Закрыть

Как определить какой конденсатор нужен: Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Содержание

Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т. к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.
    е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.


Конденсатор для пуска электродвигателя, как рассчитать мощность

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Конденсатор для пуска электродвигателя

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Неполярный конденсатор

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Выбор емкости

С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

Для рабочего конденсатора

Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

Для пускового конденсатора

Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий  конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

Простые способы подключения электродвигателя

Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение  частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

  • треугольник;
  • звезда.

Подключение двигателя по схемам «звезда» и «треугольник»

При реализации подключения этими способами важно свести к минимуму потери по мощности.

Схема подключения «треугольник»

Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A  до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Рабочее напряжение

После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

Оптимальный запас по напряжению — 15-20%.

Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подобрать конденсатор для трехфазного электродвигателя

Для вычисления емкости основного конденсатора применяют формулу:

C = (k×Iφ)/U

Где

  • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
  • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
  • U- напряжение сети.

Трехфазный электродвигатель

Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

Емкость пускового накопителя принимают в 2-3 раза больше основного.

Подключение трехфазного электродвигателя к сети

После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

Как подобрать пусковой конденсатор для однофазного электромотора

До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

Конструкция асинхронного однофазного электродвигателя

Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

В трехфазном двигателе обмотки и так размещены под углами 120°. Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить  пусковой момент вращения.

Трехфазный двигатель в однофазной сети

Трехфазные асинхронные электродвигатели не требуют дополнительных устройств для запуска и работы. Нужны лишь контакторы или иные устройства подачи трехфазного напряжения. Однако при включении двигателя в однофазную сеть используются другие способы запуска.

Фазосдвигающий конденсатор

Существует простой способ, позволяющий запитать трехфазный двигатель от бытовой однофазной сети с напряжением 220 В. Трехфазное напряжение получают путем сдвига фаз с помощью фазосдвигающего конденсатора. Делается это так.

В однофазной сети имеются два провода (фаза и ноль), между которыми существует сдвиг фаз 180 градусов. Для включения трехфазного двигателя нужны три проводника, напряжения на которых должны иметь сдвиг фаз 120 градусов. Поэтому, если подключить один из выводов двигателя к фазному проводнику напрямую, а другой – через фазосдвигающий конденсатор, то в совокупности с нулевым проводником и обмотками такая система будет трехфазной. Другими словами, будет обеспечен нужный режим питания.

Для расчета номинала фазосдвигающего конденсатора можно воспользоваться приближенной формулой:

С = k*I / U,

где k – коэффициент, равный 4800 для схемы подключения «треугольник», 2800 – для «звезды», I – номинальный ток двигателя (указывается на шильдике), U – фазное напряжение (в нашем случае – 220 В).

Рабочее напряжение конденсатора следует выбирать не менее 400 В, при этом желательно использовать специальные конденсаторы для электродвигателей, на частоту 50 – 60 Гц.

Пусковой конденсатор

Приведенная выше формула справедлива для номинального тока. Но двигатель работает не только на номинале. При пуске его ток может превышать номинальное значение в 5-7 раз, а при работе – быть ниже в 2-3 раза (холостой ход). В результате момент на валу при включении будет мал, и двигатель будет разгоняться очень долго либо вообще не сможет запуститься. Поэтому для запуска используют дополнительный пусковой конденсатор, который подключают к рабочему (фазосдвигающему) на время разгона (3-5 секунд). Обычно емкость пускового конденсатора выбирают в 2-5 раз больше, в зависимости от требуемого момента при пуске и времени разгона.

Для подключения пускового конденсатора используют специальные ручные пускатели, в которых время пуска равно времени нажатия на двухпозиционную кнопку «Пуск». Пока оператор держит «Пуск» в позиции без фиксации, подключаются рабочий и пусковой конденсаторы. Как только оператор отпускает кнопку, она переходит в фиксированную позицию, и в схеме остается лишь рабочий конденсатор. Остановка двигателя производится кнопкой «Стоп». Кроме ручных пускателей могут использоваться релейные и электронные схемы.

Данный способ не применяется на практике для двигателей более 2,2 кВт из-за низкого КПД и большой емкости конденсаторов.

Двигатель с пусковой обмоткой

Конденсатор также используется в случае, когда двигатель имеет две обмотки – рабочую и пусковую. Рабочая обмотка подключается к питающему однофазному напряжению (220 В) напрямую. Пусковая обмотка имеет меньший ток и подключается через фазосдвигающей конденсатор. Совместно обе обмотки имеют такую конфигурацию, что формируют внутри статора вращающееся магнитное поле.

Емкость фазосдвигающего конденсатора обычно указывается на шильдике двигателя. На время пуска и разгона может применяться дополнительный конденсатор. Такой двигатель называют конденсаторным, и он предназначен для работы только в однофазной сети.

Другие полезные материалы:
Как определить параметры двигателя без шильдика?
Основные неисправности электродвигателя и способы их устранения
Преимущества векторного управления электродвигателем

Какой конденсатор нужен для двигателя от стиральной машины?

Прекрасно, когда есть возможность подключить мотор к нужному типу напряжения. Но иногда возникает ситуация, что трехфазный мотор приходится «питать» от однофазной сети. Например, если умельцы берут движок от стиралки и создают на его основе токарный станок или другую «самоделку». В таких случаях придется использовать конденсатор для двигателя от стиральной машины. Но их целое множество, поэтому не лишним будет разобраться, как правильно подобрать устройство.

Если нужно запустить трехфазный мотор

Подобрать конденсатор для двигателя от стиральной машины непросто. Самое главное – правильно определить емкость устройства. Но как ее посчитать? Для более точного вычисления показателя применяется сложная формула, но можно воспользоваться и более упрощенным вариантом.

Как быстро прикинуть, какое устройство подойдет в вашем случае? Для расчета конденсаторной емкости упрощенным методом необходимо узнать мощность движка и на каждые 100 Ватт «набросить» примерно 7-8 мкФ. Однако важно не забыть во время вычислений учесть показатель напряжения, воздействующий на статорную обмотку. Это значение не должно превышать номинальный уровень.

Когда запуск электромотора может осуществляться только на основе максимальной загрузки, нужно включить в цепь пусковой конденсатор. Данное устройство характеризуется кратковременным периодом работы – оно функционирует около 3 секунд, до тех пор, пока обороты ротора не достигнут своего пика.

При выборе пускового конденсатора необходимо учитывать, что:

  • по емкости он должен в 2-3 раза превышать показатели рабочего конденсатора;
  • его номинальное напряжение должно превышать сетевой минимум в 1,5 раза.

Главная функция пускового конденсатора – довести ротор электромотора до оптимальной частоты вращения.

Разобравшись в нюансах, можно подбирать и сетевой, и пусковой конденсатор для трехфазного электромотора. Чтобы не ошибиться, важно следовать всем рекомендациям.

Подбираем конденсатор для однофазного мотора

В подавляющем большинстве случаев конденсаторы для асинхронных движков применяются для подключения к «стандартному» напряжению (220 В) с учетом включения устройства в однофазную сеть. Однако процесс их применения гораздо сложнее. Разберемся, почему.

Трехфазные моторы функционируют на основе конструктивного подключения, в то время как для однофазных движков приходится достигать смещенного вращательного момента. Обеспечивается это дополнительным слоем роторной обмотки для запуска. Фаза сдвигается конденсатором.

Почему непросто подобрать конденсатор?

Хотя существенных отличий нет, но разные конденсаторы для асинхронных движков требуют отличные друг от друга способы вычисления допустимого показателя напряжения. Обычно необходимо примерно 100 Ватт на 1 мкФ емкости прибора. У таких моторов существуют несколько возможных режимов работы:

  • ставится пусковой конденсатор, организуется вспомогательный слой обмотки (именно для этапа пуска). В данной ситуации расчет емкости устройства будет таковым – 70 мкФ на киловатт мощности электродвигателя;
  • устанавливается рабочее устройство, конденсаторная емкость которого в пределах 25-35 мкФ. В этом случае будет нужна дополнительная обмотка и постоянное подключение конденсатора на протяжении всего срока работы мотора;
  • используется сетевой конденсатор при одновременном подключении пускового устройства.

В любом случае важно отслеживать уровень нагрева электромотора в ходе его эксплуатации. Заметив перегревание элементов двигателя, следует принять срочные меры. Если стоит рабочий конденсатор, потребуется уменьшить его емкость. Специалисты рекомендуют применять устройства, функционирующие на основе мощности от 450 Ватт или больше, так как они считаются универсальными.

Еще до установки рекомендуется проверить работоспособность конденсатора специальным прибором – мультиметром.

Пусковой конденсатор – это маленький элемент электрической цепи, необходимый для того, чтобы движок как можно скорее «набрал» нужные обороты. Рабочее устройство служит для поддержания оптимальной нагрузки на мотор.

Сконструировать полностью работоспособную схему можно самостоятельно. Между электромотором и кнопкой ПНВС нужно поставить рабочий, а, при необходимости, еще и пусковой конденсатор. Обычно выводы обмоток расположены в клеммной части движка, поэтому модернизация подключения может быть любой.

Следует помнить, что рабочее напряжение пускового конденсатора должно составлять 330-400 Вольт. Это объясняется «всплеском» мощности при запуске или завершении работы мотора.

Так в чем же отличие однофазного асинхронного мотора? Такой тип двигателя чаще встречается в бытовой технике, для его активации необходима вспомогательная пусковая обмотка и конденсатор для смещения фазы. Подключить его допускается на основе множества доступных схем. В продаже встречаются конденсаторы трех видов:

  • полярные;
  • неполярные;
  • электролитические.

Полярные запрещено применять для подключения электромоторов в сеть переменного тока. Диэлектрик внутри устройства быстро разрушится и произойдет замыкание.

Поэтому в данном случае нужно использовать неполярные конденсаторы. Их обкладки будут одинаково взаимодействовать и с источником тока, и с диэлектриком.

   
  • Поделитесь своим мнением - оставьте комментарий

Как правильно выбрать конденсатор для сабвуфера

Сабвуфер для машины — это акустическая система, которая функционирует для произведения низких частот звукового диапазона. Автомобильный сабвуфер повышает качество звука, уменьшает нагрузку на колонки.

В нынешнее время практически каждый водитель оборудует свою машину музыкальными устройствами. Нередко можно увидеть на улице потрепанную шестёрку, из окон которой звучит современная музыка в отличном качестве. Чтобы получить качественное звучание музыки в машине с низкочастотным звуком, необходимы или огромные колонки, которые не всегда смогут дать насладиться низкочастотными басами, или же, как альтернатива, сабвуфер. Сейчас даже самые простые аудиосистемы для автомобиля нередко укомплектованы внешним усилителем звука. Для улучшения звука автомобилисты используют конденсаторы сабвуфера в машину.

Многие автолюбители ставят в своем авто качественную акустику

Зачем нужен конденсатор для сабвуфера

Любители громкой, качественной музыки с мощными басами часто сталкиваются с проблемой, когда возникают провалы звука в определённых ситуациях. Не надо в таких случаях грешить на поломку сабвуфера или колонок.

Давайте вернёмся к школьным урокам физики где-то в седьмой класс. Автомобильный сабвуфер, при воспроизведении мощнейшего баса, кратковременно может потребить ток, который не в силах предоставить даже самый сильный аккумулятор. Провода, соединяющие сабвуфер и усилитель, даже если они очень толстые, имеют сопротивление, которое в пик сигнала приводит к снижению напряжения. В эти моменты и происходят так званые провалы звука. Именно в такие моменты и необходим конденсатор для сабвуфера. Он представляет собой электролитический мощное устройство большой ёмкости, которое параллельно подключается к усилителю и аккумулятору автомобиля. При параллельном соединении узлов в пики возрастания тока устройство забирает на себя избыточное напряжение, что помогает сгладить так званые провалы сабвуфера. За счёт очень низкого внутреннего сопротивления самого конденсатора, он в доли секунды заряжается и принимает на себя последующие скачки напряжения.

Исходя из вышесказанного, конденсатор для сабвуфера защищает сам автомобильный сабвуфер от скачков тока, что может стать причиной его поломки, а также сглаживает провалы звука и уменьшает искажения.

Параметры для выбора конденсатора

Рассмотрим основные критерии, которые влияют на качество работы конденсатора.

  1. Мощность. Это первый и главный параметр для выбора. Необходимо покупать устройство, мощность которого будет равна количеству киловатт системы. То есть, если у вас система мощностью пять киловатт, то прибор должен иметь ёмкость не меньше пяти фарад. Специалисты советуют брать устройства ёмкостью немного больше, чем мощность системы.
  2. Разъёмы. Их рабочее напряжение должно достигать двадцати четырёх вольт. Чтобы максимально уменьшить сопротивляемость току, разъёмы фактически всех устройств имеют позолоту.
  3. Комплектация. Проверьте, чтобы в комплектацию входили все требующиеся для установки прибора элементы. Конденсатор от усилителя должен устанавливаться на расстоянии не больше чем на пятьдесят сантиметров.
  4. Скорость зарядки и отдачи заряда. Эти характеристики зависят от того, насколько качественное устройство вы приобретаете. Воздержитесь от покупки подделок и самодельных конденсаторов.
  5. Функция управления зарядом. Эта функция присутствует в более дорогих моделях, но устройства такого плана обезопасят проводку вашего автомобиля. Если прибор, который вы приобрели, не имеет такой функции, то перед установкой его необходимо подзарядить.
  6. Цифровой вольтметр и световая индикация. С помощью вольтметра можно контролировать напряжение устройства. Световые индикаторы показывают уровень заряда прибора.

Для того чтобы покупка радовала вас качественным звуком, необходимо покупать продукцию в сертифицированных магазинах, которые специализируются на продукции автомобильной акустики.

Краткий обзор моделей конденсаторов

С предоставленной информации понятно, что конденсаторы отличаются ёмкостью, набором функций, комплектацией. Соответственно и ценовая категория приборов колеблется от порядка сорока долларов за единицу товара и может достигать трехсот долларов за устройство.

Autofun CAP-10 — один из самых простых и доступных приборов. Стоимость около сорока долларов, ёмкость устройства 1 фарад, рабочая температура до 95 градусов. Пользуется спросом у покупателей за счёт привлекательной цены.

Autofun CAP-10

Конденсаторы торговой марки Hollywood также пользуются спросом у покупателей. Ценовой диапазон моделей этой марки от пятидесяти долларов до двухсот за единицу товара, в зависимости от ёмкости устройства и дополнительных функций.

Конденсатор торговой марки Hollywood

Signat ECC1 — прибор небольшого размера, хотя имеет привлекательные характеристики. Ёмкость — 1 фарад, цена около двухсот пятидесяти условных единиц.

Signat

Brax IPC — разумный силовой конденсатор, цена которого более трехсот долларов. Этот прибор имеет сверхмощные электрические характеристики, принцип работы основан на автоматике. Внутреннее сопротивление в конденсаторе практически отсутствует.

Brax IPC

И ещё одно правило. Для устройств характерной особенностью является соответствие цены и качества прибора. Чем дороже товар вы приобретаете, тем более надёжным он будет в эксплуатации.

Конденсаторы для сабвуфера очень просты в установке, потому не потребуется помощь специалиста. Вы сами можете справиться с этой задачей, следуя простым инструкциям к устройству.

расшифровка букв, цифр, смешанных значений

Маркировка конденсаторов при выборе какого-либо элемента в схеме имеет большое значение. Она разнообразная и сложная по сравнению с резисторами. Специалист, который работает непосредственно с конденсаторами должен обязательно знать, как расшифровывается та или иная маркировка.

Таблица маркировки конденсаторов

Код Пикофарады, (пф, pf) Нанофарады, (нф, nf) Микрофарады, (мкф, µf)
109 1.0 0.001 0.000001
159 1.5 0.0015 0.000001
229 2. 2 0.0022 0.000001
339 3.3 0.0033 0.000001
479 4.7 0.0047 0.000001
689 6.8 0.0068 0.000001
100* 10 0.01 0.00001
150 15 0.015 0.000015
220 22 0.022 0.000022
330 33 0.033 0.000033
470 47 0.047 0.000047
680 68 0.068 0.000068
101 100 0. 1 0.0001
151 150 0.15 0.00015
221 220 0.22 0.00022
331 330 0.33 0.00033
471 470 0.47 0.00047
681 680 0.68 0.00068
102 1000 1.0 0.001
152 1500 1.5 0.0015
222 2200 2.2 0.0022
332 3300 3.3 0.0033
472 4700 4.7 0.0047
682 6800 6. 8 0.0068
103 10000 10 0.01
153 15000 15 0.015
223 22000 22 0.022
333 33000 33 0.033
473 47000 47 0.047
683 68000 68 0.008
104 100000 100 0.1
154 150000 150 0.15
224 220000 220 0.22
334 330000 330 0.33
474 470000 470 0. 47
684 680000 680 0.68
105 1000000 1000 1.0

Маркировка твердотельных конденсаторов

По международному стандарту - начинают читать с единиц измерения. Фарады применяются для измерения ёмкости. Маркировку наносят на корпус самого устройства.

Иногда наносят маркеры, которые указывают на допустимые отклонения от нормы емкости самого конденсатора (указывается в процентах).

Порой, вместо них используется буква, которая обозначает то или иное значение самого допуска. Затем опреедляем номинальное напряжение. В том случае, если же корпус устройства имеет большие размеры, данный параметр обозначается цифрой, за которой далее следуют буквы. Максимально допустимое значение параметра указывается с помощью цифр. Если на корпусе нет никакой информации о допустимом значении напряжения, то использовать его можно только в цепях с низким напряжением. Если же устройство, согласно его параметрам, должно использоваться в цепях, где есть переменный ток, то применяться оно, соответсвенно, должно именно так и не иначе.

Устройство, которое работает с постоянным током, нельзя использовать в цепях с переменным.

Далее, определием полярность устройства: положительную и же отрицательную. Этот шаг очень важен. Если полюса будут определены неверно, велик риск возникновения короткого замыкания или даже взрыва самого устройства. Независимо от полярности, конденсатор можно будет подключить в том случае, если не указана какая-либо информация о плюсе и же минусе клемм.

Значение полярности могут наносить в виде специальных углублений, которые имеют форму кольца, или же в виде одноцветной полосы. В конденсаторах из алюминия, которые по своему внешнему виду похожи на банку из-под консервов, подобные обозначения говорят об отрицательной полярности. А, например, в танталовых конденсаторах, которые имеют небольшие габариты, все наоборот - полярность при данных обозначениях будет являться положительной. Цветовую маркировку не стоит учитывать лишь в том случае, если на самом конденсаторе будут указаны плюс и минус.

Маркировка конденсаторов: расшифровка

Значения первых двух цифр на корпусе, которые указывают на ёмкость устройства. Если конденсатор небольшого размера - маркировка осуществляется согласно стандарту EIA.

Цифры: обозначение

Когда в обозначении указаны только одна буква и две цифры, то цифры соответствуют параметру ёмкости конденсатора. По-своему нужно расшифровывать остальные маркировки, опираясь на ту или иную инструкцию. Множитель нуля - это третья по счету цифра. Расшифровку проводят в зависимости от того, какая цифра находится в конце. К первым двум цифрам необходимо добавить определённое количество нолей, если цифра входит в диапазон от ноля до шести. Если последней цифрой является число восемь, то в таком случае необходимо на 0,01 умножить две первые цифры. Когда значение ёмкости конденсатора станет известным, нужен будет определить то, в таких единицах измерения указана данная величина. Устройства из керамики, а также плёночные варианты являются мелкими. В них данный параметр измеряется в пикофарадах. Микрофарады используются для больших конденсаторов.

Буквы: их обозначение

Далее необходимо провести расшифровку букв, которые есть в маркировке. Если в первых двух символах есть буква, то в таком случае расшифровать ее можно несколькими методами. Если есть буква R, то она играет роль запятой, которая используется в дроби. Если есть буквы u, n, p - то оно тоже выполняют роль запятой в той же самой дроби.

Керамические конденсаторы: маркировка

Данные виды устройств имеют два контакта, а также круглую форму. На корпусе будут указаны как основные показатели, так и допуск отклонений от номы параметра ёмкости. Для этого используют специальную букву, которая находится после обозначения ёмкости в цифрах.

Если есть буква В, то отклонение в таком случае будет равняться +0,1 пФ, если буква С - то + 0,25 пФ и так далее. Только при значении параметра ёмкости менее 10пФ используются данные значения. Если параметр ёмкости больше указанного выше, то буквы - это процент допустимых отклонений.

Смешанная маркировка из цифр и букв

Маркировка может быть указана в виде буквы, затем цифры, а после снова буквы. Первый символ - это самая маленькая допустимая температура. Второй символ обозначает, наоборот, самую большую допустимую температуру. Третий символ - это ёмкость устройства, которая может изменяться в переделах ранее указанных значений температур.

Остальные маркировки

Значение напряжения можно узнать с помощью маркировки, которая находится на корпусе устройства. Символы говорят о допустимом максимальном значении параметра для того или иного конденсатора. Иногда маркировку упрощают. Например, используется только первая цифра. Напряжение меньше десяти вольт будет обозначаться, например, нулём, а этот же параметр, который будет иметь напряжение в пределах от десяти до девяноста девяти вольт - единицей и так далее. Другую маркировку имеют устройства, которые были выпущены намного раньше. Тогда нужно обратиться к справочнику во избежание совершения ошибок. У нас вы можете также узнать, как проверить конденсатор мультиметром на плате.

53.Однофазные электродвигатели

53.Однофазные электродвигатели 

Однофазными электродвигателями оборудовано большое количество маломощных холодильных агрегатов, используемых в быту (домашние холодильники, морозильники, бытовые кондиционеры, небольшие тепловые насосы...).
Несмотря на очень широкое распространение, однофазные двигатели с вспомогательной обмоткой зачастую недооцениваются по сравнению с трехфазными двигателями.
Целью настоящего раздела является изучение правил подключения однофазных электродвигателей, их ремонта и обслуживания, а также рассмотрение узлов и элементов, необходимых для их работы (конденсаторы, пусковые реле). Конечно, мы не будем изучать, как и почему вращаются такие двигатели, но все особенности их использования в качестве двигателей для компрессоров холодильного оборудования мы постараемся изложить.
А) Однофазные двигатели с вспомогательной обмоткой
Такие двигатели, установленные в большинстве небольших компрессоров, питаются напряжением 220 В. Они состоят из двух обмоток (см. рис. 53.1).

► Основная  обмотка  Р,   называемая                      ________
часто рабочей обмоткой, или по-английски Run (R), имеет провод толстого сечения, который в течение всего периода работы двигателя остается под напряжением и пропускает номинальную силу тока двигателя.
► Вспомогательная обмотка А, называемая также пусковой обмоткой, или по-английски S (Start), имеет провод более тонкого сечения, следовательно, большее сопротивление, что позволяет легко отличить ее от основной обмотки.

Вспомогательная или пусковая обмотка, согласно названию, служит для обеспечения запуска двигателя.
Действительно, если попытаться запустить двигатель, подав напряжение только на основную обмотку (и не запитать вспомогательную), мотор будет гудеть, но вращаться не начнет. Если в этот момент вручную крутануть вал, мотор запустится и будет вращаться в том лее направлении, в котором его закрутили вручную. Конечно, такой способ запуска совсем не годится для практики, особенно если мотор спрятан в герметичный кожух.
Пусковая обмотка как раз и служит для того, чтобы запустить двигатель и обеспечить величину пускового момента выше, чем момент сопротивления на валу двигателя.
Далее мы увидим, что последовательно с пусковой обмоткой в цепь вводится, как правило, конденсатор, обеспечивающий необходимый сдвиг по фазе (около 90°) между током в основной и пусковой обмотках. Эта искусственная расфазировка как раз и позволяет запустить двигатель.

Внимание! Все замеры должны быть выполнены с большой аккуратностью и точностью, особенно, если модель двигателя вам незнакома или схема соединения обмоток отсутствует.

Случайное перепутывание основной и вспомогательной обмоток, как правило, заканчивается тем, что вскоре после подачи напряжения мотор сгорает!
Не стесняйтесь повторить измерения несколько раз и набросать схему мотора, снабдив ее максимумом пометок, это позволит вам избежать многих ошибок!
ПРИМЕЧАНИЕ
Если двигатель трехфазный, омметр покажет одинаковые значения сопротивлений между всеми тремя клеммами. Таким образом, представляется, что трудно ошибиться, прозванивая этот тип двигателя (по трехфазным двигателям см. раздел 62).
В любом случае, возьмите в привычку читать справочные данные на корпусе двигателя, а также подумайте о том, как заглянуть вовнутрь клеммной коробки, сняв ее крышку, поскольку там часто приводится схема соединения обмоток двигателя.

Проверка двигателя. Одним из наиболее сложных для начинающего ремонтника вопросов является принятие решения о том, что по результатам проверки двигатель следует считать сгоревшим. Напомним основные дефекты электрического характера, наиболее часто встречающиеся в двигателях (неважно, однофазных или трехфазных). Большинство этих дефектов имеют причиной сильный перегрев двигателя, обусловленный чрезмерной величиной потребляемого тока. Повышение силы тока может быть следствием электрических (продолжительное падение напряжения, перенапряжение, плохая настройка предохранительных устройств, плохой электрический контакт, неисправный контактор) или механических (заклинивание из-за нехватки масла) неполадок, а также аномалий в холодильном контуре (слишком большое давление конденсации, присутствие кислот в контуре. ..).

Одна из обмоток может быть оборвана . В этом случае омметр при измерении ее сопротивления будет показывать очень большую величину вместо нормального сопротивления. Удостоверьтесь, что ваш омметр исправен и что его зажимы имеют хороший контакт с клеммами обмотки. Не стесняйтесь проверить омметр с помощью хорошего эталона.
Напомним, что обмотка обычного мотора имеет максимальное сопротивление в несколько десятков Ом для небольших двигателей и несколько десятых долей Ома для огромных двигателей. Если обмотка оборвана, нужно будет либо заменить двигатель (или полностью агрегат), либо перемотать его (в том случае, когда такая возможность имеется, перемотка тем более выгодна, чем больше мощность двигателя).
Между двумя обмотками может существовать короткое замыкание. Чтобы выполнить такую проверку, необходимо убрать соединительные провода (и соединительные перемычки на трехфазном двигателе).
Когда вы проводите отсоединение, никогда не стесняйтесь предварительно разработать детальную схему замеров и сделать максимум пометок, чтобы в дальнейшем спокойно и без ошибок вновь поставить на место соединительные провода и перемычки.

В омметр должен показывать бесконечность. Однако, он показывает ноль (или очень низкое сопротивление), что без сомнения означает возможность короткого замыкания между двумя обмотками.
Такая проверка менее показательна для однофазного двигателя с вспомогательной обмоткой в случае, если две обмотки невозможно разъединить (когда общая точка С, соединяющая две обмотки, находится внутри двигателя). Действительно , в зависимости от точного места нахождения короткого замыкания, замеры сопротивлений, осуществленные между тремя клеммами (С —> А, С —> Р и Р —> А), дают пониженные, но достаточно несвязанные между собой величины. Например, сопротивление между точками А и Р, может не соответствовать сумме сопротивлений С —> А + С —> Р.
Также, как и в случае обрыва обмоток, при коротком замыкании между обмотками необходимо либо заменить, либо перемотать двигатель.


Обмотка может быть замкнута на массу. Сопротивление изоляции нового двигателя (между каждой из обмоток и массой) должно достигать 1000 MQ. Со временем это сопротивление уменьшается и может упасть до 10... 100 MQ. Как правило, принято считать, что начиная с 1 MQ (1000 kQ) нужно предусматривать замену двигателя, а при величине сопротивления изоляции 500 kQ и ниже, эксплуатация двигателя не допускается (напомним: 1 MQ = 103kQ = 10°>Q).
Обмотка замкнута на массу
Сопротивление стремится к нулю
Если изоляция нарушена, измерение сопротивления между клеммой обмотки и корпусом мотора дает нулевую ветмчину (или очень низкое сопротивление) вместо бесконечности (см. рис. 53.8). Заметим, что такое измерение должно быть выполнено на каждой клемме двигателя с помощью наиболее точного омметра. Перед каждым измерением убедитесь, что ваш омметр в исправном состоянии, и что его зажимы имеют хороший контакт с клеммой и металлом корпуса двигателя (при необходимости, соскоблите краску на корпусе, чтобы добиться хорошего контакта).
В примере на рис. 53.8 измерение указывает на то, что обмотка несомненно может быть замкнута на корпус.
Рис. 53.8.
Однако контакт обмотки с массой может быть и не полным. Действительно, сопротивление изоляции между обмотками и корпусом может становиться достаточно низким, когда двигатель находится под напряжением, чтобы вызывать срабатывание предохранительного автомата, в то же время оставаясь достаточно высоким, чтобы в отсутствие напряжения не быть обнаруженным с помощью обычного омметра.
В этом случае необходимо использовать мегомметр (или аналогичный прибор), который позволяет контролировать сопротивление изоляции с использованием постоянного напряжения от 500 В, вместо нескольких вольт для обычного омметра
При вращении ручного индуктора мегомметра, если сопротивление изоляции в норме, стрелка прибора должна отклоняться влево (поз. 1) и указывать бесконечность (оо). Более слабое отклонение, например, на уровне 10 MQ (поз. 2), указывает на снижение изоляционных характеристик двигателя, которое хотя и недостаточно для того, чтобы только оно привело к срабатыванию защитного автомата, но, тем не менее, должно быть отмечено и устранено, поскольку даже незначительные повреждения изоляции, вдобавок к уже существующим, в большинстве случаев рано или поздно приведут к полной остановке агрегата.
Отметим также, что только мегомметр может позволить выполнить качественную проверку изоляции двух обмоток между собой, когда их невозможно разъединить (см. выше проблему короткого замыкания между обмотками в однофазном двигателе). В заключение укажем, что проверку подозрительного электродвигателя необходимо проводить очень строго.
В любом случае недостаточно только заменить двигатель, но необходимо также найти, вдобавок к этому первопричину неисправности (механического, электрического или иного характера) с тем, чтобы радикально исключить всякую возможность ее повторения. В холодильных компрессорах, где имеется большая вероятность наличия кислоты в рабочем теле (обнаруживаемой простым анализом масла), после замены сгоревшего мотора необходимо будет предпринять дополнительные меры предосторожности. Не следует пренебрегать и осмотром электроаппаратуры (при необходимости, заменяя контактор и прерыватель, проверяя соединения и предохранители...).

Вдобавок к этому, замена компрессора требует от персонала высокой квалификации и строгого соблюдения правил: слива хладагента, при необходимости промывая после этого контур, возможной установки антикислотного фильтра на всасывающей магистрали, замены фильтра-осушителя, поиска утечек, обезвоживания контура путем вакуумирования, заправки контура хладагентом и полного контроля функционирования. .. Наконец, особенно если изначально установка была заправлена хладагентом типа CFC (R12, R502...), может быть будет возможным и целесообразным воспользоваться заменой компрессора, чтобы поменять тип хладагента?
Б) Конденсаторы
Чтобы запустить однофазный двигатель со вспомогательной обмоткой, необходимо обеспечить сдвиг по фазе переменного тока во вспомогательной обмотке по отношению к основной. Для достижения сдвига по фазе и, следовательно, обеспечения требуемого пускового момента (напомним, что пусковой момент двигателя обязательно должен быть больше момента сопротивления на его валу) используют, в основном, конденсаторы, установленные последовательно со вспомогательной обмоткой. Отныне мы должны запомнить, что если емкость конденсатора выбрана неправильно (слишком малая или слишком большая), достигнутая величина фазового сдвига может не обеспечить запуск двигателя (двигатель стопорится).
В электрооборудовании холодильных установок мы будем иметь дело с двумя типами конденсаторов:
► Рабочие (ходовые) конденсаторы (бумажные) небольшой емкости (редко более 30 мкф), и значительных размеров.
► Пусковые конденсаторы (электролитические), имеющие, наоборот, большую емкость (может превышать 100 мкф) при относительно небольших размерах. Они не должны находиться постоянно под напряжением, иначе такие конденсаторы очень быстро перегреваются и могут взорваться. Как правило, считается, что время их нахождения под напряжением не должно превышать 5 секунд, а максимально допустимое число запусков составляет не более 20 в час.
С одной стороны, размеры конденсаторов зависят от их емкости (чем больше емкость, тем больше и размеры). Емкость указывается на корпусе конденсатора в микрофарадах (др, или uF, или MF, или MFD, в зависимости от разработчика) с допуском изготовителя, например: 15uF±10% (емкость может составлять от 13,5 до 16,5 мкФ) или 88-108 MFD (емкость составляет от 88 до 108 мкФ).
Кроме того, размеры конденсатора зависят от величины напряжения, указанного на нем (чем выше напряжение, тем больше конденсатор). Полезно напомнить, что указанное разработчиком напряжение является максимальным напряжением, которое можно подавать на конденсатор, не опасаясь его разрушения. Так, если на конденсаторе указано 20мкф/360В, это значит, что такой конденсатор свободно можно использовать в сети с напряжением 220 В, но ни в коем случае нельзя подавать на него напряжение 380 В.

 53.1. УПРАЖНЕНИЕ


Попробуйте для каждого из 5 конденсаторов, изображенных на рис. 53.10 в одном и том же масштабе, определить, какие из них являются рабочими (ходовыми), а какие пусковыми.

Конденсатор №1 самый большой по размерам из всех представленных, имеет довольно низкую емкость в сравнении с его размерами. По-видимому, это рабочий конденсатор.
Конденсаторы №3 и №4, при одинаковых размерах, имеют очень небольшую емкость (заметим, что конденсатор №4, предназначенный для использования в сети с напряжением питания, большим, чем конденсатор №3, имеет более низкую емкость). Следовательно, эти два конденсатора также рабочие.
Конденсатор №2 имеет, в сравнении с его размерами, очень большую емкость, следовательно это пусковой конденсатор. Конденсатор №5 имеет емкость несколько меньше, чем №2, но он предназначен для более высокого напряжения: это также пусковой конденсатор.

Проверка конденсаторов. Измерения при помоши омметра, когда они дают те результаты, которые мы только что рассмотрели, являются превосходным свидетельством исправности конденсатора. Тем не менее, они должны быть дополнены измерением фактической емкости конденсатора (вскоре мы увидим, как выполнить такое измерение).
Теперь изучим типичные неисправности конденсаторов (обрыв цепи, короткое замыкание между пластинами, замыкание на массу, пониженная емкость) и способы их выявления. Прежде всего следует заметить, что совершенно недопустимым является вздутие корпуса конденсатора.

В конденсаторе может иметь место обрыв вывода
Тогда омметр, подключенный к выводам и установленный на максимальный диапазон, постоянно показывает бесконечность. При такой неисправности все происходит как в случае отсутствия конденсатора. Однако, если двигатель оснащен конденсатором, значит он для чего-то нужен. Следовательно, мы можем представить себе, что двигатель либо не будет нормально работать, либо не будет запускаться, что зачастую будет обусловливать срабатывание тепловой защиты (тепловое реле защиты, автомат защиты...).
Внутри конденсатора может иметь место короткое замыкание между пластинами
При такой неисправности омметр будет показывать нулевое или очень низкое сопротивление (используйте небольшой диапазон). Иногда компрессор может запуститься (далее мы увидим, почему), но в большинстве случаев короткое замыкание в конденсаторе приводит к срабатыванию тепловой защиты.
Пластины могут быть замкнуты на массу
Пластины конденсатора, также как и обмотки электродвигателя, изолированы от массы. Если сопротивление изоляции резко падает (опасность чего проявляется при чрезмерном перегреве), утечка тока обусловливает отключение установки автоматом защиты.
Такая неисправность может возникать, если конденсатор имеет металлическую оболочку. Сопротивление, измеренное между одним из выводов и корпусом в этом случае стремится к 0, вместо того, чтобы быть бесконечным (проверять нужно оба вывода).
Емкость конденсатора может быть пониженной
В этом случае действительная величина емкости, измеренная на его концах, ниже емкости, указанной на корпусе с учетом допуска изготовителя.

В  измеренная емкость должна была бы находиться в пределах от 90 до 110 мкФ. Следовательно, на самом деле, емкость слишком низкая, что не обеспечит требуемые величины сдвига по фазе и пускового момента. В результате двигатель может больше не запуститься.

Рассмотрим теперь, как осуществить измерение фактической емкости конденсатора с помощью несложной схемы, легко реализуемой в условиях монтажной площадки.
О
ВНИМАНИЕ! Чтобы исключить возможные опасности, необходимо перед сборкой этой схемы проверить конденсатор с помощью омметра.
Внешне исправный конденсатор достаточно подключить к сети переменного тока напряжением 220 В и измерить потребляемый ток (конечно, в этом случае, рабочее напряжение конденсатора должно быть не ниже 220 В).
Схему необходимо защитить либо автоматом защиты, либо плавким предохранителем с рубильником. Измерение  должно быть как можно более коротким (пусковой конденсатор опасно долго держать под напряжением).

При напряжении 220 В действительная емкость конденсатора (в мкФ) примерно в 14 раз больше потребляемого тока (в амперах).

Например, вы хотите проверить емкость конденсатора (очевидно, это пусковой конденсатор, поэтому время его нахождения под напряжением должно быть очень небольшим, см. рис. 53.21). Поскольку на нем указано, что рабочее напряжение равно 240 В, его можно включить в сеть напряжением 220 В.

Если емкость, обозначенная на конденсаторе составляет 60 мкФ ± 10% (то есть от 54 до 66 мкФ), теоретически он должен потреблять ток силой: 60 / 14 = 4,3 А.
Установим автомат или плавкий предохранитель, рассчитанный на такой ток, подключим трансформаторные клещи и установим на амперметре диапазон измерения, например, 10 А. Подадим напряжение на конденсатор, считаем показания амперметра и тотчас отключим питание.

ВНИМАНИЕ, ОПАСНОСТЬ! Когда вы измеряете емкость пускового конденсатора, время его нахождения под напряжением не должно превышать 5 секунд (практика показывает, что при небольших затратах на организацию процесса измерения, этого времени вполне достаточно для выполнения замера).
В нашем примере, фактическая емкость составляет около 4,1 х 14 = 57 мкФ, то есть конденсатор исправный, поскольку его емкость должна находиться между 54 и 66 мкФ.
Если замеренный ток составил бы, например, 3 А, фактическая емкость была бы 3 х 14 = 42 мкФ. Эта величина выходит за пределы допуска, следовательно нужно было бы заменить конденсатор.

В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры. ..).

В большинстве случаев (но не всегда) эти реле подключаются непосредственно к компрессору при помощи двух или трех (в зависимости от моделей) гнезд, в которые входят штеккеры обмоток электродвигателя, предотвращая возможные ошибки при подключении реле к вспомогательной и основной обмоткам. На верхней крышке реле, как правило, нанесены следующие обозначения:
Р / М —> Рабочая (Main) —> Основная обмотка А / S -> Пусковая (Start) —> Вспомогательная обмотка L         Линия (Line)     —> Фаза питающей сети
Если реле перевернуть верхней крышкой вниз, можно отчетливо услышать стук подвижных контактов, которые скользят свободно.
Поэтому, при установке такого реле необходимо строго выдерживать его пространственную ориентацию, чтобы надпись "Верх" (Тор) находилась сверху, так как если реле перевернуто, его нормально разомкнутый контакт будет постоянно замкнут.

При проверке омметром сопротивления между контактами пускового реле тока (в случае его правильного расположения) между гнездами A/S и Р/М, а также между гнездами L и A/S, должен иметь место разрыв цепи (сопротивление равно со), поскольку при снятом питании контакты реле разомкнуты.
Между гнездами Р/М и L сопротивление близко к 0, соответствуя сопротивлению катушки реле, которая мотается проводом толстого сечения и предназначена для пропускания пускового тока.
Можно также проверить сопротивление реле в перевернутом состоянии. В таком случае, между гнездами A/S и L вместо бесконечности должно быть сопротивление, близкое к нулю.
При монтаже реле тока в перевернутом положении ) его контакты будут оставаться постоянно замкнутыми, что не позволит отключать пусковую обмотку. В результате возникает опасность быстрого сгорания электродвигателя.

Изучим теперь работу пускового реле тока в схеме, приведенной на  в отсутствие напряжения.
Как только на схему будет подано напряжение, ток пойдет через тепловое реле защиты, основную обмотку и катушку реле. Поскольку контакты A/S и L разомкнуты, пусковая обмотка обесточена и двигатель не запускается - это вызывает резкое возрастание потребляемого тока.
Повышение пускового тока (примерно пятикратное, по отношению к номиналу) обеспечивает такое падение напряжения на катушке реле (между точками L и Р/М), которое становится достаточным, чтобы сердечник втянулся в катушку, контакты A/S и L замкнулись и пусковая обмотка оказалась под напряжением.

Благодаря импульсу, полученному от пусковой обмотки, двигатель запускается и по мере того, как число его оборотов растет, потребляемый ток падает. Одновременно с этим падает напряжение на катушке реле (между L и Р/М). Когда мотор наберет примерно 80% от номинального числа оборотов, напряжение между точками L и Р/М станет недостаточным для удержания сердечника внутри катушки, контакт между A/S и L разомкнётся и полностью отключит пусковую обмотку.
Однако, при такой схеме пусковой момент на валу двигателя очень незначительный, поскольку в ней отсутствует пусковой конденсатор, обеспечивающий достаточную величину сдвига по фазе между током в основной и пусковой обмотках (напомним, что главным назначением конденсатора является увеличение пускового момента). Поэтому данная схема используется только в небольших двигателях с незначительным моментом сопротивления на валу.
Если речь идет о небольших холодильных компрессорах, в которых в качестве расширительного устройства обязательно используются капиллярные трубки, обеспечивающие выравнивание давления в конденсаторе и давления в испарителе при остановках, то в этом случае запуск двигателя происходит при минимально возможном моменте сопротивления на валу {см. раздел 51. "Капиллярные расширительные устройства").
При необходимости повышения пускового момента последовательно с пусковой обмоткой необходимо устанавливать пусковой конденсатор (Cd). Поэтому часто реле тока выпускаются с четырьмя гнездами, как например, в модели, представленной.
Реле такого типа поставляются с шунтирующей перемычкой между гнездами 1 и 2. При необходимости установки пускового конденсатора шунт удаляется.
Отметим, что при прозвонке такого реле омметром между гнездами М и 2 сопротивление будет близким к нулю и равным сопротивлению обмотки реле. Между гнездами 1 и S сопротивление равно бесконечности (при нормальном положении реле) и нулю (при реле, перевернутом крышкой вниз).

ВНИМАНИЕ! При замене неисправного реле тока новое реле всегда должно быть с тем же индексом, что и неисправное.

Действительно, существуют десятки различных модификаций реле тока, каждая из которых имеет свои характеристики (сила тока замыкания и размыкания, максимально допустимая сила тока. ..). Если вновь устанавливаемое реле имеет отличные от заменяемого реле характеристики, то либо его контакты никогда не будут замыкаться, либо будут оставаться постоянно замкнутыми.

Если контакты никогда не замыкаются, например, из-за того, что пусковое реле тока слишком мощное (рассчитано на замыкание при пусковом токе 12 А, в то время как на самом деле пусковой ток не превышает 8 А), вспомогательная обмотка не может быть запитана и мотор не запускается. Он гудит и отключается тепловым реле защиты.
Заметим, что эти же признаки сопровождают такую неисправность, как поломка контактов реле
В крайнем случае, проверить эту гипотезу можно замкнув накоротко на несколько секунд контакты 1 и S, например. Если мотор запускается, это будет доказательством неисправности реле.
Если контакт остается постоянно замкнутым, например, из-за низкой мощности пускового реле тока (оно должно размыкаться при падении тока до 4 А, а двигатель на номинальном режиме потребляет 6 А), пусковая обмотка окажется все время под напряжением. Заметим, что то же самое произойдет, если вследствие чрезмерной силы тока, контакты реле "приварятся" или если реле установлено верхом вниз*, из-за чего контакты будут оставаться постоянно замкнутыми.
Компрессор будет тогда потреблять огромный ток и, в лучшем случае, отключится тепловым реле защиты (в худшем случае он -сгорит). Если при этом в схеме присутствует пусковой конденсатор, он также будет все время под напряжением и при каждой попытке запуска будет сильно перегреваться, что в конечном счете приведет к его разрушению.

Нормальную работу пускового реле тока можно легко проверить с помощью трансформаторных клещей, установленных в линии конденсатора и пусковой обмотки. Если реле работает нормально, то в момент запуска ток будет максимальным, а когда контакт разомкнётся, амперметр покажет отсутствие тока.
Наконец, чтобы завершить рассмотрение пускового реле тока, нужно остановиться на одной неисправности, которая может возникать при чрезмерном росте давления конденсации. Действительно, любое повышение давления конденсации, чем бы оно ни обусловливалось (например, загрязнен конденсатор), неизбежно приводит к росту потребляемого двигателем тока (см. раздел 10. "Влияние величины давления конденсации на силу тока, потребляемого электромотором компрессора"). Этот рост иногда может оказаться достаточным, чтобы привести к срабатыванию реле и замыканию контактов, в то время как двигатель вращается. Последствия такого явления вы можете себе представить!
* Установка пускового реле в горизонтальной плоскости, как правило, дает такой же результат и также является неверной (прим. ред.).


Когда мощность двигателя растет (становясь выше, чем 600 Вт), возрастает и сила потребляемого тока, и использование пускового реле тока становится невозможным из-за того, что увеличивается потребный диаметр катушки реле. Пусковое реле напряжения тоже имеет катушку и контакты, но в отличие от реле тока, катушка реле напряжения имеет очень высокое сопротивление (наматывается тонким проводом с большим числом витков), а его контакты нормально замкнуты. Поэтому, вероятность перепутать эти два устройства очень незначительна.
 представлен внешний вид наиболее распространенного пускового реле напряжения, представляющего собой герметичную коробку черного цвета. Если прозвонить клеммы реле с помощью омметра, можно обнаружить, что между клеммами 1 и 2 сопротивление равно 0, а между 1-5 и 2-5 оно одинаково и составляет, например 8500 Ом (заметим, что клеммы 4 не включаются в схему и используются только для удобства соединения и разводки проводов на корпусе реле).

Контакты реле наверняка находятся между клеммами 1 и 2, поскольку сопротивление между ними равно нулю, однако к какой из этих клемм подключен один из выводов катушки определить нельзя, так как результат при измерениях будет одинаковым (см. схему на рис. 53.29).
Если у вас есть схема реле, проблем с определением общей точки не будет. В противном случае вам потребуется выполнить дополнительно маленький опыт, то есть подать питание вначале на клеммы 1 и 5, а затем 2 и 5 (измеренное между ними сопротивление составило 8500 Ом, следовательно, один из концов катушки подключен либо к клемме 1, либо к клемме 2).

Допустим, что при подаче напряжения на клеммы 1-5, реле будет работать в режиме "дребезга" (как зуммер) и вы отчетливо различите постоянное замыкание и размыкание его контакта (представьте последствия такого режима для двигателя). Это будет признаком того, что клемма 2 является общей и один из концов катушки подключен именно к ней. В случае
неуверенности вы можете проверить себя, подав питание на клеммы 5 и 2 (контакты 1 и 2
разомкнутся и будут оставаться разомкнутыми).
ВНИМАНИЕ! Если вы подадите напряжение на клеммы 1 и 2 (клеммы нормально замкнутых контактов), то получите короткое замыкание, что может быть очень опасным

Чтобы выполнить такую проверку, вы должны использовать напряжение 220 В, если реле предназначено для оснащения двигателя на 220 В (настоятельно рекомендуем использовать в цепи плавкий предохранитель, чтобы защитить схему от возможных ошибок при подключении). Однако может случиться так, что контакты реле не будут размыкаться ни при подаче питания на клеммы 1 и 5, ни при его подаче на клеммы 2 и 5, хотя катушка будет исправной (при прозвонке омметром сопротивление 1-5 и 2-5 одинаково высокое). Это может быть обусловлено самим принципом, заложенным в основу работы схемы с реле напряжения (сразу после данного абзаца мы его рассмотрим), который требует для срабатывания реле повышенного напряжения. Чтобы продолжить проверку, вы можете увеличить напряжение до 380 В (реле при этом ничего не угрожает, так как оно способно выдержать напряжение до 400 В).

Как только на схему подается питание, ток проходит через тепловое реле защиты и основную обмотку (С—>Р). Одновременно он проходит через пусковую обмотку (С—»А). нормально замкнутые контакты 2-1 и пусковой конденсатор (Cd). Все условия для запуска соблюдены и двигатель начинает вращение.
По мере того, как двигатель набирает обороты, в пусковой обмотке наводится дополнительное напряжение, которое добавляется к напряжению питания.

В конце запуска наведенное напряжение становится максимальным и напряжение на концах пусковой обмотки может достигать 400 В (при напряжении питания 220 В). Катушка реле напряжения сконструирована таким образом, чтобы разомкнуть контакты точно в тот момент, когда напряжение на ней превысит напряжение питания на величину, определенную разработчиком двигателя. Когда контакты I -2 разомкнутся, катушка реле остается запитанной напряжением, наведенным в пусковой обмотке (эта обмотка, намотанная на основную обмотку, представляет собой как бы вторичную обмотку трансформатора).
Во время запуска очень важно, чтобы напряжение на клеммах реле в точности соответствовало напряжению на концах пусковой обмотки. Поэтому пусковой конденсатор всегда должен включаться в схему между точками I и Р, а не между А и 2 Отметим, что при размыкании контактов 1-2 пусковой конденсатор полностью исключается из схемы.
Существует множество различных моделей реле напряжения, отличающихся своими характеристиками (напряжением замыкания и размыкания контактов...).

Поэтому, при необходимости замены неисправного реле напряжения, для этого нужно использовать реле той же самой модели.
Если реле для замены не вполне соответствует двигателю -это значит, что либо его контакты при запуске не будут замкнуты, либо будут замкнуты постоянно.
Когда при запуске контакты реле оказываются разомкнутыми, например из-за того, что реле слишком маломощное (оно срабатывает при 130 В, то есть сразу после подачи напряжения и пусковая обмотка запитана только как вторичная обмотка), двигатель не сможет запуститься, будет гудеть и отключится тепловым реле защиты (см. рис. 53.33).

Отметим, что такие же признаки будут иметь место в случае поломки контакта. В крайнем случае, всегда можно проверить эту гипотезу, замкнув на мгновение накоротко контакты 1 и 2. Если двигатель запустится, значит контакт отсутствует.

Запуск при помощи термистора (СТР)

Термистор, или терморезистор (СТР* - сокращение, в переводе означает положительный температурный коэффициент, то есть повышение сопротивления при росте температуры) включается в цепь так, как показано на рис. 53.37.
При неподвижном роторе мотора СТР холодный (имеет окружающую температуру) и его сопротивление очень низкое (несколько Ом). Как только на двигатель подается напряжение, запитывается основная обмотка. Одновременно ток проходит через низкое сопротивление СТР и пусковую обмотку, в результате чего двигатель запускается. Однако ток, текущий через пусковую обмотку, проходя через СТР, нагревает его, что обусловливает резкое повышение его температуры, а следовательно и сопротивления. По истечении одной-двух секунд температура СТР становится более 100°С, а его сопротивление легко превышает 1000 Ом.
Резкое повышение сопротивления СТР снижает ток в пусковой обмотке до нескольких миллиампер, что эквивалентно отключению этой обмотки так, как это сделало бы обычное пусковое реле. Слабый ток, не оказывая никакого влияния на состояние пусковой обмотки, продолжает проходить через СТР, оставаясь вполне достаточным, чтобы поддерживать его температуру на нужном уровне.
Такой способ запуска используется некоторыми разработчиками, если момент сопротивления при запуске очень малый, например, в установках с капиллярными расширительными устройствами (где при остановке неизбежно выравнивание давлений).
Однако, когда компрессор остановился, длительность остановки должна быть достаточно большой, чтобы не только обеспечить выравнивание давлений, но и, главным образом, охладить СТР (по расчетам для этого нужно как минимум 5 минут).
Всякая попытка запуска двигателя при горячем СТР (имеющим, следовательно, очень высокое сопротивление) не позволит пусковой обмотке запустить двигатель. За такую попытку можно поплатиться значительным возрастанием тока и срабатыванием теплового реле защиты.
Терморезисторы представляют собой керамические диски или стержни и основным видом неисправностей этого типа пусковых устройств является их растрескивание и разрушение внутренних контактов, наиболее часто обусловленное попытками запуска при горячих СТР, что
неизбежно влечет за собой чрезмерное повышение пускового тока.
. Мы часто указывали на важность соблюдения идентичности моделей при замене неисправных элементов электрооборудования (тепловые реле защиты, пусковые реле...) на новые, либо на те, которые рекомендуются для замены разработчиком. Мы советуем также при замене компрессора менять и комплект пусковых устройств (реле + конденсатор(ы)).
* Иногда встречается термин РТС, который означает то же самое, что и СТР {прим. peo.j.

Г) Обобщение наиболее часто встречающихся схем пусковых устройств

В документации различных разработчиков встречается множество схем с несколькими экзотическими названиями, которые мы сейчас разъясним. Воспользовавшись этим случаем, мы пополним наши знания и увидим роль рабочих конденсаторов.
Для лучшего понимания дальнейшего материала напомним, что в отличие от пусковых конденсаторов, рабочие конденсаторы рассчитаны на постоянное нахождение под напряжением и что конденсатор включается в схему последовательно с пусковой обмоткой, позволяя повысить крутящий момент на вачу двигателя.
1) Схема PSC (Permanent Split Capacitor) - схема с постоянно подключенным конденсатором является самой простой, поскольку в ней отсутствует пусковое реле.
Конденсатор, постоянно находясь под напряжением (см. рис. 53.40\ должен быть рабочим конденсатором. Поскольку с ростом емкости такой тип конденсаторов быстро увеличивается в размерах, их емкость ограничивается небольшими значениями (редко более 30 мкФ).
Следовательно, схема PSC используется, как правило, в небольших двигателях с незначительным моментом сопротивления на валу (малые холодильные компрессоры для капиллярных расширительных устройств, обеспечивающих выравнивание давлений при остановках, вентиляторные двигатели небольших кондиционеров).
  При подаче напряжения на схему, постоянно подключенный кон-
денсатор (Ср) дает толчок, позволяя запустить двигатель. Когда двигатель запущен, пусковая обмотка остается под напряжением вместе с последовательно включенным конденсатором, что ограничивает силу тока и позволяет повысить крутящий момент при работе двигателя.
2) Схема СТР. изученная ранее, называется также РТС (Positive Temperature Coefficient) и используется в качестве относительно простого пускового устройства.
Она может быть усовершенствована добавлением постоянно подключенного конденсатор.
При подаче напряжения на схему (после остановки длительностью не менее 5 минут), сопротивление термистора СТР очень низкое и конденсатор Ср, будучи замкнутым накоротко, не влияет на процесс запуска (следовательно, момент сопротивления на валу должен быть незначительным, что требует выравнивания давлений при остановке).
В конце запуска сопротивление СТР резко возрастает, но вспомогательная обмотка остается подключенной к сети через конденсатор Ср, который позволяет повысить крутящий момент при работе двигателя (например, при росте давления конденсации).
Поскольку конденсатор все время находится под напряжением,
пусковые конденсаторы в схемах этого типа использовать нельзя.

 53.2. УПРАЖНЕНИЕ 2

Однофазный двигатель с напряжением питания 220 В, оснащенный рабочим конденсатором с емкостью 3 мкФ, вращает вентилятор кондиционера. Переключатель имеет 4 клеммы: "Вход" (В), "Малая скорость" (МС), "Средняя скорость" (СС), "Большая скорость" (БС), позволяющие скоммутировать двигатель с сетью таким образом, чтобы выбрать требуемое значение (МС, СС или БС) числа оборотов.

Решение


Набросаем, согласно нашему предположению внутреннюю схему двигателя, сверяясь с данными измерения сопротивлений (например, между Г и Ж должно быть 290 Ом, а между Г и 3 - 200 Ом).
Остается только включить в схему переключатель, помня о том, что максимальная скорость вращения (БС) достигается, если двигатель напрямую подключен к сети . И напротив, минимальное число оборотов будет обеспечено при самом слабом напряжении питания, следовательно, при задействовании максимального значения гасящего сопротивления.

Такие двигатели, редко встречающиеся в настоящее время, могут однако использоваться в качестве привода сальниковых компрессоров. Чтобы изменить направление вращения двигателя, достаточно крест-накрест поменять точку соединения пусковой и основной обмоток.
В качестве примера на рис.  показано, как конец пусковой обмотки стал началом, а начало — концом.
Заметим, что в этом случае направление прохождения тока по пусковой обмотке изменилось на противоположное, что позволяет дать в момент запуска импульс магнитного поля в обратном направлении.
Наконец, отметим также двухпроводные двигатели с "витком Фраже" или с "фазосдвигаю-щим кольцом", широко используемые для привода небольших вентиляторов с низким моментом сопротивления (как правило, лопастных). Эти двигатели очень надежные, хотя и имеют малый крутящий момент, и при их включении в сеть отсутствуют какие-либо особые проблемы, поскольку они имеют всего два провода (конечно, плюс заземление).

В) Пусковые реле
Вне зависимости от конструкции, задачей пускового реле является отключение пусковой обмотки, как только двигатель наберет примерно 80% номинального числа оборотов. После этого, двигатель считается запущенным и продолжает вращение только с помощью рабочей обмотки.
Существует два основных типа пусковых реле: реле тока и реле напряжения. Мы упомянем также запуск с помощью термистора СТР.
Вначале изучим пусковое реле тока
Этот тип реле, как правило, применяется в небольших однофазных двигателях, используемых для привода компрессоров, мощность которых не превышает 600 Вт (домашние холодильники, небольшие морозильные камеры...).

Размер конденсатора для известной токовой нагрузки

Заранее извиняюсь за длинный вопрос, но я зашел в тупик, пытаясь решить интересную проблему с размером конденсатора. Я надеюсь, что здесь кто-нибудь может помочь.

Описание проблемы

У меня есть нагрузка с регулируемым током, состоящая из нескольких двигателей постоянного тока, выполняющих заданную последовательность работы. В течение интересующего периода времени у меня есть данные о потребляемом токе нагрузки с течением времени. Он был рассчитан с использованием требований к крутящему моменту двигателей для этого приложения и состоит из множества отдельных точек, разделенных через равные промежутки времени в течение периода выборки.Эти данные показывают, что, как и следовало ожидать, в токе нагрузки наблюдаются сильноточные всплески. Я хочу рассчитать минимальный размер конденсатора \ $ C \ $, чтобы напряжение конденсатора \ $ v_c (t) \ $ никогда не падало ниже 90% напряжения питания \ $ V_s \ $, предполагая, что \ $ v_c (0) = V_s \ $. Ниже представлена ​​упрощенная схема проблемы.

Схема

смоделировать эту схему - Схема создана с помощью CircuitLab

Известные значения

  • \ $ V_s \ $ и \ $ R_s \ $ известны
  • Известно время наибольшего всплеска тока \ $ t_ {peak} \ $
  • \ $ i_ {load} (t) \ $ известно в интервале выборки от \ $ t = 0 \ $ до точки за пределами \ $ t = t_ {peak} \ $
  • \ $ v_c (t) \ $ известен для двух значений \ $ t \ $:
    • \ $ v_c (0) = V_s \ $
    • \ $ v_c (t_ {пик}) \ geq 0. 9В_с \
    • $

Предположим, что источник \ $ V_s \ $ может обеспечивать бесконечный ток. В идеале я также хотел бы знать, как решить эту проблему, если есть текущий предел для \ $ V_s \ $, но это предположение упрощает проблему.

Попытка решения

Я начинаю с приравнивания входных и выходных токов в узле, помеченном \ $ v_c (t) \ $:

$$ i_s (t) = i_c (t) + i_ {load} (t) \ label {kcl} \ tag {1}

$

Мы знаем \ $ i_ {load} (t) \ $, и два других значения могут быть представлены достаточно легко:

$$ i_s (t) = \ frac {V_s - v_c (t)} {R_s} \\ i_c (t) = C \ frac {dv_c} {dt}

$

Подставляя в \ ref {kcl}, получаем: $$ \ frac {V_s - v_c (t)} {R_s} = C \ frac {dv_c} {dt} + i_ {load} (t)

$

Переставляя, получаем:

$$ \ begin {align} \ frac {dv_c} {dt} + \ frac {v_c (t)} {R_sC} = \ frac {V_s - R_si_ {load} (t)} {R_sC} \ label {origEq} \ tag {2} \ end {align}

$

Я пытаюсь решить это линейное дифференциальное уравнение первого порядка для \ $ v_c (t) \ $ и использую условия из раздела известных значений , чтобы найти минимальную емкость \ $ C \ $. {t_ {peak}} {i_ {load} (t) dt} \ $, тогда интеграл \ $ f (t) \ $ в \ ref {f} оценивается как \ $ 0 \ $, что я считаю неверным.

Есть идеи, что делать дальше?

Как рассчитать номиналы конденсаторов для блока питания 5 В постоянного тока

Ответ на этот вопрос зависит от нескольких вещей:

Прежде всего, в дополнение к этим компонентам вам понадобится понижающий трансформатор, чтобы сделать двухполупериодное выпрямленное выходное напряжение вашего мостового выпрямителя достаточно малым.Вы не можете подавать выпрямленные 220 В напрямую на LM7805, потому что LM7805 работает в диапазонах входных напряжений от 7 В до 20 В (и имеет максимальное входное напряжение 35 В).

Если мы предположим, что ваш понижающий трансформатор снижает амплитуду синусоидальной волны 60 Гц с 220 В до 15 В, и если мы предположим, что ваш источник питания 5 В должен будет выдавать ток не более I_max = 1 А, тогда мы можем начать производя некоторые расчеты. Теперь, как и в этой статье в Википедии, ваш резервуарный конденсатор, который вы разместите после мостового выпрямителя, будет иметь V_max = 15 В, что является амплитудой вашей синусоидальной волны. На изображении:

видно, что конденсатор разряжается в течение почти всего периода полуволновой выпрямленной волны (в нашем случае этот разряд вызван током нагрузки I_max = 1 А, идущим в LM7805). Время разряда накопительного конденсатора в случае полуволнового выпрямителя составляет T_discharge = T = (1 / f) = (1/60 Гц) = 16,6 мс, однако обратите внимание, что в нашем случае у нас есть более сложный выпрямитель ( Диодный мост), который дает двухполупериодный выпрямленный выход. Итак, время разряда будет T_discharge = T / 2 = (1/2 * f) = 8.3 мс.

Теперь, в начале каждого периода разряда, наш конденсатор заряжается до V_max = 15 В. Для предотвращения падения напряжения конденсатора ниже V_min = 7 В (что является самой низкой входной рабочей точкой для регулятора напряжения LM7805) в конце периода разряда, емкость конденсатора должна быть выбрана из уравнения:

C> = (I_max * T_discharge) / (V_beforedischarge-V_afterdischarge)

Использование значений; V_beforedischarge = V_max = 15 В и V_afterdischarge = V_min = 7 В и I_max = 1 А и T_discharge = 8.3 мс, мы можем вычислить, что:

C_min = (1 A) * (8,3 мс) / (15 В - 7 В) = 1 мФ. Вы можете видеть, что если вы используете понижающий трансформатор, который снижает входное напряжение 220 В до 20 В вместо 15 В, и если вашему источнику питания потребуется ток не более I_max = 0,5 А, вы можете использовать еще меньшую емкость со значением:

C_min = (0,5 A) * (8,3 мс) / (20 В - 7 В) = 0,32 мФ.

Здесь

, вы можете увидеть пример дизайна, в котором используется LM7805, как и вы, и они выбрали значение конденсатора 0.47 мФ, что близко к рассчитанным нами выше значениям.

Правильный выбор размера конденсатора

Правильный выбор размера
конденсатор

Я не знаю, сколько раз техник говорил, что они установили деталь, основываясь на том, что было на их грузовике для обслуживания. Я слышал о техниках, которые тратят деньги на завышение размеров контакторов, сокращение воздушных фильтров и даже использование контролируемых веществ для очистки сточных вод от конденсата! Конечно, все эти сценарии выполняют свою работу, но я бы поспорил по множеству причин, по которым их не следует делать.Единственное, что меня беспокоит, - это когда технический специалист не проверяет, что они устанавливают конденсатор двойного хода правильного размера. Вы не поверите, но есть простой способ определить конденсатор правильного размера, не дожидаясь ожидания гуру дистрибьютора. Конечно, вы можете использовать мультиметр, который считывает микрофарады (мкФ), но он скажет вам только, если имеющийся конденсатор слабый, а не правильного размера!

Тестирование вольт / ампер

Когда конденсаторный блок работает под нагрузкой, вам необходимо измерить общее напряжение между клеммами HERM и COMMON на рабочем конденсаторе (т.е.е. 345 В переменного тока). Затем измерьте силу тока на проводе, ведущем от HERM до START на компрессоре (т.е. 4 ампера).

Используйте приведенное ниже уравнение, чтобы проверить размер конденсатора. Полученная микрофарада (мкФ) должна соответствовать размеру установленного конденсатора.

Конденсатор слишком большой или недостаточной емкости вызовет дисбаланс магнитного поля двигателя. Эта нерешительность при работе приведет к шумной работе, увеличению потребления энергии, падению мощности двигателя и, в конечном итоге, к перегреву или перегрузке двигателей, таких как компрессоры.Рабочий конденсатор должен иметь точную микрофараду (мкФ), на которую рассчитан двигатель. Конденсаторы номиналом более 70 мкФ считаются пусковыми конденсаторами и обычно удаляются из схемы электрически во время работы. Отсюда правило +/- 10% рейтинга ТОЛЬКО для пусковых конденсаторов! Номинальное напряжение должно быть не меньше указанного значения для двигателя, для центральных тепловых насосов и кондиционеров это обычно не менее 370 В переменного тока. Большинство новых конденсаторных агрегатов рассчитаны на конденсаторы 440 В переменного тока и более долговечны при колебаниях напряжения питания.Я видел некоторые универсальные конденсаторы двойного действия, рассчитанные на 700 В переменного тока, так как это номинальное напряжение не влияет на характеристики УФ. Однако изменения в uf повлияют на потребляемую мощность и отразятся на использовании киловатт-часов.


Выполняя в этом году техническое обслуживание в начале сезона для ваших клиентов, окажите им услугу, протестировав конденсаторы и проверив их размер. Вы можете просто увеличить общее количество билетов на обслуживание и сэкономить часть всей важной энергии. Вы даже можете предотвратить перезвон во время следующей аномальной жары!

Подпишитесь бесплатно на отличный контент!

Как найти размер конденсатора в кВАр и фарадах для коррекции коэффициента мощности

Как найти правильное значение емкости конденсатора в кВАр и микрофарадах для коррекции коэффициента мощности - 3 метода

Поскольку мы получили много электронных писем и сообщений от аудитории для составьте пошаговое руководство, в котором показано, как рассчитать надлежащий размер конденсаторной батареи в кВАр и микрофарадах для коррекции коэффициента мощности и улучшения как в однофазных, так и в трехфазных цепях.

В этой статье будет показано, как найти конденсаторную батарею подходящего размера как в микрофарадах, так и в кВАр, чтобы улучшить существующие «т.е. отставание «P.F от целевого», т. е. желаемый », поскольку скорректированный коэффициент мощности имеет множество преимуществ. Ниже мы показали три различных метода с решенными примерами для определения точного значения емкости конденсатора для коррекции коэффициента мощности.

Теперь давайте начнем и рассмотрим следующие примеры…

Как рассчитать значение конденсатора в кВАр?

Пример: 1

Трехфазный асинхронный двигатель мощностью 5 кВт имеет P.F (коэффициент мощности) 0,75 с запаздыванием. Какой размер конденсатора в кВАр требуется для повышения коэффициента мощности до 0,90?

Решение № 1 (простой метод с использованием табличного множителя)

Потребляемая мощность двигателя = 5 кВт

Из таблицы множитель для улучшения коэффициента мощности с 0,75 до 0,90 составляет 0,398

Требуемый кВАр конденсатора для повышения коэффициента мощности с 0,75 до 0,90

Требуемый конденсатор, кВАр = кВт x Таблица 1, множитель 0,75 и 0,90

= 5 кВт x 0,398

= 1.99 кВАр

И номинал конденсаторов, подключенных в каждой фазе

= 1,99 кВАр / 3

= 0,663 кВАр

Решение № 2 (классический метод расчета)

Мощность двигателя = P = 5 кВт

Исходный коэффициент мощности = Cosθ 1 = 0,75

Конечный коэффициент мощности = Cosθ 2 = 0,90

θ 1 = Cos -1 = (0,75) = 41 ° 0,41; Tan θ 1 = Tan (41 ° .41) = 0,8819

θ 2 = Cos -1 = (0.90) = 25 ° 0,84; Tan θ 2 = Tan (25 ° .50) = 0,4843

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,75 до 0,90

Требуемый конденсатор, кВАр = P (Tan θ 1 - Tan θ 2 )

= 5 кВт (0,8819 - 0,4843)

= 1,99 кВАр

И номинал конденсаторов, подключенных в каждой фазе

1,99 кВАр / 3 = 0,663 кВАр

Примечание.

Следующие таблицы (приведенные в конце этого поста) были подготовлены для упрощения расчета кВАр для улучшения коэффициента мощности.Размер конденсатора в кВАр - это мощность в кВт, умноженная на коэффициент в таблице для улучшения существующего коэффициента мощности до предлагаемого коэффициента мощности. Ознакомьтесь с другими решенными примерами ниже.

Пример 2:

Генератор выдает нагрузку 650 кВт с коэффициентом мощности 0,65. Какой размер конденсатора в кВАр требуется, чтобы повысить коэффициент мощности (P.F) до единицы (1)? И сколько еще кВт может выдать генератор при той же нагрузке в кВА, когда коэффициент мощности улучшится.

Решение № 1 (Простой метод таблицы с использованием Таблица Несколько )

Подача кВт = 650 кВт

Из таблицы 1, множитель для улучшения коэффициента мощности с 065 к единице (1) составляет 1,169

Требуемый конденсатор кВАр для улучшения коэффициента мощности с 0,65 до единицы (1).

Требуемый конденсатор, кВАр = кВт x Таблица 1, множитель 0,65 и 1,0

= 650 кВт x 1,169

= 759,85 кВАр

Мы знаем, что P.F = Cosθ = кВт / кВА. . .or

кВА = кВт / Cosθ

= 650 / 0,65 = 1000 кВА

Когда коэффициент мощности повышен до единицы (1)

Количество кВт = кВА x Cosθ

= 1000 x 1 = 1000 кВт

Следовательно увеличенная мощность от генератора

1000кВт - 650кВт = 350кВт

Решение № 2 (классический метод расчета)

Подача кВт = 650 кВт

Исходная P.F = Cosθ 1 = 0,65

Конечная P.F = Cosθ 2 = 1

θ 1 = Cos -1 = (0,65) = 49 ° 0,45; Tan θ 1 = Tan (41 ° .24) = 1,169

θ 2 = Cos -1 = (1) = 0 °; Tan θ 2 = Tan (0 °) = 0

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,75 до 0,90

Требуемый конденсатор, кВАр = P (Tan θ 1 - Tan θ 2 )

= 650 кВт ( 1.169–0)

= 759.85 кВАр

Как рассчитать емкость конденсатора в микрофарадах и кВАр?

Следующие методы показывают , как определить требуемую емкость конденсаторной батареи как в кВАр, так и в микрофарадах . Кроме того, решенные примеры также показывают, что как преобразовать емкость конденсатора в микрофарадах в кВАр и кВАр в микрофарады для P.F. Таким образом, конденсаторная батарея подходящего размера может быть установлена ​​параллельно каждой стороне фазовой нагрузки для получения заданного коэффициента мощности.

Пример: 3

Однофазный двигатель на 500 вольт 60 c / с принимает ток полной нагрузки 50 ампер с запаздыванием по коэффициенту мощности 0,86. Коэффициент мощности двигателя необходимо повысить до 0,94, подключив к нему батарею конденсаторов. Рассчитать требуемую емкость конденсатора как в кВАр, так и в мк-фарадах?

Решение:

(1) Найти требуемую емкость в кВАр для улучшения коэффициента мощности с 0,86 до 0,94 (два метода)

Решение № 1 (метод таблицы)

Двигатель Вход = P = V x I x Cosθ

= 500 В x 50 А x 0.86

= 21,5 кВт

Из таблицы, множитель для улучшения коэффициента мощности с 0,86 до 0,94 составляет 0,230

Требуемый конденсатор, кВАр для повышения коэффициента мощности с 0,86 до 0,94

Требуемый конденсатор, кВАр = кВт x табличный множитель 0,86 и 0,94

= 21,5 кВт x 0,230

= 4,9 кВАр

Решение № 2 (метод расчета)

Вход двигателя = P = V x I x Cosθ

= 500 В x 50 A x 0.86

= 21,5 кВт

Фактический или существующий коэффициент мощности = Cosθ 1 = 0,86

Требуемый или целевой коэффициент мощности = Cosθ 2 = 0,94

θ 1 = Cos -1 = (0,86) = 30,68 °; Tan θ 1 = Tan (30,68 °) = 0,593

θ 2 = Cos -1 = (0,95) = 19,94 °; Tan θ 2 = Tan (19,94 °) = 0,363

Требуемый конденсатор, кВАр для улучшения коэффициента мощности с 0,86 до 0,95

Требуемый конденсатор, кВАр = P в кВт (Tan θ 1 - Tan θ 2 )

= 21.5 кВт (0,593 - 0,363)

= 4,954 кВАр

(2) Найти требуемую емкость емкости в фарадах для улучшения коэффициента мощности с 0,86 до 0,97 (два метода)

Решение № 1 (метод таблицы)

Мы уже рассчитали требуемую емкость конденсатора в кВАр, поэтому мы можем легко преобразовать ее в фарады с помощью этой простой формулы

Требуемая емкость конденсатора в фарадах / микрофарадах

  • C = кВАр / (2π x f x V 2 ) в Фараде
  • C = kVAR x 10 9 / (2π x f x V 2 ) 0006

Ввод значений в формулу выше

= (4.954 кВАр) / (2 x π x 60 Гц x 500 2 В)

= 52,56 мкФ

Решение № 2 (метод расчета)

кВАр = 4,954… (i)

Мы знаем что;

I C = V / X C

В то время как X C = 1 / 2π x f x C

I C = V / (1 / 2π x f x C)

I C = V x 2π x f x C

= (500V) x 2π x (60 Гц) x C

I C = 188495.5 x C

And,

kVAR = (V x I C ) / 1000… [kVAR = (V x I) / 1000]

= 500V x 188495,5 x C

I C = 94247750 x C… (ii)

Приравнивая уравнения (i) и (ii), мы получаем

94247750 x C = 4,954 кВАр x C

C = 4,954 кВАр / 94247750

C = 78,2 мкФ

Пример 4

Какое значение емкости должно быть подключено параллельно с нагрузкой 1 кВт при 70% отстающем коэффициенте мощности от источника 208 В, 60 Гц, чтобы поднять общий коэффициент мощности до 91%.

Решение:

Вы можете использовать метод таблицы или метод простого расчета, чтобы найти необходимое значение емкости в фарадах или кВАр, чтобы улучшить коэффициент мощности с 0,71 до 0,97. Итак, в этом случае мы использовали метод таблицы.

P = 1000 Вт

Фактический коэффициент мощности = Cosθ 1 = 0,71

Требуемый коэффициент мощности = Cosθ 2 = 0,97

Из таблицы, множитель для улучшения коэффициента мощности с 0,71 до 0,97 составляет 0,741

Требуемый конденсатор kVAR до улучшить П.F от 0,71 до 0,97

Требуемый конденсатор, кВАр = кВт x табличный множитель 0,71 и 0,97

= 1 кВт x 0,741

= 741 ВАр или 0,741 кВАр (требуемое значение емкости в кВАр)

Ток в конденсаторе =

I C = Q C / V

= 741 кВАр / 208 В

= 3,56 A

И

X C = V / I C

= 208,4 В / 3 Ом

C = 1 / (2π x f x X C )

C = 1 (2π x 60 Гц x 58.42 Ом)

C = 45,4 мкФ (требуемое значение емкости в фарадах)

Конденсатор, кВАр в мкФарад и мк-фарад в кВАр Преобразование

Следующие формулы используются для расчета и преобразования конденсатора кВАр Фарад и наоборот.

Требуемый конденсатор в кВАр

Конденсатор преобразовывает фарады и микрофарады в вар, кВАр и мВАр.

  • VAR = C x 2π x f x V 2 x 10 -6 … VAR
  • VAR = C в мкФ x f В 2 / (159.155 x 10 3 )… в ВАр
  • кВАр = C x x f x В 2 x 10 -9 … в кВАр
  • кВАр = C в мкФ x f x V 2 ÷ (159,155 x 10 6 )… в кВАр
  • MVAR = C x x f В 2 x 10 -12 … в МВАр
  • МВАр = C в мкФ x f x В 2 ÷ (159.155 x 10 9 )… в МВАр

Требуемый конденсатор в фарадах / микрофарадах.

Конденсатор преобразователя, кВАр в фарадах и микрофарадах

  • C = кВАр x 10 3 / 2π x f x В 2 … в фарадах
  • Q в кВАр / f x V 2 … в Фарадах
  • C = кВАр x 10 9 / (2π x f x V 2 ) … в микрофарадах
  • C = 159.155 x 10 6 x Q в кВАр / f x В 2 … в микрофараде

Где:

Полезно знать:

Ниже приведены важные электрические формулы используется при расчете улучшения коэффициента мощности.

Активная мощность (P) в ваттах:

  • кВт = кВА x Cosθ
  • кВт = л.с. x 0,746 или (л.с. x 0,746) / КПД… (л.с. = мощность двигателя в лошадиных силах)
  • кВт = √ (кВА 2 - кВАр 2 )
  • кВт = P = V x I Cosθ… (однофазный)
  • кВт = P = √3x V x I Cosθ… (трехфазный межфазный)
  • кВт = P = 3x V x I Cosθ… (трехфазная фаза)

Полная мощность (S) в ВА:

  • кВА = √ (кВт 2 + кВАр 2 )
  • кВА = кВт / Cosθ

Реактивная мощность (Q) в ВА:

  • кВАр = √ (кВА 2 - кВт 2 )
  • кВАр = C x (2π x f x В 2 )

Коэффициент мощности (от 0.От 1 до 1)

  • Коэффициент мощности = Cosθ = P / VI… (однофазный)
  • Коэффициент мощности = Cosθ = P / (√3x V x I)… (трехфазный межфазный)
  • Коэффициент мощности = Cosθ = P / (3x V x I)… (трехфазная линия на нейтраль)
  • Коэффициент мощности = Cosθ = кВт / кВА… (как однофазный, так и трехфазный)
  • Коэффициент мощности = Cosθ = R / Z… (сопротивление / Импеданс)

И

  • X C = 1 / (2π x f x C)… (X C = емкостное реактивное сопротивление)
  • I C = V / X C … (I = V / R)

Связанные сообщения:

Калькуляторы размеров конденсаторных батарей и коррекции коэффициента мощности

Если два вышеупомянутых метода кажутся немного сложными (что не должно быть по крайней мере), вы можете затем использовать следующие Онлайн калькуляторы коэффициента мощности кВАр и микрофарад, сделанные нашей командой для вас.

Таблица размеров конденсаторов и таблица для коррекции коэффициента мощности

Следующая диаграмма коррекции коэффициента мощности может использоваться, чтобы легко найти правильный размер конденсаторной батареи для желаемого улучшения коэффициента мощности. Например, если вам нужно улучшить существующий коэффициент мощности с 0,6 до 0,98, просто посмотрите на множитель для обоих цифр в таблице, равный 1,030. Умножьте это число на существующую активную мощность в кВт. Вы можете найти реальную мощность, умножив напряжение на ток и существующий отстающий коэффициент мощности i.е. P в ваттах = напряжение в вольтах x ток в амперах x Cosθ 1 . Таким простым способом вы найдете необходимое значение емкости в кВАр, которое необходимо для получения желаемого коэффициента мощности.

Таблица - от 0,01 до 0,25 Таблица - от 0,26 до 0,50 Таблица - от 0,51 до 0,75 Таблица - от 0,76 до 1,0

Вот вся таблица, если вам нужно ее скачать в качестве справки.

Вся таблица - от 0,10 до 1,0 (Щелкните изображение, чтобы увеличить)

Связанные сообщения

Руководство по выбору пускового конденсатора

Руководство по выбору пускового конденсатора

Пусковой конденсатор используется для кратковременного сдвига фазы в пусковой обмотке однофазного электродвигателя с целью увеличения крутящего момента.Пусковые конденсаторы обладают очень большим значением емкости для своего размера и номинального напряжения. В результате они предназначены только для периодического использования. Из-за этого пусковые конденсаторы выйдут из строя после того, как будут слишком долго оставаться под напряжением из-за неисправной пусковой цепи двигателя.

Индекс

Обзор
Конденсаторы пусковые и рабочие »
Резисторы и их размеры»
Устранение неисправностей »

Технические характеристики
Напряжение»
Емкость »
Частота (Гц)»
Тип соединительной клеммы »
Форма корпуса»
Размер корпуса »


Обзор

Старт vs.Конденсаторы рабочие

Пусковые конденсаторы дают большое значение емкости, необходимое для пуска двигателя в течение очень короткого (секунд) периода времени. Они предназначены только для прерывистой работы и катастрофически выйдут из строя, если будут слишком долго находиться под напряжением. Рабочие конденсаторы используются для непрерывного управления напряжением и током обмоток двигателя и поэтому работают в непрерывном режиме. Как правило, они имеют гораздо меньшее значение емкости.


Взаимозаменяемы ли пусковой и рабочий конденсаторы?

Да и нет.В необычных обстоятельствах рабочий конденсатор может использоваться в качестве пускового конденсатора, но доступные значения намного ниже, чем значения, обычно доступные для специальных пусковых конденсаторов. Номинальные значения емкости и напряжения должны соответствовать исходным характеристикам пускового конденсатора. Пусковой конденсатор нельзя использовать в качестве рабочего конденсатора, потому что он не может выдерживать ток непрерывно (всего пару секунд).

Посмотрите видеоинструкцию ниже, чтобы узнать о различиях между пусковыми и рабочими конденсаторами.


Что такое резистор и нужен ли он?

Большинство заменяемых пусковых конденсаторов не имеют резистора. Вы можете проверить состояние старого, проверив значение сопротивления, или просто заменить его новым. Это должно быть где-то около 10-20 кОм и около 2 Вт. Резисторы обычно либо припаяны, либо обжаты на выводах. Назначение резистора - сбросить остаточное напряжение в конденсаторе после того, как он был отключен от цепи после запуска двигателя.Не все пусковые конденсаторы будут использовать один, поскольку есть другие способы сделать это. Важная часть заключается в том, что если в вашем оригинальном конденсаторе он был, вам необходимо заменить его на новый.

Узнайте, как установить спускной резистор на пусковой конденсатор.


Устранение неполадок

Как узнать, неисправен ли мой пусковой конденсатор?

Большинство отказов конденсатора электродвигателя может быть одного из двух типов:

"Стартовый колпачок вырвался наружу!" Это то, что мы называем катастрофическим отказом.Обычно это вызвано тем, что пусковая цепь электродвигателя задействована слишком долго для кратковременного режима работы пускового конденсатора. Верхняя часть стартовой крышки буквально сорвана, а внутренности частично или полностью выброшены.

Разрыв пузыря сброса давления Точно так же, но не столь драматично, на стартовой крышке может быть только разорванный пузырек сброса давления. В любом случае легко сказать, что стартовый колпачок нуждается в замене.

Мой двигатель медленно заводится.Мой пусковой конденсатор плохой?

Ответ на этот вопрос: возможно. Возможно, ваш пусковой конденсатор потерял свою номинальную емкость из-за износа и старения, или у вас могут быть другие проблемы, не связанные с конденсатором, которые связаны с другими компонентами двигателя.

Посмотрите видео ниже о том, как заменить пусковой конденсатор.


Технические характеристики

В большинстве применений пусковых конденсаторов используется номинальная емкость 50–1200 мкФ и напряжения 110/125, 165, 220/250 и 330 В переменного тока.Они также обычно всегда рассчитаны на 50 и 60 Гц. Корпуса обычно имеют круглую форму и отлиты из черного фенольного или бакелитового материалов. Концевые заделки обычно представляют собой нажимные клеммы ¼ "с двумя клеммами на соединительный столб.

Напряжение

Выберите конденсатор с номинальным напряжением, равным или превышающим исходный конденсатор. Если вы используете конденсатор на 370 вольт, подойдет конденсатор на 370 или 440 вольт. Блок на 440 вольт действительно прослужит дольше. Конденсатор будет иметь маркированное напряжение, указывающее допустимое пиковое напряжение, а не рабочее напряжение.

Емкость

Выберите конденсатор со значением емкости (указанным в MFD, мкФ или микрофарадах), равным исходному конденсатору. Не отклоняйтесь от исходного значения, так как оно задает рабочие характеристики мотора.

Частота (Гц)

Выберите конденсатор с номинальной частотой Гц оригинала. Почти все заменяемые конденсаторы будут иметь маркировку 50/60.

Тип соединительной клеммы

Почти в каждом конденсаторе используется вставной соединитель "в виде флажка.Следующий вопрос: «Сколько клемм на клеммную колодку необходимо для двигателя приложения?» Большинство пусковых конденсаторов имеют две клеммы на стойку, а большинство рабочих конденсаторов имеют 3 или 4 клеммы на стойку. Убедитесь, что выбранный вами конденсатор имеет по крайней мере такое же количество клемм на клемму, что и оригинальный конденсатор двигателя.

Форма корпуса

Практически все пусковые конденсаторы имеют круглый корпус. Конденсаторы круглого сечения являются наиболее распространенными, но многие двигатели по-прежнему имеют овальную конструкцию.С точки зрения электричества разницы нет. Подгонка - единственный вопрос здесь. Если пространство в монтажной коробке не ограничено, стиль корпуса значения не имеет.

Размер корпуса

Как и форма корпуса, электрические габариты не имеют значения. Выберите конденсатор, который поместится в отведенном для этого месте.


Выбор продукции

110/125 В переменного тока

220/250 В переменного тока

165V

330В

Простые формулы конденсатора накопления энергии

У вас есть конденсатор или вам нужно его выбрать, вы хотите вычислить некоторые вещи о нем с точки зрения его использования для хранения / доставки энергии (в отличие от фильтрации), вы хотели бы просто знать немного больше, чем онлайн-калькулятор, но не намного больше, потому что математика причиняет боль вашему мозгу.Эта страница для вас.

ln () (натуральный логарифм) часто встречается в уравнениях, натуральный логарифм - это обратное преобразование e в степень чего-либо (то есть ln (e x ) = x), в таблицах это функция " ln () ", в коде (например, C / C ++ [Arduino!]), это обычно функция" log () ".
Все формулы предполагают «идеальный» конденсатор, без учета ESR или других неидеальных характеристик. Достаточно хорошо, чтобы попасть в бейсбольный стадион.
Вы можете изменить поля в каждом разделе, чтобы сделать свой собственный расчет.

Помните, что ваше напряжение питания для зарядки конденсатора не должно превышать максимальное номинальное напряжение ваших конденсаторов (говоря в общих чертах).

У меня есть неизвестный конденсатор, известный резистор и секундомер, рассчитываю емкость.

C = (0 - секунды) / R / ln (1- (VCharged / VSupply))

Где секунды - это количество секунд, за которые взимается плата; R - резистор в Ом; VCharged - напряжение конденсатора в секундах; VSupply - это напряжение питания.

Вам не нужно заряжать конденсатор полностью, чтобы измерить его, если вы начинаете с разряда, измеряете период зарядки и записываете напряжение, которое вы достигли за этот период, вы можете выполнить расчет - но чем дольше (медленнее) вы заряжаете тем более точным будет ваш результат, потому что ваши ошибки и т. д. будут менее значимыми. Когда самая маленькая цифра на вашем счетчике, измеряющая напряжение конденсатора, изменяется один раз в секунду, это было бы разумным моментом для остановки.Имейте в виду также, что конденсаторы имеют заведомо большой допуск (+/- 30% вполне нормально для некоторых типов конденсаторов).

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Сколько ампер-часов (Ач) в этом конденсаторе?

Ач = (C * (VCharged - VDepleted)) / 3600

Где VCharged - это напряжение заряда конденсатора, VDepleted - это опустошенное напряжение, а C - это емкость.

Здесь вы можете увидеть, что если вы используете конденсатор для замены батареи, вам действительно нужно подключить его к преобразователю постоянного / постоянного тока с подходящим диапазоном входного напряжения, чтобы вы могли разрядить свой конденсатор до очень низкого напряжения, взяв наш В приведенном выше примере, если бы вместо напряжения отключения 3,3 В у нас было напряжение отключения 0,5 В, мы получили бы 10 мАч вместо жалких 2,5 мАч.

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Пример

Конденсатор 10F, который был заряжен до 4,2В, разряжен до 3,3В, сколько там мАч?

(10 * (4,2 - 3,3)) / 3600 = 0,0025 Ач = 2,5 мАч

Сколько ватт-часов (Втч) в этом конденсаторе?

Вт · ч = (VCharged 2 - VDepleted 2 ) / (7200 / C)

Здесь вы можете видеть, что если вы используете конденсатор для замены батареи, вам действительно нужно подключить его к повышающему преобразователю с подходящим диапазоном входного напряжения, чтобы вы могли разрядить свой конденсатор до очень низкого напряжения, взяв наш пример выше. , если вместо 3.Напряжение отключения 3 В, у нас было напряжение отключения 0,5 В, мы получили бы 0,024 Вт-ч вместо мизерных 0,009 Вт-ч

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Пример

Конденсатор 10F, который был заряжен до 4,2 В, разряжен до 3,3 В, сколько в нем Wh?

((4,2 2 ) - (3,3 2 )) / (7200/10) = 0,009375 Вт · ч

Сколько времени потребуется, чтобы зарядить этот конденсатор постоянным сопротивлением?

секунд = 0 - (R * C * ln (1 - (VCharged / VSupply)))

Где VCharged - это напряжение, измеренное на конденсаторе, а VSupply - это напряжение источника питания, C - емкость в Фарадах, а R - резистор в Ом.

VCharged должно быть ниже, чем VSupply - помните, что по мере того, как конденсатор заряжается больше, его сопротивление зарядке увеличивается, оно никогда не может достичь того же напряжения, что и напряжение питания, даже если оно на неизмеримо меньше, оно всегда меньше.

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Сколько времени потребуется, чтобы разрядить этот конденсатор через постоянное сопротивление?


секунд = 0 - (R * C * ln (VDepleted / VCharged))

Где VCharged - начальное напряжение конденсатора, VDepleted - конечное напряжение, которое вы определите как разряженное, R - сопротивление, C - емкость.

VDepleted должно быть больше нуля - помните, что ваша реальная схема, вероятно, не может много сделать с чем-либо, даже отдаленно близким к нулю.

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Сколько времени потребуется, чтобы зарядить / разрядить этот конденсатор постоянным током?

секунд = (C * (VCharged - VDepleted)) / Amps

Где C в фарадах, VCharged - это начальное напряжение на конденсаторе, VDepleted - это напряжение завершения разряда, а Amps - это ток в амперах.Для постоянного тока формула одинакова, независимо от того, разряжаете ли вы или заряжаете, разница в напряжении имеет значение, сколько напряжения должно расти или падать.

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Пример

Конденсатор 10Ф разряжается с 5В до 4В при постоянном токе 500мА, сколько времени это занимает?

(10 * (5-4)) / 0,5 = 20 секунд (калькулятор)

Сколько времени потребуется, чтобы зарядить / разрядить этот конденсатор постоянной мощностью (Вт)?

секунд = 0.5 * C * ((VCharged 2 - VDepleted 2 ) / Вт)

Где C в фарадах, VS - это начальное напряжение на конденсаторе, VC - это напряжение завершения разряда, а P - мощность разряда в ваттах.

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Пример

Конденсатор 10Ф разряжается с 5В до 4В при постоянной мощности 2Вт, сколько времени это занимает?

0.5 * 10 * ((5 2 -4 2 ) / 2) = 22,5 секунды

У меня есть батарея / элемент на несколько ампер-часов. Сколько емкости мне нужно для прямой замены?

C = (Ач * 3600) / (VCharged - VDepleted)

Наивно мы можем предположить, что VCharged совпадает с номинальным напряжением вашей батареи, а VDepleted равно нулю, или, точнее говоря, VCharged - это максимальный заряд для вашей батареи, а VDepleted - это минимальное напряжение, которое может использовать ваша цепь.

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Пример

Щелочной элемент емкостью 1250 мАч с полным напряжением 1,5 В и пустым напряжением 0,8 В должен быть заменен конденсатором, какого размера он должен быть?

(1,25 * 3600) / (1,5 - 0,8) = 6428 F

Очевидно, что это непрактично, поэтому см. Следующий раздел ...

Если у меня есть батарея / элемент на несколько ампер-часов, какой емкости мне нужно заменить, если я использую преобразователь постоянного тока в постоянный?

C = 7200 / ((VCharged 2 - VDepleted 2 ) / ((Ah * VBattery) / 0.75))

Где Ah - это емкость батареи в Ач, VBattery - номинальное напряжение батареи, 0,75 - (наихудший случай) КПД преобразователя постоянного / постоянного тока, VCharged - это заряженное напряжение конденсатора, VDepleted - это наименьшее напряжение конденсатора вашего постоянного / Преобразователь постоянного тока справится.

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Пример

Щелочной элемент емкостью 1250 мАч с номинальным напряжением 1.5 В следует заменить конденсатором (батареей), который будет заряжаться до 10,8 В и приводится в действие понижающим преобразователем, который принимает входное напряжение до 1,6 В.

7200 / ((10,8 2 -1,6 2 ) / ((1,25 * 1,5) / 0,75)) = 157F

Я хочу рисовать x ампер в течение t секунд, какая емкость мне нужна?

C = (Амперы * секунды) / (VCharged - VDepleted)

Где C - требуемая емкость, Amps - это требуемый ток, VCharged - это начальное напряжение, до которого вы заряжали конденсатор, а VDepleted - это минимальное напряжение, которое вы будете принимать.Помните, как только вы потребляете ток из конденсатора, его напряжение падает, вот как это работает, поэтому вы не можете просто сказать: «Я хочу 1 ампер при X вольт», вы должны сказать, что я нарисую усилитель может сделать это между этим и этим напряжением.

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Пример

Вы хотите потреблять 500 мА от конденсатора, заряженного до 12 В, в течение 5 секунд, и после этого конденсатор будет измерять 9 В. Какого размера должен быть конденсатор?

(0.5 * 5) / (12 - 9) = 0,83F

Я хочу получать x Вт в течение t секунд, какая емкость мне нужна?

C = (секунды * 2) / ((VCharged 2 - VDepleted 2 ) / Watts)

Где C - емкость, Watts - мощность в ваттах, VCharged - это начальное напряжение, до которого вы заряжали конденсатор, а VDepleted - это минимальное напряжение, которое вы будете принимать. Помните, как только вы потребляете ток из конденсатора, его напряжение падает, вот как это работает, поэтому вы не можете просто сказать: «Я хочу 1 Вт при X Вольт», вы должны сказать, что я возьму ватт и может сделать это между этим и этим напряжением.

Вы можете использовать поля в примере для выполнения собственных расчетов, измените числа, чтобы увидеть, как себя ведут.

Пример

Вы хотите подавать 10 Вт в течение 5 секунд от конденсатора, первоначально заряженного до 12 В, а затем измеряя 9 В, какого размера должен быть конденсатор?

(5 * 2) / ((12 2 - 9 2 ) / 10) = 1,6F

Как вы пришли к этой формуле?

В представленной формуле нет ничего особенного. Хорошим справочником для упрощения работы является этот документ от ELNA, производителя суперконденсаторов, он охватывает основные уравнения для постоянного тока, мощности и разряда через сопротивление.

Electronics-Tutorials.ws обеспечивает разряд с постоянным сопротивлением, и заряд с постоянным сопротивлением также задается в виде Vc = Vs (1-e -t / RC ), которым можно управлять, чтобы найти t (см. Видео ниже) .

Это видео от Пола Уэсли Льюиса помогло моему лишенному математики мозгу научиться управлять манипуляциями.

Следующие ниже онлайн-калькуляторы были полезны при подтверждении моей работы Must Calculate, Circuits.dk, bitluni.net (ВНИМАНИЕ, расчет Втч на сайте bitluni неверен, если у вас минимальное напряжение> 0)

На основе этих уравнений и ресурсов получены следующие данные.

Вывод для ампер-часов

Начните с данной формулы для разряда при постоянном токе, установите t = 3600 секунд и решите, чтобы I было любым током, необходимым для разрядки конденсатора за это время и, следовательно, ампер-часов

секунд = (C * (VCharged - VDepleted)) / I

3600 = (C * (VCharged - VDepleted)) / I

I * 3600 = (C * (VCharged - VDepleted))

I = (C * (VCharged - VDepleted)) / 3600

(I = Ач)

Выведение для ватт-часов

Это выводится из формулы для разряда постоянной мощности, где t = 3600 секунд, вычисленных для P, равного любым ваттам, необходимым для разрядки конденсатора за это время и, следовательно, ватт-часам.

секунд = 0,5 * C * ((VCharged 2 - VDepleted 2 ) / P)

3600 = ((VCharged 2 - VDepleted 2 ) / P) * C * 0,5

3600 / 0,5 = ((VCharged 2 - VDepleted 2 ) / P) * C

7200 = ((VCharged 2 - VDepleted 2 ) / P) * C

7200 / C = (VCharged 2 - VDepleted 2 ) / P

P * (7200 / C) = (VCharged 2 - VDepleted 2 )

P = (VCharged 2 - VDepleted 2 ) / (7200 / C)

(P = Wh)

Вывод для эквивалентности батареи в ампер-часах

Это просто решение уравнения ампер-часов для емкости

Ач = (C * (VCharged - VDepleted)) / 3600

Ач * 3600 = C * (VCharged - VDepleted)

(Ач * 3600) / (VCharged - VDepleted) = C

Расчет эквивалентности батареи в ампер-часах с преобразователем постоянного тока

Мы используем полученное выше уравнение ватт-часов, заменяя ватт-часы заданными ампер-часами и эквивалентным напряжением батареи, отрегулированным на 75% КПД повышающего преобразователя.

Вт · ч = (VCharged 2 - VDepleted 2 ) / (7200 / C)

((Ач * VBattery) / 0,75) = (VCharged 2 - VDepleted 2 ) / (7200 / C)

7200 / C = (VCharged 2 - VDepleted 2 ) / (Ah * VBattery)

7200 = C * ((VCharged 2 - VDepleted 2 ) / (Ah * VBattery))

7200 / ((VCharged 2 - VDepleted 2 ) / (Ah * VBattery)) = C

Вывод для отрисовки ампер X для секунд T

Простое решение данного уравнения постоянного тока, решение для C

секунд = (C * (VCharged - VDepleted)) / I

секунд * I = C * (VCharged - VDepleted)

(секунды * I) / (VCharged - VDepleted) = C

Вывод для рисования X Вт в течение T секунд

Простое решение данного уравнения постоянной мощности, решение для C

секунд = 0.5 * C * ((VCharged 2 - VDepleted 2 ) / P)

Секунды = C * ((VCharged 2 - VDepleted 2 ) / P) * 0,5

Секунды * 2 = C * ((VCharged 2 - VDepleted 2 ) / P)

(секунды * 2) / ((VCharged 2 - VDepleted 2 ) / P) = C

Калькулятор сглаживающих и фильтрующих конденсаторов

Сглаживающий конденсатор уменьшает остаточную пульсацию ранее выпрямленного напряжения.В этой статье описывается работа сглаживающего конденсатора. Помимо формулы расчета, вы также найдете практичный онлайн-калькулятор для определения размеров конденсатора.

Общие сведения о сглаживающем конденсаторе

Электросеть Германии подает синусоидальное переменное напряжение с частотой 50 Гц. Однако многие устройства работают от постоянного напряжения. При подключении этих устройств напряжение необходимо заранее выпрямить. Чаще всего схема выпрямителя состоит из мостового выпрямителя, состоящего из четырех диодов.Однако у этой схемы есть большой недостаток: она работает только от нижней полуволны вверх и оставляет пульсирующее напряжение постоянного тока. Эксперты говорят о с высокой пульсацией .

Сглаживающий конденсатор , также называемый фильтрующим конденсатором или зарядным конденсатором , используется для «сглаживания» этих напряжений. Это ослабляет рябь. Хотя конденсатор не производит идеального постоянного напряжения, он снижает колебания до уровня, с которым может легко справиться большинство устройств.Оставшаяся пульсация называется пульсационным напряжением .

Для напряжения с минимальной остаточной пульсацией , насколько это возможно, конденсатор должен быть подходящего размера. Однако он не может быть бесконечно большим, так как диоды могут быть повреждены. Мы хотим объяснить, как можно подобрать сглаживающий конденсатор и как именно он работает. Наш онлайн-калькулятор конденсатора фильтра помогает определить емкость.

Функция сглаживающего конденсатора

Конденсатор для сглаживания напряжения устанавливается параллельно нагрузке за выпрямительной схемой.Часто используются два сглаживающих конденсатора меньшего размера вместо одного большого . Здесь конденсатор максимально приближен к схеме выпрямителя, а второй - максимально близко к потребителю. Конденсаторы помогают заполнить пробелы выпрямленного напряжения.

Пока напряжение достигает максимального значения, конденсатор заряжается. Когда он опускается ниже определенного уровня, он разряжается. Однако из-за выпрямительной схемы он не может отправить заряд обратно в источник напряжения, а разряжает его через потребителя.Вот почему пульсации входного напряжения незначительны, когда оно достигает потребителя - конденсатор поддерживает напряжение.

Конденсатор надлежащего размера может сглаживать не только синусоидальное напряжение, но также широтно-импульсную модуляцию (ШИМ) . Если выбранный конденсатор слишком мал, он не сглаживает напряжение полностью, и остается высокая остаточная пульсация. Это может повлиять на функции потребителей или даже вызвать повреждение. С другой стороны, если конденсатор слишком большой, его большой зарядный ток может вывести из строя диоды для выпрямления или перегрузить кабели.

Полярность на сглаживающем конденсаторе

Полярность важна для многих компонентов технологии постоянного тока, чтобы гарантировать бесперебойную работу. Некоторые устройства просто не будут работать, если они будут подключены с неправильной полярностью, а другие выйдут из строя. «Нормальные» конденсаторы относятся к менее чувствительным компонентам и обычно могут подключаться в обоих направлениях.

Но будьте осторожны: часто используемый электролитический конденсатор , сокращенно Elco, чувствителен к неправильному подключению.Между пластинами имеется оксидный слой, который предназначен только для протекания тока в одном направлении. Если он подключен в перевернутом виде, этот слой растворяется, и конденсатор приобретает низкий импеданс. Даже если он подключен к напряжению, значительно меньшему его диэлектрической прочности, эффект возникает с задержкой по времени. После удаления оксидного слоя ток увеличивается и электролитический конденсатор взрывается!

Конструкция схемы сглаживающего конденсатора

На первой схеме сглаживающий конденсатор находится за полуволновым выпрямлением.

На второй схеме сглаживающий конденсатор расположен за выпрямительным мостом.

Расчет сглаживающего конденсатора - формула

Самая важная формула для расчета сглаживающего конденсатора:

$$ C = I \ cdot \ frac {\ Delta t} {\ Delta U} $$

Формула сглаживающего конденсатора, альтернативно:

$$ I = C \ cdot \ frac {\ Delta U} {\ Delta t} $$

Уточнение:
\ (C \) = емкость конденсатора в мкФ
\ (I \) = ток заряда в мА
\ (\ Delta t \) = полупериод в мс
\ (\ Delta U \) = пульсации напряжения, В

Пояснение - Расчет сглаживающего конденсатора

Ток потребления \ (\ mathbf {I} \) схемы можно рассчитать по закону Ома.Высокое потребление тока потребителем значительно увеличивает требуемую емкость конденсатора.

Полупериод \ (\ mathbf {\ Delta t} \) можно рассчитать по частоте напряжения. Формула: \ (\ Delta t = \ frac {1} {2} \ cdot T \). При сетевом напряжении 50 Гц получаем \ (\ frac {1} {2} \ cdot \ frac {1} {50} \) с результатом \ (\ Delta t = 10ms \).

Напряжение пульсаций \ (\ mathbf {\ Delta U} \) (факторы при расчете напряжения пульсаций) - это остаточные пульсации напряжения.Здесь тип потребителя определяет, насколько может упасть напряжение. Чем ниже может упасть пульсационное напряжение, тем больше должны быть размеры сглаживающего конденсатора. Например, при эксплуатации светодиодов не должно быть больших колебаний.

Емкость сглаживающего конденсатора \ (\ mathbf {C} \) - это наш желаемый результат в микрофарадах. Также следует убедиться, что конденсатор рассчитан на соответствующий уровень напряжения. Это можно толковать широко.Конденсатор на 18 В легко работает от цепи 12 В.

Инструмент для вычисления сглаживающих конденсаторов

Калькулятор размера конденсатора, доступный в Интернете, поможет вам рассчитать сглаживающий конденсатор. Просто введите значения, используя формулу, описанную выше, чтобы рассчитать нужный размер.

Калькулятор сглаживающего конденсатора

Начните расчет

Области применения - Плавное напряжение с конденсатором

При преобразовании конденсаторных цепей всегда требуется осторожность.Из-за накопления заряда в конденсаторе большая часть рабочего напряжения может оставаться в цепи после ее отключения. Хотя он имеет очень низкую емкость по сравнению с батареей, он достаточно замкнут накоротко, чтобы разрушить компоненты.

Вероятно, наиболее широко используемым применением сглаживающих конденсаторов является конструкция источников питания . Независимо от частоты, с которой подается входное напряжение, конденсатор используется для уменьшения остаточного сопротивления после выпрямления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *