Закрыть

Как измерить емкость конденсатора: Экономичный измеритель ESR и емкости конденсаторов с усиленной защитой

Содержание

Как проверить конденсатор мультиметром. Проверка конденсатора мультиметром

Приветствую всех друзья и читатели сайта «Электрик в доме». Думаю всем известно, что такое конденсатор. Если кто не видел данный элемент микросхем, то точно слушал о нем. Самой распространенной причиной неисправности в радиоэлектронике является повреждение именно этого элемента. Современная бытовая техника «начинена» электроникой и поломка такой крохотной детали приводит к потере функциональности всего механизма в целом.

Чтобы определить какой именно конденсатор в схеме вышел из строя их необходимо проверить на работоспособность. И желательно это делать с помощью электронный приборов, та как визуальный осмотр не дает заключения о неисправности.

Делать мы это будем с помощью недорогого и функционального прибора — мультиметра. В прошлой статье я писал о том, как с его помощью можно выполнить проверку сопротивления, а сегодня рассмотрим методику, как проверить конденсатор мультиметром.

Написать данную статью меня попросил один из подписчиков. Я как всегда постараюсь изложить материал доступным языком, но если останутся вопросы, не стесняйтесь задавать их в комментариях.

Проверка конденсатора мультиметром

Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.

Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

  1. 1) полярные;
  2. 2) неполярные.

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.

Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.

Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).

Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

Как проверить конденсатор с помощью приборов

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.

Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.

Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».

При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.

Проверяем конденсатор мультиметром в режиме омметра

В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо

разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.

Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.

Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.

Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).

Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:

На дисплее прибора наблюдаем как начинает изменятся сопротивление: 

По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.

Как проверить емкость конденсатора мультиметром

Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.

Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?

Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.

Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).

Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.

Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».

Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.

Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.

Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.

Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.

Как проверить конденсатор тестером (стрелочным прибором)

Друзья завалялся у меня в гараже измерительный прибор времен СССР — Ц4313. Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.

Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.

Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера. Если конденсатор исправный стрелка сначала отклонится, а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.

Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.

На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать комментарии. Также особая благодарность за РЕПОСТ в соц.сетях.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

ESR конденсатора | Описание, как измерить, таблица ESR

ESR  – оно же эквивалентное последовательное сопротивление – это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.

Реальные параметры конденсатора

Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем “Прогресс”. Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?

где

r – это сопротивление диэлектрика  и корпуса между обкладками конденсатора

С – собственно сама емкость конденсатора

ESR – эквивалентное последовательное сопротивление

ESI (чаще его называют ESL)  – эквивалентная последовательная индуктивность

Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:

r – сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.

С – емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.

ESI(ESL) – последовательная индуктивность – это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Почему? Читаем статью катушка индуктивности в цепи постоянного и переменного тока.

Где “прячется” ESR в конденсаторе

ESR представляет из себя сопротивление выводов и обкладок

Как вы знаете, сопротивление проводника можно узнать по формуле:

где

ρ – это удельное сопротивление проводника

l – длина проводника

S – площадь поперечного сечения проводника

Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок 😉 Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.

Почему вредно большое значение ESR

Раньше, еще когда только-только стали появляться первые электронные схемы, такой параметр, как ESR даже ни у кого не был на слуху. Может быть и знали, что есть это сопротивление, но оно никому не вредило. Но… с появлением первых импул

Как определить емкость конденсатора — Всё о электрике

Иногда, когда на конденсаторе отсутствует маркировка или нет доверия к указанным на его корпусе параметрам, требуется как-то узнать реальную емкость. Но как это сделать, не имея специального оборудования?

Безусловно, если под рукой есть мультиметр с возможностью измерения емкости или C-метр с подходящим диапазоном измерения емкостей, то проблема перестает быть таковой. Но что же делать, если в наличии только простой бытовой мультиметр и какой-нибудь блок питания, а измерить емкость конденсатора необходимо здесь и сейчас? На помощь в этом случае придут известные законы физики, которые позволят с достаточной степенью точности измерить емкость.

Рассмотрим сначала простой способ измерения емкости электролитического конденсатора подручными средствами. Как известно, при заряде конденсатора от источника постоянного напряжения через резистор, имеет место закономерность, по которой напряжение на конденсаторе станет экспоненциально приближаться к напряжению источника, и в пределе когда-нибудь, наконец, его достигнет.

Но чтобы долго не ждать, можно задачу себе упростить. Известно, что за время, равное 3*RC, напряжение на конденсаторе в процессе зарядки достигнет 95% напряжения, приложенного к RC-цепочке. Значит, зная напряжение блока питания, номинал резистора, и вооружившись секундомером, можно легко измерить постоянную времени, а точнее – троекратную постоянную времени для большей точности, и вычислить затем емкость конденсатора по известной формуле.

Для примера рассмотрим далее эксперимент. Допустим, есть у нас электролитический конденсатор, на котором присутствует какая-то маркировка, но мы ей не особо доверяем, так как конденсатор давно валялся в закромах, и мало ли высох, в общем нужно измерить его емкость. Например, на конденсаторе написано 6800мкф 50в, но нужно узнать точно.

Шаг №1. Берем резистор номиналом 10кОм, измеряем его сопротивление мультиметром, поскольку своему мультиметру в этом эксперименте мы будем изначально доверять. Например, получилось сопротивление 9840 Ом.

Шаг №2. Включаем блок питания. Поскольку мультиметру мы доверяем больше, чем калибровке шкалы (если таковая имеется) блока питания, переводим мультиметр в режим измерения постоянного напряжения, и подключаем его к выводам блока питания. Выставляем напряжение блока питания на 12 вольт, чтобы мультиметр точно показал 12,00 В. Если напряжение блока питания не регулируется, то просто замеряем его и записываем.

Шаг №3. Собираем RC-цепочку из резистора и конденсатора, емкость которого нужно измерить. Конденсатор закорачиваем на время так, чтобы его легко можно было раскоротить.

Шаг №4. Подключаем RC-цепочку к блоку питания. Конденсатор все еще закорочен. Измеряем мультиметром еще раз напряжение, подаваемое на RC-цепочку, и фиксируем это значение для верности на бумаге. К примеру, оно так и осталось 12,00 В, или таким же, каким было в начале.

Шаг №5. Вычисляем 95% от этого напряжения, например если 12 вольт, то 95% – это 11,4 вольта. Теперь мы знаем, что за время, равное 3*RC, конденсатор зарядится до 11,4 В.

Шаг №6. Берем в руки секундомер, и раскорачиваем конденсатор, начинаем одновременно отсчет времени. Фиксируем время, за которое напряжение на конденсаторе достигло 11,4 В, это и будет 3*RC.

Шаг №7. Производим вычисления. Получившееся время в секундах делим на сопротивление резистора в омах, и на 3. Получаем значение емкости конденсатора в фарадах.

Например: время получилось 220 секунд (3 минуты и 40 секунд). Делим 220 на 3 и на 9840, получаем емкость в фарадах. В нашем примере получилось 0,007452 Ф, то есть 7452 мкф, а на конденсаторе написано 6800 мкф. Таким образом, в допустимые 20% отклонение емкости уложилось, поскольку составило примерно 9,6%.

Но как быть с неполярными конденсаторами малых емкостей? Если конденсатор керамический или полипропиленовый, то здесь поможет переменный ток и знание о емкостном сопротивлении.

К примеру, есть конденсатор, емкость его предположительно несколько нанофарад, и известно, что в цепи переменного тока работать он может. Для выполнения измерений потребуется сетевой трансформатор со вторичной обмоткой, скажем, на 12 вольт, мультиметр, и все тот же резистор на 10 кОм.

Шаг №1. Собираем RC-цепь, и подключаем ее ко вторичной обмотке трансформатора. Затем включаем трансформатор в сеть.

Шаг №2. Измеряем мультиметром переменное напряжение на конденсаторе, затем — на резисторе.

Шаг №3. Производим вычисления. Сначала вычисляем ток через резистор, – делим напряжение на нем на значение его сопротивление. Поскольку цепь последовательная, то переменный ток через конденсатор точно такой же величины. Делим напряжение на конденсаторе на ток через резистор (ток через конденсатор такой же), получаем значение емкостного сопротивления Хс. Зная емкостное сопротивление и частоту тока (50 Гц), вычисляем емкость нашего конденсатора.

Например: на резисторе 7 вольт, а на конденсаторе 5 вольт. Мы посчитали, что ток через резистор в этом случае 700 мкА, следовательно и через конденсатор — такой же. Значит емкостное сопротивление конденсатора на частоте 50 Гц составляет 5/0,0007 = 7142,8 Ом. Емкостное сопротивление Xc = 1/6,28fC, следовательно C = 445 нф, то есть номинал 470 нф.

Описанные здесь способы являются весьма грубыми, поэтому применять их можно только тогда, когда других вариантов просто нет. В иных случаях лучше пользоваться специальными измерительными приборами.

Как измерить емкость конденсатора своими руками

Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

Как измерить ёмкость конденсатора мультиметром?

Ёмкость – это мера способности конденсатора накапливать заряды. Ёмкость измеряется в фарадах, по имени почетного члена Петербургского университета английского физика Майкла Фарадея.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С – это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют – заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и

Как проверить конденсатор — используем мультиметр для проверки на работоспособность конденсатор

Без конденсаторов, пожалуй, не обходится ни одна электрическая или электронная схема. Этот довольно простой по строению и, в общем-то, нехитрый по принципу своего действия элемент – буквально незаменим. И выход из строя такого миниатюрного «звена» общей цепи вполне способен повлечь и общую неработоспособность всего прибора или устройства.

Как проверить конденсатор

Многие конденсаторы способны служить десятилетиями, и при этом не потребовать замены. Но время от времени выход из строя или некорректная работа электронной схемы заставляет заниматься поисками «виновника». Подозрение порой падает и на эти элементы цепи. Поэтому необходимо знать, как проверить конденсатор, чтобы убедиться в его пригодности или, наоборот, необходимости замены.

Да и перед проведением электромонтажных работ тоже не мешает заранее проверять элементы, которые будут впаиваться на свое место в плату. В любой партии изделий может быть определенный процент заводского брака. И проще выявить нерабочий конденсатор до его установки, нежели потом искать неисправности по всей схеме.

Основные типы конденсаторов

Буквально несколько минут внимания следует уделить принципам строения и работы конденсаторов, а также разновидностям этих элементов схемы. Так будет проще понять, на чем строится методика проверки их работоспособности.

Итак, конденсатор представляет собой очень распространенный элемент электрической цепи, в котором происходит накопление заряда. Устройство нехитрое – в отличие от многих других элементов здесь нет никаких полупроводниковых переходов. По сути – это всего лишь две значительные по площади токопроводящие пластины (их обычно называют обкладками) равных размеров, разнесенные на небольшое расстояние одна от другой, то есть непосредственного электрического контакта между ними нет и быть не должно. Этот просвет заполняется диэлектрическим материалом.

Принятое условное обозначение конденсатора на схемах как раз очень наглядно показывает принцип его устройства.

Разделенные тонким просветом токопроводящие пластины имеют свойство накапливать электрический заряд.

Понятно, что в цепи постоянного тока проводимость через конденсатор отсутствует, так как цепь, по сути, разорвана. Но зато на его обкладках накапливается (конденсируется) электрический заряд. И чем больше площадь этих обкладок, тем больший заряд может быть накоплен. Показателем же этих возможностей является величина емкости конденсатора.

Эта физическая величина измеряется в фарадах (F). Один фарад – это способность накопить 1 кулон заряда при разности потенциалов на обкладках в 1 вольт. Но пусть эти «единички» не вводят в заблуждение: на самом деле 1 F – это просто огромный показатель. На деле же приходится иметь дело с куда меньшими величинами:

1 mF = 0.001F = F×10⁻³ — миллифарад;

1 μF = 0.001mF = F×10⁻⁶ — микрофарад;

1 nF = 0.001μF = F×10⁻⁹ — нанофарад;

1 pF = 0.001nF = F×10⁻¹² — пикофарад

Несмотря на общность принципа устройства и действия, по своей конструкции конденсаторы все же могут иметь существенные различия.

Многообразие конденсаторов и по эксплуатационным параметрам, и по размерам –очень широко

Прежде всего, их можно разделить на две большие группы – полярные и неполярные конденсаторы.

  • Для неполярных элементов не имеет никакого значения взаимное расположение их обкладок в общей схеме. Такие конденсаторы выпускаются в следующих основных «обличиях».

Керамические конденсаторы – в качестве разделительного диэлектрического слоя между обкладками применяется керамический состав. Эти элементы характеризуются компактностью, широким диапазоном допустимых рабочих напряжений, дешевизной наряду с довольно высокой надежностью и долговечностью.

Керамические конденсаторы

Для достижения более высоких показателей емкости требуется увеличивать площадь обкладок. Это достигается свертыванием в рулон (или в «гармошку») двух токопроводящих лент со специальным металлизированным покрытием (или даже лент из алюминиевой фольги) с размещённой между ними диэлектрической прокладкой. По такому принципу устроены бумажные, металлобумажные, слюдяные и пришедшие им на замену серебряно-слюдяные конденсаторы.

Серебряно-слюдяные конденсаторы

К неполярным относятся и мощные пусковые конденсаторы, имеющиеся во многих моделях бытовой техники, оснащенной электроприводами. Они собираются в достаточно габаритном корпусе цилиндрической или кубической формы, имеют обкладки из металлизированной полипропиленовой пленки и заполняются диэлектрическим маслом.

Принцип устройства пускового конденсатора: 1 – металлический корпус; 2 – обкладки – полосы полипропиленовой пленки с вакуумным металлизированным напылением; 3 – диэлектрическая пленочная прокладка; 4 – наполнение из диэлектрического нетоксичного масла; 5 – выводы-контакты для подключения к электрической схеме прибора.

Их не зря называют пусковыми – они способны накапливать очень значительный заряд для выработки мощного пускового импульса и для повышения коэффициента мощности электроустановок. Способны они и сглаживать значительные колебания в системах высокого напряжения.

  • Полярные конденсаторы требуют, как понятно из названия, соблюдения полярности при установке их в схему.

Наиболее распространены на сегодняшний день полярные конденсаторы в алюминиевом цилиндрическом корпусе. Нередко такие элементы именуют еще «электролитическими». Такое название предопределяет тот факт, что свободное пространство между обкладками заполняется специальным электролитом. Диапазон габаритов и электротехнических показателей – очень широкий, но если неполярные компактные конденсаторы чаще всего по ёмкости максимально ограничиваются единицами микрофарад, то у электролитических счет может идти даже на тысячи μF, то есть единицы mF. На три порядка больше!

Электролитические полярные конденсаторы

Шагом вперед стало появление танталовых полярных конденсаторов, у которых соотношение размеров и возможных показателей емкости – намного выше. То есть это оптимальный вариант тех случаях, когда требуется компактность схемы наряду с высокой емкостью. Правда, такие детали значительно дороже, а кроме того – излишне чувствительны к пульсации токов и к превышениям допустимых напряжений, которые часто выводит их из строя.

Танталовые полярные конденсаторы – миниатюрные «капельки» с весьма внушительными показателями емкости.

Здесь были рассмотрены далеко не все формы выпуска конденсаторов, но принцип их строения, независимо от внешности, остается тем же.

Какие неисправности могут случиться в конденсаторе

Прежде чем учиться искать неисправности конденсатора, необходимо разобраться, в чем же они могут заключаться. Иными словами – нужно знать, что искать.

Итак, полный выход из строя или неправильная работа этого элемента схемы может выражаться в следующем:

  • Пробой между обкладками конденсатора. Обычно вызывается превышением допустимого напряжения на выводах. По сути, участок цепи, который должен «разрываться» конденсатором, получается замкнутым.
  • Обрыв между выводом конденсатора и обкладкой. Может случиться из-за вибрационного или иного механического воздействия, от превышения допустимого напряжения. Нельзя исключить и производственный брак. На деле получается, что конденсатор в схеме попросту отсутствует – на его месте банальный разрыв цепи.
  • Повышенный ток утечки – в связи с потерей диэлектрических качеств разделяющего обкладки слоя происходит «перетекание зарядов». Конденсатор не в силах сохранять полученный заряд достаточное для его корректной работы время.
  • Недостаточная емкость конденсатора. Может вызываться повышенным током утечки или же опять, чего греха таить, производственным браком. В результате схема, в которую включен такой конденсатор, работает некорректно, неустойчиво, или вовсе становится неработоспособной.
  • Для электролитических полярных конденсаторов выделяют еще один возможный дефект – это превышение эквивалентного последовательного сопротивления ЭПС (ESR). Как известно, такие конденсаторы, работая в схемах с высокочастотными токами, способны «фильтровать» постоянную составляющую и пропускать частотный сигнал. Но этот сигнал может «подавляться» повышенным ЭПС, по аналогии с обычным резистором, значительно снижая его уровень. Что, кстати, одновременно ведет и к нагреву таких элементов схемы.

ЭПС складывается из нескольких факторов:

— обычное активное сопротивление проволочных выводов, обкладок и точек их соединения.

— сопротивление, вызванное неоднородностью диэлектриков, наличием примесей или влаги.

— сопротивление электролита, которое способно изменяться (нарастать) по мере испарения, высыхания, постепенного изменения химического состава.

Для ответственных схем показатель ЭПС имеет очень важное значение. Но, к сожалению, именно эту величину оценить и сравнить с допустимой табличной без использования специфических приборов – невозможно.

Специальный прибор для диагностики конденсаторов, позволяющий оценить и их емкость, и показатель эквивалентного последовательного сопротивления (ESR)

Справедливости ради надо сказать, что некоторые пытливые мастера самостоятельно заготавливают приборы-приставки для оценки ESR и используют их в связке с самыми обычными цифровыми мультиметрами. При желании в интернете можно отыскать немало схем подобных приставок.

Приставка к мультиметру типа DT, позволяющая оценивать показатель ESR электролитических конденсаторов.

Пример таблицы допустимых значений эквивалентного последовательного сопротивления (в омах – Ω) для электролитических конденсаторов различных номиналов емкости (μF) и напряжения (V):

 10 V16 V25 V35 V50 V63 V100 V160 V250 V350 V450 V
1 μF2.12.44.54.58.59.58.78.53.6
2.2 μF2.02.44.54.52.34.06.14.23.6
3.3 μF2.02.34.74.52.23.14.61.63.5
4.7 μF2.02.23.03.82.03.03.51.65.7
10 μF8.05.32.21.61.92.01.21.41.26.5
22 μF5.43.61.51.50.80.91.51.10.71.11.5
33 μF4.32.01.21.20.60.81.21.00.51.1
47 μF2.21.00.90.70.50.60.70.50.41.1
100 μF1.20.70.30.30.30.40.150.30.2
220 μF0.60.30.250.20.20.10.10.20.2
330 μF0.240.20.250.10.20.10.10.10.2
470 μF0.240.180.120.10.10.10.10.10.15
1000 μF0.120.150.080.10.10.10.10.10.1
2200 μF0.120.140.14

Как проверить конденсаторы переменной емкости. Сложно ли проверять «Конденсатор» на работоспособность? Как это сделать? Тестирование емкости конденсатора.

Многие бытовые приборы в электрических схемах содержат конденсаторы, часто выходящие из строя. Как проверить конденсатор на работоспособность в домашних условиях? Ведь эти детали стоят в кондиционерах, в микроволновых печах, в стиральных машинах и в другом оборудовании.

За 2-3 года работы или простоя техники они способны потерять свои технические характеристики, высохнуть. По этой причине их нужно иногда проверять на сохранение работоспособности.

Керамические конденсаторы выполняют несколько функций. схемы: Пропуск переменного тока через. Блок постоянного тока. Как часть временной сети. Как часть частотного фильтра. Вышеупомянутые основные применения керамических конденсаторов, но это. все они приводят к трем основным приложениям; шаг тока. чередование, блокировка постоянного тока, временный аккумулятор электрических зарядов. Последнее является одним из самых важных применений статического электричества, столь раздражающим. И вредно для ремонта и работы с электрическими цепями, когда они не приняты.

Проверить работоспособность любых деталей электрической схемы проще всего с применением мультиметра, который часто называют тестером. Сама технология проверки конденсатора отличается простотой. Здесь самое главное — это умение пользоваться измерительным прибором.

Перед проверкой изделия нужно:

Изображение 1. Тестер для измерения сопротивления.

Основные неисправности и причины их возникновения

Меры по предотвращению статического электричества. Очень легко протестировать керамический конденсатор, даже если вы не знаете, как работает керамика. Конденсатор — керамический конденсатор на английском языке — который берет свое название благодаря диэлектрику. Емкость конденсатора. Процедура или руководство по испытанию керамического конденсатора. Тестирование керамического конденсатора можно выполнить с помощью аналогового мультиметра путем размещения. Для этого шкала мультиметра должна быть размещена в значениях выше 1 МОм из-за низкой емкости порядка пикофарада.

  • разрядить его;
  • определить тип изделия;
  • измерить его внутреннее сопротивление;
  • измерить емкость.

Чтобы разрядить проверяемый элемент, нужно обычной отверткой с изолированной рукояткой коснуться двух его выводов. В результате происходит искра, вспышка. После этого можно проверять все параметры работоспособности. Для этого нужно определить тип данного конденсатора. Он может быть полярным или неполярным.

Шаги для проверки керамического конденсатора с помощью мультиметра. Аналоговый . Если конденсатор припаивается в контуре, одна ступень конденсатора «поднимается», оставляя другую припаянную к цепи. Шкала аналогового измерителя установлена ​​на 1 МОм.

Прикоснитесь к зондам аналогового измерителя пальцами, чтобы увидеть, есть ли. стрелка иглы — если вы не двигаетесь, что-то не так. Кончики измерителя помещаются независимо от полярности на ногах. конденсатор.  Керамический конденсатор закорочен, когда игла аналогового мультиметра находится на максимуме или вблизи его максимального значения, не падая снова. Измерения аналогового мультиметра на керамическом конденсаторе  Керамический конденсатор хорош, когда игла мультиметра быстро поднимается до нулевого сопротивления или очень близко к ней.

Полярный — это электролитический.

При его проверке нужно соблюдать точно его полярность. Плюсовую клемму измерительного прибора следует подключать к плюсовой ножке, минусовую — к минусовой. При проверке неполярных деталей полярность не соблюдается.

Сначала измеряется сопротивление. Для этого бочонок нужно выпаять из схемы и положить его на стол. Если его не выпаивать, то в показаниях приборов будут отражаться ошибки из-за действия других элементов платы. Тестер (изображение № 1) переключается в режим, в котором производится измерение сопротивления.

Изме рение емкости

Шкала измерителя должна быть установлена ​​как минимум на 10 МОм или в шкале сопротивления максимум. Это свидетельствует о том, что керамический конденсатор работа

Измерение емкости :: Electronic Measurements

Последняя модификация: 20 января 2014 г.

Рис. 1: Модель конденсатора.

Есть различные способы определения емкости конденсаторов. В этой статье описывается ряд методов измерения. Также ESR (эквивалентное последовательное сопротивление) можно измерить с помощью большинства представленных методов.

Конденсатор имеет не только самое важное свойство; емкость, а также паразитные свойства. Наиболее важными из них являются последовательное сопротивление и самоиндукция, которые также последовательно соединены с емкостью.Модель конденсатора с его паразитными элементами показана на рисунке справа. Эта модель не включает параллельно подключенное сопротивление утечки. В большинстве случаев они незначительны, но если этот параметр необходим, его можно измерить с помощью измерения сопротивления постоянного тока.

Следующие ниже методы измерения позволяют измерять емкость и ESR. Для определения также паразитной самоиндукции необходимо использовать другой метод измерения, описанный в статье Паразитные свойства.


Измерение прямоугольной волны

При подключении конденсатора к генератору прямоугольных импульсов возникает типичная форма напряжения на конденсаторе. Анализируя форму напряжения, можно определить емкость и внутреннее последовательное сопротивление.

Порядок измерения

Рис. 2: Схема измерения емкости прямоугольного напряжения.

На рисунке 2 показана схема измерения. Тестируемый конденсатор напрямую подключается к выходным клеммам функционального генератора, вырабатывающего прямоугольное напряжение.Напряжение на конденсаторе измеряется осциллографом. Функциональный генератор настроен на максимальное выходное напряжение, а частота регулируется так, чтобы напряжение на конденсаторе поддерживалось на низком уровне. Таким образом, почти все напряжение падает на внутреннее сопротивление генератора. Это как если бы конденсатор был подключен к источнику тока. Протекающий ток рассчитывается как:

Напряжение В g — это верхнее значение разомкнутой клеммы генератора.В большинстве случаев напряжение генератора задается как максимальное значение при определенной нагрузке, часто 50 Ом. Таким образом, верхнее значение без нагрузки равно загруженному верхнему значению.

Рис. 3: Снимок экрана осциллографа измерения емкости электролитического конденсатора 33 мкФ, 63 В с прямоугольным напряжением.

Емкость

Снимок экрана на рисунке 3 показывает линейное возрастание и уменьшение напряжения. Амплитуда уклонов отмечена синим цветом и обозначена V C .Это изменение напряжения происходит за время t , отмеченное красным. С помощью этих чисел можно рассчитать емкость:

Внутреннее сопротивление (ESR)

Желтая стрелка представляет собой ступенчатое напряжение В R , которое вызвано внутренним последовательным сопротивлением конденсатора под влиянием изменения полярности тока. Здесь ток изменяется от -0,2 A до +0,2 A, таким образом, шаг тока составляет 0,4 A. С помощью этой информации можно рассчитать ESR или эквивалентное последовательное сопротивление:

Собственная индуктивность

Этим методом нельзя определить самоиндуктивность.Однако влияние индуктивности заметно в виде всплесков на изображении осциллографа. Один из этих шипов отмечен звездочкой.


Измерение с помощью синусоиды

В этом методе измерения конденсатор вставлен в конфигурацию полумоста, который подключен к синусоидальному генератору. По измеренным напряжениям и разности фаз можно определить емкость и ESR.

Ограничения
Конденсаторы

можно рассматривать практически как идеальные компоненты.Эквивалентное последовательное сопротивление обычно очень мало, как и емкость в большинстве случаев. Для точного измерения емкости и внутреннего сопротивления необходимо выбрать частоту измерения таким образом, чтобы реактивное сопротивление и сопротивление были примерно одинаковыми. Разность фаз между напряжением конденсатора и напряжением, пересекающим реактивное сопротивление, составляет около 45 °. Это означает, что частота измерения должна быть в некоторых случаях очень высокой, от десятков до сотен мегагерц. Самоиндукция на этих частотах очень важна, что делает измерения бесполезными.Только электролитические конденсаторы с относительно высокой емкостью в сочетании с высоким ESR, частота измерения может быть достаточно низкой, чтобы ее можно было использовать. При измерении других конденсаторов частота должна быть ниже желаемой, что означает, что можно измерить только емкость.

Приведены два примера: первый предназначен для измерения только емкости, а второй — для измерения емкости, а также ESR.

Измерительная установка

Рис.4: Измерительная установка для измерения емкости с синусоидальным напряжением.

Схема измерения показана на рисунке 4. Это конфигурация полумоста, состоящая из резистора R s и неизвестного конденсатора C x . Напряжение моста и напряжение на переходе измеряется двухканальным осциллографом. Также измеряется разность фаз между этими напряжениями. Для точного измерения внутреннего сопротивления датчик канала 2 должен быть размещен как можно ближе к конденсатору.Резистор R s должен иметь примерно такое же значение, что и полное сопротивление конденсатора.

Метод 1: Измерение емкости

De первый метод описывает измерение малогабаритных конденсаторов, последовательное сопротивление которых незначительно.

Математическая модель
Рис. 5: Математическая модель.

На рисунке 5 показана модель конденсатора, которая используется для расчета емкости C x . Соответствующая векторная диаграмма показана на рисунке 6.При этом измерении реактивное сопротивление конденсатора относительно высокое. Омическое последовательное сопротивление превращается в ничто и поэтому не входит в модель.

Параллельно испытуемому конденсатору подключен зонд, представленный емкостью C p и омическим сопротивлением R p . Емкость зонда C p и неизвестный конденсатор C x взяты вместе как одна замещающая емкость C .Поскольку C p (а также R p ) известны, легко вычислить неизвестную емкость.

Ток измеряется с помощью R s . Значение этого сопротивления должно быть близко к реактивному сопротивлению t

Использование осциллографа для определения неизвестной емкости

Обычно значение конденсатора в микрофарадах или пикофарадах напечатано на его корпусе или там есть цветовой код. Но иногда нам нужно измерить величину емкости.Например, электролитический конденсатор со временем может потерять емкость (а также показать большее последовательное сопротивление). В критических приложениях этот эффект может быть катастрофическим. Электролитические конденсаторы могут терять емкость, когда они простаивают на полке, а не работают в цепи. Фактически, эти конденсаторы иногда можно восстановить, подвергнув их режиму постепенно возрастающего постоянного напряжения.

Бывают и другие случаи, когда емкость неизвестна, и нам нужно ее измерить.Примером может служить ситуация, когда мы хотим узнать емкость всей электрической среды внутри части электрического оборудования или на его входных или выходных клеммах. Или нам может потребоваться измерить входную емкость пробника осциллографа, чтобы узнать, что происходит.

Мультиметры высшего класса могут измерять емкость, но показания не всегда могут считаться окончательными. Однажды я измерил большое количество новых неэлектролитических конденсаторов и обнаружил, что среднее отклонение от отмеченного значения превышает 10%.

В некоторых приложениях точное значение емкости не критично. Например, допустимы большие отклонения в цепи запуска двигателя. Напротив, резонансный контур требует точного значения для точной настройки.

Осциллограф можно использовать для измерения постоянной времени как средства определения фактической емкости устройства или величины распределенной емкости в электронной системе. Хотя осциллограф не обеспечивает прямого считывания емкости, емкость можно рассчитать, поскольку она напрямую связана с постоянной времени RC-цепи при приложении постоянного напряжения.

Постоянная времени электронной схемы, содержащей резистивные и емкостные элементы, обозначается греческой буквой тау (τ). Эта постоянная времени в секундах равна сопротивлению цепи в омах, умноженному на емкость цепи в фарадах, τ = RC . Тау — это время, необходимое для зарядки конденсатора, включенного последовательно с резистором, до уровня 63,2% от начального значения, обычно 0 В.

Цифровой запоминающий осциллограф может легко отображать график зависимости напряжения от времени при зарядке конденсатора или разрядке через резистор.Затем можно рассчитать постоянную времени схемы и, исходя из этого, определить номинал конденсатора.

Если вы приложите постоянное напряжение к конденсатору, включенному последовательно с резистором, его заряд будет расти сначала быстро, а затем медленнее по мере приближения к напряжению питания. График зависимости напряжения от времени, кривая, отображаемая на экране осциллографа, называется экспоненциальным ростом. И наоборот, разряд конденсатора, включенного последовательно с резистором, известен как экспоненциальный спад.

Теоретически, напряжение на конденсаторе никогда не становится равным полному напряжению батареи, поскольку скорость изменения снижается по мере приближения к этому уровню.Постоянная времени по определению — это время в секундах, необходимое для того, чтобы заряд, измеренный на клеммах конденсатора, составил 63,2% от приложенного напряжения.

Экспоненциальный рост (вверху), экспоненциальный спад (в центре) и постоянная RC, измеренная по неизвестной емкости (внизу).

Это явление можно легко продемонстрировать, подключив цифровой мультиметр в режиме измерения сопротивления через электролитический конденсатор. В зависимости от полярности подключения измерителя, а также от того, заряжен ли конденсатор, сопротивление будет сначала низким, а затем повышаться или начинать высокое, а затем снижаться в измеряемой форме, постепенно замедляясь до тех пор, пока оно не прекратится.Электрики говорят, что омметр ведет отсчет, а это говорит о том, что прибор исправен. Это нехарактерное показание связано с тем, что внутренняя батарея измерителя намеренно смещает конденсатор, чтобы можно было измерить сопротивление. Типичное значение — 3 В. Большинство производителей приборов окрашивают щупы в красный цвет для положительных и черных для отрицательных, но это не универсально и должно быть проверено с помощью второго мультиметра.

Чтобы определить неизвестную емкость с помощью осциллографа, источник питания постоянного тока, такой как батарея 9 В, известное сопротивление, переключатель и конденсатор, соединяются последовательно.Наконечник пробника осциллографа и заземляющий провод подключаются к конденсатору. Кроме того, вам понадобится перемычка с коротким проводом для шунтирования конденсатора.

Когда переключатель переводится в положение «включено», на дисплее осциллографа отображается напряжение на конденсаторе. Поскольку прибор находится в режиме измерения во временной области, амплитуда в вольтах отображается по оси Y, а прошедшее время — по оси X. Перед нами стоит задача найти постоянную времени последовательно включенных резистора и конденсатора. Для этого определите окончательный заряд конденсатора, который должен быть практически равен номинальному напряжению батареи.Затем умножьте это количество на 0,632, потому что постоянная времени по определению основана на 63,2% от максимального заряда конденсатора.

Найдите эту точку на кривой осциллографа, используя горизонтальную линию от оси Y. Затем из этой точки кривой зарядки опустите вертикальную линию вниз до оси X, которую необходимо откалибровать за секунды. (Для этой цели можно использовать курсор.) Это обеспечивает постоянную времени RC-комбинации, τ. Зная постоянную времени, найти неизвестную емкость несложно.

Как указывалось ранее,

τ = RC
транспонирование,
C = τ / R

Напомним, что в уравнении постоянной времени C выражается в фарадах, большое значение для R , которое известно, в знаменателе дает разумное значение емкости, выраженной в микрофарадах, миллионных долях фарада. Эта единица используется чаще.

% PDF-1.4 % 3194 0 объект> endobj xref 3194 95 0000000016 00000 н. 0000003618 00000 н. 0000003886 00000 н. 0000004263 00000 н. 0000004597 00000 н. 0000004735 00000 н. 0000004873 00000 н. 0000005011 00000 н. 0000005147 00000 н. 0000005285 00000 н. 0000005423 00000 п. 0000005561 00000 н. 0000005699 00000 н. 0000005837 00000 н. 0000005975 00000 н. 0000006113 00000 п. 0000006251 00000 н. 0000006388 00000 п. 0000006526 00000 н. 0000006664 00000 н. 0000006802 00000 н. 0000006940 00000 п. 0000007078 00000 н. 0000007216 00000 н. 0000007354 00000 н. 0000007492 00000 н. 0000007630 00000 н. 0000007767 00000 н. 0000007904 00000 н. 0000008042 00000 н. 0000008180 00000 н. 0000008318 00000 н. 0000008455 00000 н. 0000008592 00000 н. 0000008728 00000 н. 0000008864 00000 н. 0000009001 00000 н. 0000009138 00000 п. 0000009276 00000 н. 0000009414 00000 п. 0000009921 00000 н. 0000010554 00000 п. 0000010929 00000 п. 0000010967 00000 п. 0000011208 00000 п. 0000011455 00000 п. 0000011533 00000 п. 0000011756 00000 п. 0000012408 00000 п. 0000012979 00000 п. 0000013574 00000 п. 0000014162 00000 п. 0000014745 00000 п. 0000015384 00000 п. 0000015526 00000 п. 0000015572 00000 п. 0000016136 00000 п. 0000016788 00000 п. 0000019459 00000 п. 0000019513 00000 п. 0000019567 00000 п. 0000019621 00000 п. 0000019675 00000 п. 0000019729 00000 п. 0000019783 00000 п. 0000019837 00000 п. 0000019891 00000 п. 0000019945 00000 п. 0000019999 00000 п. 0000020053 00000 п. 0000020107 00000 п. 0000020161 00000 п. 0000020215 00000 н. 0000020269 00000 п. 0000020323 00000 п. 0000020377 00000 п. 0000020432 00000 п. 0000020487 00000 п. 0000020542 00000 п. 0000020597 00000 п. 0000020652 00000 п. 0000020707 00000 п. 0000020762 00000 п. 0000020817 00000 п. 0000020872 00000 п. 0000020927 00000 п. 0000020982 00000 п. 0000021037 00000 п. 0000021092 00000 п. 0000021147 00000 п. 0000021202 00000 п. 0000021257 00000 п. 0000021312 00000 п. 0000003381 00000 н. 0000002245 00000 н. трейлер ] >> startxref 0 %% EOF 3288 0 obj> поток х ڼ U] lT> vԪ «h; I8 (Qď ܒ RMJ # I ْ bZuDj! $ 0L $ E {x @> LS5yuU {| 9 ‘

Емкость

| Базовая концепция емкости

Емкость — одна из основных концепций электроники, и она широко используется, о чем свидетельствует количество конденсаторов, которые используются в электронных схемах.


Емкостное руководство Учебное пособие включает:
Емкость Формулы конденсатора Емкостное реактивное сопротивление Параллельные конденсаторы Последовательные конденсаторы Диэлектрическая проницаемость и относительная диэлектрическая проницаемость Коэффициент рассеяния, тангенс угла потерь, ESR Таблица преобразования конденсаторов


После резисторов конденсаторы являются следующим наиболее часто используемым компонентом в электронной промышленности.Конденсаторы находят применение во всех типах схем, от логических схем до источников питания и радиочастотных схем до аудио. В дополнение к этому существует много типов конденсаторов, но, несмотря на их различия, все они основаны на основных понятиях емкости.

Что такое емкость

Емкость — это способность накапливать заряд. В простейшем виде конденсатор состоит из двух параллельных пластин. Было обнаружено, что когда батарея или любой другой источник напряжения подключен к двум пластинам, как показано, ток протекает в течение короткого времени, и одна пластина получает избыток электронов, а другая — слишком мало.Таким образом, одна пластина с избытком электронов заряжается отрицательно, а другая — положительно.

Заряд сохраняется на двух пластинах конденсатора.

Если аккумулятор удален, конденсатор сохранит свой заряд. Однако, если резистор помещен поперек пластин, ток будет течь до тех пор, пока конденсатор не разрядится.

Конденсаторы реальные

Конденсаторы

бывают самых разных форм, каждый со своими свойствами. Физические конденсаторы могут быть либо для поверхностного монтажа, либо с традиционными выводами, а также иметь различные форм-факторы и электрические характеристики.

Примечание о типах конденсаторов:

Существует множество различных типов конденсаторов. Хотя емкость является универсальной мерой, разные конденсаторы имеют разные характеристики с точки зрения таких элементов, как максимальный ток, частотная характеристика, размер, напряжение, стабильность, допуск и тому подобное. Для соответствия этим параметрам некоторые типы конденсаторов в некоторых приложениях лучше, чем другие,

Подробнее о Типы конденсаторов.

Единицы или емкость

Необходимо уметь определять «размер» конденсатора. Емкость конденсатора — это мера его способности накапливать заряд, а основной единицей емкости является Фарад, названный в честь Майкла Фарадея.

Фарад определяется: конденсатор имеет емкость в один фарад, когда разность потенциалов в один вольт заряжает его одним кулоном электричества (то есть одним ампером в течение одной секунды).

Конденсатор с емкостью в один Фарад слишком велик для большинства электронных приложений, и обычно используются компоненты с гораздо меньшими значениями емкости. Используются три префикса (множители): µ (микро), n (нано) и p (пико):

Префиксы и множители единиц емкости
Префикс Множитель Терминология
мкм 10 -6 (миллионная) 1000000 мкФ = 1Ф
n 10 -9 (миллионная) 1000 нФ = 1 мкФ
п. 10 -12 (миллионно-миллионная) 1000 пФ = 1 нФ

Зарядка и разрядка конденсатора

Также можно посмотреть напряжение на конденсаторе, а также заряд.Ведь легче измерить на нем напряжение простым измерителем. Когда конденсатор разряжен, на нем нет напряжения. Точно так же, если он полностью заряжен, ток не течет от источника напряжения, и поэтому он имеет то же напряжение на нем, что и источник.

В действительности в цепи всегда будет какое-то сопротивление, и поэтому конденсатор будет подключен к источнику напряжения через резистор. Это означает, что для зарядки конденсатора потребуется определенное время, а повышение напряжения не происходит мгновенно.Было обнаружено, что скорость нарастания напряжения вначале намного выше, чем после некоторой зарядки. В конце концов, он достигает точки, когда он практически полностью заряжен и ток почти не течет. Теоретически конденсатор никогда не заряжается полностью, так как кривая имеет асимптотический характер. Однако на самом деле он достигает точки, когда его можно считать полностью заряженным или разряженным и ток не течет.

Точно так же конденсатор всегда будет разряжаться через сопротивление.По мере того как заряд конденсатора падает, напряжение на пластинах уменьшается. Это означает, что ток будет уменьшен, и, в свою очередь, скорость, с которой уменьшается заряд, падает. Это означает, что напряжение на конденсаторе падает экспоненциально, постепенно приближаясь к нулю.

Скорость нарастания или спада напряжения зависит от сопротивления в цепи. Чем больше сопротивление, тем меньше передаваемый заряд и тем больше времени требуется для зарядки или разрядки конденсатора.

Напряжение конденсатора при его зарядке и разряде

До сих пор рассматривался случай, когда батарея была подключена для зарядки конденсатора и отключена, а для ее зарядки применялся резистор. Если к конденсатору приложить переменную форму волны, которая по своей природе постоянно меняется, то он будет постоянно заряжаться и разряжаться. Для этого в цепи должен протекать ток. Таким образом, конденсатор пропускает переменный ток, но блокирует постоянный ток.В качестве таких конденсаторов используются для передачи сигнала переменного тока между двумя цепями, которые находятся при разных установившихся потенциалах.

Дополнительные основные понятия:
Напряжение ток Сопротивление Емкость Сила Трансформеры RF шум Децибел, дБ Q, добротность
Вернуться в меню «Основные понятия». . .

Изготовление цифрового измерителя емкости на микроконтроллере

Конденсаторы

являются одними из наиболее распространенных пассивных электрических компонентов, которые широко используются во всех видах электронных схем.В этом проекте мы обсудим метод построения цифрового измерителя емкости с использованием микроконтроллера PIC. Этот проект может измерять значения емкости от 1 нФ до 99 мкФ с разрешением 1 нФ. Метод основан на измерении времени, прошедшего, когда конденсатор заряжается до известного напряжения через последовательный резистор. В этом проекте используется микроконтроллер PIC16F628A.

Измеритель емкости

Теория

Этот измеритель емкости основан на принципе зарядки конденсатора через последовательный резистор.В последовательной RC-цепи, как показано на рисунке ниже, напряжение на конденсаторе экспоненциально увеличивается по мере его заряда. Предположим, что изначально конденсатор был полностью разряжен. Когда Vin подается на RC-цепь, конденсатор начинает заряжаться и, следовательно, напряжение (Vc) на нем увеличивается от 0 до Vin экспоненциально, как показано в правой части рисунка. Уравнение, представленное на рисунке, описывает, как напряжение на конденсаторе изменяется со временем.Если мы знаем время, которое требуется для зарядки конденсатора до известного напряжения, то мы можем решить это уравнение относительно C, зная значение R.

Напряжение конденсатора экспоненциально возрастает со временем

Идея измерения времени, прошедшего, когда конденсатор заряжается от 0 до известного напряжения, может быть реализована с помощью любого микроконтроллера. Здесь мы используем микроконтроллер PIC16F628A, который имеет два встроенных аналоговых компаратора. В этом проекте мы используем модули аналогового компаратора 2 и TIMER2, чтобы определить время, необходимое конденсатору для зарядки от 0 В до 0.5Vin. Положительный и отрицательный входы аналогового компаратора 2 доступны извне через контакты RA2 и RA1 PIC16F628A соответственно. На рисунке ниже два резистора 2,2 кОм создают делитель напряжения, который устанавливает положительный вход (RA2) компаратора на половину напряжения, приложенного к выводу RA0. Отрицательный вход (RA1) компаратора идет к положительному концу конденсатора через 330? резистор. Резистор используется для разряда конденсатора перед его измерением путем установки низкого уровня RA1.Когда на вывод RA0 подается напряжение, конденсатор (Cx), изначально полностью разряженный, заряжается через резистор 22 кОм. Когда вывод RA0 просто установлен на высокий уровень (скажем, около 5 В), выход компаратора высокий, поскольку положительный вход компаратора находится под более высоким напряжением (около 2,5 В), чем отрицательный вход, который близок к 0 В в качестве конденсатора. полностью разряжен. Теперь конденсатор начинает заряжаться через последовательный резистор (22K), и когда напряжение на нем превышает половину напряжения на выводе RA0, выход компаратора переключается на низкий уровень.Флаг прерывания компаратора (CMIF) устанавливается всякий раз, когда происходит изменение выходного значения компаратора. Модуль Timer2 используется для вычисления времени, прошедшего между установкой высокого уровня RA0 и низким уровнем на выходе компаратора. Это время, необходимое конденсатору для зарядки от 0 В до половины напряжения питания.

RC-цепь и входы компаратора

Зная значение зарядного резистора (в данном случае 22 кОм) и время зарядки (от Timer2), мы можем теперь решить уравнение конденсатора, упомянутое выше, для вычисления C.Вот математика, участвующая в этом процессе. Для простоты Timer2 инициализируется значением 104, так что он переполняется за 256-104 = 152 тактовых цикла (число 152 взято из математических расчетов, показанных ниже). Если мы используем внешний источник тактовой частоты 4,0 МГц, это эквивалентно 152 мкс. Таким образом, расчеты значительно упрощаются, как описано ниже. Окончательное уравнение предполагает, что для данной схемы измеренная емкость (в нФ) просто умножается на 10 на количество переполнений Timer2, начиная с 104 каждый раз.Это дает разрешение 10 нФ, которое можно дополнительно улучшить до 1 нФ, учитывая значение самого Timer2 в момент, когда выход компаратора переключается на низкий уровень и модуль Timer2 останавливается.

Расчет C по времени зарядки

Полная схема для этого проекта представлена ​​ниже. Выводы RA0-RA2 идут на описанную ранее схему делителя напряжения и заряда конденсатора. Измерение начинается при нажатии кнопки Start .Измеренная емкость отображается на стандартном символьном ЖК-дисплее. Источник питания +5 В получается от батареи 9 В с использованием микросхемы регулятора LM7805. Я использую плату ввода-вывода DIY Experimenter для ЖК-части этого проекта и мою 18-контактную плату PIC16F для легкого прототипирования с микроконтроллером PIC16F628A.

Схема измерителя емкости

Делитель напряжения и RC-цепь

Полная установка эксперимента

Программное обеспечение

Прошивка микроконтроллера PIC16F628A написана на языке C и скомпилирована с помощью компилятора mikroC Pro для PIC.Максимальное значение измеряемой емкости установлено на 99,99 мкФ. Программа отображает сообщение «Вне диапазона» при измерении значения емкости выше этого. Обычно на выводе RA0 устанавливается низкий уровень, так что конденсатор разряжается через резистор 22 кОм перед измерением. При нажатии кнопки Start вывод RA1 устанавливается на низкий уровень на 2 секунды, что ускоряет процесс разряда, поскольку конденсатор разряжается намного быстрее через 330? резистор, по сравнению с 22К.Затем инициализируется Timer2 и разрешается соответствующее прерывание. RA1 и RA2 сконфигурированы как входы аналогового компаратора. Затем RA0 устанавливается на высокий уровень и Таймер 2 включается. Как только выход компаратора (CMCON.C2OUT) переключается с высокого на низкий, модуль Timer2 останавливается. Время, необходимое конденсатору для зарядки от 0 В до половины напряжения на RC-цепи, рассчитывается из количества переполнений Timer2 и конечного значения самого регистра Timer2. Эта временная информация используется для оценки значения емкости с использованием математических расчетов, описанных в теоретическом разделе.

 / *
 Проект: Измеритель емкости
 Описание: CapMeter на основе постоянной времени RC
 MCU: PIC16F28A
 Осциллятор: HS, 4,0000 МГц внешний
 Автор: Раджендра Бхатт (www.embedded-lab.com)

* /

// Подключение ЖК-модуля
сбит LCD_RS на RB2_bit;
сбит LCD_EN при RB3_bit;
сбит LCD_D4 на RB4_bit;
сбит LCD_D5 на RB5_bit;
сбит LCD_D6 на RB6_bit;
сбит LCD_D7 на RB7_bit;
sbit LCD_RS_Direction на TRISB2_bit;
sbit LCD_EN_Direction на TRISB3_bit;
sbit LCD_D4_Direction на TRISB4_bit;
sbit LCD_D5_Direction на TRISB5_bit;
sbit LCD_D6_Direction на TRISB6_bit;
sbit LCD_D7_Direction на TRISB7_bit;

сбит Va при RA0_bit;
sbit Switch at RB0_bit;

char message1 [] = "Емкость";
char message2 [] = "Счетчик";

беззнаковое int T_Value, Num;
беззнаковый короткий i, j, TimerValue, OverRange = 0;
char Capacitance [] = "00.000 мкФ ";

void interrupt () {
  if (PIR1.TMR2IF) {
  TMR2 = TimerValue;
  Num ++;
  если (Num & gt; 9999) OverRange = 1; // Диапазон 99,99 мкФ
  PIR1.TMR2IF = 0; // Очистить флаг прерывания TMR0
  }
}

void Display_Cap (unsigned int n) {
 Емкость [0] = n / 10000 + 48;
 Емкость [1] = (n / 1000)% 10 + 48;
 Емкость [3] = (n / 100)% 10 + 48;
 Емкость [4] = (n / 10)% 10 + 48;
 Емкость [5] = (T_Value * 10) / 153 + 48;
 Lcd_Cmd (_Lcd_Clear);
 Lcd_Out (1, 1, «C =»);
 Lcd_Out (1, 5, емкость);

}

void reset () {
 TRISA = 0b00000100;
 CMCON = 7;
 RA1_bit = 0;
 Delay_ms (2000);
 TRISA = 0b00000110;
 CMCON = 5;
}

пустая функция(){

  char cap_size;
  TRISB = 0b00000001;
  ПОРТБ = 0;
  TRISA = 0b00000110;
  OPTION_REG.T0CS = 0;
  INTCON.GIE = ​​1; // Включение глобального прерывания
  INTCON.PEIE = 1; // Разрешить периферийное прерывание

  // Настраиваем модуль Timer2
  PIE1.TMR2IE = 1; // Разрешить прерывание от Timer2
  T2CON = 0; // Предделитель 1: 1, и Таймер 2 изначально выключен
  PIR1.TMR2IF = 0; // Очистить int бит

  // Настроить модуль компаратора
  CMCON = 5; // Независимый компаратор между RA1 (-) и RA2 (+)

  Lcd_Init ();
  Lcd_Cmd (_Lcd_Clear);
  Lcd_Cmd (_LCD_CURSOR_OFF);
  Lcd_Out (1, 1, сообщение1);
  Lcd_Out (2, 1, сообщение2);
  delay_ms (2000);
  Lcd_Cmd (_Lcd_Clear);

  Lcd_Out (1, 1, «C =»);
  Lcd_Out (1, 5, емкость);
  Va = 0;
  TimerValue = 108; // 104 + 4 дополнительных тактовых цикла задержки при переходе к ISR
  в то время как (1) {
   if (! Switch) {
   Num = 0;
   OverRange = 0;
   Lcd_Cmd (_Lcd_Clear);
   Lcd_Out (1, 1, «Тестирование.");
   Lcd_Out (2, 1, «...»);
   TMR2 = TimerValue; // Инициализируем Timer2
   Va = 1; // подаем напряжение
   T2CON.TMR2ON = 1; // запускаем таймер
   while (CMCON.C2OUT) {
    если (OverRange) перерыв;
   }
   T2CON.TMR2ON = 0; // остановка таймера
   T_Value = TMR2 - TimerValue; // T_Value используется для улучшения разрешения
   Va = 0;
  // ---------------------------------
  if (! OverRange) {
    Display_Cap (число * 10);
  }
  else {
    OverRange = 0;
    Lcd_Cmd (_Lcd_Clear);
    Lcd_Out (1, 1, «Вне диапазона!»);
   }
   сброс настроек();
  }
 }
} 

Скачать исходный код и файлы HEX

Выход

С помощью этого измерителя емкости тестируются различные значения емкости, и результаты довольно хорошо согласуются с их номинальными значениями.Вот несколько снимков, показывающих работу счетчика.

Измерение конденсатора номиналом 1 нФ

Измерительный конденсатор номиналом 15 нФ

Измерительный конденсатор номиналом 100 нФ

Измерительный конденсатор номиналом 10 мкФ

Конденсатор на 22 мкФ

Конденсатор более 100 мкФ

Сводка

Явление зарядки конденсатора через последовательный резистор обсуждалось и использовалось для создания очень простого измерителя емкости. Микроконтроллер PIC16F628A использовался для управления процессом зарядки / разрядки конденсатора.С помощью встроенного аналогового компаратора и модуля таймера микроконтроллер PIC вычислил время, необходимое конденсатору для создания на нем известного напряжения при зарядке через заданное последовательное сопротивление. Используя всю эту информацию, микроконтроллер вычислил емкость. Было обнаружено, что измеренный выходной сигнал в достаточной степени соответствует номинальному значению при испытаниях с широким диапазоном значений емкости.

Примечание: Все конденсаторы, но особенно высоковольтные конденсаторы, должны быть сначала должным образом разряжены перед измерением , чтобы избежать любого повреждения цепи измерителя емкости.

Похожие сообщения

Electronics Club — Емкость — использование, заряд, разряд, постоянная времени, накопленная энергия, последовательный, параллельный, конденсаторная связь, реактивное сопротивление

Electronics Club — Емкость — использование, заряд, разряд, постоянная времени, накопленная энергия, последовательный, параллельный, конденсаторная связь , реактивное сопротивление

Емкость | Зарядка и энергия | Реактивное сопротивление | Последовательный и параллельный | Зарядка | Постоянная времени | Разрядка | Использует | Конденсаторная муфта

Следующая страница: Импеданс и реактивное сопротивление

См. Также: Конденсаторы | Блоки питания

Емкость

Емкость (символ C) — это мера способности конденсатора накапливать заряд .Большая емкость означает, что можно хранить больше заряда. Емкость измеряется в фарадах, символ F, но 1F очень велик, поэтому для отображения меньших значений используются префиксы (множители):

  • мкФ (микро) означает 10 -6 (миллионная), поэтому 1000000 мкФ = 1F
  • n (нано) означает 10 -9 (миллиардная), поэтому 1000 нФ = 1 мкФ
  • p (пико) означает 10 -12 (миллионно-миллионная), поэтому 1000 пФ = 1 нФ

конденсатор неполяризованный

поляризованный конденсатор

Rapid Electronics: Конденсаторы


Заряд и накопленная энергия

Количество заряда (Q), сохраняемого конденсатором, определяется как:

Заряд, Q = C × V

Когда они накапливают заряд, конденсаторы также накапливают энергию (E):

Энергия, E = ½QV = ½CV²

Q = заряд в кулонах (Кл)
C = емкость в фарадах (Ф)
В = напряжение в вольтах (В)
E = энергия в джоулях (Дж) )

Конденсаторы возвращают накопленную энергию в цепь

Обратите внимание, что конденсаторы возвращают накопленную энергию в схему.Они не «расходуют» электрическую энергию преобразовывая его в тепло, как это делает резистор.

Энергия, запасаемая конденсатором, намного меньше, чем энергия, хранящаяся в батарее, поэтому они не могут использоваться в качестве источника энергии для большинства целей.


Емкостное реактивное сопротивление Xc

Емкостное реактивное сопротивление (Xc) — это мера сопротивления конденсатора переменному току. Как и сопротивление, он измеряется в Ом () но реактивное сопротивление сложнее, чем сопротивление, потому что его значение зависит от частоты (f) электрического сигнала, проходящего через конденсатор, а также емкости (C).

Емкостное реактивное сопротивление, Xc = 1
2fC

Xc = реактивное сопротивление в Ом ()
f = частота в герцах (Гц)
C = емкость в фарадах (F)

Реактивное сопротивление велико на низких частотах и ​​мало на высоких частотах. Для постоянного постоянного тока с нулевой частотой Xc бесконечно (полная оппозиция), отсюда правило, что Конденсаторы пропускают переменный ток, но блокируют постоянный ток .

Например, конденсатор 1 мкФ имеет реактивное сопротивление 3.2k для сигнала 50 Гц, но когда частота выше на 10 кГц, его реактивное сопротивление составляет только 16.

Емкостное и индуктивное сопротивление

Символ Xc используется для отличия емкостного реактивного сопротивления от индуктивного X L что является свойством индукторов.

Различие важно, потому что X L увеличивается с частотой (противоположно Xc) и если в цепи присутствуют оба X L и Xc, то суммарное реактивное сопротивление (X) равно разнице между ними.

Для получения дополнительной информации см. Страницу Импеданс.



Последовательные и параллельные конденсаторы

Суммарная емкость (C) конденсаторов, подключенных в серии , определяется по формуле:

1 = 1 + 1 + 1 +…
C C1 C2 C3

Суммарная емкость (C) конденсаторов, подключенных параллельно : , составляет

C = C1 + C2 + C3 + …

Два или более конденсатора редко намеренно соединяются последовательно в реальных цепях, но может быть полезно подключить конденсаторы параллельно для получения очень большой емкости, например, чтобы сгладить питание.

Обратите внимание, что эти уравнения являются противоположными для резисторы последовательно и параллельно.


Зарядка конденсатора

Конденсатор (C) на принципиальной схеме заряжается от напряжения питания (Vs) с током проходящий через резистор (R). Напряжение на конденсаторе (Vc) изначально равно нулю, но увеличивается. по мере заряда конденсатора. Конденсатор полностью заряжен, когда Vc = Vs.

Зарядный ток (I) определяется напряжением на резисторе (Vs — Vc):

Зарядный ток, I = (Vs — Vc) / R

Сначала Vc = 0V, поэтому:

Начальный ток, Io = Vs / R

Vc увеличивается, как только заряд (Q) начинает накапливаться (Vc = Q / C), это снижает напряжение на резисторе и, следовательно, снижает ток зарядки.Это означает, что скорость зарядки постепенно снижается.


Постоянная времени (RC)

Постоянная времени — это мера того, насколько медленно конденсатор заряжается током, протекающим через резистор. Большая постоянная времени означает, что конденсатор заряжается медленно. Обратите внимание, что постоянная времени — это свойство цепь , содержащая конденсатор и резистор, не является свойством только конденсатора.

Постоянная времени (RC) — это время, необходимое для того, чтобы зарядный (или разрядный) ток (I) упал до 1 / е от его начального значения (Io).’е’ — важное число в математике (подобно ). e = 2,71828 (до 6 значащих цифр), поэтому мы можем грубо сказать, что постоянная времени — это время, необходимое для падения тока до 1 / 3 от его начального значения.

После каждой постоянной времени ток падает на 1 / e (около 1 / 3 ). После 5 постоянных времени (5RC) ток упал до менее 1% от своего начального значения, и мы можем разумно говорят что конденсатор полностью заряжен , а на самом деле конденсатор требует вечной зарядки полностью!

Нижний график показывает, как напряжение (В) увеличивается по мере заряда конденсатора.Сначала напряжение быстро меняется из-за большого тока; но по мере уменьшения тока заряд нарастает медленнее, а напряжение увеличивается медленнее.

Время Напряжение Заряд
0RC 0,0 В 0%
1RC
1RC 5,7 В В 86%
3RC 8.6 В 95%
4RC 8,8 В 98%
5RC 8,9 В 99%

Зарядка конденсатора
постоянная времени = RC

После 5 постоянных времени (5RC) конденсатор почти полностью заряжен, а его напряжение почти равно напряжение питания. Можно с полным основанием сказать, что конденсатор полностью заряжен после 5RC, хотя реально заряжается продолжается вечно (или пока схема не будет изменена).



Разряд конденсатора

Верхний график показывает, как ток (I) уменьшается по мере разряда конденсатора. Начальный ток (Io) определяется начальным напряжением на конденсаторе (Vo) и сопротивлением (R):

Начальный ток, Io = Vs / R

Обратите внимание, что графики тока имеют одинаковую форму как для зарядки, так и для разрядки конденсатора. Этот тип графа является примером экспоненциального убывания.

Нижний график показывает, как напряжение (В) уменьшается по мере разряда конденсатора.

Время Напряжение Заряд
0RC 9,0 В 100%
1RC 3,3 В 14%
3RC 0,4 ​​В 5%
4RC 0.2 В 2%
5RC 0,1 В 1%

Разрядка конденсатора
постоянная времени = RC

Сначала ток большой, потому что напряжение велико, поэтому заряд быстро теряется и напряжение быстро уменьшается. По мере потери заряда напряжение уменьшается, уменьшая ток, поэтому скорость разрядки становится все медленнее.

После 5 постоянных времени (5RC) напряжение на конденсаторе почти равно нулю, и мы можем с полным основанием сказать, что конденсатор полностью разряжен, хотя реально разряд продолжается вечно (или пока не поменяют схему).


Применение конденсаторов

Конденсаторы используются в нескольких целях:


Муфта конденсатора (CR-муфта)

Секции электронных схем могут быть связаны с конденсатором, потому что конденсаторы проходят переменный ток (изменение) сигналов, но блокирует DC (постоянные) сигналы. Это называется конденсаторной связью или CR-связью .

Он используется между ступенями аудиосистемы для передачи аудиосигнала (переменного тока) без постоянного напряжения (постоянного тока). которые могут присутствовать, например, для подключения громкоговорителя.Он также используется для установки переключателя «AC» на осциллографе.

Точное поведение конденсаторной связи определяется ее постоянной времени (RC). Обратите внимание, что сопротивление (R) может быть внутри следующего участка цепи, а не отдельного резистора.

Для успешной связи конденсаторов в аудиосистеме сигналы должны проходить через с небольшим искажением или без него. Это достигается, если постоянная времени (RC) больше, чем период времени (T) звуковых сигналов самой низкой частоты требуется (обычно 20 Гц, T = 50 мс).

  • Выход при RC >> T
    Когда постоянная времени намного больше периода времени входного сигнала конденсатор не успевает существенно зарядиться или разрядиться, поэтому сигнал проходит с незначительными искажениями.
  • Выход при RC = T
    Когда постоянная времени равна периоду времени, вы можете видеть, что конденсатор успевает частично зарядиться и разрядиться до изменения сигнала. В результате есть значительное искажение сигнала при прохождении через CR-муфту.Обратите внимание, как внезапные изменения входного сигнала проходят прямо через конденсатор на выход.
  • Выход при RC << T
    Когда постоянная времени намного меньше периода времени, конденсатор успевает для полной зарядки или разрядки после каждого резкого изменения входного сигнала. Фактически только внезапные изменения передаются на выходе, и они выглядят как «всплески», попеременно положительный и отрицательный. Это может быть полезно в системе, которая должна определять, когда сигнал меняется внезапно, но игнорируйте медленные изменения.

Следующая страница: Импеданс и реактивное сопротивление | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но не содержат никакой личной информации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *