Закрыть

Как измерить петлю фаза ноль: что это, методика измерения прибором, пример протокола

что это, методика измерения прибором, пример протокола

Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети. В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль. Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.

Что такое петля фаза-ноль простым языком - методика проведения измеренияЧто такое петля фаза-ноль простым языком - методика проведения измерения

Содержание

Что подразумевается под термином петля фаза-ноль?

Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль.

Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:

  • сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
  • невозможно рассчитать влияние аварийной ситуации на сопротивление.

Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.

Что такое петля фаза-ноль простым языком - методика проведения измеренияЧто такое петля фаза-ноль простым языком - методика проведения измерения

Для чего проверяют сопротивление петли фаза-ноль

Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. Результатом измерения петли фаза-ноль является практическое нахождение сопротивления силовой линии до автомата. На основе этого рассчитывается ток короткого замыкания (напряжение сети делим на это сопротивление). После чего делаем вывод: сможет ли автомат, защищающий данную линию отключиться при КЗ.

Например, если на линии установлен автомат C16, то максимальный ток КЗ может быть до 160 А, после чего он расцепит линию. Допустим в результате измерения получим значение сопротивления петли фазы-ноль равным 0,7 Ом в сети 220 В, то есть ток равен 220 / 0,7 = 314 А. Этот ток больше 160 А, поэтому автомат отключится раньше, чем начнут гореть провода и поэтому считаем, что данная линия соответствует норме.

Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.

Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:

  • неплотный контакт на клеммах;
  • несоответствие тока характеристикам провода;
  • уменьшение сопротивления провода из-за устаревания.

Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.

Что такое петля фаза-ноль простым языком - методика проведения измеренияЧто такое петля фаза-ноль простым языком - методика проведения измерения

Периодичность проведения измерений

Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:

  1. После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
  2. При требовании со стороны обслуживающих компаний.
  3. По запросу потребителя электроэнергии.

Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.

Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.

Какие приборы используют?

Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:

Что такое петля фаза-ноль простым языком - методика проведения измеренияЧто такое петля фаза-ноль простым языком - методика проведения измерения

  • М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
  • MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
  • ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.

Что такое петля фаза-ноль простым языком - методика проведения измеренияЧто такое петля фаза-ноль простым языком - методика проведения измерения

Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.

Как измеряется сопротивление петли фаза ноль

Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:

  • Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
  • Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
  • Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.

Методика измерения

Наиболее простой методикой считается падение напряжения в сети. Для этого в линию электропитания подключают нагрузку и замеряют необходимые параметры. Это простой и безопасный способ, не требующий специальных навыков, Измерение можно проводить:

  • между одной из фаз и нулевым проводом;
  • между фазой и проводом РЕ;
  • между фазой и защитным заземлением.

После подключения прибора он начинает измерять сопротивление. Требуемый прямой параметр или косвенные результаты отобразятся на экране. Их необходимо сохранить для последующего анализа. Стоит учитывать, что измерительные устройства приведут к срабатыванию УЗО, поэтому перед испытаниями необходимо их зашунтировать.

Справка! Нагрузку подключают в наиболее отдаленную точку (розетку) от источника питания.

Что такое петля фаза-ноль простым языком - методика проведения измеренияЧто такое петля фаза-ноль простым языком - методика проведения измерения

Анализ результатов измерения и выводы

Полученные параметры используют для анализа характеристик сети, а также ее профилактики. На основе результатов принимают решения о модернизации линии электропередачи или продолжении эксплуатации. Из основных возможностей выделяют следующие:

  1. Определение безопасности работы сети и надежности защитных устройств. Проверяется техническая исправность проводки и возможность дальнейшей эксплуатации без вмешательств.
  2. Поиск проблемных зон для модернизации линии электроснабжения помещения.
  3. Определение мер модернизации сети для надежной работы автоматических выключателей и других защитных устройств.

Если показатели находятся в пределах нормы и ток КЗ не превышает показатели отсечки автоматов, дополнительные меры не требуются. В противном случае необходимо искать проблемные места и устранять их, чтобы обеспечить работоспособность выключателей.

Форма протокола измерения

Что такое петля фаза-ноль простым языком - методика проведения измеренияЧто такое петля фаза-ноль простым языком - методика проведения измерения

Последним этапом в измерении сопротивления петли фаза-ноль является занесение показаний в протокол. Это необходимо для того, чтобы сохранить результаты и использовать их для сравнения в будущем. В протокол вписывается информация о дате проверки, полученный результат, используемый прибор, тип расцепителя, его диапазон измерения и класс точности.

В конце составленной формы подводят итоги испытания. Если он удовлетворительный, то в заключении указывается возможность дальнейшей эксплуатации сети без принятия дополнительных мер, а если нет — список необходимых действий для улучшения показателя.

В заключение необходимо подчеркнуть важность измерений сопротивления петли. Своевременный поиск проблемных участков линий электропитания позволяет принимать профилактические меры. Это не только обезопасит работу с электроприборами, но и увеличит срок эксплуатации сети.

Измерение петли фаза-ноль: самая полная методика

Надежность работы электрических сетей TN с классом напряжения до 1 кВ во многом зависит от параметров срабатывания защитного оборудования, отключающего аварийный участок при образовании сверхтоков. Существует несколько методик, позволяющих проверить надежность срабатывания автоматов защиты, сегодня мы подробно рассмотрим одну из них — измерение сопротивления петли «фаза-ноль». Для лучшего понимания процесса начнем с краткого описания терминологии, после чего перейдем к методике электрических испытаний при помощи специального устройства MZC-300.

Что подразумевается под цепью «фаза-ноль»?

В системах с глухозаземленной нейтралью (подробно о них можно прочитать в статье https://www.asutpp.ru/programmy-dlja-cherchenija-jelektricheskih-shem.html) при контакте одной из фаз с рабочим нулем или защитным проводником РЕ, образуется петля фаза-ноль, характерная для однофазного КЗ.

Как и любая электроцепь, она имеет внутреннее сопротивление, расчет которого позволяет определить остальные значащие параметры, в частности, ток КЗ. К сожалению, самостоятельный расчет сопротивления такой цепи связан с определенными трудностями, вызванными необходимостью учета многих составляющих, например:

  • Суммарная величина всех переходных сопротивлений петли, возникающих в АВ, предохранителях, коммутационном оборудовании и т.д.
  • Движение электротока при нештатном режиме. Петля может образоваться как с рабочим нулем, так и заземленными конструкциями здания.

Учесть в расчетах все перечисленные составляющие на практике не реально, именно поэтому возникает необходимость в электрических измерениях. Спецоборудование позволяет получить необходимые параметры автоматически.

Необходимость в измерениях

Замер сопротивления петли проводится в следующих случаях:

  • При вводе в эксплуатацию, после ремонта, модернизации или переоборудовании установок.
  • Требование со стороны служб различных служб контроля, например Облэнерго, Ростехнадзор и т.д.
  • По заявлению потребителя.

В ходе электрических замеров устанавливаются определенные параметры петли Ф-Н, а именно:

  • Общее сопротивление цепи, которое включает в себя:

электросопротивление трансформатора на подстанции;

аналогичный параметр линейного проводника и рабочего нуля;

образующиеся в коммутационном оборудовании многочисленные переходные сопротивления, например в защитных устройствах (АВ, УЗО, диффавтоматах), пускателях, ручных коммутаторах и т.д. Также влияние оказывает сечение проводников, изоляция кабелей, заземление нейтрали трансформатора, параметры УЗО или другой защиты электроустановок.

  • Ток КЗ (IКЗ). В принципе, его можно рассчитать, используя формулу: IКЗ = UН /ZП  , где UН – номинальный уровень напряжения в электросети, а ZП – общее сопротивление петли. Учитывая, что защитные устройства при КЗ должны автоматически отключать питание согласно установленным временным нормам, то необходимо выполнение следующего условия: ZП*IAB <= UН . В данном случае IAB ток, при котором срабатывает АВ или другое устройство защиты, его величина должна уступать IКЗ.

Перед описанием детальных методик измерений, необходимо кратко описать прибор, который будет использоваться в процессе — MZC-300. Мы остановили свой выбор на этом устройстве, поскольку оно чаще всего применяется измерительными лабораториями.

Краткое описание MZC-300

Рассмотрим внешний вид и основные элементы измерителя MZC-300.

Расположение основных элементов прибора MZC-300Расположение основных элементов прибора MZC-300

Обозначения:

  1. Информационный дисплей. Полное описание его полей можно найти в руководстве по эксплуатации.
  2. Кнопка «Старт». Запускает следующие процессы измерений:
  • ZП, напомним, это общее сопротивление цепи Ф-Н.
  • IКЗ – ожидаемый ток КЗ.
  • Активного сопротивления, необходимо для калибровки прибора.

Старт каждого измерения сопровождается характерным звуковым сигналом.

  1. Кнопка «SEL». Служит для последовательного вывода на информационный дисплей всех характеристик петли, полученных в результате последнего замера. В частности отображается следующая информация:
  • Параметры ZП.
  • Ожидаемый IКЗ.
  • Уровень активного и реактивного сопротивления (R и Х).
  • Фазный угол ϕ.
  1. Кнопка «Z/I». По окончании испытаний переключает на дисплее отображение характеристик между ожидаемым IКЗ и ZП.
  2. Кнопка отключения/включения измерительного устройства. Если при запуске прибора одновременно с данной кнопкой нажать «SEL», то измеритель перейдет в режим автокалибровки. Его подробное описание можно найти в руководстве пользования.
  3. Разъем для подключения щупа, контактирующего с рабочим нулем, проводником РЕ или, PEN. Соответствующее обозначение нанесено на корпус прибора.
  4. Разъем щупа, подключаемого к одному из фазных проводов. Как правило, помечен литерой «L».
  5. Как и разъем i, в отличии от гнезд для измерительных проводов, используется только в режиме автоматической калибровки. На корпусе прибора обозначаются как «К1» и «К2».

Подготовительный этап

Практически все методы измерений цепи «фаза-ноль» не позволяют получить точную информацию о таких характеристиках, как ZП и IКЗ. Это связано с тем, что векторная природа напряжения не принимается во внимание. Проще говоря, учитываются упрощенные условия при коротком замыкании. В процессе испытания электроустановок такая приближенность допускается только в тех случаях, когда уровень реактивного сопротивления не имеет существенного влияния.

Перед тем, как приступить к измерению характеристик петли «Ф-Н», предварительно следует провести ряд предварительных испытаний. В частности, проверить непрерывность и уровень сопротивления защитных линий. После этого измерить сопротивление между контуром заземления и основными металлическими элементами конструкции здания.

Методика измерений с использованием MZC-300

Прежде, чем переходить непосредственно к испытаниям, кратко расскажем о принятом порядке, он включает в себя:

  • Соблюдение определенных условий, обеспечивающих необходимую точность.
  • Выбор способа подключения устройства.
  • Получение информации о напряжении сети.
  • Измерение основных характеристик петли «Ф-Н».
  • Считывание полученной информации.

Рассмотрим каждый из перечисленных выше этапов.

Соблюдение определенных условий

Следует принять во внимания некоторые особенности работы измерителя:

  • Устройство не допустит проведение испытаний, если номинальное напряжение сети превысит максимальное значение (250В). Превышение диапазона измерения (250,0 В) приведет к тому, что на экране прибора отобразится предупреждение «OFL» сопровождаемое продолжительным звучанием зуммера. В этом случае прибор следует выключить и отключить от измеряемой петли.
  • При обрыве нулевых или защитных проводников на экране устройства будет высвечиваться ошибка в виде символа «—», сопровождаемая длительным сигналом зуммера.
  • Уровень напряжения в измеряемой петле недостаточное для испытаний, как правило, если ниже 180,0 вольт. В таком случае экран выдаст ошибку с символом «U», сопровождаемую двумя сигналами зуммера.
  • Срабатывание термической блокировки прибора. При этом на экране высвечивается символ «Т», а зуммер выдает два продолжительных сигнала.

Выбор способа подключения устройства

Рассмотрим несколько вариантов электрических схем подключения прибора для проведения испытаний:

  1. Снятие характеристик с петли «Ф-Н», в примере, приведенном на рисунке измеряются параметры в цепи С-N. Испытание петли С-NИспытание петли С-N
  2. Измерение в петле между одной из фаз и проводником РЕ. Испытание петли С-РЕИспытание петли С-РЕ
  3. Измерения в цепях ТТ.
Подключение прибора в цепях с защитным заземлениемПодключение прибора в цепях с защитным заземлением
  1. Для проверки надежности заземления электрооборудования применяется способ подключения, приведенный ниже.
Испытание надежности заземления корпусов электрооборудованияИспытание надежности заземления корпусов электрооборудования

Важно! Вне зависимости способа подключения прибора необходимо убедиться в надежности соединения проводов.

Получение информации о напряжении сети

Рассматриваемый нами прибор позволяет измерить UH в пределах диапазона от 0 до 250,0 вольт. Фазное напряжение отображается на дисплее прибора сразу после нажатия кнопки включения или по истечении пяти секунд, после проведения испытаний (если не было произведено нажатие управляющих кнопок, отвечающих за отображение результатов на экране).

Измерение основных характеристик петли «Ф-Н»

Методика измерения ZП в петле, применяемая в модельном ряде MZC основана на создании искусственного КЗ с использованием ограничивающего сопротивления (10,0 Ом), понижающего величину IКЗ. После испытаний микропроцессор прибора производит расчет ZП, выделяя реактивные и активные составляющие. Процедура измерения не превышает 30,0 мс.

Характерно, что прибор автоматически выбирает нужный диапазон для измерения ZП. При нажатии кнопки «Z/I» на дисплей поочередно выводятся такие основные характеристики петли, как ожидаемый ток КЗ (IКЗ) и общее сопротивление (ZП).

Следует учитывать, что при вычислениях микропроцессор устанавливает величину UH на уровне 220,0 вольт, в то время, как текущее номинальное напряжение может отличаться от расчетного. Поэтому для увеличения точности замеров электрической цепи следует вносить поправку. Например, при действительном UH, равном 240,0 В, поправка для снижения погрешности прибора будет равна 1,09 (то есть необходимо 240 разделить 220).

Процесс измерения характеристик петли запускается кнопкой «Старт».

Важно! Испытания, проводимые при помощи приборов модельного ряда MZC, практически гарантированно приводят к срабатыванию УЗО. Чтобы избежать этого, необходимо предварительно зашунтировать устройства защитного отключения. После проведения измерений не забудьте снять шунт с УЗО.

Считывание полученной информации

Как уже упоминалось выше, испытания начинаются после нажатия кнопки «Старт». После завершения измерений, на экране отображаются характеристики петли «Ф-Н», в зависимости от установленных настроек. Перебор отображаемой на дисплее информации осуществляется при помощи кнопок «SEL» и «Z/I».

Следует учитывать, что прибор MZC-300 отображает только результаты последнего измерения. Если необходимо хранение в электронной памяти результатов всех испытаний потребуется устройство с расширенными возможностями, например прибор MZC-303E.

Устройство MZC-303E для измерения характеристик петли «Ф-Н»Устройство MZC-303E для измерения характеристик петли «Ф-Н»

Такое устройство позволяет не только хранить информацию обо всех измерениях в электронной памяти, но и при необходимости переносить ее на компьютер, при помощи интерфейса USB.

Меры безопасности при измерении петли «Ф-Н»

Согласно требованиям ПУЭ и норм ПТБ испытания должны проводиться подготовленными сотрудниками электролабораторий. Для проведения данных работ необходимо распоряжение или наряд-допуск, выданный работником, обладающим данным правом.

Испытания могут проводить лица, чей возраст не менее 18 лет, прошедшие соответствующее обучение и проверку знаний ПТБ. Бригада электролаборатории должна быть обеспечена соответствующим инструментом, а также всеми необходимыми средствами индивидуальной защиты.

Бригада должна включать в себя, как минимум, двух работников с третьей группой электробезопасности.

Испытания запрещается проводить в помещениях повышенной опасности, а также, если имеет место высокая влажность.

По завершению процесса испытаний результаты вносятся в специальные протоколы испытаний (проверки).

общее представление и методика, периодичность и приборы для измерения

Надежность электрической сети напрямую зависит от правильности срабатывания защитных устройств. Петля фаза ноль позволяет проверить их работоспособность в сети до 1 кВ с глухо-заземленной нейтралью. Поэтапно разберемся, что представляет собой схема «Ф-Н», а также нюансы ее проверки.

Общее представление о цепи «фаза ноль»

Большинство потребителей электроэнергии запитаны сетями с уровнем напряжения до 1 кВ через трехфазный трансформатор. Для обеспечения безопасности в них используется глухо-заземленная нейтраль. В ней возможно появление тока из-за сдвига фаз в обмотках трансформатора, которые соединены по схеме звезды.

Схема прохождения токов по петле фаза-нольСхема прохождения токов по петле фаза-ноль

В случае возникновения контакта между линейным и нулевым или защитным проводом формируется контур «фаза-нуль». Указанная связь приводит к образованию короткого замыкания. В цепи могут находиться соединительные провода, коммутационная и защитная аппаратура, что сопровождается формированием определенного значения сопротивления.

к содержанию ↑

Зачем проверяется петля «фаза ноль»

Изучение показателей схемы «Ф-Н» осуществляется для определения слабых мест в действующей сети. Это может своевременно предотвратить развитие более серьезных аварий в питающей цепи. Еще одной важной функцией указанного тестирования является проверка соответствия установленных коммутационных и защитных устройств токам короткого замыкания. Это требуется для предотвращения воспламенения проводки.

Проведение испытаний электросетиПроведение испытаний электросетиПроведение испытаний электросети к содержанию ↑

Сроки проведения испытаний

Электрические сети и оборудование эксплуатируются в различных режимах. Со временем наблюдается естественное старение изоляции кабеля, ухудшение свойств проводников из-за токовых перегрузок, отклонений напряжения, влияния окружающей среды и т. д. Этим обусловлена необходимость в периодической проверке целостности контура фаза ноль.

В соответствии с указаниями ПУЭ испытание петли «Ф-Н» проводится, как минимум, один раз в 36 месяцев, а для электрических сетей, эксплуатируемых в опасных или агрессивных средах, как минимум, один раз в 24 месяца. Также предусматриваются внеплановые проверки, в следующих ситуациях:

  • при внедрении в работу нового оборудования;
  • после осуществления модернизации, профилактики или ремонта действующей сети;
  • по требованию поставщика электроэнергии;
  • по факту запроса от потребителя.
Периодичность осмотров электрооборудования жилых домовПериодичность осмотров электрооборудования жилых домовПериодичность осмотров электрооборудования жилых домов к содержанию ↑

Методы и порядок проверки сопротивления контура «Ф-Н»

Проверка сопротивления петли «фаза нуль» подразумевает замер тока короткого замыкания на конкретном участке электрической цепи. В дальнейшем зафиксированное значение сопоставляется с отключающими уставками автоматов. При этом измерения проводятся либо непосредственно под рабочим напряжением, либо с питанием от постороннего источника. Далее рассмотрим требуемую последовательность действий при проверке сопротивления.

к содержанию ↑

Визуальный контроль

Первоначально понадобится изучить имеющиеся схемы и документацию. В дальнейшем осуществляется визуальный осмотр всех элементов цепи на предмет выявления явных недостатков и повреждений. В процессе выполнения указанных мероприятий рекомендуется проверить качество затяжки контактных соединений. Иначе велика вероятность получения недостоверных измеренных данных.

Осмотр элементов электросети на соответствие схемеОсмотр элементов электросети на соответствие схемеОсмотр элементов электросети на соответствие схеме к содержанию ↑

Замер показателей контура «Ф-Н»

В ходе испытаний могут использоваться различные специализированные приборы, которые могут использовать следующие методики измерений:

  1. Падения напряжения — проводится на обесточенной цепи с дальнейшим подсоединением сопротивления установленной величины. Зафиксированные показания сверяются с допустимыми нормами значениями после проведения расчетов.
  2. Короткого замыкания — предполагает осуществление испытаний при наличии напряжения. Измерительное устройство формирует искусственное короткое замыкание на конечном участке от ввода питания с дальнейшей фиксацией величины тока и времени отработки защитных элементов.
  3. Амперметра-Вольтметра — подразумевает применение понижающего трансформатора переменного тока с замыканием фазного провода на защитное заземление электрической цепи. Предварительно выполняется обесточивание питающей сети. Необходимые показания получаются после проведения расчетов.

Измерение сопротивления цепи фаза-нольИзмерение сопротивления цепи фаза-ноль

к содержанию ↑

Вычисления и оформление документации

Заключительным этапом испытания является расчет величины тока короткого замыкания. Он определяется по соотношению:

Iкз = Uф/R, где

Uф — фазное напряжение сети;

R — полное сопротивление цепи.

Вычисленная величина сопоставляется с пределом отключения Iкз защитными аппаратами. Для определения минимальной и максимальной уставки срабатывания понадобится номинальный ток автомата увеличить в определенное количество раз, в зависимости от типа установленного защитного устройства. Ниже приведена требуемая кратность для минимального и максимального тока отключения по отношению к номинальному для конкретных серий автоматов:

  • В — 3 и 5;
  • С — 5 и 10;
  • D и К — 10 и 14.

Итог испытания подводится в специальном протоколе, о содержании которого будет указано далее с предоставлением примера заполнения.

к содержанию ↑

Приборы для проведения измерений

Замерить основные показатели контура «Ф-Н» можно двумя типами приборов. Первые допускается использовать исключительно после снятия напряжения, а вторые способны работать под нагрузкой. Также имеются различия в выводе количества информации. Простые приборы выдают значения необходимые для вычисления Iкз. Более сложное исполнение измерителей позволяет сразу вывести значение Iкз.

Специалисты рекомендуют использовать следующие модели приборов:

  1. MZC 300 — современный микропроцессорный измеритель, о нюансах работы которого мы расскажем далее.
  2. М-417 — зарекомендовал себя с наилучшей стороны много лет назад. Испытания ведутся по методу падения напряжения. При этом измеритель можно использовать под рабочим линейным напряжением в сетях с глухо-заземленной нейтралью. Размыкание испытываемой схемы осуществляется за 0,3 с. Предварительно понадобится выполнить калибровку.
  3. ИФН-200 — предназначен для проверки цепей с сопротивлением до 1 кОм, с допустимым напряжением от 180 до 250 В. Помимо замера схемы «Ф-Н», способен функционировать и в других режимах. Память ИФН-200 может хранить данные о тридцати пяти крайних вычислениях.
Измеритель сопротивления ИФН-200Измеритель сопротивления ИФН-200Измеритель сопротивления ИФН-200 к содержанию ↑

Подведение итогов и опасности от проведения неправильного измерения

По полученной в результате измерений информации делается заключение о возможности дальнейшей эксплуатации сети. При выявлении несоответствия отключающих уставок защитных аппаратов зафиксированному Iкз, выносится решение о необходимости их замены. В противном случае велика вероятность образования пожара и разрушения электрооборудования под воздействием Iкз.

к содержанию ↑

Протокол по проведенным замерам контура «фаза нуль»

На основании произведенных измерений оформляется специальный протокол. Он используется для хранения зафиксированных показаний, а также для осуществления сравнительного анализа с последующими тестами.

В протоколе отображается следующая информация:

  • дата проведения;
  • номер протокола;
  • цель проведения тестирования;
  • данные об организации, проводящей испытания;
  • информация о заказчике;
  • действующие климатические условия: атмосферное давление, температура и влажность воздуха;
  • диапазон измерения, класс точности и вид расцепителя;
  • измеритель, используемый для тестирования;
  • зафиксированные показания;
  • итог испытаний;
  • должности, фамилии и подписи лиц, проводивших замеры и проверивших протокол.

Протокол измерения петли фаза нольПротокол измерения петли фаза ноль

Обратите внимание! В случае положительного итога цепь допускается к эксплуатации без ограничений. При выявлении недостатков составляется перечень требуемых действий для восстановления необходимых показателей.

к содержанию ↑

Техника безопасности при замере контура «Ф-Н»

Процедура замера контура фаза ноль должна вестись специалистами в возрасте от 18 лет, сдавшими экзамен по межотраслевым нормам и правилам техники безопасности. Работы должны осуществляться в соответствии с ПУЭ и при наличии требуемых приборов и инструментов.

Проведение работ должно оформляться нарядом или распоряжением. В состав бригады должны входить, как минимум, два специалиста с третьей группой по электробезопасности. Запрещается производить тестирование в условиях повышенной влажности и опасности.

Проведение проверки цепи фаза-нольПроведение проверки цепи фаза-нольПроведение проверки цепи фаза-ноль к содержанию ↑

Испытание цепи «Ф-Н» измерителем MZC 300

Измерение петли фаза ноль прибором MZC 300 требует соблюдения определенной последовательности действий, учитывая некоторые особенности устройства.

Обязательные условия

Первоначально рекомендуется включить MZC 300 и убедиться в отсутствии на экране надписи bAt. Она сигнализирует о разряженных батарейках, а следовательно, провести достоверные измерения не удастся.

В процессе осуществления замеров могут появляться характерные ошибки, обусловленные следующими причинами:

  1. Напряжение сети менее 180 или более 250 Вольт. В первом случае на экране высветится буква U в сопровождении с двумя звуковыми сигналами, а во втором надпись OFL и одно продолжительное звучание.
  2. Высокая нагрузка на измеритель, сопровождающаяся перегревом. На дисплее высветится буква T, а зуммер выдаст два длительных звука.
  3. Обрыв нулевого или защитного провода в исследуемой схеме, что сопровождается появлением на дисплее символа «— —» и продолжительным звуком.
  4. Превышено допустимое значение общего сопротивления исследуемой схемы — два продолжительных звука и символ «—».

к содержанию ↑

Способы подключения

С помощью MZC 300 можно произвести замеры различных участков цепи. При этом необходимо обеспечить качественный контакт наконечников прибора.

Далее представлен порядок подключения измерителя в зависимости от вида проводимого тестирования:

  1. Снятие характеристик с петли «Ф-Н» — один наконечник измерителя фиксируется к нулевому (N) проводу, а второй поочередно устанавливается на линейные (L) провода.
  2. Проверка защитной цепи — один контакт поочередно крепится к линейным проводникам, а второй к защитному заземлению (PE).
  3. Тестирование надежности заземления корпуса электрооборудования производится в зависимости от типа сети — с занулением (TE) или с защитным заземлением (TT). При этом порядок производства измерений идентичен. Один наконечник прибора цепляется к корпусу электрооборудования, а второй поочередно к питающим проводникам.

Тестирование петли «Ф-Н»Тестирование петли «Ф-Н»

к содержанию ↑

Считывание показаний о напряжении сети

MZC 300 рассчитан на выдачу показаний фазного напряжения в пределах от 0 до 250 В. Для снятия данных понадобится нажать на клавишу «Start». При отсутствии указанных манипуляций измерительное устройство автоматически выведет на дисплей полученное значение, по истечении пяти секунд с момента начала тестирования.

Измерение характеристик контура «Ф-Н»

Для получения основных показателей в MZC 300 используется методика искусственного короткого замыкания. Она позволяет измерить полное сопротивление петли, разлагая на активную и реактивную составляющую, а также выдавая данные по углу сдвига фаз и величине предполагаемого Iкз. Для их поочередного просмотра понадобится нажимать кнопку «Z/I».

Измерительный ток протекает по тестируемому контуру в течение 30 мс. Для ограничения величины тока в схеме прибора смонтирован ограничивающий резистор на 10 Ом. При этом прибор автоматически устанавливает требуемую величину измерительного тока, учитывая уровень напряжения в сети и величину сопротивления схемы «Ф-Н».

Обратите внимание! При проведении тестирования важно учитывать, что прибор ведет расчеты с учетом номинального значения напряжения 220 В, независимо от действующих показаний в сети. Поэтому в дальнейшем необходимо осуществить корректировку полученного значения предполагаемого Iкз в цепи «Ф-Н». Для этого необходимо измерить действующее значение напряжения и разделить на 220. Полученное значение умножить на измеренный прибором Iкз.

Методы проверки сети прибором MZC 300Методы проверки сети прибором MZC 300

При наличии в схеме УЗО следует предварительно исключить защитный аппарат из тестируемого контура посредством установки шунта. Это обусловлено тем, что подаваемый от MZC 300 измерительный ток приводит к отключению УЗО.

к содержанию ↑

Вывод результатов измерения

После осуществления необходимых подключений на экране прибора будет отражаться уровень напряжения сети. Процесс измерения начинается после нажатия кнопки «Start». По факту окончания тестирования на дисплей выводится информация о величине полного сопротивления или предполагаемого Iкз, в зависимости от первоначальных установок. Для отображения других доступных показаний понадобится использовать клавишу «SEL».

Вывод результатов испытания на экранВывод результатов испытания на экранВывод результатов испытания на экран

Для получения достоверных измерений цепи «Ф-Н» рекомендуется воспользоваться услугами профессионалов. От правильности испытаний зависит дальнейшая безопасность эксплуатации электрической сети.

Петля фаза ноль: общее представление и методика, периодичность и приборы для измерения

Как измерить сопротивление петли фаза-ноль?

Обзор методик и приборов для измерения сопротивления петли фаза-ноль. Узнайте, для чего нужно проводить замеры и как вносить результаты в протокол.


Со временем эксплуатации линии электроснабжения в них происходят изменения, которые невозможно проконтролировать визуально или установить их с помощью математических расчетов. Для стабильной и бесперебойной работы электрооборудования необходимо периодически делать замеры определенных параметров. Одним из них является измерение петли фаза-ноль, которое делают при помощи специальных приборов. Если фазный провод замкнуть на нулевой в точке потребления, то между фазным и нулевым проводником создается контур, который и является петлей фаза-ноль. В нее входят: трансформатор, рубильники, выключатели, пускатели – все коммутационное оборудование. Ниже мы расскажем читателям Сам Электрик, как измерить сопротивление петли, предоставив существующие методики и оборудование. Содержание:

Периодичность и назначение замеров

Для надежной работы электросети необходимо периодически проводить проверку силового кабеля и оборудования. Перед сдачей объекта в эксплуатацию, после капитального и текущего ремонта электросетей, после проведения пуско-наладочных работ, а также по графику, установленном руководителем предприятия проводят эти испытания. Измерения делают по следующим основным параметрам:

  • сопротивление изоляции;
  • сопротивление петли фаза-ноль;
  • параметры заземления;
  • параметры автоматических выключателей.

Основной задачей измерения параметра петли фаза-ноль является защита электрооборудования и кабелей от перегрузок, возникающих в процессе эксплуатации. Повышенное сопротивление может привести к перегреву линии, и как следствие, к пожару. Большое влияние на качество кабеля, воздушной линии оказывает окружающая среда. Температура, влажность, агрессивная среда, время суток – все это оказывает влияние на состояние сети.

В цепь для проведения замеров включают контакты автоматической защиты, рубильники, контакторы, а также проводники подачи напряжения к электроустановкам. Этими проводниками могут быть силовые кабели, подающие фазу и ноль, или воздушные линии, выполняющие эту же функцию. При наличии защитного заземления — фазный проводник и провод заземления. Такая цепь имеет определенное сопротивление.

Полное сопротивление петли фаза-ноль можно рассчитать с помощью формул, которые будут учитывать сечение проводников, их материал, протяженность линии, хотя точность расчетов будет небольшой. Более точный результат можно получить, измерив физическую цепь с имеющимися устройствами.

В случае использование в сети устройства защитного отключения (УЗО), его при измерении необходимо отключить. Параметры УЗО рассчитаны так, что при прохождении больших токов оно произведет отключение сети, что не даст достоверных результатов.

Обзор методик

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

  1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
  2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
  3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки. Полученные данные обрабатывают и с помощью формул определяют нужный параметр.

Основной методикой такого испытания стало измерение падения напряжения при подключении нагрузочного сопротивления. Этот метод стал основным, ввиду его простоты использования и возможности дальнейших расчетов, которые нужно провести для получения дальнейших результатов. При измерении петли фаза-ноль в пределах одного здания, нагрузочное сопротивление включают на самом дальнем участке цепи, максимально удаленном от места подачи питания. Подключение приборов проводят к хорошо очищенным контактам, что нужно для достоверности замеров.

Сначала проводят измерение напряжения без нагрузки, после подключения амперметра с нагрузкой замеры повторяют. По полученным данным делают расчет сопротивления цепи фаза-ноль. Используя готовое, предназначенное для такой работы устройство, можно сразу по шкале получить нужное сопротивление.

После проведения измерения составляют протокол, в который заносят все нужные величины. Протокол должен быть стандартной формы. В него также вносят данные об измерительных приборах, которые были использованы. В конце протокола подводят итог о соответствии (несоответствии) данного участка нормативно-технической документации. Образец заполнения протокола выглядит следующим образом:


Какие приборы используют?

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

  • М-417. Проверенный годами и надежный прибор для измерения сопротивления цепи фаза-ноль без снятия питания. Используют для замеров параметра методом падения напряжения. При использовании этого устройства можно провести испытание цепи с напряжением 380 В с глухозаземленной нейтралью. Он обеспечит размыкание измерительной цепи за 0,3 с. Недостатком является необходимость калибровки перед началом работы.
  • MZC-300. Устройство нового поколения, построенное на базе микропроцессора. Использует метод измерения падения напряжения при подключении известного сопротивления (10 Ом). Напряжение 180-250 В, время замера 0,03 с. Подключают прибор к сети в дальней точке, нажимают кнопку старт. Результат выводится на цифровой дисплей, рассчитанный с помощью процессора.
  • Измеритель ИФН-200. Выполняет много функций, в том числе, и измерение петли фаза-ноль. Напряжение 180-250 В. Для подключения к сети есть соответствующие разъемы. Готов к работе через 10 с. Подключаемое сопротивление 10 Ом. При сопротивлении цепи более 1 кОм измерение проводиться не будут – сработает защита. Энергонезависимая память сохраняет 35 последних вычислений.

О том, как измерить сопротивление петли фаза-ноль с помощью приборов, вы можете узнать, просмотрев данные видео примеры:

Использование ИФН-300

Как пользоваться MZC-300

Для использования вышеперечисленных методик необходимо привлекать только обученный персонал. Неправильное проведение замеров может привести к неверным конечным данным или к выходу из строя существующей системы электроснабжения. Хуже всего – это может привести к травмированию работников. Надеемся, теперь вы знаете, для чего нужно измерение петли фаза-ноль, а также какие методики и приборы для этого можно использовать.

Рекомендуем также прочитать:

  • Методика проверки автоматических выключателей
  • Измерение сопротивления изоляции мегаомметром
  • Как пользоваться осциллографом

Использование ИФН-300

Как пользоваться MZC-300


НравитсяКак измерить сопротивление петли фаза-ноль?0)Не нравитсяКак измерить сопротивление петли фаза-ноль?0)
Измерение петли фаза-ноль | Электролаборатория БЭТЛ Ярославль

Главная › Документация

Краткое содержание.

  1. Петля Ф-Н — это измерение в электроустановках до 1000 В. Представляет из себя контур, соединяющий фазу и ноль.
  2. Необходимо для проверки качества монтажа и соответствия защитной автоматики сечению проводов.
  3. Периодичность — не реже 1 раза в 3 года.
  4. Обычно проводится без снятия напряжения.
  5. При помощи прибора ИФН или аналогичного измеряется ток короткого замыкания (КЗ) в самой отдаленной точке от распределительного щита.
  6. Ток КЗ должен быть больше номинала защитного устройства не менее чем в 3 раза.
  7. Протокол содержит номинал автомата, соответствующие измеренные значения и другие данные установленной формы.

1. Что такое петля фаза-ноль

В электрических установках напряжением до 1000 вольт с глухозаземленной нейтралью обязательна металлическая связь частей, подлежащих заземлению, с заземленной нейтралью электроустановки. Для таких установок должно быть измерено сопротивление петли, образованной при коротком замыкании фазы на корпус аппарата. Это сопротивление равно сумме полных сопротивлений  фазового провода, фазы силового трансформатора и нулевого провода.

Цепь (петля) фаза-ноль в электроустановках с глухозаземленной нейтралью образуется при замыкании фазного провода с нулевым или корпусом электрооборудования. Обычно это происходит при повреждении изоляции электропроводки. В случае такой аварии устройства защиты (автоматические выключатели, предохранители) должны отключить электроустановку в кратчайшее время, обеспечивающее условия электробезопасности.

Петля фаза-ноль — это контур, состоящий из соединения фазного и нулевого проводника. Сопротивление петли фаза-ноль зависит от сечения жил кабеля, его протяженности, переходных сопротивлений в соединительных коробках данной линии. Измерения проводят на самом удаленном от аппарата защиты участке линии.

2. Зачем необходимо измерение

При повреждении электрооборудования или электропроводки от короткого замыкания, перегрузки, аппараты защиты должны мгновенно отключать поврежденный участок цепи.

Данное испытание необходимо для проверки соответствия уставки токовой отсечки автоматических выключателей, УЗО, дифавтоматов, реле и т.д. току короткого замыкания. То есть необходимо знать, отключит ли аппарат защиты поврежденную линию и за какое время. Это позволит проверить качество монтажа, подбор защитной автоматики и сечения проводов.

2.1. Периодичность проведения измерений

Замеры проводятся после выполнения монтажных и ремонтных работ. В дальнейшем профилактическая проверка производится не реже чем раз в 3 года.

По усмотрению ответственного за электрохозяйство испытания проводятся чаще.

3. Какие приборы используют?

  • М-417 — выпускался до 1985 года. Аналоговый прибор, время измерения устанавливается вручную. Измеряет сопротивление петли, ток короткого замыкания необходимо рассчитывать.
  • Щ 41160 – выпускался на замену М-417. Цифровой прибор, измеряет ток короткого замыкания. Время протекания измерительного тока не более 10 мс., перерыв до повторного включения не менее 15 минут.
  • MZC-300 – измеряет полное сопротивление петли фаза-ноль, автоматически вычисляет ток короткого замыкания. Время протекания тока 30 мс. Достоверность показаний гарантируется только при применении фирменных соединительных проводов.
  • ИФН-200 – имеет характеристики, аналогичные МZС-300. Дополнительно позволяет измерять переходное сопротивление контактных соединений. Можно применять провода произвольной длины. Встроенная память на 35 измерений.
  • ИФН-300 – выпускается на замену ИФН-200. Дополнительно измеряет сопротивление петли фаза-фаза. Встроенная память на 10 000 измерений.

4. Порядок измерения петли фаза-ноль

Измерение сопротивления цепи фаза-ноль может проводиться со снятием и без снятия напряжения. В большинстве случаев выполняются без снятия напряжения.

Измерения без снятия напряжения могут выполняться:

  • В режиме дополнительной нагрузки. Замыкание цепи фаза-ноль происходит через дополнительную нагрузку. При этом измеряются падение напряжение и ток, проходящий через нагрузку и вычисляется сопротивление петли.
  • В режиме кратковременного замыкания цепи. Время замыкания составляет несколько миллисекунд. Этот способ реализован в большинстве современных приборов.

4.1. Методика измерения

ИФН-200Измерение характеристик петли зависит от выбранной методики и используемого прибора. Наиболее часто применяются приборы, измеряющие непосредственно сопротивление петли фаза-ноль с дальнейшим вычислением прогнозируемого тока короткого замыкания. Например, с помощью ИФН-200.

Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. При отсутствии возможности определить самую дальнюю точку линии, измерения выполняются по всем или нескольким точкам данной линии. Далее по полученным значениям производится сравнение тока возможного короткого замыкания с характеристиками аппарата защиты.

4.2. Выводы о результатах

Результаты измерений сопротивления петли фаза-ноль заносятся в протокол. Это позволяет сохранить результаты и использовать их для сравнения в будущем.

Согласно п. 28.4. прил. 3.1 ПТЭЭП ток короткого замыкания должен превышать не менее чем:

  • в 3 раза плавкую вставку ближайшего предохранителя;
  • в 3 раза номинальный ток нерегулируемого расцепителя или уставку тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую характеристику.

4.3 Форма протокола

Протокол замера фаза-ноль

В отчете отражается:

  1. Участок цепи (группа в распределительном щите).
  2. Тип автомата защиты и номинальные токи ( в амперах) теплового и электромагнитного расцепителей.
  3. Измеренное значение сопротивления петли (если прибор его измеряет) на линиях A (L1), B (L2), C (L3).
  4. Измеренное значение тока короткого замыкания (если прибор его измеряет) на линиях A (L1), B (L2), C (L3).
  5. Допустимые коэффициенты срабатывания защиты для теплового и электромагнитного расцепителя. Для автомата с характеристикой С это 3 и 10.
  6. Фактический коэффициент срабатывания защиты. Отношение измеренного тока к номинальному току автомата.
  7. Соответствие фактического коэффициента допустимым. Если рассчитанное в п. 6 значение больше 10 то автомат отключится меньше чем за 0,1 секунды. Если меньше 10 но больше 3, время отключения сложно определить. Оно будет в интервале 0,1 — 30 секунд.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или возможно возгорание проводов.

В конце составленной формы подводятся итоги испытания. При отсутствии замечаний в заключении указывается возможность дальнейшей эксплуатации сети без принятия дополнительных мер, а при наличии — список необходимых действий.

Своевременный поиск проблемных участков линий электропитания позволяет принимать профилактические меры. Это не только делает работу электроустановки более безопасной, но и увеличивает срок эксплуатации сети.

Петля фаза ноль. Для чего проверяют сопротивление петли фаза-ноль

   Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке. Этот метод электрики называют измерением сопротивления петля фаза ноль.

Что это такое, и как формируется проверочная схема

   Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

   Итак,  от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация. Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень. Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

   Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их.Что это такое, и как формируется проверочная схема.

Видео измерения петля фаза ноль

 

   Необходимо отметить, что вся электрическая цепочка – это зацикленный контур, образованный фазным контуром и нулевым. По сути, это своеобразная петля. Поэтому ее так и называют петля фаза ноль.

Как измеряется сеть

   Чтобы это понять, необходимо рассмотреть схему, в которой присутствует потребитель, подключенный через обычную розетку. Так вот к розетке, как уже было сказано выше, подводятся фаза и ноль. При этом до розетки происходит потеря напряжения за счет сопротивления магистральных кабелей и проводов. Это известно давно, описан данный процесс формулой Ома:

R=U/I.

   Правда, эта формула описывает соотношение величин постоянного электрического тока. Чтобы перевести ее на ток переменный, придется учитывать некоторые показатели:

  • Активная составляющая сопротивления сети.
  • Реактивная, состоящая из емкостной и индуктивной части.

   Что это значит?

   Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

  • Активное – это потребитель и провода. Это самая большая часть сопротивления.
  • Индуктивное – это сопротивление встроенных обмоток.
  • Емкостное – это сопротивление отдельных элементов.

Петля фаза ноль

   Как измерить сопротивление петля фаза ноль

   Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу, которая создается на обмотках трансформатора. Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой. Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

Внимание! Нагрузка на розетке должна быть стабильной в процессе проведения замеров. Это первое. Второе – оптимальным вариантом считается, если в схеме ток будет силой от 10 до 20 ампер. В противном случае дефекты сетевого участка могут не проявиться.

   Теперь по закону Ома можно определить полное сопротивление петли. При этом придется учитывать, что напряжение (замеряемое) в розетке может отклоняться от номинального при нагрузке и без таковой. Поэтому сначала надо высчитать сопротивление при разных величинах напряжения. Понятно, что при нагрузке напряжение будет больше, поэтому полное сопротивление петли – это разница двух сопротивлений:

Rп=R2-R1, где R2 – это сопротивление петли при нагрузке, R1 – без таковой.

   Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2). 

Петля фаза ноль

   Процесс измерения петля фаза ноль

   Хотя надо отдать должное рынку, сегодня можно такие приборы приобрести в свободном доступе. Стоят они недешево, но для профессионала это необходимая вещь.

Где провести замер

   Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите. Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

Цель проводимых замеров

   Итак, цели две – определение качества эксплуатируемых сетей и оценка надежности защитных блоков и приборов.

   Что касается первой позиции, то здесь придется сравнивать полученные замеры, а, точнее, сопротивление петли с проектной. В данном случае, если расчетный показатель оказался выше нормативного, то на поверку явно неправильно произведенный монтаж или другие дефекты магистрали. К примеру, грязь или коррозия контактов, малое сечение кабелей и проводов, неграмотно проведенные скрутки, плохая изоляция и так далее. Если проект электрической сети по каким-то причинам отсутствует, то для сравнения расчетного сопротивления петли с номинальным необходимо будет обратиться в проектную организацию. Чтобы разобраться в таблицах и расчетах самому, надо в первую очередь обладать инженерными знаниями по электрике.

Петля фаза ноль

   Замер сопротивления петля фаза ноль

   Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть. Поэтому в данном случае используется формула:

Iкз=Uном/Rп.

   Если считать, что сопротивление петли фаза к нулю равно, например, 1,47 Ом, то сила тока короткого замыкания будет равна 150 ампер. Под эту величину и придется подбирать прибор защиты, то есть, автомат. Правда, в правилах ПУЭ есть определенные нормы, которые создают некий запас прочности. Поэтому Iном увеличивают на коэффициент 1,1.

   Подобрать автомат под все вышеуказанные величины можно, если сравнить их в таблицах ПУЭ. В нашем случае потребуется автомат класса «С» с Iном=16 А и кратностью 10. В итоге получаем:

    I = 16 х 10 х 1,1 = 176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

  • Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
  • Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

как измерить, сопротивление и проверка петли

Нередко в домашней электрической проводке и силовых подстанциях возникают неполадки, в результате которых происходит естественный перекос фаз по нейтральной электроцепи. В таком случае, чтобы предотвратить проблему, делают измерение петли фазы ноль. Что это такое, как правильно произвести замер петли фаза нуль, какие приборы для этого использовать? Об этом и другом далее.

Что это такое

Петля фаза ноль — параметр, который по техническим нормативам должен проверяться в силовых установках, имеющих глухозаземленную нейтраль и напряжение до тысячи вольт. Это величина, которая нужна, чтобы предотвратить появление тока в электроцепи нейтрали из-за естественного фазного перекоса. Она образуется при подключении фазного провода к проводнику защитного или нулевого типа. В конечно итоге, образуется контур, имеющий собственное сопротивление с перемещающимся по нему электрическому току. Этот контур может состоять из защитного автомата, клеммов и других связующих.

Петля фаза ноль

Измерить самостоятельно петлю сложно из-за имеющихся недостатков. Так, сложно подсчитать все коммутационные элементы на выключателях, рубильниках, которые могли измениться при сетевой эксплуатации. Кроме того, нереально сделать расчет влияния аварии на значение сопротивления. Лучшим при этом методом будет замер поверенным аппаратом с учитыванием погрешностей.

Определение из пособия

Как проверить петлю

Проверка петли нужна для профилактики, а также для того, чтобы обеспечить корректную работу защитного оборудования с автоматическими выключателями, УЗО и диффавтоматами. Самой распространенной проблемой подключения чайника или другого электроприбора является отключение нагрузки автомата.

Обратите внимание! Ложное срабатывание защиты с нагревом кабелей и пожаром является большой показатель сопротивления.

Проверка делается для того, чтобы успешно работали удаленные и более массивные электрические приемники, но не больше 10% от всего числа. Проверка создается с помощью формулы Zпет = Zп + Zт / 3 где Zп является полным сопротивлением проводов петли фазы-ноль, а Zт считается показателем полного сопротивления трансформаторного питания.

Формула для проверки

Испытуемое электрооборудование отключается от сети. Потом создается на трансформаторной установке искусственный вид замыкания первого фазного провода на электроприемный корпус. После того, как будет подано напряжение, измеряется сила тока и напряжения вольтметром.

Обратите внимание! Сопротивление петли будет равно делению показателя напряжения на силу тока. Приобретенный результат должен быть арифметически сложен с полным сопротивлением трансформатора, поделенного на цифру 3.

Как делают замеры

Замеры нужно проводить по нормативному техническому документу ПТЭЭП, в соответствии с конкретной периодичностью — 1 раз в несколько лет. Система ППР прописывает необходимость текущего и капитального ремонта электрического оборудования. Это нужно, чтобы работало оборудование исправно.

Приборы для замеров

Учитывая тот факт, что результаты измерений петли востребованы, в качестве измерительных приборов применяется обычно мультиметр. Из других приборов используются наиболее часто:

  • М-417 — стрелочное удобное и простое в эксплуатации устройство, которое основано на калибруемой схеме мостового типа. Работает без необходимости снятия напряжения величиной до 380 вольт.
  • МZC-300 — современный измерительный аппарат, имеющий цифровую обработку измеряемых параметров с отображением на дисплее. Чтобы измерять напряжение до 250 вольт, можно использовать контрольный вид сопротивления в 10 Ом.
  • ИФН-200 — прибор, работающий под напряжением до 250 вольт, который может быть применен в качестве тестера. Однако при петлевых замерах, диапазон значений сопротивления ниже 1000 Ом.

Стоит отметить, что параметровое петлевое измерение сопротивления петли фаза нуль простое. Все что нужно, это присоединить щупы к контактным местам, которые нужно предварительным образом почистить при помощи наждака или напильника, чтобы минимизировать контактное сопротивление. После этого включается оборудование и на табло появляется результат.

Проверка мультиметром

Рассчет петли фаза-ноль

Перед тем, как измерить петлю фаза-ноль, необходима проверка плотности проводного соединения к защитным аппаратам. Если не остаются протянутыми провода, то смысла в измерении нет, поскольку точные данные не будут получены.

Обратите внимание! Цель расчета в выяснении соответствия номинального тока защиты с проводным сечением электроцепи. Замер должен быть произведен на самой удаленной точки линии измерения.

Сделав замер полного сопротивления цепи фаза нуль по предложенной схеме, на приборном дисплее будет отражена величина тока короткого замыкания. Этот показатель нужно сравнить по характеристике времени и току с расцепительным током срабатывания выключателя иди с предохранительной вставкой.

По нормативным требованиям расчет петли должен быть произведен в электролаборатории. Чтобы произвести данные работы, нужно получить наряд-допуск. При этом испытания могут производить взрослые люди с необходимыми знаниями в месте, не отличающейся повышенной опасностью или высокой влажностью.

Подсчет фазы-ноль

Сопротивление в петли фаза-ноль

Для подсчета полного сетевого сопротивления электроустановки, нужно определить показатель электродвижущей силы, создающейся на трансформаторных обмотках. При этом замер напряжения должен быть под нагрузкой, в дополнение к теме проверка петля фаза ноль требования. Для этого следует подключить в розетки какой-либо расчетный прибор. Это может быть лампочкой. Делается замер напряжения и силы тока. Затем по закону Ома можно сделать определение полного сопротивления петли. Нужно учесть, что напряжение, которое замеряется в розетке, может отклоняться от номинального при нагрузке. Проверять оборудование следует, принимая во внимание этот факт.

Сопротивление

Обратите внимание! Показание полного сопротивления проводниковой защиты между шиной и корпусом должно быть удовлетворено требованию: ZPE=U0/Zф0≤50В

В целом, петля фаза ноль — это контур, образующийся в момент соединения фазного проводника и нулевого рабочего защитного проводника. Проверяется она при помощи специальной формулы или измерительного прибора. При этом для вычисления петли и возобновления работы электросистемы, необходимо знать величину ее сопротивления, которую также можно найти профессиональным оборудованием.

90000 90001 90002% PDF-1.4 % 779 0 obj > endobj xref 779 97 0000000016 00000 n 0000003304 00000 n 0000003651 00000 n 0000003840 00000 n 0000004776 00000 n 0000004826 00000 n 0000004876 00000 n 0000004926 00000 n 0000004975 00000 n 0000005024 00000 n 0000005074 00000 n 0000005123 00000 n 0000005172 00000 n 0000005220 00000 n 0000005270 00000 n 0000005320 00000 n 0000005370 00000 n 0000005420 00000 n 0000005469 00000 n 0000005517 00000 n 0000005566 00000 n 0000005615 00000 n 0000005664 00000 n 0000005713 00000 n 0000005763 00000 n 0000005813 00000 n 0000005858 00000 n 0000005972 00000 n 0000006807 00000 n 0000007036 00000 n 0000007286 00000 n 0000007990 00000 n 0000008443 00000 n 0000008712 00000 n 0000009178 00000 n 0000009972 00000 n 0000010988 00000 n 0000011712 00000 n 0000011952 00000 n 0000012397 00000 n 0000013234 00000 n 0000013491 00000 n 0000013924 00000 n 0000014749 00000 n 0000015219 00000 n 0000015442 00000 n 0000015576 00000 n 0000015882 00000 n 0000016702 00000 n 0000017689 00000 n 0000058047 00000 n 0000062333 00000 n 0000062565 00000 n 0000062788 00000 n 0000062888 00000 n 0000063213 00000 n 0000063289 00000 n 0000063505 00000 n 0000064059 00000 n 0000064893 00000 n 0000065747 00000 n 0000069124 00000 n 0000069978 00000 n 0000074473 00000 n 0000075300 00000 n 0000077529 00000 n 0000077617 00000 n 0000077927 00000 n 0000078006 00000 n 0000078311 00000 n 0000078598 00000 n 0000079067 00000 n 0000079411 00000 n 0000079967 00000 n 0000080055 00000 n 0000080293 00000 n 0000081102 00000 n 0000082904 00000 n 0000083758 00000 n 0000088608 00000 n 0000089438 00000 n 0000091820 00000 n 0000092248 00000 n 0000092929 00000 n 0000093053 00000 n 0000093395 00000 n 0000093483 00000 n 0000093794 00000 n 0000093958 00000 n 0000094325 00000 n 0000094876 00000 n 0000095798 00000 n 0000096514 00000 n 0000097758 00000 n 0000098078 00000 n 0000003110 00000 n 0000002281 00000 n trailer ] >> startxref 0 %% EOF 875 0 obj > stream x ڌ TYOQ> wL) H% JAR! /./ * Q-ȎB "nPe} x% LFg * 1 = ;; w 90003.90000 How it Works »Electronics Notes 90001 90002 Phase locked loops, PLLs are a key RF circuit building block, but they often appear to be shrouded in mystery. Find out how they work. 90003 90004 90005 90006 Phase Locked Loop, PLL Tutorial / Primer Includes: 90007 90008 Phase locked loop, PLL basics Phase detector PLL voltage controlled oscillator, VCO PLL loop filter 90009 90004 90005 The phase locked loop or PLL is a particularly useful circuit block that is widely used in radio frequency or wireless applications.90009 90005 In view of its usefulness, the phase locked loop or PLL is found in many wireless, radio, and general electronic items from mobile phones to broadcast radios, televisions to Wi-Fi routers, walkie talkie radios to professional communications systems and vey much more . 90009 90005 90016 90017 90009 90008 90020 Phase locked loop, PLL applications 90021 90005 The phase locked loop take in a signal to which it locks and can then output this signal from its own internal VCO.At first sight this may not appear particularly useful, but with a little ingenuity, it is possible to develop a large number of phase locked loop applications. 90009 90005 Some phase lock loop applications include: 90009 90026 90027 90006 90029 FM demodulation: 90030 90007 One major phase locked loop application is that of a FM demodulator. With PLL chips now relatively cheap, this PLL applications enables high quality audio to be demodulated from an FM signal. 90032 90027 90006 90029 AM demodulation: 90030 90007 Phase locked loops can be used in the synchronous demodulation of amplitude modulated signals.Using this approach, the PLL locks onto the carrier so that a reference within the receiver can be generated. As this corresponds exactly to the frequency of the carrier, it can be mixer with the incoming signal to synchronous demodulate the AM. 90032 90027 90006 90029 Indirect frequency synthesizers: 90030 90007 Use within a frequency synthesizer is one of the most important phase locked loop applications. Although direct digital synthesis is also used, indirect frequency synthesis forms one of the major phase locked loop applications.90032 90027 90006 90029 Signal recovery: 90030 90007 The fact that the phase locked loop is able to lock to a signal enables it to provide a clean signal, and remember the signal frequency if there is a short interruption. This phase locked loop application is used in a number of areas where signals may be interrupted for short periods of time, for example when using pulsed transmissions. 90032 90027 90006 90029 Timing distribution: 90030 90007 Another phase locked loop application is in the distribution precisely timed clock pulses in digital logic circuits and system, for example within a microprocessor system.90032 90057 90020 Phase locked loop basic concepts - phase 90021 90005 The key to the operation of a phase locked loop, PLL, is the phase difference between two signals, and the ability to detect it. The information about the error in phase or the phase difference between the two signals is then used to control the frequency of the loop. 90009 90005 To understand more about the concept of phase and phase difference, it is possible to visualise two waveforms, normally seen as sine waves, as they might appear on an oscilloscope.If the trigger is fired at the same time for both signals they will appear at different points on the screen. 90009 90005 The linear plot can also be represented in the form of a circle. The beginning of the cycle can be represented as a particular point on the circle and as a time progresses the point on the waveform moves around the circle. Thus a complete cycle is equivalent to 360 ° or 2π radians. The instantaneous position on the circle represents the phase at that given moment relative to the beginning of the cycle.90009 90066 Phase angle of points on a sine wave 90005 The concept of phase difference takes this concept a little further. Although the two signals we looked at before have the same frequency, the peaks and troughs do not occur in the same place. 90009 90005 There is said to be a phase difference between the two signals. This phase difference is measured as the angle between them. It can be seen that it is the angle between the same point on the two waveforms. In this case a zero crossing point has been taken, but any point will suffice provided that it is the same on both.90009 90005 This phase difference can also be represented on a circle because the two waveforms will be at different points on the cycle as a result of their phase difference. The phase difference measured as an angle: it is the angle between the two lines from the centre of the circle to the point where the waveform is represented. 90009 90073 Phase difference between signals 90005 When there two signals have different frequencies it is found that the phase difference between the two signals is always varying.The reason for this is that the time for each cycle is different and accordingly they are moving around the circle at different rates. 90009 90005 It can be inferred from this that the definition of two signals having exactly the same frequency is that the phase difference between them is constant. There may be a phase difference between the two signals. This only means that they do not reach the same point on the waveform at the same time. If the phase difference is fixed it means that one is lagging behind or leading the other signal by the same amount, i.e. they are on the same frequency. 90009 90020 Phase locked loop basics 90021 90005 A phase locked loop, PLL, is basically of form of servo loop. Although a PLL performs its actions on a radio frequency signal, all the basic criteria for loop stability and other parameters are the same. In this way the same theory can be applied to a phase locked loop as is applied to servo loops. 90009 90082 Basic phase locked loop basic diagram 90005 A basic phase locked loop, PLL, consists of three basic elements: 90009 90026 90027 90006 90029 Phase comparator / detector: 90030 90007 As the name implies, this circuit block within the PLL compares the phase of two signals and generates a voltage according to the phase difference between the two signals.This circuit can take a variety of forms. 90029. . . . Read more about the 90006 phase detector. 90007 90030 90032 90027 90006 90029 Voltage controlled oscillator, VCO: 90030 90007 The voltage controlled oscillator is the circuit block that generates the radio frequency signal that is normally considered as the output of the loop. Its frequency can be controlled over the operational frequency band required for the loop. 90029. . . . Read more about the 90006 voltage controlled oscillator, VCO.90007 90030 90032 90027 90006 90029 Loop filter: 90030 90007 This filter is used to filter the output from the phase comparator in the phase locked loop, PLL. It is used to remove any components of the signals of which the phase is being compared from the VCO line, i.e. the reference and VCO input. It also governs many of the characteristics of the loop including the loop stability, speed of lock, etc. 90029. . . . Read more about the 90006 PLL loop filter. 90007 90030 90032 90057 90020 Phase locked loop operation 90021 90005 The basic concept of the operation of the PLL is relatively simple, although the mathematical analysis and many elements of its operation are quite complicated 90009 90005 The diagram for a basic phase locked loop shows the three main element of the PLL: phase detector, voltage controlled oscillator and the loop filter.90009 90005 In the basic PLL, reference signal and the signal from the voltage controlled oscillator are connected to the two input ports of the phase detector. The output from the phase detector is passed to the loop filter and then filtered signal is applied to the voltage controlled oscillator. 90009 90125 Phase locked loop diagram showing voltages 90005 The Voltage Controlled Oscillator, VCO, within the PLL produces a signal which enters the phase detector. Here the phase of the signals from the VCO and the incoming reference signal are compared and a resulting difference or error voltage is produced.This corresponds to the phase difference between the two signals. 90009 90005 The error signal from the phase detector passes through a low pass filter which governs many of the properties of the loop and removes any high frequency elements on the signal. Once through the filter the error signal is applied to the control terminal of the VCO as its tuning voltage. The sense of any change in this voltage is such that it tries to reduce the phase difference and hence the frequency between the two signals.Initially the loop will be out of lock, and the error voltage will pull the frequency of the VCO towards that of the reference, until it can not reduce the error any further and the loop is locked. 90009 90005 When the PLL, phase locked loop, is in lock a steady state error voltage is produced. By using an amplifier between the phase detector and the VCO, the actual error between the signals can be reduced to very small levels. However some voltage must always be present at the control terminal of the VCO as this is what puts onto the correct frequency.90009 90005 The fact that a steady error voltage is present means that the phase difference between the reference signal and the VCO is not changing. As the phase between these two signals is not changing means that the two signals are on exactly the same frequency. 90009 90005 The phase locked loop, PLL is a very useful building block, particularly for radio frequency applications. The PLL forms the basis of a number of RF systems including the indirect frequency synthesizer, a form of FM demodulator and it enables the recovery of a stable continuous carrier from a pulse waveform.In this way, the phase locked loop, PLL is an essential RF building tool. 90009 90005 90006 More Essential Radio Topics: 90007 90008 Radio Signals Modulation types & techniques Amplitude modulation Frequency modulation OFDM RF mixing Phase locked loops Frequency synthesizers Passive intermodulation RF attenuators RF filters Radio receiver types Superhet radio Receiver selectivity Receiver sensitivity Receiver strong signal handling 90008 90006 90029 Return to Radio topics menu.. . 90030 90007 90009.90000 Measure positive-, negative-, and zero-sequence components of three-phase signal 90001 90002 Note 90003 90004 The Measurements section of the Control and Measurements library contains the Sequence Analyzer block. This is an improved version of the Three-Phase Sequence Analyzer block. The new block features a mechanism that eliminates duplicate continuous and discrete versions of the same block by basing the block configuration on the simulation mode. If your legacy models contain the Three-Phase Sequence Analyzer block, they continue to work.However, for best performance, use the Sequence Analyzer block in your new models. 90005 90006 Description 90007 90004 The Three-Phase Sequence Analyzer block outputs the magnitude and phase of the positive- (Denoted by the index 1), negative- (index 2), and zero-sequence (index 0) components of a set of three balanced or unbalanced signals. The signals can contain harmonics or not. The three sequence components of a three-phase signal (voltages V1 V2 V0 or currents I1 I2 I0) are computed as follows: 90005 90004 90011 V 90012 90013 1 90014 = (90011 V 90013 a 90014 90012 + 90011 aV 90013 b 90014 90012 + 90011 a 90012 90025 2 90026 90011 V 90013 c 90014 90012) / 3 90011 V 90012 90013 2 90014 = (90011 V 90013 a 90014 90012 + 90011 a 90012 90025 2 90026 90011 V 90013 b 90014 90012 + 90011 a 90012 90011 V 90013 c 90014 90012) / 3 90011 V 90012 90013 0 90014 = (90011 V 90013 a 90014 90012 + 90011 V 90013 b 90014 90012 + 90011 V 90013 c 90014 90012) / 3 90005 90004 where 90005 90004 90011 V 90013 a 90014 90012, 90011 V 90013 b 90014 90012, 90011 V 90013 c 90014 90012 = three voltage phasors at specified frequency 90085 90011 a 90012 = 90011 e 90012 90025 90011 j 90012 2 90011 π 90012 90026/3 = 1∠120 ° complex operator.90005 90004 A Fourier analysis over a sliding window of one cycle of the specified frequency is first applied to the three input signals. It evaluates the phasor values 90011 V 90013 a 90014 90012, 90011 V 90013 b 90014 90012, and 90011 V 90013 c 90014 90012 at the specified fundamental or harmonic frequency. Then the transformation is applied to obtain the positive sequence, negative sequence, and zero sequence. 90005 90004 The Three-Phase Sequence Analyzer block is not sensitive to harmonics or imbalances.However, as this block uses a running average window to perform the Fourier analysis, one cycle of simulation has to be completed before the outputs give the correct magnitude and angle. For example, its response to a step change of 90011 V 90012 90013 1 90014 is a one-cycle ramp. 90005 90004 The discrete version of this block allows you to specify the initial magnitude and phase of the output signal. For the first cycle of simulation, the outputs are held to the values specified by the initial input parameter.90005 90004 You can modify any parameter during the simulation in order to obtain the different sequence and harmonic components of the input signals. 90005.90000 Loop Gain Simulation - Frank Wiedmann 90001 90002 Loop Gain or Return Ratio? 90003 When I talk about loop gain on this page, it means the same as the term return ratio that some other people prefer to use. Return ratio is the original term defined by Hendrik W. Bode in his book "Network Analysis and Feedback Amplifier Design" published in 1945 року, but it is not used by very many people today. I use the term loop gain instead, like R. David Middlebrook and probably most electronic engineers.90004 Some people make a difference between return ratio and loop gain and define the term loop gain in a different way. For example, Michael Tian and his colleagues define loop gain as the negative return ratio in their article "Striving for Small-Signal Stability". Paul J. Hurst uses the term loop gain for the result of a two-port analysis in his articles "Exact Simulation of Feedback Circuit Parameters" and "A Comparison of Two Approaches to Feedback Circuit Analysis" and in the book "Analysis and Design of Analog Integrated Circuits ".90005 90002 Analysis of Linearized Circuit 90003 The methods presented on this page use the small-signal ac analysis of SPICE and similar circuit simulators. It is important to remember that for this analysis, the circuit is linearized around its operating point. This means that the results are only valid if the linearized circuit is a good approximation of the actual circuit. It is always a good idea to verify the results of a loop gain simulation with a transient analysis of the step response.Both up and down steps should be examined, the step at the input should have the maximum amplitude and slew rate that the circuit might encounter in its application, and the circuit response should show no unwanted oscillation or ringing. 90004 For circuits with several different states like switched-capacitor circuits or switched-mode power supplies, ac analysis is not valid. A method based on transient analysis that can be used for these circuits is presented in the FRA directory of the educational examples in the LTspice distribution.SIMPLIS has a special ac analysis for switched-mode power supplies. The examples for these two simulators show how to simulate voltage loop gain. A third possibility for simulating the loop gain of these circuits is the pstb analysis of SpectreRF from Cadence Design Systems, which uses an extended version of Tian's Method. 90005 90002 Why Opening the Loop is a Bad Idea 90003 If you open the loop in order to simulate loop gain, you create two problems: 90012 90013 The dc operating points on both sides of the opening are usually different.90014 90013 The small-signal ac impedances seen on both sides are different from the closed-loop case. 90014 90017 The first problem is often solved by closing the loop again with a large inductor and by injecting the signal with a large capacitor. The second problem can be approached by adding a replica of the circuit on the other side of the opening. However, in many cases this only provides an approximation to the actual closed-loop impedance. In general, opening the loop in order to simulate loop gain is a rather inexact and error-prone method.90004 Because of these 90005.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *