Закрыть

Как определить обороты электродвигателя без бирки: Как определить мощность электродвигателя без бирки? Формула

Содержание

Как определить мощность электродвигателя без бирки? Формула

При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:

  • По диаметру и длине вала
  • По габаритам и крепежным размерам
  • По сопротивлению обмоток
  • По току холостого хода
  • По току в клеммной коробке
  • С помощью индукционного счетчика (для бытовых электродвигателей)

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР

Р, кВт 3000 об. мин 1500 об. мин 1000 об. мин 750 об. мин
D1, мм L1, мм D1, мм L1, мм >D1, мм L1, мм D1, мм L1, мм
1,5 22 50 22 50 24 50 28 60
2,2 24 28 60 32 80
3 24 32 80
4 28 60 28 60 38
5,5 32 80 38
7,5 32 80 38 48 110
11
38
48 110
15 42 110 48 110 55
18,5 55 60 140
22 48 55 60 >140
30 65
37 55 >60 140 65 75
45 75 75
55 65 80 170
75 65 140 75 80 170
90 90
110 70 80 170 90
132 100 210
160 75 90 100 210
200
250 85 170 100 210
315 - -

Проверить мощность по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

Р, кВт

3000 об.

1500 об.

1000 об.

750 об.

L10, мм

B10, мм

L10, мм

B10, мм

L10, мм

B10, мм

L10, мм

B10, мм

1,5

100

125

100

125

125

140

140

160

2,2

125

140

140

160

190

3

125

140

112

160

190

4

112

160

140

216

5,5

140

190

216

178

7,5

190

216

178

254

11

178

216

178

254

210

15

254

254

210

241

279

18,5

210

210

241

279

267

318

22

203

279

203

279

267

318

310

30

241

241

310

311

356

37

267

318

267

318

311

356

406

45

310

310

406

349

75

311

406

311

406

368

457

419

457

90

349

349

419

406

508

110

368

457

368

457

406

508

547

132

419

419

457

610

355

160

406

508

406

508

610

355

200

457

457

560

610

250

610

355

610

355

560

610

315

630/800

686/630

-

-

Для фланцевых электродвигателей

Таблица для подбора мощности электродвигателя по диаметру фланца (D20) и диаметру крепежных отверстий фланца (D22)

Мощность электродвигателя P, кВт

3000 об.

1500 об.

1000 об.

750 об.

D20, мм

D22, мм

D20, мм

D22, мм

D20, мм

D22, мм

D20, мм

D22, мм

1,5

165

11

165

11

215

14

215

14

2,2

215

14

265

3

215

14

365

4

265

300

19

5,5

265

300

19

7,5

265

300

19

11

300

19

15

350

18,5

350

400

22

350

350

400

30

500

37

400

400

500

45

400

55

500

500

550

24

75

500

550

24

90

500

28

110

550

24

550

24

28

132

550

680

160

550

28

28

680

200

550

740

24

250

680

680

740

24

-

315

680

-

Расчет по току

Электродвигатель подключается к сети и измеряется напряжение. С помощью амперметра поочередно замеряем ток в цепи каждой из обмоток статора. Сумму потребляемых токов умножаем на фиксированное напряжение. Полученное число – мощность электродвигателя в ваттах.

Как проверить мощность электродвигателя по току холостого хода

Проверить мощность по току холостого хода можно с помощью таблицы.

Р двигателя, кВт

Ток холостого хода (% от номинального)

Обороты двигателя, об/мин

600

750

1000

1500

3000

0,75-1,5

85

80

75

70

50

1,5-5,5

80

75

70

65

45

5,5-11

75

70

65

60

40

15-22,5

70

65

60

55

30

22,5-55

65

60

55

50

20

55-110

55

50

45

40

20

Расчет по сопротивлению обмоток

Соединение звездой. Измеряем сопротивление между выводами (1-2, 2-3, 3-1). Делим на 2 – получаем сопротивление одной обмотки. Мощность одной обмотки расчитывается так: P=(220V*220V)/R. Цифру умножаем на 3 (количество обмоток) – получаем мощность двигателя.

Соединение треугольником. Измеряем сопротивление в начале и в конце каждой обмотки. По той же формуле определяем мощность и умножаем на 6.

Статья о схемах подключения электродвигателей к сети

Если нет возможности определить мощность двигателя самостоятельно

Мы все же рекомендуем доверить определение мощности электродвигателя или подбор профессионалам. Это существенно сэкономит Ваше время и позволит избежать досадных ошибок в эксплуатации оборудования. Сервисный центр «Слобожанского завода» - профессиональный подбор двигателя, дефектовка, капитальный и текущий ремонт и перемотка электродвигателей любых типов и любой мощности. Доверяйте профессионалам.

Как определить мощность электродвигателя?


Какими способами можно определить мощность электродвигателя?

Электрический двигатель представляет собой электрическую машину, роль которой заключается в преобразовании электрической энергии в энергию механическую.

Нередко случаются ситуации, когда технический паспорт электродвигателя теряется, а маркировка на корпусе стирается в силу времени. В таком случае определить мощность электродвигателя становится сложно. Но существует несколько способов, которые помогут Вам справиться с подобной проблемой.

Определить мощность электродвигателя можно следующими способами:

  • используя практические измерения;
  • таблицы;
  • исходя из количества оборотов в минуту;
  • по габаритам;
  • на основе мощности, которая выдается двигателем.

Практическое определение мощности электродвигателя

Наиболее простым и доступным каждому способом определить мощность электродвигателя является снятие показаний счетчика электрической энергии.

Изначально необходимо отключить все бытовые электроприборы, выключить свет во всем помещении. Важно помнить, что работа даже небольшой маломощной лампочки может сильно исказить показания.

Обратите внимание на то, чтобы счетчик оставался неподвижным, а индикатор не мигал (все зависит от модели электрического счетчика).

В случае со счетчиком марки «Меркурий» процесс существенно облегчается, поскольку данная модель устройства отображает нагрузку в киловаттах (кВт). Следовательно, будет достаточно просто включить электродвигатель на всю мощность и посмотреть показания на счетчике.

В ситуации с индукционным счетчиком определить мощность электродвигателя будет несколько сложнее, поскольку учет ведется в киловаттах в час (кВт/ч). Сначала требуется записать показания счетчика до того, как включите мотор. После включения двигатель должен поработать в течение 10 минут. Для отслеживания времени пользуйтесь секундомером, точность периода работы очень важна. По прошествии 10 минут снимите новые показания счетчиков и способом вычитания выявите разницу. Разницу умножьте на 6. Итоговый результат будет обозначать мощность электродвигателя в киловаттах (кВт).

Определить мощность электродвигателя небольшой силы еще сложнее. Для этого нужно узнать количество оборотов (импульсов), равных 1 кВт/ч. Данную информацию Вы отыщите на счетчике. Возьмем для примера 1600 оборотов (в некоторых моделях вспышек индикатора). Итак, если при функционирующем электродвигателе электросчетчик совершает 20 об/мин, данную цифру нужно умножить на 60, т.е. количество минут в часе. В итоге получаем 1200 об/мин. После имеющиеся 1600 оборотов в минуту делим на 1200, получаем 1,3, что и являет собой мощность электродвигателя.

Определение мощности электродвигателя по таблицам

Сегодня люди за помощью все чаще обращаются к интернету, ведь там можно найти абсолютно любую информацию. Также при помощи глобальной сети Вы можете определить мощность электродвигателя по диаметру вала.

Для использования данного метода вычисления достаточно в интернете отыскать технические таблицы для распознавания типа мотора и его мощности, а также снять необходимые параметры (диаметр вала и частота его вращения, крепежные габариты, при фланцевом двигателе – диаметр фланца, расстояние до центра вала и расстояние до оси, длина мотора без выпирающего элемента вала).

Важно при таком способе быть терпеливым и внимательным, чтобы точно измерить все показатели и получить точный результат.

Как определить мощность электродвигателя по числу оборотов за одну минуту?

Применение данного способа для определения мощности электродвигателя требует визуального определения числа обмоток статора. Также необходимо применение специальных измерительных приборов, таких как тестер или миллиамперметр. для распознавания количества полюсов, чтобы избежать разбора мотора.

Измерительный прибор подключается к одной из обмоток. Вал при этом нужно вращать равномерно и постепенно. Отклонение стрелки и будет показывать количество полюсов. Важно учитывать тот факт, что частота вращения вала при таком способе определения мощности будет немного ниже полученного результата.

Определение мощности электродвигателя на основе его габаритов

Данный способ используется в основном для определения мощности трехфазных электродвигателей.

Для расчета мощности по габаритам необходимо знать:

  • диаметр сердечника (см) – D. Измерение происходит во внутренней части статора. При этом необходимо знать длину сердечника, учитывая вентиляционные отверстия;
  • показатель частоты валового вращения – n;
  • частота сети – f.

Используя данные значения, вычисляется полюсное деление. Для этого показатель диаметра (D) умножается на частоту валового вращения (n) и на число Пи. Итоговую цифру обозначим условно А.

Показатель частоты сети f умножается на 120, получаем (условно) В.

Получив значения А и В, осуществляем их деление, а именно: число А делим на число В. В итоге получаем необходимый нам показатель мощности электродвигателя.

На самом деле все не так уж сложно, достаточно вспомнить уроки математики в школе.

Способ определения по показателю мощности, что выдает электродвигатель

В данном случае необходимо снова обратиться к знаниям школьной математики, а также использовать калькулятор для точного вычисления.

Сначала узнайте количество оборотов вала в секунду (А), тяговое усилие мотора (В) и радиус вала (С). Подставьте значения в следующую формулу: Аx6,28xBxC. Результат и есть мощность электродвигателя.

Зная мощность электродвигателя, Вы без труда сможете выбрать необходимое сопутствующее оборудование (тепловые реле и автоматические выключатели). Также, знание данного показателя поможет Вам легко и быстро узнать пропускную способность и норму сечения кабельно-проводниковой продукции для подсоединения двигателя к сети. Самое главное – Вы сможете использовать электродвигатель без вероятности перегрузок.

Как видите, определить мощность электродвигателя без бирки можно и при чем довольно просто. Способов достаточное количество. Вам остается лишь выбрать наиболее удобный и правдивый на ваш взгляд и воспользоваться им.

Способы узнать мощность электродвигателя, когда нет бирки

Определить характеристики трехфазного электродвигателя, когда табличка утрачена, можно разнообразными способами: например, потребуется узнать мощность и количество оборотов вала. Удостоверьтесь, что таблички нет на месте, или отсутствует техническая документация (все это должно прилагаться заводом-производителем вместе с оборудованием), после чего переходите к самостоятельному определению рабочих характеристик. И тут сразу возникает вопрос: как узнать мощность электродвигателя, если нет таблички.

Определение мощности счетчиком, когда табличка утрачена

Подойдет как бытовой счетчик, так и портативный. Чтобы показания прибора были четкими, потребуется отключение всех устройств в доме, питающихся от сети, а также всех имеющихся источников света. Даже маломощная включенная лампа исказит показания.

Важно! Убедитесь, что счетчик не крутится, или его лампочка не мигает.

В индукционных моделях показания считываются в киловаттах в час – этот вариант проще. Зафиксируйте цифры на счетчике до того, как включите мотор, и пусть потом поработает минут десять (засеките время). Посмотрите, какие показания получились, и сравните их с предыдущими. Полученная разница умножается на 6 – это и будет мощность электродвигателя в киловаттах.

Проверить электродвигатель с малой мощностью чуть сложнее. Нужно выяснить, сколько оборотов происходит за 1 кВт/ч на счетчике, например, 1600. Запускаем 3-фазный двигатель и видим, что индикатор прибора крутится со скоростью 20 оборотов в минуту. Умножаем 20 на 60 = 1200. 1600 делим на 1200 – получаем мощность. Результат получится с погрешностью, но точность зависит от длительности производимого замера.

Как узнать мощность электродвигателя, если нет таблички, по таблице

Не имея таблички, мощность электродвигателя узнается благодаря разнообразным табличным данным. Потребуется определить:

  1. Какой диаметр имеет вал.
  2. С какой частотой он вращается, количество полюсов.
  3. Какими крепежными размерами обладает.
  4. Высоту до центральной оси вала и расстояние.
  5. Длину трехфазного двигателя.
  6. Диаметр фланца (когда говорится о фланцевом электродвигателе).

Совет: Собрав все данные, сверьтесь с таблицами. Информация и видео в интернете есть даже по старым моторам.

Измерьте габариты вала и крепежных отверстий – сопоставьте с таблицей:

Измерив напряжение тока, узнаем, какой мощностью обладает мотор

Определение мощности электродвигателя, если он трехфазный, не имея таблички, возможно и с помощью тока. Двигатель необходимо подключить к электросети, чтобы узнать напряжение. Воспользовавшись амперметром или мультиметром, сначала следует измерить ток в одной обмотке статора, а потом в другой. Данные суммируем, и полученное число потребуется умножить на фиксированное напряжение. Узнав результат – определите мощность 3-фазного мотора даже без таблички.

Найти искомое число предлагается по формуле:

Важно! Определение мощности возможно с помощью мультиметра, совмещающего в себе и амперметр, и вольтметр, и омметр.

Не потребуется табличка, если установить параметры работы двигателя. Известно, что одной из важных характеристик считается величина потребляемого тока. Расчет этого параметра ведется с учетом количества фаз в моторе, напряжения, сопротивления. Для трехфазного берется напряжение в 380 В. И величина тока, которую потребляет электродвигатель, зависит от вида запуска:

Несмотря на то, что формула показывает точные данные, иногда требуются дополнения. В обязательном порядке учитывается тот факт, что полученный результат отражает величину тока, когда используется номинальная нагрузка. Для точных измерений потребуется мультиметр. Электродвигатель на холостом ходу потребляет меньше тока:

Также, когда нет таблички, мощность рассчитывается по сопротивлению обмоток. Для начала необходимо узнать сопротивление, которое концентрируется между выводами. Полученное число делится на 2, и станет известно сопротивление обмотки. Для определения мощности одной обмотки применяется формула: P=(220V*220V)/R. Результат вычисления умножается на 3 (поскольку двигатель 3-фазный). Получаем искомую мощность мотора.

Предложенный вариант используется для определения сопротивления при соединении звездой. Если использовать треугольник, то схема действий немного иная. Узнав величину сопротивления для каждой обмотки в начале и конце, воспользуйтесь формулой, предложенной выше, только результат нужно умножить не на 3, а на 6. Для измерений будет удобно воспользоваться мультиметром. Благодаря несложным расчетами неважно, есть ли табличка на моторе, к тому же в сети много обучающих видео по этой теме.

Вычисление мощности с учетом оборотов вала

Когда табличка на корпусе мотора нечитаема или утеряна, определяем рабочие характеристики 3-фазного двигателя, учитывая оборот вала. Достаточно отсоединить задний кожух, чтобы открылась обмотка статора. Так это будет выглядеть схематически:

Узнать количество оборотов трехфазного мотора возможно благодаря полюсам, используя мультиметр, подключившись к обмотке статора. Вал начнет вращаться, а индикатор мультиметра – показывать отклонения, происходящие за один оборот. При двух полюсах – три тысячи оборотов в минуту, четырех – полторы тысячи, шести – две тысячи, восьми – семьсот пятьдесят.

Если бы была табличка, то последняя цифра на маркировке соответствовала бы количеству полюсов. В обратном случае берем обмотку, раскрываем верхнюю часть. Смотрим, как размещаются секции обмотки. Считаем общее количество пазов, делим на 12 – получаем полюс.

Определяем характеристики мотора, смотря на габариты

Без таблички на корпусе установить рабочие параметры мотора, если он трехфазный, можно по габаритам устройства. Для этого узнайте частоту сети (F), размер диаметра сердечника (D), синхронную частоту валового вращения (N). Достаточно измерить внутреннюю часть статора, чтобы установить, каким диаметром наделен сердечник. Для измерения используются сантиметры.

Учитывая полученные цифры, измерив габарит устройства, посчитайте полюсное деление. Здесь D умножается на N и на число Пи (А). Затем 120 умножается на F – получится B. Потом А делится на В. Для измерения F и N применяется мультиметр. Произвести расчеты нетрудно, зная габарит 3-фазного мотора, без таблички.

Трехфазный электродвигатель и крутящий момент

Крутящий момент определяется через силу, выдаваемую 3-фазным двигателем в попытке преодолеть сопротивление, возникающее при движении, которую умножают на плечо ее приложения. Мкр = VHxPE:0,12566 – формула позволяет определить рабочие параметры мотора. Здесь: VH – объем ДВС, а PE – давление в камере сгорания.

Возникли сложности с определением крутящего момента – воспользуйтесь формулой: Ne=Vh*pe*n:120. Результат высчитывается в киловаттах. Здесь: Vh – объем ДВС, n – частота вращения, pe – давление.

Зачем разбираться в устройстве оборудования, имея 3-фазный мотор: знание рабочих параметров двигателя позволит правильно эксплуатировать устройство, подбирать соответствующие детали, а видео в сети наглядно покажут:

  1. Как узнать мощность электродвигателя, если нет таблички.
  2. Как высчитать искомые цифры, используя формулы и т.д.

Когда табличка на корпусе – задача упрощается. Но если таблички нет, не стоит отчаиваться, доступно множество вариантов для определения рабочих параметров двигателя.

Определение параметров электродвигателя. Как определить обороты двигателя вручную

При эксплуатации любой машины не обойтись без электродвигателя. Многие покупают электродвигатель с рук без какой-либо документации. В такой ситуации возникает проблема с определением оборотов электродвигателя. Чтобы решить данную проблему, можно использовать несколько способов.

Самый простой способ определения оборотов электродвигателя — использование тахометра. Но наличие данного прибора у человека, не специализирующегося на электродвигателях, большая редкость. Поэтому существуют способы определения оборотов на глаз. Для определения оборотов электродвигателя откройте одну из крышек электродвигателя и найдите катушку обмотки. Катушек в электродвигателе может быть несколько. Выберете ту катушку, которая находится в зоне видимости и к которой проще доступ.


Старайтесь не нарушить целостность электродвигателя, не доставайте детали. Не пробуйте отсоединить детали между собой.


Рассмотрите внимательно катушку и попробуйте приблизительно определить ее размер относительно кольца статора. Статор — стационарная часть электродвигателя, ротор — подвижная и вращается внутри статора. Вам не потребуется ни линейка, ни точные подсчеты. Вся процедура определяется на глаз.


Скорость вращения ротора — 3000 оборотов в минуту, если размер катушки закрывает половину кольца статора. Скорость вращения ротора — менее 1500 оборотов в минуту, если размер катушки покрывает треть кольца. Скорость вращения ротора — 1000 оборотов в минуту, если размер катушки составляет одну четвертую по отношению к кольцу.


Существует еще один способ определения оборотов по обмотке. Обмотки находятся внутри статора. Для этого необходимо подсчитать количество пазов, занимаемых секциями одной катушки. Общее количество пазов сердечника составляет количество полюсов: 2 — 3000 об/мин, 4 — 1500 об/мин, 6 — 1000 об/мин.


Все основные характеристики электродвигателя должны быть указаны на металлической бирке, располагающейся на его корпусе. Но на практике бирка или отсутствует, или информация стерлась в течение эксплуатации.

Иногда, купив электродвигатель для автомобиля с рук, можно обнаружить, что в коробке из-под него нет абсолютно никакой документации. Тогда придется определять количество допустимых для него оборотов самостоятельно.

Спонсор размещения P&G Статьи по теме "Как определить обороты электродвигателя" Как регулировать скорость вращения Как прогреть машину быстро Как подключить однофазный электродвигатель

Инструкция


Все асинхронные электродвигатели можно разделить на три группы по количеству обращения ротора в минуту. Первая - 1000 оборотов. На самом деле эта цифра немного преувеличена, поскольку двигатель является асинхронным. В минуту его ротор совершает чуть меньшее количество оборотов (950-980), а для удобства значение было решено округлить. В двигателях второй группы количество обращений ротора составляет 1500 в минуту (на деле 1420-1480). В третьей группе ротор оборачивается вокруг себя 3000 раз в минуту (в реальности 2900-2980). Чтобы определить, к какой группе относится ваш электродвигатель, нужно сначала открыть одну его крышку. Найдите катушку обмотки, которая может состоять как из одной детали, так и из трех- четырех. Таких катушек в двигателе должно быть несколько, вам понадобится одна из них, которую легче всего рассмотреть. Катушки связаны между собой необходимыми деталями, которые могут помешать рассмотреть их, и которые ни в коем случае нельзя отсоединять друг от друга. Приглядитесь к выбранной и попробуйте определить ее размер относительно кольца статора. Это расстояние не обязательно определять с точностью до миллиметра, вполне подойдут приблизительные расчеты. В том случае, если размер катушки покрывает собой одну вторую кольца статора, то скорость обращения ротора будет равна 3000 оборотов в минуту. Если она закрывает собой треть кольца, то это двигатель второй группы, ротор которого будет вращаться со скоростью 1500 оборотов в минуту. Если ее размер равен одной четвертой по отношению к кольцу, то вращение будет происходить со скоростью 1000 оборотов в минуту. Нужно помнить, что подобные цифры лишь приблизительно отражают реальную картину вращения. Как просто

Другие новости по теме:


В любительской и ремонтной практике возникает необходимость использования трехфазных электродвигателей для силового привода. Для их питания вовсе не обязательно иметь трехфазную сеть. Самый эффективный способ запуска асинхронного электродвигателя - подключить его третью обмотку через фазосдвигающий


Мощность электродвигателя, как правило, указывается в технической документации к нему или в специальной табличке на корпусе. Если так ее найти невозможно, рассчитайте ее самостоятельно. Это можно сделать, измерив ток в обмотках и напряжение на источнике. Также можно определить его мощность по


Устойчивая работа двигателя на холостом ходу очень важна. При этом обороты не должны быть высокими и «плавать». От этого зависит расход топлива, нагрузка на детали автомобиля и многое другое. Поэтому каждый автомобилист должен знать, как отрегулировать обороты холостого хода своего «железного


Мощность автомобиля - один из базовых показателей, на которые обращают внимание при покупке. А со временем некоторые автолюбители просто спят и видят, как бы увеличить мощность машины. А сделать это можно, повысив обороты. Спонсор размещения P&G Статьи по теме "Как повысить обороты двигателя" Как


Если вы решили самостоятельно сделать электродвигатель, вам понадобится точный расчет характеристик его работы. Ведь от этого будет зависеть, сможет ли он выполнять свои функции или нет. Спонсор размещения P&G Статьи по теме "Как рассчитать электродвигатель" Как сделать индукционный нагреватель Как


Электрические двигатели допускают регулировку числа оборотов в значительных пределах. Способ регулировки этого параметра зависит от типа электродвигателя. Некоторые двигатели допускают регулировку различными способами и их сочетаниями. Спонсор размещения P&G Статьи по теме "Как снизить обороты


В последние годы наблюдается тенденция распространения скутеров среди подростков. Если раньше они были в диковинку, то сейчас есть, наверно, у каждого школьника. У скутера много достоинств и почти нет недостатков. Во-первых, он достаточно легок в управлении. Во-вторых, он не такой большой как

Электродвигатель – обмотка статора

Время от времени в процессе работы, нужно найти количество оборотов асинхронного электродвигателя, на котором отсутствует бирка. И далековато не каждый электрик с этой задачей может совладать. Но мое мировоззрение, что каждый электрослесарь в этом должен разбираться. На собственном рабочем месте, как говорится – по долгу службы, вы понимаете все свойства собственных движков. А перебежали на новое рабочее место, а там ни на одном движке нет бирок. Найти количество оборотов электродвигателя, даже очень просто и просто. Определяем по обмоттке. Для этого нужно снять крышку мотора. Лучше это проделывать с задней крышкой, т. к. шкив либо полумуфту снимать не нужно. Довольно снять кожух

остывания и крыльчатку и крышка мотора доступна. После снятия крышки обмотку видно довольно отлично. Найдите одну секцию и смотрите сколько

Движок – 3000 об/мин

места она занимает по окружности круга (статора). А сейчас запоминайте, если катушка занимает половину круга (180 град.) – это движок на 3000 об/мин.

Движок – 1500 об/мин

Если в окружности вместится три секции (120 град.) – это движок 1500 об/мин. Ну и если в статоре вмещается четыре секции (90 град.) – этот движок на 1000 об/мин. Вот так совершенно просто можно найти количество оборотов “неизвесного” электродвигателя. На представленных рисунках это видно отлично.

Движок – 1000 об/мин

Это способ определения, когда катушки обмоток намотаны секциями. А бывают обмотки “всыпные”, таким способом уже не найти. Таковой способ намотки встречается изредка.

Еще есть один способ определения количество оборотов. В роторе электродвигателя, есть остаточное магнитное поле, которое может наводить небольшую ЭДС в обмотке статора, если мы будем крутить ротор. Эту ЭДС можно “изловить” – миллиамперметром. Наша задачка заключается в следующем: необходимо отыскать обмотку одной фазы, независимо как соединены обмотки, треугольником либо звездой. И к кончикам обмотки подключаем миллиамперметр, вращая вал мотора, смотрим сколько раз отклонится стрелка миллиамперметра за один оборот ротора и вот по этой таблице поглядеть, что за движок вы определяете.

(2p) 2 3000 r/min
(2p) 4 1500 r/min
(2p) 6 1000 r/min
(2p) 8 750 r/min

Вот такие обыкновенные и думаю понятные два способа определения колличества оборотов на котором отсутствует бирка (табличка).

В СССР выпускался прибор ТЧ10-Р, может у кого и сохранился. Кто не лицезрел и не знал о таком измерителе, предлагаю поглядеть фото собственного. В комплекте имеется две насадки, – для измерения оборотов по оси вала и 2-ая для измерения по окружности вала.

Измерить колличество оборотов можно и при помощи “Цифрового лазерного тахометра”

“Цифровой лазерный тахометр”

Технические свойства:

Спектр: 2,5 об / мин ~ 99999 об / ми
Разрешение / шаг: 0,1 об / мин для спектра 2,5 ~ 999,9 об / мин, 1 об / мин 1000 об / мин и поболее
Точность: + / – 0,05%
Рабочее расстояние: 50mm ~ 500mm
Также указывается малое и наибольшее значение
Для тех кому реально необходимо – просто супер вещь!
Л. Рыженков

Обычно на электрическом двигателе прикреплена бирка, на которой выбиты паспортные данные, схема соединения обмоток, напряжение, на котором работает двигатель, количество оборотов в минуту, коэффициент полезного действия и т.д. Но бывают случаи, что табличка или утеряна, или со временем пришла в состояние нечитабельности, или закрашена.

В случае если требуется определить количество оборотов двигателя, а заводского паспорта на двигателе нет или, что зачастую бывает, паспорт закрашен до того, что нет возможности увидеть технические данные и под рукой нет тахометра, определять придется самому и приблизительно.

Принцип работы трехфазного двигателя основан на том, что электрический ток производит вращающееся электромагнитное поле, которое, проходя вокруг ротора, наводит в проводниках ротора токи, которые, взаимодействуя с электромагнитным полем статора, увлекают его за собой. Но благодаря действующим силам трения и инерции ротор запаздывает на небольшую часть оборотов, это называется скольжением ротора.

Синхронная скорость вращения – это скорость, равная скорости вращения поля, но если скорость вращения ротора будет равна скорости вращения поля, то исчезнет вращение поля относительно ротора, что повлечет за собой отсутствие наводимой электродвижущей силы. А также отсутствовало бы взаимодействие ротора с полем.

Не стоит забывать, что на данный момент существует достаточно много разновидностей двигателей, в основном используются асинхронные двигатели, так как они просты в эксплуатации и не требовательны к качеству электрической энергии, а также просты в изготовлении и ремонте.

Для того чтобы определить скорость вращения вала двигателя, если нет никаких данных, а бирка с паспортными данными испорчена или ее нет, потребуется вскрыть одну из крышек двигателя и посчитать количество полюсов на статоре. В таком случае лучше снимать заднюю крышку, для того чтобы не снимать дополнительное оборудование, нацепленное со стороны вала, из серии полумуфты или редуктора, а будет достаточно снять кожух и крыльчатку охлаждения двигателя и крышку. Для этого надо посчитать количество всех пазов и поделить на количество пазов занимаемых одной обмоткой двигателя. Полученное число и равно количеству полюсов электрического двигателя. После чего по количеству полюсов определяем количество оборотов: 2 – 3000 об/мин, 4 – 1500 об/мин, 6 – 1000 об/мин, 8 – 700 об/мин. Но не забывайте, что количество оборотов будет приблизительным, так как количество оборотов всегда меньше заявленных по причине скольжения (запаздывания) ротора относительно магнитного поля, создаваемого обмотками электрического двигателя.

Также можно определить количество оборотов двигателя, не разбирая двигатель, а с помощью амперметра. В роторе двигателя наводится остаточная ЕДС (электродинамическая сила), и по ней можно определить. Берем миллиамперметр, и находим 2 конца одной обмотки, соединяем миллиамперметр и начинаем проворачивать вал. Сколько раз отклонится стрелка за один полный оборот вала двигателя, столько и полюсов у двигателя. А далее берем данные, приведенные ранее, и применяем в этом случае.

Есть еще один метод определения скорости вращения вала двигателя, в случае если нет технических данных или утерян шильник. Для этого применяем стробоскопический метод. Суть метода основывается на иллюзорной неподвижности предмета при кратковременном освещении этого предмета. Таким способом можно определить количество оборотов в минуту у любого двигателя.

Для определения потребуется иметь на руках рисунки калибровочных дисков скорости, ножницы, и люминесцентная лампа и доступ к электрической сети. Распечатываем на обычном принтере калибровочные диски, приклеиваем на ротор двигателя (в основном вам понадобятся первый и четвертый диски, так как это самые распространенные исполнения электрических двигателей). Устанавливаем напротив вала люминесцентную лампу и подключаем ее к сети, включаем двигатель. Если при работе двигателя мы увидим медленное вращение или неподвижность рисунка, калибровочный диск выбран правильно и количество оборотов обозначено на диске правильно. Медленное вращение рисунка обозначает, что есть небольшое скольжение, причем в основном рисунок будет двигаться в обратную сторону, так как количество оборотов будет меньше, чем частота вращения электромагнитного поля. Если перед глазами серая мгла или рисунок движется очень быстро, то останавливаем двигатель и меняем калибровочный диск, и повторяем операцию до момента, пока рисунок не будет неподвижным или медленно вращающимся. Данный способ решения проблемы дешев и доступен. При наличии принтера и люминесцентной лампы можно определить любое количество оборотов.

Как узнать число оборотов электродвигателя

Как самостоятельно узнать число оборотов электродвигателя

Зачастую, покупая с рук электродвигатель, автовладелец (и не только) в последующем обнаруживает, что к нему нет никакой документации. В таком случае, как правило, приходится самостоятельно определять обороты электродвигателя, а многие, как свидетельствует практика, не знают, как это сделать. Данная статья расскажет, как определить обороты электродвигателя самостоятельно и, что следует при этом знать.

Пошаговая инструкция определения оборотов

1. На сегодняшний день асинхронные электродвигатели подразделяются на три группы, каждая из которых говорит об индивидуальном обращении ротора в минуту. Первая группа – электродвигатели, делающие 1000 оборотов в минуту. Стоит сразу заметить, что данная цифра немного преувеличена, так как двигатель асинхронный.

Он делает, как правило, около 950-970 оборотов, но для удобства специалисты такие цифры решили округлить. Ко второй группе относятся двигатели, количество обращений ротора которых составляет 1500 за минуту. Эта цифра так же округленная, на самом деле электродвигатель делает 1430—1470 оборотом в минуту.

Третья группа асинхронных электродвигателей – это группа, к которой относится деталь, ротор которой оборачивается вокруг себя три тысячи раз за одну минуту. Реальная цифра оборотов – 2900-2970.

2. Для того, чтобы определить обороты электродвигателя, вам сначала нужно выявить, к какой же именно из указанных выше групп он относится. Для этого откройте одну из его крышек и найдите под низом катушку обмотки. Помните, такая катушка может состоять, как из одной детали, так и из нескольких, в частности трех-четырех. Кроме всего прочего знайте, что подобных катушек в электродвигателе может быть несколько. Вам достаточно одной, до которой, чтобы рассмотреть, нужно меньше всего прикладывать усилий.

3. Внимание! Катушки между собой связаны определенными деталями, которые иногда мешают рассмотреть нужную информацию. Ни при каких обстоятельствах нельзя отсоединять ничего друг от друга. Внимательно приглядитесь к выбранной вами детали и попробуйте приблизительно определить размер катушки относительно кольца статора.

4. Данное расстояние, чтобы узнать обороты электродвигателя, вовсе не нужно определять до точности. Приблизительные расчеты подойдут вам.

Если размер катушки, примерно, закрывает собой половину кольца статора, то скорость вращения ротора – три тысячи оборотов в минуту.

Если размер катушки покрывает, приблизительно, треть самого кольца, электродвигатель будет относиться ко второй группе и, следовательно, число оборотов, которые он сможет совершать, не будет превышать отметки 1500 за минуту.

Когда размер катушки равен одной четвертой по отношению к кольцу – число оборотов электродвигателя будет 1000 оборотов за одну минуту и, соответственно, двигатель будет относиться к третьей группе.

Не забывайте, что указанные цифры – это всего лишь приблизительная картина вращения, в реальности они могут отличаться и это зависит от множества факторов.

Эти статьи вам тоже пригодятся:

♦ Супер-лупа со светодиодами

♦ Как получить электричество с помощью радиоволн

♦ Самый простейший МР3 усилитель

♦ Антенна для телевизора из пивных банок

Теперь посмотрите это полезное видео:


Будем благодарны, если Вы поделитесь этой статьей здесь:

Этот сайт читают уже более 950 человек!
Вы тоже можете получать новые материалы по почте:

Как узнать сколько киловатт двигатель машины

Рассмотрим 5 популярных способа как вычислить мощность двигателя автомобиля используя такие данные как:

  • обороты двигателя,
  • объем мотора,
  • крутящий момент,
  • эффективное давление в камере сгорания,
  • расход топлива,
  • производительность форсунок,
  • вес машины
  • время разгона до 100 км.

Каждая из формул, по которой будет производиться расчет мощности двигателя автомобиля довольно относительная и не может со 100% точностью определить реальную лошадиную силу движущую машину. Но произведя подсчеты каждым из приведенных гаражных вариантов, опираясь не те или иные показатели, можно рассчитать, по крайней мене, среднее значение будь-то стоковый или тюнингованный движок, буквально с 10-ти процентной погрешностью.

Мощность — энергия, вырабатываемая двигателем, она преобразуется в крутящий момент на выходном валу ДВС. Это не постоянная величина. Рядом со значениями максимальной мощности всегда указываются обороты, при которых можно её достигнуть. Точкой максимума достигается при наибольшем среднее эффективном давлении в цилиндре (зависит от качества наполнения свежей топливной смесью, полноты сгорания и тепловых потерь). Наибольшую мощность современные моторы выдают в среднем при 5500–6500 об/мин. В автомобильной сфере измерять мощность двигателя принято в лошадиных силах. Поэтому поскольку большинство результатов выводятся в киловаттах вам понадобится калькулятор перевода кВт в л.с.

Как рассчитать мощность через крутящий момент

Самый простой расчет мощности двигателя авто можно определить по зависимости крутящего момента и оборотов.

Крутящий момент

Сила, умноженная на плечо ее приложения, которую может выдать двигатель для преодоления тех или иных сопротивлений движению. Определяет быстроту достижения мотором максимальной мощности. Расчетная формула крутящего момента от объема двигателя:

Мкр = VHхPE/0,12566, где

  • VH – рабочий объем двигателя (л),
  • PE – среднее эффективное давление в камере сгорания (бар).
Обороты двигателя

Скорость вращения коленчатого вала.

Формула для расчета мощности двигателя внутреннего сгорания автомобиля имеет следующий вид:

P = Mкр * n/9549 [кВт], где:

  • Mкр – крутящий момент двигателя (Нм),
  • n – обороты коленчатого вала (об./мин.),
  • 9549 – коэффициент, дабы обороты подставлять именно в об/мин, а не косинусами альфа.

Поскольку по формуле, результат получим у кВт, то при надобности также можно конвертировать в лошадиные силы или попросту умножать на коэффициент 1,36.

Использование данных формул — это самый простой способ перевести крутящий момент в мощность.

А дабы не вдаваться во все эти подробности быстрый расчет мощности ДВС онлайн, можно произвести, используя наш калькулятор.

Но, к сожалению, данная формула отражает лишь эффективную мощность мотора которая не вся доходит именно до колес автомобиля. Ведь идут потери в трансмиссии, раздаточной коробке, на паразитные потребители (кондиционер, генератор, ГУР и т.п.) и это без учета таких сил как сопротивление качению, сопротивление подъему, аэродинамическое сопротивление.

Как рассчитать мощность по объему двигателя

Если же вы не знаете крутящий момент двигателя своего автомобиля, то для определения его мощности в киловаттах также можно воспользоваться формулой такого вида:

Ne = Vh * pe * n/120 (кВт), где:

  • Vh — объём двигателя, см³
  • n — частота вращения, об/мин
  • pe — среднее эффективное давление, МПа (на обычных бензиновых моторах оставляет порядка 0,82 — 0,85 МПа, форсированных — 0,9 МПа, а для дизеля от 0,9 и до 2,5 МПа соответственно).

Для получения мощности движка в «лошадках», а не киловаттах, результат следует разделить на 0,735.

Расчет мощности двигателя по расходу воздуха

Такой же приблизительный расчет мощности двигателя можно определять и по расходу воздуха. Функция такого расчета доступна тем, у кого установлен бортовой компьютер, поскольку нужно зафиксировать значение расхода, когда двигатель автомобиля, на третьей передаче, раскручен до 5,5 тыс. оборотов. Полученное значение с ДМРВ делим на 3 и получаем результат.

Формула как рассчитать мощность ДВС по расходу воздуха в итоге выглядит так:

Такой расчет, как и предыдущий, показывает мощность брутто (стендовое испытание двигателя без учета потерь), которая выше на 10—20% от фактической. А еще стоит учесть, что показания датчика ДМРВ сильно зависят от его загрязненности и калибровок.

Расчет мощности по массе и времени разгона до сотни

Еще один интересный способ как рассчитать мощность двигателя на любом виде топлива, будь-то бензин, дизель или газ – по динамике разгона. Для этого используя вес автомобиля (включая пилота) и время разгона до 100 км. А чтобы Формула подсчета мощности была максимально приближена к истине нужно учесть также потери на пробуксовку в зависимости от типа привода и быстроту реакции разных коробок передач. Приблизительные потери при старте для переднеприводных составит 0,5 сек. и 0,3-0,4 у заднеприводных авто.

Используя этот калькулятор мощности ДВС, который поможет определить мощность двигателя исходя из динамики разгона и массы, вы сможете быстро и достаточно точно узнать мощь своего железного коня не вникая в технические характеристики.

Расчет мощности ДВС по производительности форсунок

Не менее эффективным показателем мощности автомобильного двигателя является производительность форсунок. Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:

Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо — 0.4-0.52, для турбо — 0.6-0.75).

Узнав все необходимые данные, водите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.

Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.

Подпишись на наш канал в Я ндекс.Дзене

Еще больше полезных советов в удобном формате

При замене сломанного советского электродвигателя на новый, часто оказывается, что на нем нет шильдика. Нам часто задают вопросы: как узнать мощность электродвигателя? Как определить обороты двигателя? В этой статье мы рассмотрим, как определить параметры электродвигателя без бирки — по диаметру вала, размерам, току.
Заказать новый электродвигатель по телефону

Как определить мощность?

Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.

По габаритным размерам

Все электродвигатели отличаются по габаритным размерам. Определить мощность двигателя можно сравнив габаритные размеры с таблицей определения мощности электродвигателя, перейдя по ссылке габаритно-присоединительные размеры электродвигателей АИР.

Какие размеры необходимо замерить:

  • Длина, ширина, высота корпуса
  • Расстояние от центра вала до пола
  • Длина и диаметр вала
  • Крепежные размеры по лапам (фланцу)

По диаметру вала

Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.

Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.

Мощность
электродвигателя Р, кВт
Диаметр вала, мм
3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин
1,5 22 22 24 28
2,2 24 28 32
3 24 32
4 28 28 38
5,5 32 38
7,5 32 38 48
11 38 48
15 42 48 55
18,5 55 60
22 48 55 60
30 65
37 55 60 65 75
45 75 75
55 65 80
75 65 75 80
90 90
110 70 80 90
132 100
160 75 90 100
200
250 85 100
315

По показанию счетчика

Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.

Для измерения мощности по показанию счетчика нужно:

  1. Подключить мотор и дать ему поработать в течении 6 минут.
  2. Замеры счетчика умножить на 10 – получаем точную мощность электромотора.

Расчет мощности по току

Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.

  • P – мощность электродвигателя;
  • U – напряжение;
  • Ia – ток 1 фазы;
  • Ib – 2 фазы;
  • Ic – 3 фазы.

Определение оборотов вала

Асинхронные трехфазные двигатели по частоте вращения ротора делятся 4 типа: 3000, 1500, 1000 и 750 об. мин. Приводим пример маркировки на основании АИР 180:

  1. АИР 180 М2 – где 2 это 3000 оборотов.
  2. АИР 180 М4 – 4 это 1500 об. мин.
  3. АИР 180 М6 – 6 обозначает частоту вращения 1000 об/мин.
  4. АИР 180 М8 – 8 означает, что частота вращения выходного вала 750 оборотов.

Самый простой способ определить количество оборотов трехфазного асинхронного электродвигателя – снять задний кожух и посмотреть обмотку статора.

У двигателя на 3000 об/мин катушка обмотки статора занимает половину окружности — 180 °, то есть начало и конец секции параллельны друг другу и перпендикулярны центру. У электромоторов 1500 оборотов угол равен 120 °, у 1000 – 90 °. Схематический вид катушек изображен на чертеже. Все обмоточные данные двигателей смотрите в таблице.

Узнать частоту вращения с помощью амперметра

Узнать обороты вала двигателя, можно посчитав количество полюсов. Для этого нам понадобится миллиамперметр — подключаем измерительный прибор к обмотке статора. При вращении вала двигателя стрелка амперметра будет отклонятся. Число отклонений стрелки за один оборот – равно количеству полюсов.

  • 2 полюса – 3000 об/мин
  • 4 полюса – 1500 об/мин
  • 6 полюса – 2000 об/мин
  • 8 полюса – 750 об/мин

Если не получилось узнать мощность и обороты

Если не получилось узнать мощность и обороты электродвигатели или вы не уверены в измерениях – обращайтесь к специалистам «Систем Качества». Наши специалисты помогут подобрать нужный мотор или провести ремонт сломанного электродвигателя АИР.

При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:

  • По диаметру и длине вала
  • По габаритам и крепежным размерам
  • По сопротивлению обмоток
  • По току холостого хода
  • По току в клеммной коробке
  • С помощью индукционного счетчика (для бытовых электродвигателей)

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР

Р, кВт 3000 об. мин 1500 об. мин 1000 об. мин 750 об. мин
D1, мм L1, мм D1, мм L1, мм >D1, мм L1, мм D1, мм L1, мм
1,5 22 50 22 50 24 50 28 60
2,2 24 28 60 32 80
3 24 32 80
4 28 60 28 60 38
5,5 32 80 38
7,5 32 80 38 48 110
11 38 48 110
15 42 110 48 110 55
18,5 55 60 140
22 48 55 60 >140
30 65
37 55 >60 140 65 75
45 75 75
55 65 80 170
75 65 140 75 80 170
90 90
110 70 80 170 90
132 100 210
160 75 90 100 210
200
250 85 170 100 210
315

Проверить мощность по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

Как определить обороты эл двигателя.

Как определить мощность и обороты электродвигателя без его разборки

Иногда, в моей практике приходилось сталкиваться с одной проблемой, связанной с асинхронными электродвигателями — как определить количество оборотов ротора электродвигателя, если нет бирки и технической документации на электромотор?

Вопрос, на самом деле, решается просто — обороты можно определить по катушкам обмотки статора асинхронного электродвигателя.

Асинхронные электродвигатели делятся по количеству оборотов ротора на: 1000 об/мин, 1500 об/мин и 3000 об/мин. При этом следует помнить, что если мы называем асинхронный электродвигатель «тысячником», то у него нет 1000 об/мин, т.к. он асинхронный (ротор отстаёт от магнитного поля). У него может быть 940 об/мин, 980 об/мин или около этого, но не 1000 об/мин. Тоже самое касается и «полуторатысячников» (1440 — 1480 об/мин), и «трёхтысячников» (2940 — 2980 об/мин).

Как определить обороты ротора по обмотке статора

Открываем одну из двух крышек электродвигателя и смотрим на катушки обмотки, вернее, на одну катушку. Она может состоять из нескольких секций (2-х, 3-х, 4-х).

В статоре находим катушку, которая нам лучше всего видна. Теперь смотрим на её размер, относительно железа статора. Я не буду рассказывать, как катушки соединены между собой, как соединены секции в катушке, через сколько пазов в статоре они закладываются и т.д. Это нам сейчас не нужно. Нам сейчас нужно определить расстояние, которое занимает одна катушка по кольцу железа статора.

Определив это расстояние (даже на глаз), мы может с уверенностью сказать сколько оборотов имеет данный асинхронный электродвигатель.

1. Если катушка занимает половину кольца железа статора, то электродвигатель на 3000 об/мин.

Как самостоятельно узнать число оборотов электродвигателя

Зачастую, покупая с рук электродвигатель, автовладелец (и не только) в последующем обнаруживает, что к нему нет никакой документации. В таком случае, как правило, приходится самостоятельно определять обороты электродвигателя, а многие, как свидетельствует практика, не знают, как это сделать. Данная статья расскажет, как определить обороты электродвигателя самостоятельно и, что следует при этом знать.

Пошаговая инструкция определения оборотов

1. На сегодняшний день асинхронные электродвигатели подразделяются на три группы, каждая из которых говорит об индивидуальном обращении ротора в минуту. Первая группа – электродвигатели, делающие 1000 оборотов в минуту. Стоит сразу заметить, что данная цифра немного преувеличена, так как двигатель асинхронный.

Он делает, как правило, около 950-970 оборотов, но для удобства специалисты такие цифры решили округлить. Ко второй группе относятся двигатели, количество обращений ротора которых составляет 1500 за минуту. Эта цифра так же округленная, на самом деле электродвигатель делает 1430-1470 оборотом в минуту.

Третья группа асинхронных электродвигателей – это группа, к которой относится деталь, ротор которой оборачивается вокруг себя три тысячи раз за одну минуту. Реальная цифра оборотов – 2900-2970.

2. Для того, чтобы определить обороты электродвигателя, вам сначала нужно выявить, к какой же именно из указанных выше групп он относится. Для этого откройте одну из его крышек и найдите под низом катушку обмотки. Помните, такая катушка может состоять, как из одной детали, так и из нескольких, в частности трех-четырех. Кроме всего прочего знайте, что подобных катушек в электродвигателе может быть несколько. Вам достаточно одной, до которой, чтобы рассмотреть, нужно меньше всего прикладывать усилий.

3. Внимание! Катушки между собой связаны определенными деталями, которые иногда мешают рассмотреть нужную информацию. Ни при каких обстоятельствах нельзя отсоединять ничего друг от друга. Внимательно приглядитесь к выбранной вами детали и попробуйте приблизительно определить размер катушки относительно кольца статора.

4. Данное расстояние, чтобы узнать обороты электродвигателя, вовсе не нужно определять до точности. Приблизительные расчеты подойдут вам.

Если размер катушки, примерно, закрывает собой половину кольца статора, то скорость вращения ротора – три тысячи оборотов в минуту.

Если размер катушки покрывает, приблизительно, треть самого кольца, электродвигатель будет относиться ко второй группе и, следовательно, число оборотов, которые он сможет совершать, не будет превышать отметки 1500 за минуту.

Когда размер катушки равен одной четвертой по отношению к кольцу – число оборотов электродвигателя будет 1000 оборотов за одну минуту и, соответственно, двигатель будет относиться к третьей группе.

Все электродвигатели имеют основные характеристики:

  • Потребляемая мощность
  • Максимальный КПД
  • Номинальная частота вращения вала
  • Номинальный момент

Также они имеют механическую характеристику – зависимость момента от оборотов. Определить количество оборотов электродвигателя можно по катушкам обмотки статора. Для этого в статоре надо найти катушку, которая лучше всего просматривается. Если вычислить расстояние, занимаемое катушкой по кольцу железа статора, можно точно определить, сколько оборотов имеет данная асинхронная модель.

Асинхронные устройства разделяются по количеству оборотов мотора на: 1000 об/мин, 1500 об/мин и 3000 об/мин.

Если расстояние составляет половину кольца железа статора, то это агрегат с 3000 об/мин. Если это составляет 1/3 кольца железа, то он имеет 1500 об/мин. Если же расстояние, занимаемое катушкой, составляет 1/4 кольца железа, то данный прибор имеет 1000 об/мин.

Модели с количеством 1000 об/мин применяют на таком оборудовании, где нет необходимости в высокой скорости вращения вала ротора. Например, на лебедках, кранах, транспортерах и т.д.

Электродвигатели с оборотами 1500 и 3000 об/мин применяют на металлообрабатывающих и деревообрабатывающих станках, компрессорах, холодильниках и т. д.

Мощность их может колебаться в пределах от 0,12 до 200 кВт, что напрямую зависит от размера и назначения оборудования.

Электронные регуляторы в зависимости от типа двигателя, классифицируются:

  1. Для коллекторных моделей
  2. Для безколлекторных бездатчиковых
  3. Для безколлекторных с датчиками Холла.

Также все регуляторы оборотов электродвигателя различаются в зависимости от максимального рабочего тока, напряжения батареи, работы с аккумуляторами различного типа.

Регуляторы, предназначенные для безколлекторных устройств, не только управляют мощностью, но и определяют положение ротора в каждый момент времени для того, чтобы правильно задать фазы трех питающих напряжений, необходимых для работы мотора.

Регуляторы для коллекторных моторов могут быть подсоединены к нескольким моторам, параллельно или последовательно с условием, что суммарный ток не превышает максимальный ток, рассчитанный на данный регулятор.

Регуляторы, предназначенные для электрических двигателей водоплавных судов, оснащены дополнительной защитой от влаги и имеют жидкостное охлаждение.

Регуляторы, применяемые в автомобилях, оборудованы радиатором воздушного охлаждения и реверсом направления вращения.

Некоторые модели регуляторов имеют на корпусе кнопки для изменения параметров, другие настаиваются с помощью аппаратуры.

Основные настраиваемые функции регуляторов:

  • Гувернер – режим регулирования не мощности, а оборотов. При изменении нагрузок, контроллер добавляет или уменьшает мощность.
  • Режим старта – быстрый, плавный, жесткий.
  • Для устройства с редукторами или тяжелыми лопастями – режим, замедляющий набор оборотов при его старте.
  • Настройка времени набора оборотов от ноля до максимума – т.е. ускорение или задержание.
  • Настройка режима газа – зависимость оборотов мотора от ручки газа. Может быть оснащена автокалибровкой.
  • Функция тормоз – включение/выключение режима торможения. В некоторых контроллерах есть функция регулировки усилия торможения от 0 до 100%.
  • Функция реверс – включение и выключение режима реверса.
  • Настройка ограничения тока — устанавливает максимальную силу тока, при превышении которой, агрегат отключается автоматически.
  • Функция напряжение выключение мотора – устанавливает минимальное напряжение аккумуляторной батареи. В целях защиты батареи от глубокого разряда, отключает ее от двигателя.
  • Функция тип выключения мотора – мягкое или жесткое выключение при срабатывании защиты.
  • Настройка частоты импульсов позволяет улучшить линейность регулирования частоты вращения. Применяется в основном для 3-4-витковых низкоиндуктивных моторов.
  • Функция опережение – устанавливает угол опережения коммутации обмоток.

Как уменьшить обороты или как увеличить обороты электродвигателя? Для этого нужно произвести изменение напряжения на обмотках статора. Зависимость напряжения от частоты вращения близка к линейной.

Для изменения числа оборотов коллекторного устройства с независимым возбуждением нужно поменять напряжение на обмотках ротора, при этом не меняя напряжение на обмотке статора.

Для регулирования частоты вращения с последовательным возбуждением, питающегося от сети переменного тока, применяют тиристорный регулятор.

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным , оно является равноускоренным .

Угловая скорость

Выберем на окружности точку 1 . Построим радиус. За единицу времени точка переместится в пункт 2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть период T . Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна v A и v B соответственно. Ускорение - изменение скорости за единицу времени. Найдем разницу векторов.

Под скоростью вращения асинхронного электродвигателя обычно понимают угловую частоту вращения его ротора, которая приведена на шильдике (на паспортной табличке двигателя) в виде количества оборотов в минуту. Трехфазный двигатель можно питать и от однофазной сети, для этого параллельно одной или двум его обмоткам, в зависимости от напряжения сети, но конструкция двигателя от этого не изменится.

Так, если ротор под нагрузкой совершает 2760 оборотов в минуту, то будет равна 2760*2пи/60 радиан в секунду, то есть 289 рад/с, что не удобно для восприятия, поэтому на табличке пишут просто «2760 об/мин». Применительно к асинхронному электродвигателю, это обороты с учетом скольжения s.

Синхронная же скорость данного двигателя (без учета скольжения) будет равна 3000 оборотов в минуту, поскольку при питании обмоток статора сетевым током с частотой 50 Гц, каждую секунду магнитный поток будет совершать по 50 полных циклических изменений, а 50*60 = 3000, вот и получается 3000 оборотов в минуту — синхронная скорость асинхронного электродвигателя.

В рамках данной статьи мы поговорим о том, как определить синхронную скорость вращения неизвестного асинхронного трехфазного двигателя, просто взглянув на его статор. По внешнему виду статора, по расположению обмоток, по количеству пазов, - можно легко определить синхронные обороты электродвигателя если у вас нет под рукой тахометра. Итак, начнем по порядку и разберем данный вопрос с примерами.

3000 оборотов в минуту

Про асинхронные электродвигатели (смотрите - ) принято говорить, что тот или иной двигатель имеет одну, две, три или четыре пары полюсов. Минимум — одна пара полюсов, то есть минимум — два полюса. Взгляните на рисунок. Здесь вы видите, что в статор уложено по две последовательно соединенные катушки на каждую фазу — в каждой паре катушек одна расположена напротив другой. Эти катушки и образуют по паре полюсов на статоре.

Одна из фаз показана для ясности красным цветом, вторая — зеленым, третья - черным. Обмотки всех трех фаз устроены одинаково. Поскольку три эти обмотки питаются по очереди (ток трехфазный), то за 1 колебание из 50 в каждой из фаз - магнитный поток статора один раз обернется на полные 360 градусов, то есть совершит один оборот за 1/50 секунды, значит 50 оборотов получится за секунду. Так и выходит 3000 оборотов в минуту.

Таким образом становится ясно, что для определения синхронных оборотов асинхронного электродвигателя достаточно определить количество пар его полюсов, что легко сделать, сняв крышку и взглянув на статор.

Общее число пазов статора разделите на число пазов, приходящихся на одну секцию обмотки одной из фаз. Если получится 2, то перед вами двигатель с двумя полюсами — с одной парой полюсов. Следовательно синхронная частота составляет 3000 оборотов в минуту или примерно 2910 с учетом скольжения. В простейшем случае 12 пазов, по 6 пазов на катушку, и таких катушек 6 — по две на каждую из трех фаз.

Обратите внимание, количество катушек в одной группе для одной пары полюсов может быть не обязательно 1, но и 2 и 3, однако для примера мы рассмотрели вариант с одиночными группами на пару катушек (не будем в рамках данной статьи заострять внимание на способах намотки).

1500 оборотов в минуту

Для получения синхронной скорости в 1500 оборотов в минуту, количество полюсов статора увеличивают вдвое, чтобы за 1 колебание из 50 магнитный поток совершил бы только пол оборота — 180 градусов.

Для этого на каждую фазу делают по 4 секции обмотки. Таким образом, если одна катушка занимает четверть всех пазов, то перед вами двигатель с двумя парами полюсов, образованными четырьмя катушками на фазу.

Например, 6 пазов из 24 занимает одна катушка или 12 из 48, значит перед вами двигатель с синхронной частотой 1500 оборотов в минуту, или с учетом скольжения примерно 1350 оборотов в минуту. На приведенном фото каждая секция обмотки выполнена в виде двойной катушечной группы.

1000 оборотов в минуту

Как вы уже поняли, для получения синхронной частоты в 1000 оборотов в минуту, каждая фаза образует уже три пары полюсов, чтобы за одно колебание из 50 (герц) магнитный поток обернулся бы всего на 120 градусов, и соответствующим образом повернул бы за собой ротор.

Таким образом, минимум 18 катушек установлены на статор, причем каждая катушка занимает шестую часть всех пазов (по шесть катушек на фазу — по три пары). Например, если пазов 24, то одна катушка займет 4 из них. Получится частота с учетом скольжения около 935 оборотов в минуту.

750 оборотов в минуту

Для получения синхронной скорости в 750 оборотов в минуту, необходимо, чтобы три фазы формировали на статоре четыре пары движущихся полюсов, это по 8 катушек на фазу — одна напротив другой — 8 полюсов. Если например на 48 пазов приходится по катушке на каждые 6 пазов — перед вами асинхронный двигатель с синхронными оборотами 750 (или около 730 с учетом скольжения).

500 оборотов в минуту

Наконец, для получения асинхронного двигателя с синхронной скоростью в 500 оборотов в минуту необходимо 6 пар полюсов — по 12 катушек (полюсов) на фазу, чтобы на каждое колебание сети магнитный поток поворачивался бы на 60 градусов. То есть, если например статор имеет 36 пазов, при этом на катушку приходится по 4 паза — перед вами трехфазный двигатель на 500 оборотов в минуту (480 с учетом скольжения).

Страница 1 - Двигатели: как определить двигатель без паспортной таблички

  ИНФОРМАЦИЯ О ДВИГАТЕЛЕ

СОВЕТЫ ПО ИДЕНТИФИКАЦИИ ДВИГАТЕЛЯ БЕЗ ТАБЛИЧКИ

Диаметр двигателя: Измерьте диаметр, чтобы подтвердить NEMA (Национальное электрическое число скоростей:
Ассоциация производителей) размер кадра.  • Количество скоростей = количество выводов питания минус 1.
Размер кадра: 4.9 ”= 42, 5,6” = 48, 6,5 ”= 56 • Для SP - не считайте заземляющий (зеленый) провод.
                                                                                                             • Для PSC - не считайте заземляющий (зеленый) провод или
Тип двигателя: экранированный полюс (SP), постоянный разделенный конденсатор (PSC),
Расщепленная фаза, конденсаторный пуск / конденсаторный запуск, трехфазный и постоянный ток. вывод конденсатора (коричневый).Скорость: об / мин = 120 x Гц / число полюсов Механические характеристики:
                                                                                                             • Определение установки - основание, пояс для живота, проушины, шпильки, лицевое крепление и т. Д.
@ 60 Гц при полной скорости нагрузки. Общее назначение • Корпус - ODP (защита от открытых капель), TE (полностью закрытый) и т. Д.# Poles Syn SP PSC • Вал - количество, длина, диаметр, шпоночный паз и т. Д.
                                                3450 • Уникальные особенности - выводы, кабельная коробка, подшипники, тормоз,
2 3600 3000–1725
                                                Стрела вращения 1140, крышка конденсатора, стропы и т. Д.4 1800 1500 1625 850
                                                                                                             Вращение:
6 1200 1050 1075 • Большинство стандартных двигателей (кроме однофазных и

8 900 - 825 Резьбовой вал) можно повернуть из состояния покоя с помощью
                                                                                                                электрическое повторное подключение.Количество полюсов 1 • Трехфазные двигатели меняют местами любые два из
                                                                                                                три провода питания.
                     6 Примечание. Вращение неизвестного двигателя часто можно обнаружить, отметив
                                                                                                                прикрепленный вентилятор, нагнетатель или другое устройство. На поверхности скапливается грязь.
         5 сторона, в сторону которой вращается мотор.
                                                         2
                                                                                                             Напряжение: общее напряжение

                                                                                                                        115 230 Двойной 277460 575

                    4 3 SP X X -X - -
                                                                                                             PSC X X -X X -
Мощность и длина стека: 8-полюсные двигатели открытого типа Split Ph X X - - -
4- и 6-полюсные двигатели с открытыми контактами прибл.Колпачок Старт X X 115/230 - - -
                                                                                                             3 фазы - X 230/460 - X X
                         Прибл. Длина стека HP
   Длина стека HP 1/8 1,13 дюйма Примечание. Определение напряжения может оказаться затруднительным.Спросите у заказчика!
   1/4 1,25 дюйма 1/6 1,25 дюйма
   1/3 1,50 дюйма 1/4 1,62 дюйма Типичные цветовые схемы (не стандартные):
   1/2 2,25 дюйма 1/3 2,25 дюйма
   3/4 2,50 дюйма • Белый - общий провод (115 В) • Черный - высокий
                                  8-полюсные закрытые двигатели
4- и 6-полюсные закрытые двигатели прибл.• Желтый или фиолетовый - • Синий - средний
                         Прибл.
                                  Длина стека ВД Общий провод (230 В) • Красный - низкий
   Длина стопки HP 1/8 1,25 дюйма
   1/4 1,25 дюйма 1/6 1,38 дюйма • Коричневый - выводы конденсатора (1 или 2) (только PSC)
   1/3 1.75 дюймов 1/4 1,75 дюйма
   1/2 2,50 дюйма 1/3 2,50 дюйма • При замене PSC рекомендуется также заменить конденсатор.
   3/4 3,00 дюйма
                                                                                                             • Заменяйте в лошадиных силах, а не в соответствии с рейтингом AMP. 

                                                                                                             • Не заменяйте ручную перегрузку двигателем с автоматической перегрузкой.• Двигатели с аналогичными размерами статора будут иметь мощность

                                                                                                             (при прочих равных условиях). Т.е. Требуется примерно такое же количество

                                                                                                             железо и медь (D2L) для крутящего момента.Некоторые практические правила: это можно использовать как
                                                                                                             Обычно если это ... замена
                                                                                                             (оригинал)

                        Шарикоподшипник постоянного разъемного конденсатора для измерения стека с экранированными полюсами
                        Высота для подшипников скольжения HP Подшипник скольжения полностью
                                                                                                             Открытый или закрытый DP
                                                                                                             1 скорость 1, 2 или 3 скорости
                                                                                                             2 скорости 2 или 3 скорости
                                                                                                             Конденсатор 370 Вольт 370 или Конденсатор 460 Вольт

UTC, Business-Industrial-Systems (BIS) • © Carrier Corporation, 2014 г. Напечатано в США.S.A. • Дата выпуска: Rev. A 06/2015
Для получения рекламной информации посетите сайт www.totaline.com, а для получения технической информации посетите сайт www.hvacpartners.com Lit. №: 570-652  

Что определяет скорость вращения двигателя?

Электродвигатели отличаются разнообразием и широким диапазоном типоразмеров. Существуют двигатели с дробной мощностью (л.с.) для небольших бытовых приборов и двигатели мощностью в тысячи л.с. для тяжелого промышленного использования.Другие характеристики, указанные на паспортных табличках двигателей, включают их входное напряжение, номинальный ток, энергоэффективность и скорость в об / мин.

Скорость вращения электродвигателя зависит от двух факторов: его физической конструкции и частоты (Гц) источника питания. Инженеры-электрики выбирают скорость двигателя в зависимости от потребностей каждого приложения, подобно тому, как механическая нагрузка определяет требуемую мощность.


Убедитесь, что в вашем здании есть подходящий электродвигатель для каждого применения.


Как частота напряжения соотносится со скоростью двигателя

В зависимости от страны источник питания будет иметь частоту 60 Гц или 50 Гц. Хотя трехфазный двигатель будет вращаться с обоими входами мощности, возникнут проблемы с производительностью, если двигатель указан для одной частоты и будет использоваться с другой.

Поскольку источник напряжения 60 Гц переключает полярность на 20% быстрее, чем источник питания 50 Гц, двигатель, рассчитанный на 50 Гц, будет вращаться на 20% выше об / мин.Крутящий момент двигателя остается относительно постоянным, а более высокая скорость приводит к более высокой мощности на валу. Двигатель также выделяет больше тепла, но охлаждающий вентилятор также ускоряется вместе с валом, помогая отводить лишнее тепло. Двигатель также имеет тенденцию потреблять больше реактивного тока, что снижает его коэффициент мощности.

Подключение двигателя 60 Гц к источнику питания 50 Гц - более тонкий вопрос. Снижение скорости при том же напряжении может привести к насыщению магнитопровода двигателя, увеличению тока и перегреву агрегата.Самый простой способ предотвратить насыщение - снизить входное напряжение, и в идеале соотношение В / Гц должно оставаться постоянным:

  • Двигатель 60 Гц, работающий при 50 Гц, составляет 83,3% от номинальной частоты.
  • Чтобы поддерживать постоянное соотношение В / Гц, входное напряжение также следует снизить до 83,3%.
  • Если электродвигатель обычно работает при 240 В и 60 Гц, входное напряжение при 50 Гц должно быть 200 В, чтобы соотношение составляло 4 В / Гц.

Электропроводка двигателя и количество полюсов

Постоянный магнит имеет два полюса, но двигатели могут быть подключены так, чтобы их магнитное поле имело большее количество полюсов.Двухполюсный двигатель совершает полный оборот с одним изменением полярности, в то время как четырехполюсный двигатель вращается только на 180 ° с одним переключателем полярности. Чем больше полюсов, тем ниже скорость двигателя: если все остальные факторы равны, 4-полюсный электродвигатель будет вращаться на половине скорости 2-полюсного электродвигателя.

  • Источник питания 60 Гц меняет полярность 60 раз в секунду, а двухполюсный двигатель будет вращаться со скоростью 3600 об / мин при подключении к этому источнику. Четырехполюсный двигатель будет вращаться только со скоростью 1800 об / мин.
  • Для двигателей с частотой 50 Гц скорость составляет 3000 об / мин с 2 полюсами и 1500 об / мин с 4 полюсами.

Эту концепцию можно резюмировать следующим уравнением:

Используя это уравнение, 4-полюсный двигатель с частотой 60 Гц имеет скорость 1800 об / мин, а 6-полюсный двигатель с частотой 50 Гц имеет скорость 1000 об / мин. Однако на самом деле это скорость магнитного поля, называемая синхронной скоростью, которая не всегда равна скорости вала.

  • В синхронном двигателе , ротор использует постоянный магнит или электромагнит для вращения с расчетной скоростью.
  • С другой стороны, асинхронный двигатель будет работать немного ниже расчетной скорости вращения. Так работает электромагнитная индукция, и ее не следует рассматривать как неисправность.

Если электродвигатель имеет паспортную скорость 1800 об / мин, можно сделать вывод, что это 4-полюсный синхронный двигатель, рассчитанный на 60 Гц. С другой стороны, если скорость на паспортной табличке имеет меньшее значение, например 1760 об / мин, это асинхронный двигатель.

Преобразователь частоты может управлять скоростью двигателя, регулируя входную частоту, как следует из его названия.VFD также может модулировать напряжение, чтобы поддерживать соотношение В / Гц ниже точки, в которой магнитный сердечник насыщается. Благодаря этой функции частотно-регулируемый привод не повреждает двигатель, даже если скорость снижается ниже значения, указанного на паспортной табличке. Основным недостатком частотно-регулируемых приводов являются гармонические искажения, поскольку они являются нелинейными нагрузками, но это можно компенсировать с помощью фильтров гармоник.

постоянного тока - Какие характеристики электродвигателя указывают на возможность простого управления скоростью?

Следующий ответ немного длинен, так как я пытаюсь охватить управление скоростью двигателя в целом; однако сначала я кратко отвечу на ваши вопросы в правильной, но, возможно, бесполезной манере:

  • Да.Есть двигатели, которыми нельзя легко управлять с помощью симистора или методов управления напряжением.

  • Вы правы, что можете чрезмерно упрощать.

  • Нет, при правильной схеме управления (и функции контроллера) любой двигатель можно регулировать по скорости.

  • Я не знаю, какой контроллер скорости, с которым вы связались, использует в качестве тиристора. Это может быть симистор, это могут быть два антипараллельных тиристора (в основном симистор). Это может быть один SCR (но маловероятно).Однако я не уверен, что это различие имеет значение ...

  • Наконец, для примера того, как однонаправленный SCR может реализовать «высококачественное» управление скоростью, см. Это обсуждение того, как работает ASCI. Современный стиль 1960-х ...

Я не знаю, чем вы хотите управлять, но предлагаю вам рассмотреть что-то подобное в качестве примера интегрированного решения двигатель + привод или этого для отдельного компонентного привода для существующего асинхронного двигателя переменного тока. Любой пример является высокопроизводительным и может быть слишком дорогим для вашего приложения, особенно если это разовая ситуация.Однако доступны и более дешевые альтернативы ...

(полное раскрытие: много лет назад я работал на то, что тогда было GE Motors, и мои коллеги разработали ECM, с которым я был связан. Кроме того, в моей нынешней работе мы используем аналогичные приводы ABB ...)

К регулированию скорости двигателя в целом!

Регулировка скорости может осуществляться двумя разными способами:

  • прямое управление скоростью двигателя, при котором схема управления заставляет двигатель вращаться с заданной скоростью (в пределах ограничений схемы управления, двигателя, и т. Д. .). Примеры включают переменное напряжение постоянного тока для двигателя постоянного тока или привод с регулируемой скоростью для асинхронного двигателя переменного тока
  • косвенное управление скоростью двигателя, при котором комбинация действия схемы управления, конструкции двигателя и механической нагрузки двигателя определяет скорость в рабочей точке. Примеры включают модуляцию крутящего момента или управление скольжением.

В некоторых случаях например обычный двигатель постоянного тока, регулятор скорости может быть таким же простым, как переменный резистор или источник переменного напряжения постоянного тока.Для других двигателей схема управления будет более сложной. Для некоторых двигателей (например, шаговых, переключаемых реактивных или бесщеточных двигателей постоянного тока) требуется «сложная» схема управления, чтобы просто заставить двигатель вращаться. Поскольку в данном случае эта схема уже присутствует, после обдумывания управление скоростью становится почти тривиальным делом (при условии, что разработчик контроллера решил сделать эту возможность доступной для пользователя).

Если вам нужно простое самодельное регулирование скорости двигателя, то двигатель постоянного тока с постоянным магнитным полем почти так же прост, как и получается. Если двигатель не перегружен (или ограничен ток питания), скорость будет отслеживать приложенное напряжение. Измените напряжение на клеммах по своему усмотрению (резистор, регулируемый источник постоянного тока, усилитель мощности, и т. Д. ). Легкий лимонный сок.

Двигатели постоянного тока с возбужденным полем генерируют свое магнитное поле через обмотку, и этот ток возбуждения необходимо контролировать. Для приложений с низким энергопотреблением можно зафиксировать ток возбуждения, а затем контролировать напряжение питания; однако в двигателях большей мощности управление током возбуждения и, возможно, напряжением якоря дает дополнительные характеристики динамического управления и больше возможностей для возбуждения : Никогда не отключайте ток возбуждения рабочего двигателя постоянного тока с полевой обмоткой! (Подсказка, он будет ускоряться, пока не будет выключен, скорость достигнет установившейся рабочей точки, определяемой остаточным магнитным полем, или произойдет механический отказ из-за превышения скорости...) Скорее всего, вы не встретите электродвигатели постоянного тока с обмоткой возбуждения в любом современном приложении для систем отопления, вентиляции и кондиционирования воздуха.

Для всех двигателей (переменного или постоянного тока) можно косвенно регулировать скорость посредством модуляции крутящего момента. Как правило, этот метод управления применяет полный крутящий момент в течение определенного периода времени (двигатель «включен») и нулевой крутящий момент в течение определенного периода времени (двигатель «выключен»). Когда двигатель включен, он разгоняется до полной скорости. Когда двигатель выключен, он замедляется («выбегает») до нулевой скорости. Инерция вращения двигателя и нагрузки обеспечивает фильтрацию нижних частот, что приводит к средней скорости.Контроллеры двигателей на основе симисторов обычно используют этот метод: они включают двигатель переменного тока на определенное количество линейных циклов, а затем позволяют ему отключаться на определенное количество линейных циклов.

Скорость вращения практически всех двигателей можно регулировать с помощью переключателя полюсов. Эти переключатели эффективно перенаправляют провода специально разработанного двигателя для изменения его номинальной или нормальной скорости дискретными шагами. Обычно это используется только для асинхронных двигателей переменного тока, но можно сделать это и для большинства других типов двигателей. Скорость ротора зависит от количества пар полюсов в механическом обороте.Увеличение числа полюсов приводит к замедлению вращения двигателя. Многоскоростные бытовые вентиляторы - распространенный пример этого метода управления.

Общим свойством двигателей переменного тока является то, что они имеют вращающееся магнитное поле статора, за которым следует ротор. Чем быстрее вращается поле, тем выше скорость холостого хода. Сильно упрощая, так достигается прямое регулирование скорости двигателей переменного тока.

Двигатели переменного тока

можно сгруппировать в три основных блока: индукционные, синхронные и так называемые «переключаемые».Как асинхронные, так и синхронные двигатели используют синусоидальные токи для создания магнитного поля вращающегося статора. В коммутируемых двигателях используются несинусоидальные токи, которые больше напоминают прямоугольные волны. Примеры импульсных двигателей включают шаговые двигатели, бесщеточные двигатели постоянного тока и реактивные реактивные машины.

Индукционные машины обладают рабочим свойством, называемым «скольжением». Это означает, что если крутящий момент машины не равен нулю, тогда существует разница в скорости между ротором и магнитной скоростью вращающегося статора.Эта нормализованная разница называется скольжением. Скольжение и крутящий момент связаны таким образом, что увеличение крутящего момента нагрузки увеличивает скольжение. В зависимости от характеристики момент-скорость нагрузки это обеспечивает основу для косвенного регулирования скорости в асинхронном двигателе. Изменения, влияющие на производство крутящего момента двигателя, приведут к изменениям скольжения на основе характеристики крутящего момента нагрузки. Изменение скольжения означает изменение скорости. Крутящий момент можно регулировать, добавляя сопротивление в цепи ротора, если двигатель представляет собой ротор с фазой.Изменения в цепи статора также повлияют на производство крутящего момента, но для предотвращения его повреждения требуется специально разработанный двигатель. Двигатель переменного тока имеет минимум тока, когда напряжение питания и частота имеют фиксированное соотношение (В / Гц). Регулировка скорости путем регулировки возбуждения цепи статора приведет к увеличению токов статора. Это допустимо, если двигатель рассчитан на такой режим работы; однако необходимый запас для приспособления к этому приводит к специальному и, как правило, более дорогому двигателю.Двигатели, не предназначенные специально для этой операции , будут повреждены , если они будут работать в этом режиме в течение очень долгого времени. Обратите внимание, что регулирование скорости через сопротивление или напряжение цепи статора также ограничивает характеристику скорости вращения крутящего момента нагрузки, чтобы она была похожа на вентилятор.

Синхронные и переключаемые двигатели не имеют скольжения, поэтому, если их ротор не всегда совмещен с магнитным полем статора, они считаются «скользящими полюсами» и не будут вращаться. Это означает, что эти двигатели могут иметь прямое регулирование скорости только при изменении частоты возбуждения их статора.Обычно это означает какую-либо форму электронного привода двигателя. (Вы можете использовать его как супер-олдскул для некоммутируемого двигателя, используя каскад асинхронных двигателей и двигателей постоянного тока, а также генераторов постоянного и синхронного тока).

Поскольку асинхронные и синхронные машины имеют синусоидальное возбуждение статора, их электронные моторные приводы будут очень похожи. В системах с низкой производительностью (например, в разомкнутом контуре В / Гц) можно использовать тот же привод и элементы управления; однако для нормальной или более высокой производительности будут различия в топологии управления для устранения различий между двумя двигателями.

Электронные приводы электродвигателей для переключаемых электродвигателей отличаются, поскольку они производят токи, приближающиеся (или являются) прямоугольными. Часто выходная частота привода устанавливается командой скорости, и привод регулирует крутящий момент (через амплитуду тока или фазовый угол), чтобы ротор оставался выровненным с вращающимся магнитным полем статора.

Бесщеточный двигатель постоянного тока называется так потому, что возбуждение статора зависит от положения ротора. Комбинация схемы двигателя и инвертора и операции управления приводит к передаточной функции от шины постоянного тока преобразователя к крутящему моменту / скорости двигателя, которая идентична по форме двигателю постоянного тока.

arduino - Как уменьшить скорость двигателя без потери максимального крутящего момента

Кажется, вы не знаете, что вам нужно. Если вы хотите уменьшить скорость двигателя, но вам по-прежнему нужен максимальный крутящий момент, вы должны подать на двигатель полную номинальную электрическую мощность и поставить на двигатель механический тормоз, пока он не снизится до желаемой скорости. Или вы должны каким-то образом сделать ваш мотор менее эффективным. Не думаю, что ты этого хочешь.

Подумайте об этом так: электрическая мощность - это произведение тока \ $ I \ $ и напряжения \ $ E \ $:

$$ P = I E $$

Механическая мощность - это произведение крутящего момента (\ $ \ tau \ $, в ньютон-метрах) на угловую скорость (\ $ \ omega \ $, в радианах в секунду):

$$ P = \ tau \ omega $$

Двигатель - это преобразователь электрической энергии в механический.Механическая мощность всегда равна электрической мощности после потерь.

Кроме того, ток пропорционален крутящему моменту, потому что чем больше ток вы применяете, тем сильнее магнитное поле внутри двигателя, и притяжение между полюсами двигателя становится больше.

Если механическая и электрическая мощности коррелируют, а также ток и крутящий момент, тогда должны быть также согласованы напряжение и скорость. И они есть, потому что чем быстрее ротор вращается через поле статора, тем большую обратную ЭДС он будет генерировать.Это закон индукции Фарадея.

Итак, если вы хотите уменьшить скорость, уменьшите напряжение. Если вы хотите уменьшить крутящий момент, уменьшите ток. Если вы увеличиваете крутящий момент (например, притормаживая двигатель), вы увеличиваете крутящий момент двигателя. Но если не менять подачу электроэнергии, то и механическая мощность не изменится. Если крутящий момент увеличивается, единственный способ сохранить механическую мощность постоянной - это снизить скорость, чтобы двигатель замедлился.

Здесь есть одна загвоздка: с увеличением крутящего момента растет и ток.2 $$

Таким образом, по мере увеличения тока резистивные потери увеличиваются, что делает двигатель менее эффективным преобразователем электрической энергии в механическую, поскольку часть этой электрической энергии теперь выделяет тепло. Если вы остановите двигатель, то он достигнет КПД 0%: скорость равна нулю, поэтому механическая мощность должна быть равна нулю, но двигатель потребляет тонну тока, и есть падение напряжения на сопротивлении обмотки, поэтому электрическая мощность очень высоко.

Интересный факт: если вы можете сделать двигатель без сопротивления обмотки (или других потерь) и подключить его к идеальному источнику напряжения, то регулирование скорости (насколько скорость изменяется в зависимости от крутящего момента) идеально.То есть двигатель не замедлится, если вы попытаетесь его остановить: он просто будет потреблять ровно столько тока от вашей батареи, чтобы продолжать вращаться с той же скоростью, несмотря ни на что.

PWM тут ни при чем. ШИМ-управление двигателем - это просто способ эффективно подать на двигатель напряжение ниже полного. Это работает, потому что двигатель с ШИМ-управлением эквивалентен понижающему преобразователю. Изменение рабочего цикла ШИМ эквивалентно изменению напряжения питания:

Максимальный крутящий момент, который вы можете получить (который вы получите при остановке двигателя), ограничен током, который может подавать ваш источник питания, и потерями в двигателе, как и без ШИМ. Ваш ШИМ-драйвер может добавить немного сопротивления в схему, немного уменьшив ток и крутящий момент, но обычно это не имеет значения по сравнению с сопротивлением обмоток двигателя.

Могу ли я проверить двигатель без информации на паспортной табличке?

Все двигатели поставляются производителем с названием или табличкой с техническими данными, прикрепленными к корпусу двигателя. На этой паспортной табличке содержится информация, необходимая для эффективной программы испытаний двигателей. Он предоставляет рабочие характеристики и параметры конструкции для этого конкретного двигателя.

Иногда вам может быть поручено проверить двигатель, если информация на паспортной табличке не предоставлена ​​или легкодоступна. Для обесточенных испытаний это не представляет большой проблемы, поскольку данные, которые мы собираем, сравниваются между фазами, для баланса, на многофазных двигателях. Двигатели постоянного тока и однофазные двигатели более проблематичны, поскольку у нас нет возможности для сравнения фаз.

При тестировании многофазного двигателя без паспортной таблички мы не узнаем количество полюсов, если не проведем проверку влияния ротора.Лучший способ сделать это - проверить двигатель, когда ротор поворачивается с шагом 5 градусов. Когда будет получен полный цикл для индуктивности или импеданса, вы можете легко определить количество полюсов. Если полный цикл получается при повороте на 45 градусов, это будет 8 полюсов, 60 градусов 6 полюсов, 90 градусов 4 полюса и 180 градусов 2 полюса.

Еще одним недостатком отсутствия информации на паспортной табличке является то, что мы теряем возможность сравнивать с аналогичными двигателями. Это относится как к испытаниям под напряжением, так и без напряжения.

Тестирование под напряжением без данных с паспортной таблички чрезвычайно сложно. Если для одного и того же процесса используются похожие двигатели, вы можете использовать данные паспортной таблички одного из них. Возможно, это не совсем точно, но - вы попадете в парк мячей. Если подобных устройств нет и вы не знакомы с процессом, поговорите с операторами. Используйте стробоскопический тахометр, чтобы определить число оборотов двигателя, а затем настройте общий двигатель в базе данных для этого числа оборотов. Если оператор не может обеспечить загрузку, используйте полученные данные и число оборотов в минуту для приблизительной нагрузки.Вы можете просмотреть коэффициент мощности от 88 до 92, чтобы приблизиться к полной нагрузке.

Тестирование без надлежащей информации на паспортной табличке нежелательно, но возможно. При правильном понимании теории двигателя и рабочих характеристик двигателя надежный сбор данных все еще возможен.

Пояснения к паспортной табличке двигателя и номинальным характеристикам

Пояснение паспортных характеристик электродвигателя

. Фото: TestGuy

Электродвигатель - это рабочая лошадка, которая преобразует электрическую энергию в механическую, используя принципы электромагнетизма.Эти вращающиеся машины используются практически во всех формах современной жизни, от простых бытовых приборов до крупных промышленных предприятий и производственных предприятий.

Детские игрушки, пылесосы, вентиляторы, электроинструменты, электромобили, механические насосы, лифты и грузовые поезда - это всего лишь несколько примеров широкого спектра применений, в которых вы найдете те или иные формы электродвигателей. Магнитные поля, создаваемые электрическими зарядами, являются движущей силой двигателей, которые создают крутящий момент, необходимый для выполнения полезной работы.

При таком большом количестве различных применений двигателей и большом разнообразии электрических систем, которые их питают, неудивительно, что существует множество различных номинальных характеристик и рабочих характеристик, которые необходимо учитывать при выборе электродвигателя для конкретного применения. .

Стремясь стандартизировать эти основные характеристики и рабочие параметры двигателя, Национальная ассоциация производителей электрооборудования (NEMA) играет ведущую роль в определении этих номинальных характеристик в стандарте NEMA Standard MG-1.Рабочие характеристики, определенные в этом стандарте, кодируются на паспортной табличке двигателя во время производства, чтобы помочь конечному пользователю выбрать безопасное и надежное применение.

Национальный электротехнический кодекс определяет необходимую маркировку для обычных двигателей в разделе 430.7 (A) NEC для безопасной установки и эксплуатации в определенных условиях. Когда дело доходит до тестирования и технического обслуживания электродвигателей, четкое понимание этих характеристик имеет первостепенное значение для определения процедур испытаний и ожидаемых значений испытаний для конкретной машины.

В этой статье мы объясняем маркировку, используемую в NEC, а также другие общие термины и характеристики, указанные на паспортных табличках двигателей.

Пример паспортной таблички электродвигателя

. Фотография: `` North American Electric

''.

Производитель

Указывает, какая компания произвела двигатель, и обычно включает адрес компании и страну происхождения. У производителя обычно есть конкретная модель или заводской номер, связанный с двигателем.

Номинальное напряжение

Указывает рабочее напряжение, необходимое для оптимальной работы, как указано производителем двигателя.Вращающиеся машины обычно проектируются с допуском 10% для напряжения выше и ниже номинального значения, указанного на паспортной табличке.

Допуск напряжения обычно не указывается на двигателе, что может ввести в заблуждение тех, кто не знаком с этим номиналом. Двигатель с номинальным напряжением на паспортной табличке 460 В должен работать в диапазоне от 414 В до 506 В. Двигатель на 230 В может работать в диапазоне от 207 В до 253 В.

Некоторые двигатели могут работать с более чем одним напряжением, и эта возможность будет указана на паспортной табличке.Двойные номинальные напряжения позволяют разделить обмотки статора пополам для использования в последовательном или параллельном соединении.

Важно отметить, что многие другие номинальные значения, указанные на паспортной табличке, такие как коэффициент мощности, КПД, крутящий момент и ток, применимы только при номинальном напряжении и частоте.

Ток полной нагрузки (FLA)

По мере увеличения подключенной нагрузки и необходимого крутящего момента на электродвигателе, сила тока, необходимая для питания электродвигателя, также увеличивается. Ток полной нагрузки (FLA) - это максимальный ожидаемый ток, потребляемый двигателем при работе с максимальным крутящим моментом и мощностью.

Паспортная табличка FLA - это очень важный номинал, который используется для выбора правильного сечения провода, пускателя двигателя и устройств защиты от перегрузки, необходимых для обслуживания и защиты двигателя. Для многоскоростного двигателя ток полной нагрузки указан только для максимальной скорости.

Чтобы рассчитать падение напряжения в цепи двигателя, возьмите сопротивление цепи фидера и умножьте его на значение FLA двигателя. Для получения процентного падения напряжения разделите полученное ранее значение на напряжение питания холостого хода и умножьте на 100%.

Номинальная частота и количество фаз (двигатели переменного тока)

Частота энергосистемы означает, сколько раз синусоидальная волна переменного напряжения повторяет одну и ту же последовательность значений в течение заданной единицы времени. В США и Канаде частота электросети составляет 60 Гц.

В других частях света частота может быть 50 Гц или 60 Гц. Количество фаз определяет, подключен ли двигатель к одному токоведущему проводу и нейтрали (однофазный) или трем токоведущим проводам (трехфазный).

Синхронная скорость

Скорость, с которой работает вращающееся поле внутри двигателя, зависит от частоты входной мощности и количества электрических магнитных полюсов внутри. Это называется синхронной скоростью, которая не зависит от скорости выходного вала.

Синхронная скорость = количество циклов (Гц) x 60 (секунд в 1 мин) x 2 (тактовые импульсы) / количество полюсов.

Например, четырехполюсный двигатель без подключенной нагрузки будет иметь синхронную скорость 1800 об / мин при 60 Гц и синхронную скорость 1500 об / мин при 50 Гц.Если двигатель предназначен для работы на разных скоростях при управлении от частотно-регулируемого привода (ЧРП), диапазон входной частоты должен быть указан на паспортной табличке.

Номинальная скорость при полной нагрузке

Для двигателя практически невозможно достичь синхронной скорости, потому что даже ненагруженный двигатель все еще имеет некоторую форму трения, которую необходимо преодолеть. По мере увеличения нагрузки двигателя требуется более высокий крутящий момент, что означает снижение числа оборотов в минуту.

Номинальная скорость при полной нагрузке - это фактическое значение частоты вращения, указанное на паспортной табличке двигателя.Термин «проскальзывание» относится к разнице между синхронной скоростью и фактической скоростью при полной нагрузке (также называемой асинхронной скоростью или скоростью скольжения).

Накладка

Скольжение увеличивается с нагрузкой, обеспечивая больший крутящий момент. Чтобы вычислить скольжение двигателя в процентах, вычтите асинхронную скорость из синхронной скорости, затем разделите на синхронную скорость и умножьте на 100.

Скольжение = ((фактическая скорость синхронной скорости) / синхронная скорость) x 100

Используя приведенную выше формулу, двигатель со скоростью вращения 1400 об / мин и синхронной скоростью 1500 об / мин будет иметь скольжение 6.7%

Мощность (л.с.)

Самый простой и распространенный рейтинг электродвигателя - это его мощность в лошадиных силах, которая была первоначально принята в конце 18 века шотландским инженером Джеймсом Ваттом, который хотел сравнить мощность паровых двигателей с мощностью тягловых лошадей.

Этот термин был создан, чтобы помочь клиентам лучше понять, сколько работы могут произвести паровые двигатели. Позже он был расширен, чтобы включить выходную мощность других типов поршневых двигателей, а также турбин, электродвигателей и другого оборудования.

Мощность на валу - это мера механической выходной мощности двигателя. Выражается как способность передавать крутящий момент, необходимый для нагрузки при номинальной скорости.

л.с. = (Крутящий момент) x (Скорость) / 5250. Крутящий момент выражается в фунт-футах, а скорость выражается в об / мин.

Для электродвигателя одна лошадиная сила эквивалентна 746 Вт электрической мощности и является стандартной номинальной мощностью в Соединенных Штатах. В Европе мощность двигателя в киловаттах стала стандартом.

1HP = 746 Вт.Двигатель мощностью 100 л.с. будет производить 74,6 кВт электроэнергии. Согласно требованиям NEC, номинальная мощность в лошадиных силах должна быть указана на паспортной табличке для двигателей мощностью более 1/8 л.с.

КПД двигателя

Показывает, сколько электроэнергии, подаваемой на двигатель, преобразуется в механическую энергию выходного вала. Выражается в процентах. Оставшаяся тепловая энергия, которая не преобразуется в механическую, теряется в основном в виде тепла, которое может повредить изоляцию двигателя.

Эффективность определяется как выходная мощность, деленная на входную мощность, выраженную в процентах: (Выход / Вход) 100.

Потери в двигателе из-за нагрева могут существенно повлиять на КПД. Существует пять различных типов потерь двигателя:

  1. Потери в сердечнике: Энергия, необходимая для намагничивания сердечника и потерь на вихревые токи в сердечнике статора.
  2. Потери статора: I 2 R нагрев статора из-за протекания тока в обмотках статора.
  3. Потери в роторе: I 2 нагрев стержней ротора при протекании индуцированного тока
  4. Потери на трение и ветер: Подшипники и трение воздуха на валу ротора и охлаждающем вентиляторе.
  5. Потери от паразитной нагрузки: Потоки реактивного сопротивления утечки, вызванные током нагрузки.

Первые три категории (сердечник, статор и ротор) обычно составляют более 80% общих потерь двигателя.

Коэффициент обслуживания

Эксплуатационный коэффициент двигателя (SF) - это мера периодической перегрузочной способности, при которой двигатель может работать без перегрева или иного повреждения двигателя, когда на двигатель подается номинальное напряжение и частота.

Двигатели, которые непрерывно работают с коэффициентом использования больше 1, будут иметь меньший ожидаемый срок службы по сравнению с работой с номинальной мощностью в лошадиных силах, указанной на паспортной табличке.

Пример: двигатель мощностью 1 л.с. с эксплуатационным коэффициентом 1,15 может работать при 1,15 л.с. без перегрева (11,15)

Повышение номинальной температуры, класс системы изоляции и номинальная температура окружающей среды

NEMA определяет допустимое превышение температуры для двигателей, работающих при полной нагрузке и при эксплуатационном коэффициенте, если применимо.Спецификация стандартизирована для температуры окружающей среды 40 ° C или 104 ° F для всех классов изоляции.

Каждый класс изоляции имеет максимальное превышение температуры обмотки двигателя и максимальный температурный режим. Кроме того, указывается повышение температуры горячей точки, относящееся к обмоткам двигателя, окруженным другими обмотками.

Допустимое превышение температуры при полной нагрузке для двигателей с коэффициентом эксплуатации 1,0

  • Изоляция класса A 60 ° C, 5 ° C Горячая точка
  • Изоляция класса B 80 ° C, 10 ° C Горячая точка
  • Изоляция класса F 105 ° C, 10 ° C Горячая точка
  • Изоляция класса H 125 ° C, 15 ° C Горячая точка

Допустимое превышение температуры при эксплуатационном коэффициенте для двигателей с эксплуатационным коэффициентом 1.15

  • Изоляция класса A 70 ° C
  • Изоляция класса B 90 ° C
  • Изоляция класса F - 115 ° C

Максимальная температура изоляции обмотки двигателя

  • Изоляция класса A 105 ° C
  • Изоляция класса B 130 ° C
  • Изоляция класса F 155 ° C
  • Изоляция класса H - 180 ° C

Пример: для изолированного двигателя класса F с коэффициентом эксплуатации 1.0, добавьте допустимое превышение NEMA 105 ° C к эталонной температуре 40 ° C, чтобы получить максимальную рабочую температуру двигателя (105 + 40 = 145 ° C).

Максимальная температура, указанная в NEMA, превышает допустимое превышение температуры, чтобы обеспечить запас для температуры «горячей точки» обмотки, в данном случае 10 ° C для машины класса F.

Двигатели

класса F традиционно использовались в большинстве промышленных приложений. С увеличением использования приводов переменного тока (VFD) и связанного с этим нагрева, вызванного гармониками, производимыми в этих приводах, класс H стал гораздо более распространенным.

Рейтинг времени

Электродвигатели

имеют номинальное время, указывающее, как долго они могут работать при номинальной нагрузке и температуре окружающей среды. Стандартные двигатели рассчитаны на непрерывный режим работы и могут работать круглосуточно (24/7) без перебоев.

В зависимости от области применения некоторые двигатели могут быть рассчитаны только на кратковременную работу. Двигатели с уменьшенным сроком службы могут быть изготовлены с более легкой конструкцией и, следовательно, будут стоить меньше, чем двигатель, рассчитанный на продолжительный режим работы.

Примером двигателя с прерывистым режимом работы может быть двигатель, используемый в приводе клапана. Во многих случаях механические клапаны периодически открываются и закрываются, в отличие от двигателя насоса, который может работать в течение многих часов или дней подряд.

Номинальное время электродвигателя обычно выражается в минутах. Некоторые примеры временного режима: 5, 15, 30, 60 минут с перерывами.

Буквенный код или ампер с заторможенным ротором

Электродвигатели

обычно имеют большой пусковой ток, связанный с ними при запуске с их полным номинальным напряжением, приложенным к обмоткам.Во многих случаях этот пусковой ток во много раз превышает значение тока полной нагрузки.

Значение заблокированного ротора важно, потому что большой пусковой ток может снизить напряжение, подаваемое на двигатель, что может повлиять на другое оборудование в той же цепи. Пускатели двигателя с пониженным напряжением и звездой-треугольником могут помочь ограничить этот пусковой ток, подавая на двигатель меньшее напряжение в течение короткого периода времени, пока двигатель не набирает скорость перед подачей полного номинального напряжения.

Заблокированный ротор относится к кВА на 1 л.с., которая будет потребляться, когда ротор заблокирован на месте.Буквенные обозначения для этого номинала будут находиться в диапазоне от A до V, при этом двигатели класса A имеют наименьшую мощность в кВА, а двигатели с кодом V - наибольшую.

Стандартные номинальные значения заблокированного тока можно найти в статье 430 NEC. Этот рейтинг требуется, если двигатель переменного тока мощностью 0,5 л.с. или более. На двигателях с многофазным ротором буквенный код обычно не указывается.

Дизайн букв, код

Электродвигателям присваивается буквенный код конструкции, определенный NEMA, который определяет характеристики крутящего момента и тока двигателя.Для некоторых механизмов могут потребоваться двигатели со специальными характеристиками, указанными в этом коде.

  • Код A Нормальный пусковой момент, высокий пусковой ток
  • Код B Нормальный пусковой момент, низкий пусковой ток
  • Код C Высокий пусковой момент, низкий пусковой ток
  • Код D Высокий пусковой момент, низкий пусковой ток, высокое скольжение

Определения букв конструкции двигателя можно найти в ANSI / NEMA MG 1-1993, Двигатели и генераторы, Часть 1, Определения, и в IEEE 100-1996, Стандартный словарь электрических и электронных терминов.Двигатели NEMA Code B являются наиболее широко используемым типом двигателей и могут запускать широкий спектр промышленных нагрузок.

Буквенные коды конструкции электродвигателя

. Фото: TestGuy

Ток и напряжение возбуждения

Для синхронных двигателей с возбуждением постоянным током номинальный ток возбуждения и напряжение указаны на паспортной табличке.

Обмотка

Тип конструкции обмотки, используемой для электродвигателя, например, прямой шунт, стабилизированный шунт, составной или последовательный, если двигатель постоянного тока.

Термозащита

Двигатели, оснащенные термозащитным устройством, указаны на паспортной табличке с пометкой «Thermally Protected» или «T.P. Этот тип защиты прерывает подачу питания на двигатель, если двигатель испытывает чрезмерные температуры из-за перегрузки или отказа при запуске. Электропитание снова подключается, когда двигатель остынет до приемлемой температуры.

Тип корпуса

Тип корпуса, который часто обозначается на паспортной табличке как ENCL, классифицирует степень защиты двигателя от рабочей среды и метод охлаждения.Стандартные типы кожуха двигателя включают:

Open Drip Proof (ODP) - подходит только для чистых и сухих помещений.

Полностью закрытый вентилятор с охлаждением (TEFC) - обычно используется на открытом воздухе и в грязных помещениях, но не является герметичным или водонепроницаемым. Количество воды и наружного воздуха, попадающее в двигатель, не влияет на его работу.

Totally Enclosed Non Ventilated (TENV) - используется в местах, подверженных воздействию влаги или грязи, и не оборудован вентилятором для охлаждения.Эти двигатели используют естественную конвекцию для охлаждения и не должны использоваться в опасных местах или с чрезмерной влажностью.

Totally Enclosed Air Over (TEAO) - пыленепроницаемый корпус, предназначенный для нагнетателей и вентиляторов, установленных на валах. Двигатель должен быть установлен на самом валу в соответствии с воздушным потоком.

Totally Enclosed Wash Down (TEWD) - разработан для струй воды под высоким давлением и высокой влажности. Этот тип корпуса - лучший выбор для влажных сред.

Полностью закрытая, агрессивная и суровая среда разработана для безопасных сред с экстремальным присутствием влаги или химических веществ.

Взрывозащищенный (EXPL) разработан, чтобы выдерживать внутренние взрывы определенных газов или паров, не допуская распространения взрыва во внешнюю атмосферу.

Опасные места (HAZ) - Общая классификация опасных мест. Эти двигатели подразделяются на классы, подразделения и группы.

Размер рамы

Размеры двигателя указываются размером рамы и устанавливают важные установочные размеры, такие как монтажное отверстие для лап, диаметр вала и высота вала.

Напряжение нагревателя

Двигатели, используемые для установки вне помещений или в местах, где может возникать конденсация, часто оснащены нагревателями для предотвращения конденсации. На этом типе оборудования обычно указываются номинальное напряжение нагревателя, количество фаз и номинальная мощность в ваттах.

Нагреватели конденсата включаются при выключении двигателя. Статья 430.7 (A) (15) NFPA 70-2017 требует от производителя маркировать двигатель, оснащенный нагревателем для конденсата, чтобы установить, чтобы установщик обеспечил надлежащее электропитание нагревателя.

Список литературы

Комментарии

Войдите или зарегистрируйтесь, чтобы комментировать. Электрические асинхронные двигатели

- синхронная скорость

Синхронная скорость для электрического асинхронного двигателя определяется

  • частотой источника питания и
  • числом полюсов в обмотке двигателя.

Синхронную скорость можно рассчитать как:

n = f (2 / p) 60 (1)

, где

n = скорость вращения вала (об / мин, об / мин)

f = частота электропитания (Гц, циклов / с, 1 / с)

p = количество полюсов

Примечание - an асинхронный двигатель никогда не достигнет своей синхронной скорости.Если бы это было так - ротор казался бы неподвижным по отношению к вращающемуся полю статора, поскольку он вращался бы с той же скоростью. При отсутствии относительного движения между статором и полем ротора в двигателе не будет индуцироваться напряжение. Поэтому скорость асинхронного двигателя ограничена скоростью ниже синхронной, а разница между синхронной скоростью и фактической скоростью называется скольжением.

Пример - синхронная скорость двухполюсного электродвигателя

На двухполюсный двигатель подается мощность с частотой 50 Гц (1 / с) .Скорость вращения может быть рассчитана как

n = (50 1 / с) (2/2) (60 с / мин)

= 3000 об / мин (1 / мин)

Синхронный скорость вращения при разных частотах и ​​количестве полюсов

90 606450 300060 1080
Скорость вращения вала - n - (об / мин, об / мин)
Частота
- f -
(Гц)
Количество полюса - p -
2 4 6 8 10 12
10 600 300 300 100
20 1200 600 400 300 240 200
30 1800 900 600 360 300
40 2400 1200 800 600 480 400
50 1500 607 300060 1000 750 600 500
60 2) 3600 1800 1200 900 720 600
1050 840 700
80 4800 2400 1600 1200 960 800
9060 900
100 6000 3000 2000 1500 1200 1000
  1. Двигатели, рассчитанные на 50 Гц, чаще всего встречаются за пределами U.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *