (т) равен емкости конденсатора,

раз производная напряжения мгновенного конденсатора v c (т):

Напряжение на конденсаторе

Временное напряжение конденсатора v c (t) равно начальному напряжению конденсатора,

плюс 1 / C, умноженное на интеграл тока мгновенного конденсатора i c (t) за время t:

Энергия конденсатора

накопленная энергия конденсатора E C в джоулях (J) равен емкости C, в Фарадах (F)

В

раз больше квадратного напряжения конденсатора В С в вольтах (В) делится на 2:

E C = C × V C 2 /2

цепи переменного тока

Угловая частота

ω = 2 π f

ω - угловая скорость, измеренная в радианах в секунду (рад / с)

f - частота измеряется в герцах (Гц).

Реактивное сопротивление конденсатора

Конденсаторное сопротивление

Декартова форма:

Полярная форма:

Z C = X C ∟-90º

Типы конденсаторов

Переменный конденсатор Переменный конденсатор имеет переменную емкость
Электролитический конденсатор Электролитические конденсаторы используются, когда требуется высокая емкость.Большинство электролитических конденсаторов поляризованы
Сферический конденсатор Сферический конденсатор имеет форму шара
Силовой конденсатор Силовые конденсаторы используются в высоковольтных энергосистемах.
Керамический конденсатор Керамический конденсатор имеет керамический диэлектрический материал. Имеет функцию высокого напряжения.
Танталовый конденсатор Танталоксидный диэлектрический материал. Имеет высокую емкость
Слюдяной конденсатор Высокоточные конденсаторы
Бумажный конденсатор Бумажный диэлектрический материал


Смотри также:

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *