Закрыть

Как найти электрическую мощность: Работа и мощность тока — урок. Физика, 8 класс.

Содержание

Мощность электрического тока: формула

Прежде чем рассматривать электрическую мощность, следует определиться, что же представляет собой мощность вообще, как физическое понятие. Обычно, говоря об этой величине, подразумевается определенная внутренняя энергия или сила, которой обладает какой-либо объект. Это может быть мощность устройства, например, двигателя или действия (взрыв). Ее не следует путать с силой, поскольку это разные понятия.

Содержание

Что такое мощность электрического тока

Любые физические действия совершаются под влиянием силы. С ее помощью проделывается определенный путь, то есть выполняется работа. В свою очередь, работа А, проделанная в течение определенного времени t, составит значение мощности, выраженное формулой: N = A/t (Вт = Дж/с). Другое понятие мощности связано со скоростью преобразования энергии той или иной системы. Одним из таких преобразований является мощность электрического тока, с помощью которой также выполняется множество различных работ. В первую очередь она связана с электродвигателями и другими устройствами, выполняющими полезные действия.

Мощность тока связана сразу с несколькими физическими величинами. Напряжение (U) представляет собой работу, затрачиваемую на перемещение 1 кулона. Сила тока (I) соответствует количеству кулонов, проходящих за 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует полной работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Приведенная формула мощности тока показывает, что мощность находится в одинаковой зависимости от силы тока и напряжения. Отсюда следует, что одно и то же значение этого параметра можно получить за счет большого тока и малого напряжения и, наоборот, при высоком напряжении и малом токе. Это свойство позволяет передавать электроэнергию на дальние расстояния от источника к потребителям. В процессе передачи ток преобразуется с помощью трансформаторов, установленных на повышающих и понижающих подстанциях.

Существует два основных вида электрической мощности – активная и реактивная. В первом случае происходит безвозвратное превращение мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Для нее применяется единица измерения – ватт. 1Вт = 1В х 1А. На производстве и в быту используются более крупные значения – киловатты и мегаватты.

К реактивной мощности относится такая электрическая нагрузка, которая создается в устройствах за счет индуктивных и емкостных колебаний энергии электромагнитного поля. В переменном токе эта величина представляет собой произведение, выраженное следующей формулой: Q = U х I х sin(угла). Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q является реактивной мощностью, измеряемой в Вар – вольт-ампер реактивный. Данные расчеты помогают эффективно решить вопрос, как найти мощность электрического тока, а формула, существующая для этого, позволяет быстро выполнить вычисления.

Обе мощности можно наглядно рассмотреть на простом примере. Какое-либо электротехническое устройство оборудовано нагревательными элементами – ТЭНами и электродвигателем. Для изготовления ТЭНов используется материал, обладающий высоким сопротивлением, поэтому при прохождении по нему тока, вся электрическая энергия преобразуется в тепловую. Данный пример очень точно характеризует активную электрическую мощность.

Что касается электродвигателя, то внутри него расположена медная обмотка, обладающая индуктивностью, которая, в свою очередь, обладает эффектом самоиндукции. Благодаря этому эффекту, происходит частичный возврат электричества обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением в параметрах напряжения и тока, оказывая негативное влияние на электрическую сеть в виде дополнительных перегрузок.

Такие же свойства имеют и конденсаторы из-за своей электрической емкости, когда накопленный заряд отдается обратно. Здесь также смещаются значения тока и напряжения, только в противоположном направлении. Данная энергия индуктивности и емкости, со смещением по фазе относительно значений действующей электросети, как раз и есть реактивная электрическая мощность. Благодаря противоположному эффекту индуктивности и емкости в отношении сдвига фазы, становится возможным выполнить компенсацию реактивной мощности, повышая, тем самым, эффективность и качество электроснабжения.

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

единицы измерения, как найти, определение

Что такое мощность электрического тока

Каждое физическое действие совершается под действием силы. С его помощью проложен определенный путь, значит работа сделана. С другой стороны, работа A, выполненная в данный момент времени t, будет значением мощности, выраженным формулой: N = A / t (W = Дж / с).

Другое понятие мощности связано со скоростью преобразования энергии конкретной системы. Одним из таких преобразований является сила электрического тока, с помощью которой также выполняется множество различных работ. Сначала его подключают к электродвигателям и другим устройствам, совершающим полезные действия.

Примечание 1

Текущая мощность связана одновременно с несколькими физическими величинами. Напряжение (U) представляет собой работу, необходимую для перемещения 1 подвески. Ток (I) соответствует количеству подвесок, проходящих через 1 секунду. Таким образом, ток, умноженный на напряжение (I x U), соответствует общей работе, выполненной за 1 секунду. Полученное значение и будет мощностью электрического тока.

Из приведенной формулы силы тока видно, что мощность одинаково зависит от силы тока и напряжения. Отсюда следует, что одинаковое значение этого параметра может быть получено за счет большого тока и низкого напряжения и, наоборот, при высоком напряжении и малом токе.

Эта функция позволяет передавать электроэнергию на большие расстояния от источника к потребителям. Во время передачи ток преобразуется с помощью трансформаторов, установленных на подъемных и нисходящих подстанциях.

Есть два основных типа электроэнергии — активная и реактивная. В первом случае происходит необратимое преобразование мощности электрического тока в механическую, световую, тепловую и другие виды энергии. Единицей измерения для этого является ватт. 1 Вт = 1 В x 1 А. Более высокие значения — киловатты и мегаватты — используются в производстве и в повседневной жизни.

Примечание 2

Под реактивной мощностью понимается такая электрическая нагрузка, которая возникает в устройствах из-за индуктивных и емкостных колебаний энергии электромагнитного поля. Для переменного тока это значение представляет собой произведение, выражаемое следующей формулой: Q = U x I x sin (угол).

Синус угла означает сдвиг фаз между рабочим током и падением напряжения. Q — реактивная мощность, измеренная в Вар (реактивный вольт-ампер). Эти расчеты помогают эффективно решить вопрос о том, как найти мощность электрического тока, а существующая для этого формула позволяет быстро выполнять расчеты.

Обе силы можно ясно увидеть на простом примере. Для изготовления нагревательных элементов трубчатого электронагревателя (ТЭНа) используется материал с высоким сопротивлением. Когда через него протекает ток, все электричество преобразуется в тепло. Этот пример очень точно показывает активную электрическую мощность.

Примечание 3

Что касается электродвигателя, он имеет медную обмотку с индуктивностью, которая, в свою очередь, имеет эффект самоиндукции. Этот эффект приводит к частичному возврату электроэнергии обратно в сеть. Возвращаемая энергия характеризуется небольшим смещением параметров напряжения и тока, что негативно сказывается на электрической сети в виде дополнительных перегрузок.

Конденсаторы обладают такими же свойствами из-за их электрической емкости при возврате накопленного заряда. Здесь также значения тока и напряжения изменяются, только в противоположном направлении. Эта энергия индуктивности и емкости со сдвигом фаз по отношению к значениям тока сети и есть реактивная электрическая мощность.

Из-за противоположного влияния индуктивности и емкости по отношению к фазовому сдвигу может выполняться компенсация реактивной мощности, тем самым повышая эффективность и качество источника питания.

От чего зависит мощность тока

Сила тока, различных устройств и оборудования, зависит сразу от двух основных величин — тока и напряжения. Чем выше ток, тем выше значение мощности, либо с увеличением напряжения мощность также увеличивается. Если напряжение и ток увеличиваются одновременно, мощность электрического тока увеличивается как произведение обеих величин: N = I x U.

Очень часто возникает вопрос, а какая измеренная текущая мощность? Базовая единица измерения этой величины — 1 ватт (Вт). Таким образом, 1 ватт — это мощность устройства, потребляющего 1 ампер при 1 вольт. Лампочка от обычного фонарика, например, имеет аналогичную мощность.

Расчетное значение мощности позволяет точно определить потребляемую мощность. Для этого нужно взять продукт силы и времени. Сама формула выглядит так: W = IUt, где W — потребление энергии, IU продукта — мощность, а t — количество затраченного времени. Например, чем больше продолжает работать электродвигатель, тем больше работы он выполняет. Соответственно увеличивается и потребление электроэнергии.

Как определить мощность тока

Чтобы рассчитать ток в ваттах, умножьте ток в амперах на напряжение в вольтах. Сила электрического тока обозначается латинским символом P, тогда приведенное выше правило можно записать в виде математической формулы P = I × U (1).

Воспользуемся этой формулой на практике. Необходимо рассчитать, сколько электрического тока необходимо для нагрева нити накала, если напряжение нити составляет 4 В, а ток нити — 75 мА.  P = 0,075 А × 4 В = 0,3 Вт.

Мощность электрического тока можно определить и другим способом. Например, мы знаем силу тока и сопротивление цепи, но неизвестно напряжение, тогда воспользуемся соотношением из закона Ома: U = I × R Подставим правую часть формулы (1) IR вместо напряжения U.

P = I × U = I × IR или P = I² × R.

Рассмотрим пример расчета: какая мощность теряется в реостате с сопротивлением 5 Ом, если через него протекает ток 0,5 А. По формуле (2) вычисляем: P = I² × R = 0,25 × 5 = 1,25 Вт. Кроме того, мощность электрического тока может быть рассчитана, если напряжение и сопротивление известны, но величина тока неизвестна.

Для этого вместо текущего I в формуле заменяется соотношение U / R, и тогда формула принимает следующий вид: P = I × U = U² / R (3).

Разберем еще один практический пример по формуле. При падении напряжения 2,5 В на реостате с сопротивлением 5 Ом определяют мощность, потребляемую реостатом: P = U² / R = (2,5)²/5 = 1,25 Вт.

Выводы: чтобы найти мощность, вам нужно знать любые две величины из закона Ома. Мощность электрического тока равна части тока, генерируемой с течением времени. P = A / t

Формулы расчета мощности для однофазной и трехфазной схемы питания

В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.

Как работает резистор

У полностью резистивного резистора синусоиды тока и напряжения совпадают и направляются на каждый полупериод одинаковым образом. Поэтому их продукт, выражающий силу, всегда положителен.

Его значение в любой момент времени t называется мгновенным и обозначается строчной буквой p.

Среднее значение мощности за один период называется активной составляющей. Его график переменного тока имеет симметричный пакетный образец с максимальным значением Pm в центре каждого полупериода T / 2.

Если взять половину его значения Pm / 2 и провести прямую через один период T, мы получим прямоугольник с ординатой P.

Его площадь равна двум областям графиков активных составляющих любого полупериода. Если вы посмотрите на картинку повнимательнее, вы можете представить, что верхняя часть шприца срезана, перевернута и заполняет свободное пространство внизу.

Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока рассчитывается по одной и той же формуле, она не меняет своего знака.

График текущих значений активной мощности переменного тока на резисторе имеет вид повторяющихся положительных волн. Но за один период они выполняют ту же работу, что и с цепями постоянного тока и напряжениями.

На резисторе не возникает никаких реактивных потерь.

Как работает индуктивность

Катушка обмотки накапливает энергию магнитного поля своими витками. Из-за процесса его накопления индуктивное реактивное сопротивление сдвигает вектор тока вперед на 90 градусов по отношению к напряжению, приложенному к комплексной плоскости.

Если мы умножим их текущие значения, мы получим значения мощности, меняющие знаки (направление) в каждом полупериоде за один период.

Частота изменения мощности на индуктивности вдвое превышает частоту ее составляющих: синусоид тока и напряжения. Он состоит из двух частей:

  • активный, отмечен индексом PL;
  • реактивный КЖ.

Реактивная часть индуктора образуется за счет постоянного обмена энергией между катушкой и используемым источником. На его значение влияет значение индуктивного сопротивления XL.

Как работает конденсатор

Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.

График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.

Как работает схема трехфазного электроснабжения

На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение, вырабатываемое промышленными генераторами.

Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:

Р = Рa+Рв+Рc

Если пометить фазное выражение буквой ф. например Pф, то можно записать:

P = 3Pф = 3Uф×Iф×cosφ

Аналогично будет вычисляться реактивная составляющая

Q = Qa+Qв+Qc

Или

Q = 3Qф = 3Uф×Iф×sinφ

Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.

S = √(P2+Q2)

Как учитывается трехфазная полная мощность

В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.

С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.

Примеры решения задач

Задача 1

Мощность электрического тока

Условие

Сопротивление нити накала электрической лампы составляет 400 Ом, а напряжение на нити равно 100 В. Какова мощность тока в лампе?

Решение

По определению, мощность тока на участке цепи равна работе, деленной на время, за которое она была совершена:

Подставим значения, и найдем мощность:

Ответ: 25 Вт.

Задача 2

Расчет мощности электрического тока

 Условие

Два резистора соединены параллельно и последовательно. В каком из двух резисторов мощность тока больше (и во сколько раз) соответственно при параллельном и последовательном соединении?

Решение

1) При последовательном соединении сила тока в каждом резисторе одинакова, а мощность тока напрямую зависит от сопротивления резисторов:

Мощность тока в первом резисторе больше в 10 раз.

Ответ: В 10 раз больше во втором резисторе; в 10 раз больше в первом резисторе.

Электроэнергия — SparkFun Learn

  • Дом
  • Учебники
  • Электроэнергия

≡ Страниц

Авторы: Джимблом

Избранное Любимый 57

С великой силой…

Зачем нам сила? Мощность — это измерение передачи энергии во времени, а энергия стоит денег. Батареи не бесплатны, и они не выходят из вашей электрической розетки. Таким образом, мощность измеряет, насколько быстро копейки уходят из вашего кошелька!

Кроме того, энергия это… энергия. Она проявляется во многих потенциально опасных формах — тепло, излучение, звук, ядерная энергия и т. д. — и чем больше мощность, тем больше энергии. Поэтому важно иметь представление о том, с какой мощностью вы работаете, играя с электроникой. К счастью, играя с Arduino, зажигая светодиоды и вращая небольшие моторы, потерять счет потребляемой энергии означает только выкурить резистор или расплавить микросхему. Тем не менее, совет дяди Бена относится не только к супергероям.

Описано в этом руководстве

  • Определение мощности
  • Примеры передачи электроэнергии
  • Ватт, единица мощности в системе СИ
  • Расчет мощности по напряжению, току и сопротивлению
  • Максимальная номинальная мощность

Рекомендуемая литература

Мощность — одно из наиболее фундаментальных понятий в электронике. Но прежде чем узнать о силе, возможно, вам следует прочитать некоторые другие руководства. Если вы не знакомы с некоторыми из этих тем, рассмотрите возможность сначала ознакомиться с этими руководствами:

  • Что такое электричество
  • Напряжение, ток, сопротивление и закон Ома
  • Что такое цепь
  • Как пользоваться мультиметром

Что такое электроэнергия?

Есть много типов силы — физическая, социальная, супер, защита от запахов, любовь — но в этом уроке мы сосредоточимся на электроэнергии. Так что же такое электроэнергия?

В общефизических терминах мощность определяется как скорость, с которой энергия передается (или преобразуется) .

Итак, во-первых, что такое энергия и как она передается? Трудно сказать просто, но энергия — это в основном способность чего-то к двигать что-то еще. Существует множество форм энергии: механическая, электрическая, химическая, электромагнитная, тепловая и многие другие.

Энергия никогда не может быть создана или уничтожена, только передана в другую форму. Многое из того, что мы делаем в области электроники, — это преобразование различных форм энергии в электрическую энергию 90 059 и обратно.0060 . Светодиоды освещения превращают электрическую энергию в электромагнитную энергию.

Вращающиеся двигатели превращают электрическую энергию в механическую. Жужжащие зуммеры излучают звуковую энергию. Питание схемы от щелочной батареи 9 В превращает химическую энергию в электрическую. Все это формы передачи энергии .

3

3

.

В частности, электрическая энергия начинается как электрическая потенциальная энергия — то, что мы с любовью называем напряжением. Когда электроны проходят через эту потенциальную энергию, она превращается в электрическую энергию. В большинстве полезных цепей эта электрическая энергия преобразуется в какую-либо другую форму энергии. Электрическая мощность измеряется путем объединения обоих сколько передается электроэнергии, и как быстро происходит эта передача.

Производители и потребители

Каждый компонент в цепи либо потребляет , либо производит электроэнергии. Потребитель преобразует электрическую энергию в другую форму. Например, когда загорается светодиод, электрическая энергия преобразуется в электромагнитную. В этом случае лампочка потребляет мощности. Электроэнергия производится при передаче энергии 9от 0057 до электрический из какой-либо другой формы. Батарея, питающая цепь, является примером источника питания .

Мощность

Энергия измеряется в джоулях (Дж).

Поскольку мощность — это мера энергии в течение определенного периода времени, мы можем измерить ее в джоулей в секунду . Единицей СИ для джоулей в секунду является ватт , сокращенно Вт .

Очень часто перед словом «ватт» стоит один из стандартных префиксов системы СИ: микроватты (мкВт), милливатт (мВт), киловатты (кВт), мегаватты (МВт) и гигаватт (ГВт). ситуация.

Тип энергии, преобразованный Преобразованный
Механический Электродвигатель
Электромагнитный Светодиод
HEAT Резистор
Химический Аккумулятор
Wind Windmill
Prefix Name Prefix Abbreviation Weight
Nanowatt nW 10 -9
Microwatt µW 10 -6
Milliwatt mW 10 -3
Watt W 10 0
Kilowatt kW 10 3
Megawatt MW 10 6
Gigawatt GW 10 9

Microcontrollers, like the Arduino will usually operate in the the µW or mW range. Ноутбуки и настольные компьютеры работают в стандартном диапазоне мощности ватт. Энергопотребление дома обычно находится в диапазоне киловатт. Большие стадионы могут работать в мегаваттном масштабе. И гигаватт вступает в игру для крупных электростанций и машин времени.

Расчет мощности

Электрическая мощность — это скорость передачи энергии. Измеряется в джоулях в секунду (Дж/с) — ватт (Вт). Учитывая несколько основных терминов электричества, которые мы знаем, как мы можем рассчитать мощность в цепи? Что ж, у нас есть очень стандартное измерение, включающее потенциальную энергию — вольты (В), которые определяются в джоулях на единицу заряда (кулон) (Дж/Кл). Ток, еще один из наших любимых терминов в области электричества, измеряет ток заряда во времени в амперах (А) — кулонах в секунду (Кл/с). Соединяем вместе и что мы получаем?! Власть!

Чтобы рассчитать мощность любого конкретного компонента в цепи, умножьте падение напряжения на нем на ток, протекающий через него.

Например,

Ниже приведена простая (хотя и не очень функциональная) схема: 9-вольтовая батарея, подключенная к 10-омному проводу. резистор.

Как рассчитать мощность на резисторе? Сначала мы должны найти ток, протекающий через него. Достаточно просто… Закон Ома!

Хорошо, 900 мА (0,9 А) проходит через резистор и 9V через него. Какая мощность подается на резистор?

Резистор преобразует электрическую энергию в тепло. Таким образом, эта схема каждую секунду преобразует 8,1 Дж электрической энергии в тепло.

Расчет мощности в резистивной цепи

Когда дело доходит до расчета мощности в чисто резистивной цепи, достаточно знать два из трех значений (напряжение, ток и/или сопротивление).

Подключив закон Ома (V=IR или I=V/R) к нашему традиционному уравнению мощности, мы можем создать два новых уравнения. Первый, чисто по напряжению и сопротивлению:

Итак, в нашем предыдущем примере 9В 2 /10Ом; (V 2 /R) составляет 8,1 Вт, и нам не нужно рассчитывать ток, протекающий через резистор.

Второе уравнение мощности можно составить исключительно через ток и сопротивление:


Какое нам дело до мощности, падающей на резистор? Или любой другой компонент в этом отношении. Помните, что мощность – это передача энергии из одного вида в другой. Когда эта электрическая энергия, вытекающая из источника питания, попадает на резистор, энергия превращается в тепло. Возможно, больше тепла, чем может выдержать резистор. Что приводит нас к… номинальной мощности.

Номинальная мощность

Все электронные компоненты передают энергию от одного типа к другому. Желательна передача некоторой энергии: светодиоды излучают свет, вращаются двигатели, заряжаются батареи. Другие передачи энергии нежелательны, но также неизбежны. Эти нежелательные передачи энергии представляют собой потери мощности , которые обычно проявляются в виде тепла. Слишком большие потери мощности — слишком большой нагрев компонента — могут стать очень нежелательными.

Даже если передача энергии является основной целью компонента, все равно будут потери для других форм энергии. Светодиоды и двигатели, например, по-прежнему будут выделять тепло как побочный продукт других видов передачи энергии.

Большинство компонентов имеют рейтинг максимальной мощности, которую они могут рассеивать, и важно поддерживать их работу ниже этого значения. Это поможет вам избежать того, что мы с любовью называем «выпустить волшебство наружу».

Номинальная мощность резистора

Резисторы являются одними из наиболее печально известных виновников потери мощности. Когда вы сбрасываете некоторое напряжение на резисторе, вы также индуцируете ток через него. Больше напряжение, значит больше ток, значит больше мощность.

Вспомните наш первый пример расчета мощности, где мы обнаружили, что если 9V были пропущены через 10 Ом; резистор, этот резистор будет рассеивать 8,1 Вт. 8.1 это лот ватт для большинства резисторов. Большинство резисторов рассчитаны на мощность от ⅛W (0,125 Вт) до ½ Вт (0,5 Вт). Если вы сбросите 8 Вт на стандартный резистор ½ Вт, приготовьте огнетушитель.

Если вы уже видели резисторы, то наверняка видели и эти. Сверху — резистор ½ Вт, а под ним — ¼ Вт. Они не созданы для того, чтобы рассеивать очень много энергии.

Существуют резисторы, рассчитанные на большие перепады мощности. Они специально называются силовые резисторы .

Эти большие резисторы рассчитаны на рассеивание большой мощности. Слева направо: две 3 Вт 22 кОм; резисторы, два 5Вт 0.1Ом; резисторы и 25 Вт 3 Ом; и 2 Ом; резисторы.

Если вы когда-нибудь будете выбирать номинал резистора. Не забывайте и о его мощности. И, если ваша цель не состоит в том, чтобы что-то нагреть (нагревательные элементы в основном представляют собой действительно мощные резисторы), постарайтесь минимизировать потери мощности в резисторе.

Например,

Номинальная мощность резистора может иметь значение, когда вы пытаетесь определить значение токоограничивающего резистора светодиода. Скажем, например, вы хотите зажечь 10-миллиметровый сверхяркий красный светодиод с максимальной яркостью, используя батарею 9 В.

Этот светодиод имеет максимальный прямой ток 80 мА и прямое напряжение около 2,2 В. Таким образом, чтобы подать 80 мА на светодиод, вам понадобится 85 Ом; резистор для этого.

На резистор упало 6,8 В, а протекающие через него 80 мА означают потерю мощности 0,544 Вт (6,8 В * 0,08 А). Полваттному резистору это не очень понравится! Скорее всего не растает, но будет горячий . Не рискуйте и перейдите на резистор 1 Вт (или сэкономьте энергию и используйте специальный драйвер светодиодов).


Резисторы, безусловно, не единственные компоненты, для которых необходимо учитывать максимальную номинальную мощность. Любой компонент с резистивным свойством будет производить потери тепловой мощности. Работа с компонентами, которые обычно подвергаются воздействию высокой мощности, например, стабилизаторами напряжения, диодами, усилителями и драйверами двигателей, требует особого внимания к потерям мощности и тепловым нагрузкам.

Ресурсы и дальнейшее развитие

Хотите узнать больше об основных темах?

См. нашу страницу Engineering Essentials , где представлен полный список краеугольных тем, связанных с электротехникой.

Отвези меня туда!

Теперь, когда вы знакомы с концепцией электроэнергии, ознакомьтесь с некоторыми из этих учебных пособий!

  • Как усилить свой проект? Ну, вы знаете, что такое «мощность». Но как вы получаете это к вашему проекту?
  • Light — это полезный инструмент для инженера-электрика. Понимание того, как свет связан с электроникой, является фундаментальным навыком для многих проектов.
  • Что такое Arduino. В этом руководстве мы много говорили об этой штуке, связанной с Arduino. Если вы все еще не понимаете, что это такое, ознакомьтесь с этим руководством!
  • Диоды
  • . Независимо от того, преобразуют ли они переменный ток в постоянный или просто зажигают светодиодный индикатор питания, диоды являются особенно удобным компонентом для питания проектов.
  • Резисторы — самые основные электронные компоненты, резисторы необходимы практически в каждой схеме.
  • Музыкальная шкатулка MP3 Player Shield — поговорим о передаче энергии! Этот проект сочетает в себе электричество, движение и звук, чтобы создать музыкальную шкатулку «Доктор Кто ».

Формула силы | Формула электроэнергии в цепях постоянного и переменного тока

Мы используем электроэнергию, предоставляемую нашей коммунальной компанией, для обеспечения нас светом, теплом, работающими приборами и т. д. Поскольку электрический потенциал (напряжение) и ток являются двумя величинами, доступными нам, когда коммунальная служба поставляет электрическую энергию, эти два параметра являются основными параметрами, определяющими электрическую мощность. В этом руководстве давайте подробно рассмотрим электрическую мощность, формулу электрической мощности в цепях переменного и постоянного тока.

Краткое описание

Что такое электроэнергия?

Электрическая энергия является одной из широко используемых форм энергии в нашей повседневной жизни, будь то питание от сети переменного тока или батареи.

Наша коммунальная компания поставляет эту электрическую энергию в виде электрического потенциала и тока, а скорость, с которой электрическая энергия передается в электрической цепи, называется электрической мощностью.

С точки зрения физики, Энергия — это способность выполнять Работу, а скорость выполнения этой Работы известна как Сила.

Итак, если P — мощность, W — работа, а t — время, то

Мощность P = работа, выполненная в единицу времени = Вт/т

Единицами мощности являются ватты.

Мы знаем, что электрический потенциал — это количество работы, совершаемой при перемещении единичного заряда, а ток — это скорость движения заряда.

Используя приведенное выше утверждение, мы можем переписать предыдущее уравнение мощности как:

P = Вт/т = (Вт/Q) × (Q/т) Вт

Первый член (Вт/Q) представляет электрический потенциал (V), а второй член (Q/t) представляет ток (I).

Итак, электрическая мощность P = V × I.

Формула электрической мощности в цепях переменного и постоянного тока

В зависимости от типа тока в цепи, т. е. переменного или постоянного тока, электрическая мощность может быть дополнительно классифицирована на переменный ток. Мощность и мощность постоянного тока.

Давайте теперь посмотрим на различные формулы электроэнергии в цепях постоянного и переменного тока.

Формулы мощности в цепях постоянного тока

В простых цепях постоянного тока, т. е. электрических цепях с источником питания постоянного тока, формула мощности приведена ниже:

P = V × I

Мощность в резистивных цепях постоянного тока — это просто произведение напряжения и тока.

Мы можем вывести дальнейшие формулы мощности, применяя закон Ома. Согласно закону Ома, напряжение в цепи (или компоненте) является произведением сопротивления и тока.

V = I × R

Итак, если мы используем это уравнение в приведенной выше формуле мощности, мы получим

P = V × (V/R) = V 2 /R

P = (I×R ) × I = I 2 R

В зависимости от имеющихся величин можно использовать одну из трех формул мощности для расчета мощности постоянного тока.

Формулы мощности в цепях переменного тока

Измерить мощность в цепях постоянного тока очень просто, так как вам нужно всего лишь умножить напряжение и силу тока. Но то же самое невозможно в цепях переменного тока, поскольку значения напряжения и тока постоянно меняются как по величине, так и по направлению (знаку).

Значения переменного напряжения и тока обычно записываются как

В АС = В P × sin(ωt) и I АС = I P × sin(ωt)

Чтобы рассчитать мощность переменного тока, мы должны каким-то образом рассчитать средние значения напряжения и тока. Математически мы используем среднеквадратичное значение или среднеквадратичное значение для определения средних значений синусоидальных функций.

Если V RMS является среднеквадратичным значением напряжения переменного тока, а I RMS является среднеквадратичным значением переменного тока, то средняя мощность переменного тока равна

P AC (среднее значение) = V RMS × I RMS

Если f(t) является функцией времени t, то ее среднеквадратичное значение равно

Применение вышеупомянутой формулы к нашей чередующейся напряжению и синусоидальных значениям тока, мы получаем:

V RMS = V P /√2 и I RMS = I /√2 и I RMS = I /√2 и I = I /I /√2 и I = I /I /I /√2 и I = I /I /I /I /I /√2 и I . 2

Мощность, которую мы рассчитали ранее (P AC (Average)) на самом деле известна как полная мощность. Это не что иное, как произведение среднего (или эффективного) напряжения и тока, т. Е. Это максимальная средняя мощность, подаваемая на чисто резистивную нагрузку.

Но катушки индуктивности и конденсаторы имеют фазовые сдвиги и реактивное сопротивление. Итак, с катушками индуктивности и конденсаторами есть еще два способа определить мощность в цепях переменного тока. Это реальная мощность (активная мощность) и реактивная мощность.

Реальная мощность, также известная как активная мощность, представляет собой мощность, рассеиваемую в цепи из-за ее резистивных элементов.

Активная мощность = В СКЗ × I СКЗ × cos(θ), где θ — фазовый угол, на который напряжение опережает ток.

Реактивная мощность — это мощность, рассеиваемая в цепи за счет индуктивности и емкости (или реактивного сопротивления).

Задается как реактивная мощность = V RMS × I RMS × sin(θ)

Таким образом, мы можем сказать, что (полная мощность) 2 = (активная мощность) 2 + (реактивная мощность ) 2

Формулы мощности постоянного и переменного тока

В следующей таблице перечислены все формулы мощности для цепей переменного и постоянного тока.

Цепь Мощность
DC Р = В × I
Р = В 2
P = I 2 × R
Фактическая мощность однофазного переменного тока ½ В P × I P × cos(θ) = V СКЗ × I СКЗ × cos(θ)
Однофазная реактивная мощность переменного тока ½ В P × I P × sin(θ) = V СКЗ × I СКЗ × sin(θ)
Реальная мощность трехфазного переменного тока 3 × V L-N × I L-N × cos(θ) = √3 × V L-L × I L-L × cos(θ)
Реактивная мощность трехфазного переменного тока 3 × V L-N × I L-N × sin(θ) = √3 × V L-L × I L-L × sin(θ)

Заключение

Простое руководство по пониманию электроэнергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *