Закрыть

Как определить первичную обмотку трансформатора мультиметром: Как проверить трансформатор мультиметром? — Diodnik

Содержание

Как проверить трансформатор мультиметром на исправность?


Трансформатор является простым электротехническим устройством и служит для преобразования напряжения и тока. На общем магнитном сердечнике наматываются входная и одна или несколько выходных обмоток. Подаваемое на первичную обмотку переменное напряжение индуцирует магнитное поле, которое вызывает появление переменного напряжения такой же частоты во вторичных обмотках. В зависимости от соотношения числа витков изменяется коэффициент передачи.

Порядок выявления дефектов трансформатора

Для проверки неисправностей трансформатора прежде всего надо определить выводы всех его обмоток. Это можно сделать по его маркировке, где указываются номера выводов, обозначение типа (тогда можно воспользоваться справочниками), при достаточно большом размере даже есть рисунки. Если трансформатор непосредственно в каком-то электронном приборе, то все это прояснят принципиальная электрическая схема на устройство и спецификация.

Определив все выводы, мультиметром можно проверить два дефекта: обрыв обмотки и замыкание ее на корпус или другую обмотку.

Для определения обрыва надо «прозвонить» в режиме омметра по очереди каждую обмотку, отсутствие показаний («бесконечное» сопротивление) указывает на обрыв. На цифровом мультиметре могут быть недостоверные показания при проверке обмоток с большим числом витков из-за их высокой индуктивности.

Для поиска замыкания на корпус один щуп мультиметра подсоединяется к выводу обмотки, а вторым поочередно касаются выводов других обмоток (достаточно одного любого из двух) и корпуса (место контакта нужно зачистить от краски и лака). Короткого замыкания быть не должно, проверить так необходимо каждый вывод.

Межвитковое замыкание трансформатора: как определить

Еще один распространенный дефект трансформаторов – межвитковое замыкание, распознать его лишь с помощью мультиметра практически невозможно. Тут могут помочь внимательность, острое зрение и обоняние.

Проволока изолируется только за счет своего лакового покрытия, при пробое изоляции между соседними витками сопротивление все равно остается, что приводит к местному нагреву. При визуальном осмотре на исправном трансформаторе не должно быть почернений, потеков или вздутия заливки, обугливания бумаги, запаха гари.

В случае, если тип трансформатора определен, то по справочнику можно узнать сопротивление его обмоток. Для этого используем мультиметр в режиме мегомметра. После измерения сопротивления изоляции обмоток трансформатора сравниваем со справочным: отличия более чем в 50% указывают на неисправность обмотки. Если сопротивление обмоток трансформатора не указано, то всегда приводится количество витков, сечение и тип провода и теоретически, при желании, его можно вычислить.

Можно ли проверить бытовые понижающие трансформаторы?

Можно попробовать проверить мультиметром и распространенные классические понижающие трансформаторы, используемые в блоках питания для различных устройств с входным напряжением 220 вольт и выходным постоянным от 5 до 30 вольт.

Осторожно, исключив возможность коснуться оголенных проводов, подается на первичную обмотку 220 вольт. При появлении запаха, дыма, треска выключить надо сразу, эксперимент неудачен, первичная обмотка неисправна.
Если все нормально, то прикасаясь только щупами тестера, измеряется напряжение на вторичных обмотках. Отличие от ожидаемых более чем на 20% в меньшую сторону говорит о неисправности этой обмотки.

Для сварки в домашних условиях необходим функциональный и производительный аппарат, приобретение которого сейчас слишком дорогое удовольствие. Собрать сварочный инвертор своими руками из подручных материалов вполне возможно, предварительно изучив соответствующую схему.

Что такое солнечные батареи и как с их помощью создать систему домашнего энергоснабжения, расскажет подробная статья на эту тему.

Может помочь мультиметр и в случае, если имеется такой же, но заведомо исправный трансформатор. Сравниваются сопротивления обмоток, разброс менее 20% является нормой, но надо помнить, что для значений меньше 10 Ом не каждый тестер сможет дать верные показания.

Мультиметр сделал все, что мог. Для дальнейшей проверки понадобятся уже генератор и осциллограф.

Подробная инструкция: как проверить трансформатор мультиметром на видео

Определение характеристик силового трансформатора без маркировки

Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в Сети, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.

Наиболее важные параметры силовых трансформаторов


Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:
  1. На какие выводы подавать сетевое питание (230 вольт)?
  2. С каких выводов снимать пониженное напряжение?
  3. Каким оно будет (12 вольт, 24 или другим)?
  4. Какую мощность сможет выдать трансформатор?
  5. Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?

Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора.
Для выполнения работы понадобятся простейшие инструменты и расходные материалы:
  • мультиметр с функциями омметра и вольтметра;
  • паяльник;
  • изолента или термоусадочная трубка;
  • сетевая вилка с проводом;
  • пара обычных проводов;
  • лампа накаливания;
  • штангенциркуль;
  • калькулятор.


Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.

Определение первичной и вторичной обмоток


Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.
Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.

Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.
Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.

Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.
В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.
На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.
Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.
Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.

Определение напряжения вторичной обмотки


Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.

Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.
Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.
Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.
Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.

Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.

Простые способы вычисления мощности силового трансформатора


С мощностью понижающего трансформатора дела обстоят немного сложнее, но некоторые простые методики, все же, есть. Самый доступный способ определить эту характеристику – измерение диаметра проволоки во вторичной обмотке. Для этого понадобится штангенциркуль, калькулятор и нижеприведенная информация.
Сначала измеряется диаметр проволоки. Для примера возьмем значение в 1,5 мм. Теперь нужно вычислить сечение проволоки. Для этого необходимо половину диаметра (радиус) возвести в квадрат и умножить на число «пи». Для нашего примера сечение будет около 1,76 квадратных миллиметров.
Далее для расчета понадобится общепринятое значение плотности тока на квадратный миллиметр проводника. Для бытовых понижающих трансформаторов это 2,5 ампера на миллиметр квадратный. Соответственно, по второй обмотке нашего образца сможет «безболезненно» протекать ток силой около 4,3 А.
Теперь берем вычисленное ранее напряжение вторичной обмотки, и умножаем его на полученный ток. В результате получим примерное значение мощности нашего трансформатора. При 12 В и 4,3 А этот параметр будет в районе 50 Вт.
Мощность «безымянного» трансформатора можно определить еще несколькими способами, однако, они более сложные. Желающие смогут найти информацию о них в Сети. Мощность узнается по сечению окон трансформатора, с помощью программ расчета, а также по номинальной рабочей температуре.

Заключение


Из всего вышесказанного можно сделать вывод, что определение характеристик трансформатора без маркировки является довольно простой задачей. Главное – соблюдать правила безопасности и быть предельно внимательным при работе с высоким напряжением.

Как проверить трансформатор мультиметром: прозваниваем на сопротивление

Автор Aluarius На чтение 5 мин. Просмотров 2.1k. Опубликовано

Основное назначение трансформатора – это преобразование тока и напряжения. И хотя это устройство выполняет достаточно сложные преобразования, само по себе оно имеет простую конструкцию. Это сердечник, вокруг которого намотано несколько катушек проволоки. Одна из них является вводной (носит название первичная обмотка), другие выходными (вторичные). Электрический ток подается на первичную катушку, где напряжение индуцирует магнитное поле. Последнее во вторичных обмотках образует переменный ток точно такого же напряжения и частоты, как и в обмотке входной. Если количество витков в двух катушках будет разным, то и ток на входе и выходе будет разным. Все достаточно просто. Правда, это устройство нередко выходит из строя, и его дефекты не всегда видны, поэтому у многих потребителей возникает вопрос, как проверить трансформатор мультиметром или другим прибором?

Необходимо отметить, что мультиметр пригодиться и в том случае, если перед вами лежит трансформатор с неизвестными параметрами. Так вот их с помощью этого прибора также можно определить. Поэтому, начиная работать с ним, надо в первую очередь разобраться с обмотками. Для этого придется все концы катушек вытянуть по отдельности и прозвонить их, выискивая тем самым парные соединения. При этом рекомендуется концы пронумеровать, определив, к какой обмотке они относятся.

Самый простой вариант – это четыре конца, по две на каждую катушку. Чаще встречаются устройства, у которых более четырех концов. Может оказаться и так, что некоторые из них «не прозваниваются», но это не значит, что в них произошел обрыв. Это могут оказаться так называемые экранирующие обмотки, которые располагаются между первичными и вторичными, они обычно соединяются с «землей».

Вот почему так важно при прозвонке обращать внимание на сопротивление. У сетевой первичной обмотки оно определяется десятками или сотнями Ом. Обратите внимание, что маленькие трансформаторы обладают большим сопротивлением первичных обмоток. Все дело в большем количестве витков и малом диаметре медной проволоки. Сопротивление вторичных обмоток обычно приближенно к нулю.

Проверка трансформатора

Итак, с помощью мультиметра определены обмотки. Теперь можно переходить непосредственно к вопросу, как проверить трансформатор, используя все тот же прибор. Разговор идет о дефектах. Их обычно два:

  • обрыв;
  • износ изоляции, что приводит к замыканию на другую обмотку или на корпус устройства.

Обрыв определить проще простого, то есть, проверяется каждая катушка на сопротивление. Мультиметр выставляется в режим омметра, щупами подключаются к прибору два конца. И если на дисплее показывается отсутствие сопротивления (показаний), то это гарантированно обрыв. Проверка цифровым мультиметром может быть недостоверной в том случае, если тестируется обмотка с большим количеством витков. Все дело в том, что чем больше витков, тем выше индуктивность.

 

Замыкание проверяется так:

  1. Один щуп мультиметра замыкается на выводной конец обмотки.
  2. Второй щуп попеременно подсоединяется к другим концам.
  3. В случае с замыканием на корпус второй щуп соединяется с корпусом трансформатора.

Есть еще один часто встречаемый дефект – это так называемое межвитковое замыкание. Оно происходит в том случае, если изоляция двух соседних витков изнашивается. Сопротивление в этом случае у проволоки остается, поэтому в месте отсутствия изоляционного лака происходит перегрев. Обычно при этом выделяется запах гари, появляются почернения обмотки, бумаги, вздувается заливка. Мультиметром этот дефект также можно обнаружить. При этом придется узнать из справочника, какое сопротивление должно быть у обмоток данного трансформатора (будем считать, что его марка известна). Сравнивая фактический показатель со справочным, можно точно сказать, есть ли изъян или нет. Если фактический параметр отличается от справочного вполовину или больше, то это прямое подтверждение межвиткового замыкания.

Внимание! Проверяя обмотки трансформатора на сопротивление, не имеет значение, какой щуп к какому концу подсоединять. В данном случае полярность не играет никакой роли.

Измерение тока холостого хода

Если трансформатор после тестирования мультиметром оказался исправным, то специалисты рекомендуют проверить его и на такой параметр, как ток холостого хода. Обычно у исправного устройства он равен 10-15% от номинала. В данном случае под номиналом имеется в виду ток под нагрузкой.

Для примера, трансформатор марки ТПП-281. Входное его напряжение – 220 вольт, и ток холостого хода равен 0,07-0,1 А, то есть не должен превышать сто миллиампер. Перед тем как проверить трансформатор на параметр тока холостого хода, необходимо измерительный прибор перевести в режим амперметра. Обратите внимание, что при подаче электроэнергии на обмотки сила пускового тока может превосходить номинальный в несколько сот раз, поэтому измерительный прибор подключают к тестируемому устройству замкнутым накоротко.

После чего необходимо разомкнуть выводы измерительного прибора, при этом на его дисплее отразятся числа. Это и есть ток без нагрузки, то есть, холостого хода. Далее, замеряется напряжение без нагрузки на вторичных обмотках, затем под нагрузкой. Снижение напряжения на 10-15% должно привести к показателям тока, которые не превышают один ампер.

Чтобы изменить напряжение, к трансформатору необходимо подключить реостат, если такового нет, можно подключить несколько лампочек или спираль из вольфрамовой проволоки. Чтобы увеличить нагрузку, надо или увеличивать количество лампочек, или укорачивать спираль.

Заключение по теме

Перед тем как проверить трансформатор (понижающий или повышающий) мультиметром, необходимо понимать, как устроено это устройство, как оно работает, и какие нюансы необходимо учитывать, проводя проверку. В принципе, ничего сложного в данном процессе нет. Главное знать, как переключить сам измерительный прибор в режим омметра.

Как определить первичную и вторичную обмотку

При самодеятельном конструировании нередко используются трансформаторы с неизвестными параметрами. В этом случае возникает необходимость определить обмотки трансформатора и их характеристики, в частности, число витков.

В практике самодеятельного конструирования обычно приходится иметь дело с повышающими и понижающими трансформаторами. На сердечнике таких трансформаторов, изготавливаемом из электротехнической стали, наматывается необходимое число обмоток. Количество обмоток и число витков в них подбираются так, чтобы получить на выходе нужные напряжения.

Независимо от типа трансформатора, первичной считается обмотка, на которую подается напряжение. Вторичной – та, к которой подключается нагрузка. Первичная обмотка наматывается первой, затем изолируются. Поверх нее наматывается вторичная обмотка.

На многих трансформаторах выводы обозначены надписями, что облегчает определение обмоток. Если надписей нет, мультиметром (тестером) найдите парные концы обмоток и запишите их сопротивление. Обратите внимание на вывод, находящийся сверху – он почти наверняка будет принадлежать вторичной обмотке. Если трансформатор понижающий, то сопротивление вторичной обмотки всегда меньше, чем у первичной. Сравните сопротивления найденных обмоток – если у внешней сопротивление меньше, чем у внутренней, то это понижающий трансформатор и вы успешно определили обмотки.

Если у трансформатора не четыре, а больше выводов и при проверке тестером вы находите 3-4 и больше связанных между собой выводов, то вы имеете дело именно со вторичной обмоткой, имеющей промежуточные выводы для получения различных напряжений. Сетевой (первичной) в этом случае будет обмотка с двумя выводами и самым большим сопротивлением.

Помочь определить обмотки может диаметр используемого провода – у вторичной он толще, чем у первичной. Это связано с тем, что при трансформации понижение напряжения сопровождается увеличением силы тока.

Если необходимо узнать число витков в обмотках, намотайте поверх последней обмотки еще одну из 30-50 витков. После этого подайте на первичную обмотку небольшое напряжение – например, 12 В. Измерьте напряжение во вторичной и дополнительной обмотках. Для расчета числа витков используйте формулу: n = Un × Wдоб / Uдоб, где n – число витков обмотки трансформатора, Un – действующее на этой обмотке напряжение, Wдоб – число витков в добавочной обмотке, Uдоб – напряжение на ней.

Проверка обмоток трансформатора

В этом видеоролике канала Паяльник ТВ мы рассмотрим простейшие способы, как проверить обмотки и способ получения двухполярного питания из обычного трансформатора. Самый лучший вариант – это наличие двух одинаковых обмоток. В данном случае у каждой амплитудное напряжение по 12 вольт, а сопротивление их по 100 миллиОм.

Здесь очень важно сделать правильное соединение. Друг с другом обмотки соединяются теми концами, фазы которых противоположны, то есть сдвинуты на 180 градусов. И тогда на двух других концах получается сумма напряжений обеих обмоток. Эти концы подключаются к входам обычного диодного моста, а выходы моста подключаются к 2 сглаживающим конденсаторам, которые соединены так, чтобы один из них через верхние диоды заряжался положительным напряжением с концов обмоток относительно земли, а другой отрицательным через нижние диоды. А земля, которая здесь является средней точкой, подключена к другим контактам. В качестве нагрузки здесь используются два резистора. Отдельно на плюс и на минус питания.

Теперь посмотрим на эту схему в действии.

Особое наблюдение установим за положительным и отрицательным напряжениями на выходе. Без нагрузки показатели очень быстро достигли уровня плюс и минус 12 вольт и отсутствуют пульсации. А после подключения нагрузки появились пульсации и напряжение немного просело.

Давайте теперь нагрузим и минус двухполярного питания и понаблюдаем, как будет влиять на пульсации изменения сопротивления нагрузки. Итак, последнее уменьшено в несколько раз и пульсации от этого существенно выросли. Теперь уменьшим потребляемый ток, вернув прежнее сопротивление, и посмотрим на пульсации на плюсе питания поближе.

Получается амплитуда пульсации примерно 700 милливольт. Этот результат мы запомним для сравнения с другими вариантами. А теперь пришло время применить эту схему к реальному трансформатору.

Допустим, имеется трансформатор без опознавательных знаков. Нужно проверить его работоспособность, сколько здесь обмоток и на какое напряжение. Самый простой способ это сделать – включить в сеть 220 или 110 вольт в зависимости от входного напряжения, на которое он рассчитан.  И измерить его на вторичных обмотках. Так как есть риск закоротить их при измерении, будем использовать то. что попадается нам под руку.  В нашем случае это термоусадка. Сначала наденем ее на выводы вторичных обмоток. Поставим режим измерения в данном случае до двухсот вольт. Следующим моментом его надо включить. Но так как это заведомо рабочий трансформатор, включим не через лампочку. Если же это неизвестный трансформаторах и мы не знаем его работоспособность, лучше всего включить через лампочку, то есть в разрыв одного из проводов подключаем её.

Теперь давайте измерять попарно. Чаще всего в трансформаторах именно попарные обмотки, которые выведены рядом.

Здесь примерно 9 вольт. Мы определили одну из обмоток. Это первые два – 9 вольт. Измеряем вторые два. Тоже 9 вольт.

То есть мы нашли вторую обмотку.  Третья и четвертая пары тоже по 9 вольт. Остается проверить, что они не соединены.

Далее на видео с 6 минуты.

fb.ru

Часто нужно ознакомиться заранее с вопросом о том, как проверить трансформатор. Ведь при выходе его из строя или нестабильной работе будет сложно искать причину отказа оборудования. Это простое электротехническое устройство можно продиагностировать обычным мультиметром. Рассмотрим, как это сделать.

Что собой представляет оборудование?

Как проверить трансформатор, если не знаем его конструкцию? Рассмотрим принцип действия и разновидности простого оборудования. На магнитный сердечник наносят витки медной проволоки определенного сечения так, чтобы оставались выводы для подающей обмотки и вторичной.

Передача энергии во вторичную обмотку производится бесконтактным способом. Тут уже становится почти ясно, как проверить трансформатор. Аналогично прозванивается обычная индуктивность омметром. Витки образуют сопротивление, которое можно измерить. Однако такой способ применим, когда известна заданная величина. Ведь сопротивление может измениться в большую или меньшую сторону в результате нагрева. Это называется межвитковое замыкание.

Такое устройство уже не будет выдавать эталонное напряжение и ток. Омметр покажет только обрыв в цепи или полное короткое замыкание. Для дополнительной диагностики используют проверку замыкания на корпус тем же омметром. Как проверить трансформатор, не зная выводов обмоток?

Это определяется по толщине выходящих проводов. Если трансформатор понижающий, то выводные проводники будут толще подводящих. И соответственно, наоборот: у повышающего вводные провода толще. Если две обмотки выходные, то толщина может быть одинаковой, про это следует помнить. Самый верный способ посмотреть маркировку и найти технические характеристики оборудования.

Виды

Трансформаторы делятся на следующие группы:

  • Понижающие и повышающие.
  • Силовые чаще служат для уменьшения подводящего напряжения.
  • Трансформаторы тока для подачи потребителю постоянной величины тока и ее удержания в заданном диапазоне.
  • Одно- и многофазные.
  • Сварочного назначения.
  • Импульсные.

В зависимости от назначения оборудования изменяется и принцип подхода к вопросу о том, как проверить обмотки трансформатора. Мультиметром можно прозвонить лишь малогабаритные устройства. Силовые машины уже требуют иного подхода к диагностике неисправностей.

Метод прозвонки

Метод диагностики омметром поможет с вопросом о том, как проверить трансформатор питания. Прозванивать начинают сопротивление между выводами одной обмотки. Так устанавливают целостность проводника. Перед этим проводят осмотр корпуса на отсутствие нагаров, наплывов в результате нагрева оборудования.

Далее замеряют текущие значения в Омах и сравнивают их с паспортными. Если таковых не имеется, то потребуется дополнительная диагностика под напряжением. Прозвонить рекомендуется каждый вывод относительно металлического корпуса устройства, куда подключаются заземление.

Перед проведением замеров следует отключить все концы трансформатора. Отсоединить от цепи их рекомендуется и в целях собственной безопасности. Также проверяют наличие электронной схемы, которая часто присутствует в современных моделях питания. Её также следует выпаять перед проверкой.

Бесконечное сопротивление говорит о целой изоляции. Значения в несколько килоом уже вызывают подозрения о пробое на корпус. Также это может быть за счет скопившейся грязи, пыли или влаги в воздушных зазорах устройства.

Под напряжением

Испытания с поданным питанием проводятся, когда стоит вопрос о том, как проверить трансформатор на межвитковое замыкание. Если мы знаем величину питающего напряжения устройства, для которого предназначен трансформатор, то замеряют вольтметром значение холостого хода. То есть провода выводные находятся в воздухе.

Если значение напряжения отличается от номинального, то делают выводы о межвитковом замыкании в обмотках. Если при работе устройства слышны треск, искрение, то такой трансформатор лучше сразу выключить. Он неисправен. Существуют допустимые отклонения при измерениях:

  • Для напряжения значения могут отличаться на 20%.
  • Для сопротивления нормой является разброс значений в 50% от паспортных.

Замер амперметром

Разберемся, как проверить трансформатор тока. Его включают в цепь: штатную либо собственно изготовленную. Важно, чтобы значение тока было не меньше номинального. Замеры амперметром проводят в первичной цепи и во вторичной.

Ток в первичной цепи сравнивают со вторичными показаниями. Точнее, делят первые значения на замеренные во вторичной обмотке. Коэффициент трансформации следует взять из справочника и сравнить с полученными расчетами. Результаты должны быть одинаковыми.

Трансформатор тока нельзя замерять на холостом ходу. На вторичной обмотке в таком случае может образоваться слишком высокое напряжение, способное повредить изоляцию. Также следует соблюдать полярность подключения, что повлияет на работу всей подключенной схемы.

Типичные неисправности

Перед тем как проверить трансформатор микроволновки, приведем частые разновидности поломок, устраняемых без мультиметра. Часто устройства питания выходят из строя вследствие короткого замыкания. Оно устанавливается путем осмотра монтажных плат, разъемов, соединений. Реже происходит механическое повреждение корпуса трансформатора и его сердечника.

Механический износ соединений выводов трансформатора происходит на движущихся машинах. Большие питающие обмотки требуют постоянного охлаждения. При его отсутствии возможен перегрев и оплавление изоляции.

ТДКС

Разберемся, как проверить импульсный трансформатор. Омметром можно будет установить только целостность обмоток. Работоспособность устройства устанавливается при подключении в схему, где участвует конденсатор, нагрузка и звуковой генератор.

На первичную обмотку пускают импульсный сигнал в диапазоне от 20 до 100 кГц. На вторичной же обмотке делают замеры величины осциллографом. Устанавливают присутствие искажений импульса. Если они отсутствуют, делают выводы об исправном устройстве.

Искажения осциллограммы говорят о подпорченных обмотках. Ремонтировать такие устройства не рекомендуется самостоятельно. Их настраивают в лабораторных условиях. Существуют и другие схемы проверки импульсных трансформаторов, где исследуют присутствие резонанса на обмотках. Его отсутствие свидетельствует о неисправном устройстве.

Также можно сравнивать форму импульсов, поданных на первичную обмотку и вышедших со вторичной. Отклонение по форме также говорит о неисправности трансформатора.

Несколько обмоток

Для замеров сопротивления освобождают концы от электрических соединений. Выбирают любой вывод и замеряют все сопротивления относительно остальных. Рекомендуется записывать значения и маркировать проверенные концы.

Так мы сможем определить тип соединения обмоток: со средними выводами, без них, с общей точкой подключения. Чаще встречаются с отдельным подключением обмоток. Замер получится сделать только с одним из всех проводов.

Если имеется общая точка, то сопротивление замерим между всеми имеющимися проводниками. Две обмотки со средним выводом будут иметь значения только между тремя проводами. Несколько выводов встречается в трансформаторах, рассчитанных на работу в нескольких сетях номиналом 110 или 220 Вольт.

Нюансы диагностики

Гул при работе трансформатора является нормальным, если это специфичные устройства. Только искрение и треск свидетельствуют о неисправности. Часто и нагрев обмоток – это нормальная работа трансформатора. Чаще это наблюдается у понижающих устройств.

Может создаваться резонанс, когда вибрирует корпус трансформатора. Тогда следует его просто закрепить изоляционным материалом. Работа обмоток значительно меняется при неплотно затянутых или загрязненных контактах. Большинство проблем решается зачисткой металла до блеска и новой обтяжкой выводов.

При замерах значений напряжения и тока следует учитывать температуру окружающей среды, величину и характер нагрузки. Контроль подводящего напряжения также необходим. Проверка подключения частоты обязательна. Азиатская и американская техника рассчитана на 60 Гц, что приводит к заниженным выходным значениям.

Неумелое подключение трансформатора может привести к неисправности устройства. Ни в коем случае не подсоединяют к обмоткам постоянное напряжение. Витки быстро оплавятся в противном случае. Аккуратность в замерах и грамотное подключение помогут не только найти причину поломки, но и, возможно, устранить ее безболезненным способом.

РЕМОНТ БЫТОВОЙ ТЕХНИКИ СВОИМИ РУКАМИ

   Поиск и устранение неисправностей в электронных схемах. В этой статье мы рассмотрим, как самостоятельно найти и устранить несложные поломки в электронных схемах бытовой техники. Допустим, у нас есть переносная кассетная магнитола, которая перестала подавать признаки жизни, не включается, на нажатия кнопок не реагирует, светодиодная индикация не горит. В таком случае поиск причины неисправности следует начать с блока питания.

Фото адаптера — блока питания

   Хорошо, если блок питания у нас внешний, в таком случае включаем блок питания в сеть и измеряем на штекере (выходе с блока питания) напряжение мультиметром. Для бытовой аудиоаппаратуры малой мощности обычно бывает достаточно выбрать на мультиметре предел 20 вольт DCV, или говоря другими словами измерение напряжения на постоянном токе.

Кассетный магнитофон фото

   Если же нужно произвести ремонт аудиоаппаратуры большой мощности, то на выходе с блока питания может быть напряжение,  значительно превышающее 20 Вольт. В таком случае нужно выбрать предел измерения напряжения 200 вольт, также DCV. Если напряжения на выходе нет, придется разбирать корпус блока питания, или если блок питания внутренний, всего  устройства. В таком случае нужно проверить, прежде всего, предохранитель в цепи первичной обмотки трансформатора.

Предохранитель

   Иногда, как и на схеме ниже, предохранители устанавливаются дополнительно и в цепи вторичной обмотки. Их нужно прозвонить, установив мультиметр в режим звуковой прозвонки, нужно коснуться одновременно металлических трубочек — контактов на концах предохранителя. Предохранитель при этом необязательно извлекать из металлических стоек на плате, достаточно прикоснуться к ним щупами мультиметра, если раздастся звуковой сигнал — это означает что предохранитель цел. В противном случае, предохранитель сгорел и его необходимо заменить на новый, рассчитанный на такой же ток.

Предохранители на схеме

   Хотя если в устройстве используется трансформаторное питание, проверить предварительно целостность предохранителя, а заодно и шнура, можно установив мультиметр в режим измерения сопротивления на предел 2 килоОма и прикоснувшись щупами мультиметра к штырькам вилки шнура питания. При этом у нас получаются, как видно на рисунке ниже, включены последовательно, провода шнура питания, предохранитель и первичная обмотка трансформатора.

Схема прозвонки первичной обмотки

   При этом на мультиметре должны высветиться показания порядка 300 Ом. Это означает, что питающие провода, предохранитель и первичная обмотка трансформатора в исправном состоянии. Если в устройстве есть кнопка включения питания, перед такой проверкой её следует нажать. Также можно “пощелкать” кнопкой включения при такой проверке, при включении на экране мультиметра будут показания около 300 Ом, при отключении единица или бесконечное сопротивление.

Трансформатор — фото

   Если же при такой прозвонке, через шнур не будет прозваниваться, придется разбирать корпус и прозванивать шнур и трансформатор по отдельности. С прозвонкой шнура думаю ни у кого трудностей не возникнет, один щуп на вилку, второй на входящие в корпус устройства провода, прозвонку шнура я подробно описал в предыдущей статье. Те выводы трансформатора, которые соединены с проводами, по ним приходит питание, являются первичной обмоткой. Её можно прозвонить установив мультиметр в режим омметр 2 килоома, сопротивление также должно быть порядка 300 Ом.

Сопротивление обмоток трансформатора

   Также отличить первичную обмотку от вторичной можно по толщине проводов, первичная обычно наматывается проводом значительно меньшего сечения, чем вторичная, из за того что во вторичной обмотке протекают токи, большие чем в первичной. На рисунке выше трансформатор с несколькими вторичными обмотками. Сопротивление вторичной обмотки трансформатора при прозвонке мультиметром  бывает близким к нулю, из-за того что количество витков вторичной обмотки намного меньше чем в первичной, соответственно и при прозвонке сопротивление будет намного меньше чем в первичной.

Термопредохранитель

   Если же первичная обмотка не звонится омметром, и соответственно такой трансформатор не работает, то не спешите его выбрасывать, под изоляцией недалеко от выводов первичной обмотки обычно устанавливают термопредохранитель, как на рисунке выше. Срабатывает он при нагреве выше положенной температуры и разрывает цепь первичной обмотки. Как и обычный предохранитель, термопредохранитель используется только один раз, после его бывает  необходимо заменить. Проверить его можно омметром или мультиметром в режиме звуковой прозвонки. Нередко, после замены термопредохранителя,  если обмотки целы, трансформатор может и дальше функционировать как прежде. Нередки случаи, когда сгорает диодный мост, как известно диодный мост представляет собой 4 диода, соединенных между собой по специальной мостовой схеме.

Диодный мост схема

   Как видно на рисунке выше, диодный мост имеет 4 точки соединения, 2 точки подводится переменный ток, и уходящие к нагрузке плюс и минус. На реальном диодном мосте эти точки соединены каждая со своим выводом, это 2 вывода переменный ток и плюс с минусом.

Фото — диодный мост

   Что мы и видим на импортном диодном мосте (+), (АС — переменный ток) и (-). Для того чтобы проверить диодный мост, мы условно делим его на отдельные диоды и прозваниваем так, как будто это у нас были бы 4 отдельных диода. Чтобы прозвонить диод, нужно, как всем известно установить мультиметр в режим проверки диодов, на мультиметре он обозначен значком диода, часто этот режим на мультиметре совмещается с режимом звуковой прозвонки.

Прозвонка диода в прямом включении

   Далее мы соединяем красный щуп с анодом или с положительным электродом диода, а черный щуп с катодом или с отрицательным, или говоря другими словами подключаем соблюдая полярность. При этом на экране должны появиться цифры примерно 600-900. Если раздается звуковой сигнал или на экране единица, это означает, что такой диод неисправен. При подключении щупов в обратной полярности должна на экране быть единица.

Прозвонка диода в обратном включении

   Все что написано выше про проверку радиодеталей касается только выпаянных из платы деталей. При проверке, когда радиодетали впаяны в плату, необходимо учитывать влияние на результаты измерений всех деталей подключенных параллельно измеряемым! Рассмотрим поиск неисправностей на примере этой простой схемы звукового пробника:

Звуковой пробник схема

   Для начала нужно провести визуальный осмотр устройства, нет ли почерневших резисторов и тому подобных дефектов. Дело в том, что когда сгорают резисторы, это чаще всего бывает видно по их внешнему виду. Ниже привожу рисунок печатной платы этого пробника:

Печатная плата на звуковой пробник

   Если есть подозрительные ;), нужно прозвонить их мультиметром в режиме омметра, определив по принципиальной схеме их номинал. Допустимое отклонение от номинала для импортных резисторов 5 — 10%, для отечественных типа МЛТ — 20%.

Слой шелкографии на печатной плате

   На фабричных печатных платах различной бытовой техники наносится со стороны, обратной печати на текстолите, слой шелкографии, или говоря другими словами обозначение где какой элемент и где какой вывод впаян. Это очень помогает при ремонте, не тратить время отслеживая по дорожкам, каждый раз, где какая деталь. На печатных платах изготовленных радиолюбителями, также есть возможность нанести слой обозначений с помощью метода ЛУТ с обратной стороны платы.

Проверка транзистора в схеме

   Вернемся к нашей плате звукового пробника, допустим мы решили прозвонить все 3 транзистора впаянные в плату. Начнем с VT1, так как это транзистор n-p-n структуры, мы должны установить красный щуп на базовый вывод транзистора, а черный поочередно на коллектор и эмиттер. При этом на экране в зависимости от типа транзистора будут цифры порядка 600-900. Если при проверке звучит звуковой сигнал, или на экране единица, то такой транзистор необходимо заменить. Определить, где какой вывод у транзистора на плате, нам поможет цоколевка. У нас в схеме используются транзисторы КТ315 и КТ361. Вот их цоколевка:

Цоколевка транзисторов кт315

   Отличие VT2 от  VT1 заключается в структуре. На рисунке выше видно, что база у транзистора VT2 n – типа, это означает, что при проверке с ней надо соединять черный щуп, а с коллектором и эмиттером, поочередно красный. В остальном транзисторы p-n-p структуры проверяются точно также как и n-p-n структуры. Если на плате не обозначены выводы, нужно посмотреть в справочник по транзисторам, либо на страничку со справочной информацией в интернете. Если требуется проверить неполярные конденсаторы на замыкание, их прозванивают мультиметром в режиме омметра. Выводы конденсатора не должны звониться между собой, или говоря другими словами на экране должна быть единица.

   Форум по ремонту

Как рассчитать трансформатор, количество витков намотки на вольт. Габаритная мощность трансформатора. Диаметр провода обмотки.

В раздел: Советы → Расcчитать силовой трансформатор

Как рассчитать силовой трансформатор и намотать самому.
Можно подобрать готовый трансформатор из числа унифицированных типа ТН, ТА, ТНА, ТПП и других. А если Вам необходимо намотать или перемотать трансформатор под нужное напряжение, что тогда делать?
Тогда необходимо подобрать подходящий по мощности силовой трансформатор от старого телевизора, к примеру, трансформатор ТС-180 и ему подобные.
Надо четко понимать, что чем больше количества витков в первичной обмотке тем больше её сопротивление и поэтому меньше нагрев и второе, чем толще провод, тем больше можно получить силу тока, но это зависит от размеров сердечника — сможете ли разместить обмотку.
Что делаем далее, если неизвестно количество витков на вольт? Для этого необходим ЛАТР, мультиметр (тестер) и прибор измеряющий переменный ток — амперметр. Наматываем по вашему усмотрению обмотку поверх имеющейся, диаметр провода любой, для удобства можем намотать и просто монтажным проводом в изоляции.

Формула для расчета витков трансформатора

50/S

Сопутствующие формулы: P=U2*I2    Sсерд(см2)= √ P(ва)    N=50/S    I1(a)=P/220    W1=220*N    W2=U*N    D1=0,02*√i1(ma)    D2=0,02*√i2(ma)   K=Sокна/(W1*s1+W2*s2)

   50/S — это эмпирическая формула, где S — площадь сердечника трансформатора в см2 (ширину х толщину), считается, что она справедлива до мощности порядка 1кВт.
   Измерив площадь сердечника, прикидываем сколько надо витков намотать на 10 вольт, если это не очень трудно, не разбирая трансформатора наматываем контрольную обмотку через свободное пространство (щель). Подключаем лабораторный автотрансформатор к первичной обмотке и подаёте на неё напряжение, последовательно включаем контрольный амперметр, постепенно повышаем напряжение ЛАТР-ом, до начала появления тока холостого хода.
   Если вы планируете намотать трансформатор с достаточно «жёсткой» характеристикой, к примеру, это может быть усилитель мощности передатчика в режиме SSB, телеграфном, где происходят довольно резкие броски тока нагрузки при высоком напряжении ( 2500 -3000 в), например, тогда ток холостого хода трансформатора устанавливаем порядка 10% от максимального тока, при максимальной нагрузке трансформатора. Замерив полученное напряжение, намотанной вторичной контрольной обмотки, делаем расчет количества витков на вольт.
Пример: входное напряжение 220вольт, измеренное напряжение вторичной обмотки 7,8 вольта, количество витков 14.

Рассчитываем количества витков на вольт
14/7,8=1,8 витка на вольт.

Если нет под рукой амперметра, то вместо него можно использовать вольтметр, замеряя падение напряжение на резисторе, включенного в разрыв подачи напряжения к первичной обмотке, потом рассчитать ток из полученных измерений.

Вариант 2 расчета трансформатора.
Зная необходимое напряжение на вторичной обмотке (U2) и максимальный ток нагрузки (Iн), трансформатор рассчитывают в такой последовательности:

1. Определяют значение тока, протекающего через вторичную обмотку трансформатора:
I2 = 1,5 Iн,
где: I2 — ток через обмотку II трансформатора, А;
Iн — максимальный ток нагрузки, А.
2. Определяем мощность, потребляемую выпрямителем от вторичной обмотки трансформатора:
P2 = U2 * I2,
где: P2 — максимальная мощность, потребляемая от вторичной обмотки, Вт;
U2 — напряжение на вторичной обмотке, В;
I2 — максимальный ток через вторичную обмотку трансформатора, А.
3. Подсчитываем мощность трансформатора:
Pтр = 1,25 P2,
где: Pтр — мощность трансформатора, Вт;
P2 — максимальная мощность, потребляемая от вторичной обмотки трансформатора, Вт.
Если трансформатор должен иметь несколько вторичных обмоток, то сначала подсчитывают их суммарную мощность, а затем мощность самого трансформатора.
4. Определяют значение тока, текущего в первичной обмотке:
I1 = Pтр / U1,
где: I1 — ток через обмотку I, А;
Ртр — подсчитанная мощность трансформатора, Вт;
U1 — напряжение на первичной обмотке трансформатора (сетевое напряжение).
5. Рассчитываем необходимую площадь сечения сердечника магнитопровода:
S = 1,3 Pтр,
где: S — сечение сердечника магнитопровода, см2;
Ртр — мощность трансформатора, Вт.
6. Определяем число витков первичной (сетевой) обмотки:
w1 = 50 U1 / S,
где: w1 — число витков обмотки;
U1 — напряжение на первичной обмотке, В;
S — сечение сердечника магнитопровода, см2.
7. Подсчитывают число витков вторичной обмотки:
w2 = 55 U2 / S,
где: w2 — число витков вторичной обмотки;
U2 — напряжение на вторичной обмотке, В;
S-сечение сердечника магнитопровода, см2.
8. Высчитываем диаметр проводов обмоток трансформатора:
d = 0,02 I,
где: d-диаметр провода, мм;
I-ток через обмотку, мА.

Ориентировочный диаметр провода для намотки обмоток трансформатора в таблице 1.

 Таблица 1
Iобм, ma<2525 — 6060 — 100100 — 160160 — 250250 — 400400 — 700700 — 1000
d, мм0,10,150,20,250,30,40,50,6

После выполнения расчетов, приступаем к выбору самого трансформаторного железа, провода для намотки и изготовление каркаса на которой намотаем обмотки. Для прокладки изоляции между слоями обмоток приготовим лакоткань, суровые нитки, лак, фторопластовую ленту. Учитываем тот факт, что Ш — образный сердечник имеют разную площадь окна, поэтому будет не лишним провести расчет проверки: войдут ли они на выбранный сердечник. Перед намоткой производим расчет — поместится ли обмотки на выбранный сердечник.
Для расчета определения возможности размещения нужного количества обмоток:
1. Ширину окна намотки делим на диаметр наматываемого провода, получаем количество витков наматываемый
на один слой — N¹.
2. Рассчитываем сколько необходимо слоев для намотки первичной обмотки, для этого разделим W1 (количество витков первичной обмотки) на N¹.
3. Рассчитаем толщину намотки слоев первичной обмотки. Зная количество слоев для намотки первичной обмотки умножаем на диаметр наматываемого провода, учитываем толщину изоляции между слоями.
4. Подобным образом считаем и для всех вторичных обмоток.
5. После сложения толщин обмоток делаем вывод: сможем ли мы разместить нужное количество витков всех обмоток на каркасе трансформатора.

Еще один способ расчета мощности трансформатора по габаритам.
Ориентировочно посчитать мощность трансформатора можно используя формулу:
P=0.022*S*С*H*Bm*F*J*Кcu*КПД;
P — мощность трансформатора, В*А;
S — сечение сердечника, см²
L, W — размеры окна сердечника, см;
Bm — максимальная магнитная индукция в сердечнике, Тл;
F — частота, Гц;
Кcu — коэффициент заполнения окна сердечника медью;
КПД — коэффициент полезного действия трансформатора;
Имея в виду что для железа максимальная индукция составляет 1 Тл.
   Варианты значений для подсчета мощности трансформатора КПД = 0,9, f =50, B = 1 — магнитная индукция [T], j =2.5 — плотность тока в проводе обмоток [A/кв.мм] для непрерывной работы, KПД =0,45 — 0,33.

Если вы располагаете достаточно распространенным железом — трансформатор ОСМ-0,63 У3 и им подобным, можно его перемотать?
Расшифровка обозначений ОСМ: О — однофазный, С — сухой, М — многоцелевого назначения.
По техническим характеристикам он не подходит в для включения однофазную сеть 220 вольт т.к. рассчитан на напряжение первичной обмотки 380 вольт.
Что же в этом случае делать?
Имеется два пути решения.
1. Смотать все обмотки и намотать заново.
2. Смотать только вторичные обмотки и оставить первичную обмотку, но так как она рассчитана на 380В, то с нее необходимо смотать только часть обмотки оставив на напряжение 220в.
При сматывании первичной обмотки получается примерно 440 витков (380В) когда сердечник Ш-образной формы, а когда сердечник трансформатора ОСМ намотан на ШЛ данные другие — количество витков меньше.
Данные первичных обмоток на 220в трансформаторов ОСМ Минского электротехнического завода 1980 год.

  • 0,063 — 998 витков, диаметр провода 0,33 мм
  • 0,1 — 616 витков, диаметр провода 0,41 мм
  • 0,16 — 490 витков, диаметр провода 0,59 мм
  • 0,25 — 393 витка, диаметр провода 0,77 мм
  • 0,4 — 316 витков, диаметр провода 1,04 мм
  • 0,63 — 255 витков, диаметр провода 1,56 мм
  • 1,0 — 160 витков, диаметр провода 1,88 мм

ОСМ 1,0 (мощность 1 кВт), вес 14,4кг. Сердечник 50х80мм. Iхх-300ма

Подключение обмоток трансформаторов ТПП

Рассмотрим на примере ТПП-312-127/220-50 броневой конструкции, параллельное включение вторичных обмоток.

В зависимости от напряжения в сети подавать напряжение на первичную обмотку можно на выводы 2-7, соединив между собой выводы 3-9, если повышенное — то на 1-7 (3-9 соединить) и т.д. На схеме подключение показано случае пониженного напряжение в сети.
Часто возникает необходимость применять унифицированные трансформаторы типа ТАН, ТН, ТА, ТПП на нужное напряжение и для получения необходимой нагрузочной способности, а простым языком нам надо подобрать, к примеру, трансформатор со вторичной обмоткой 36 вольт и чтобы он отдавал 4 ампера под нагрузкой, первичная конечно 220 вольт.
Как подобрать трансформатор?
С начало определяем необходимую мощность трансформатора, нам необходим трансформатор мощностью 150 Вт.
Входное напряжение однофазное 220 вольт, выходное напряжение 36 вольт.
После подбора по техническим данным определяем, что в данном случае нам больше всего подходит трансформатор марки ТПП-312-127/220-50 с габаритной мощностью 160 Вт (ближайшее значение в большую сторону ), трансформаторы марки ТН и ТАН в данном случае не подходят.
Вторичные обмотки ТПП-312 имеют по три раздельные обмотки напряжением 10,1в 20,2в и 5,05в, если соединить их последовательно 10,1+20,2+5,05=35,35 вольт, то получаем напряжение на выходе почти 36 вольт. Ток вторичных обмоток по паспорту составляет 2,29А, если соединить две одинаковые обмотки параллельно, то получим нагрузочную способность 4,58А (2,29+2,29).
После выбора нам только остается правильно соединить выходные обмотки параллельно и последовательно.
Последовательно соединяем обмотки для включения в сеть 220 вольт. Последовательно включаем вторичные обмотки, набирая нужное напряжение по 36В на обеих половинках трансформатора и соединяем их параллельно для получения удвоенного значения нагрузочной способности.
Самое важное, правильно соединить обмотки при параллельном и последовательном включении, как первичной так и вторичной обмоток.

Если неправильно включить обмотки трансформатора, то он будет гудеть и перегреваться, что потом приведет его к преждевременному выходу из строя.

По такому же принципу можно подобрать готовый трансформатор на практически любое напряжение и ток, на мощность до 200 Вт, конечно, если напряжение и ток имеют более или менее стандартные величины.
Разные вопросы и советы.
   1. Проверяем готовый трансформатор, а у него ток первичной обмотки оказывается завышенным, что делать? Чтобы не перематывать и не тратить лишнее время домотайте поверх еще одну обмотку, включив ее последовательно с первичной.
   2. При намотке первичной обмотки когда мы делаем большой запас, чтобы уменьшить ток холостого хода, то учитывайте, что соответственно уменьшается и КПД транса.
   3. Для качественной намотки, если применен провод диаметром от 0,6 и выше , то его обязательно надо выпрямить, чтоб он не имел малейшего изгиба и плотно ложился при намотке, зажмите один конец провода в тиски и протяните его с усилием через сухую тряпку, далее наматывайте с нужным усилием, постепенно наматывая слой за слоем. Если приходится делать перерыв, то предусмотрите фиксацию катушки и провода, иначе придется делать все заново. Порой подготовительные работы занимают много времени, но это того стоит для получения качественного результата.
   4. Для практического определения количества витков на вольт, для попавшегося железа в сарае, можно намотать на сердечник проводом обмотку. Для удобства лучше наматывать кратное 10, т.е. 10 витков, 20 витков или 30 витков, больше наматывать не имеет большого смысла. Далее от ЛАТРа постепенно подаем напряжение его увеличивая от 0 и пока не начнет гудеть испытываемый сердечник, вот это и является пределом. Далее делим полученное напряжение подаваемое от ЛАТРа на количество намотанных витков и получаем число витков на вольт, но это значение немного увеличиваем. На практике лучше домотать дополнительную обмотку с отводами для подбора напряжения и тока холостого хода.
   5. При разборке — сборке броневых сердечников обязательно помечайте половинки, как они прилегают друг к другу и собирайте их в обратном порядке, иначе гудение и дребезжание вам обеспечено. Иногда гудения избежать не удается даже при правильной сборке, поэтому рекомендуется собрать сердечник и скрепить чем либо (или собрать на столе, а сверху через кусок доски приложить тяжелый груз), подать напряжение и попробовать найти удачное положение половинок и только потом окончательно закрепить. Помогает и такой совет, поместить готовый собранный трансформатор в лак и потом хорошо просушить при температуре до полного высыхания (иногда используют эпоксидную смолу, склеивая торцы и просушка до полной полимеризации под тяжестью).

Соединение обмоток отдельных трансформаторов

Иногда необходимо получить напряжение нужной величины или ток большей величины, а в наличии имеются готовые отдельные унифицированные трансформаторы, но на меньшее напряжение чем нужно, встает вопрос: а можно ли отдельные трансформаторы включать вместе, чтобы получить нужный ток или величину напряжения?
Для того чтобы получить от двух трансформаторов постоянное напряжение, к примеру 600 вольт постоянного тока, то необходимо иметь два трансформатора которые бы после выпрямителя выдавали бы 300 вольт и после соединив их последовательно два источника постоянного напряжения получим на выходе 600 вольт.

Как проверить трансформатор?

Трансформатор является важным передающим устройством как часть мощной и сложной энергосистемы, которая снабжает электроэнергией большое количество промышленных и бытовых потребителей энергии.

Такой агрегат должен быть надежным и долгое время исправным, чтобы не было дефицита в полезной работе промышленных пользователей и не было недостатка в потреблении электроэнергии обычными людьми в повседневной жизни.

Трансформатор должен пройти множество процедур испытаний, чтобы удовлетворить соответствующие требования, предъявляемые к техническим характеристикам и характеристикам потребителей.Перед вводом в эксплуатацию на территории клиента также проводятся испытания тяжелых трансформаторов.

Для определения надежности, экономических характеристик, безопасности и технических параметров трансформаторов используются различные тесты. Чтобы узнать больше об испытаниях определенных трансформаторов, здесь подробно объясняется рассмотрение 4 способов. Эта статья покажет вам , как проверить трансформатор .

Визуальная проверка трансформатора

Часто причиной выхода из строя трансформатора является перегрев его внутренней обмотки.Если корпус трансформатора вздулся или на нем видны следы ожогов, не проверяйте его дальше.

Определите обмотку трансформатора. Ожидалось, что на нем будут легко читаемые ярлыки. Однако часто бывает полезно иметь электрическую схему трансформатора, чтобы узнать, как он связан. Принципиальную схему можно найти в документации к продукту или на сайте производителя. Что можно определить четырьмя способами:

1. Определите вход и выход трансформатора

Первая электрическая цепь, создающая магнитное поле, подключена к ее первичной обмотке.Напряжение, приложенное к этой обмотке, должно быть указано на самом трансформаторе и может быть найдено на схеме. Вторая цепь, получающая энергию от магнитного поля, подключена ко вторичной обмотке трансформатора. Напряжение, создаваемое в этой цепи, также должно быть указано на самом трансформаторе.

2. Определите фильтрацию на выходе

Конденсаторы и диоды часто присоединяются ко вторичной обмотке трансформатора для преобразования переменной мощности в постоянную выходную мощность.Эта фильтрация и сдвиг формы сигнала не отражены на этикетке трансформатора. Их необходимо увидеть на прилагаемой схеме.

3. Определите вход трансформатора

Свяжите источник с входной цепью. Измерьте напряжение через первичную обмотку с помощью тестера в режиме переменного тока (переменного тока). Первичная цепь или трансформатор могут быть неисправны, если они более чем на 80 процентов ниже ожидаемого. В этом случае отсоедините первичную обмотку от входной цепи.Если после этого входное напряжение (но не отключенная первичная обмотка) увеличится до заданного значения, то первичная обмотка трансформатора неисправна. Неисправность не в трансформаторе, а во входной цепи, если напряжение не увеличилось.

4. Измерьте напряжение на выходе трансформатора

Используйте режим тестера переменного тока, если вы решили, что выход не фильтруется и не преобразуется из вторичного. Переключите тестер в режим постоянного тока, если есть фильтрация и преобразование сигнала.Если тестер не отображает ожидаемое выходное напряжение, это может повлиять на работу трансформатора или блока фильтрации и преобразования сигналов. Отдельно проверьте все составляющие этого блока. Если все они на месте, значит трансформатор неисправен.

Как проверить трансформатор мультиметром?

Проверка обмоток трансформаторов может легко вызвать панику у новичка, имея кучу проводов, идущих от разных обмоток, трудно понять, с чего начать такую ​​проверку.

Прежде всего, вам нужно разобраться с более простым примером и понять саму концепцию проверки трансформатора с помощью мультиметра. Сегодня мы покажем вам, как тестировать понижающий трансформатор с 220 В на 12 В с помощью мультиметра в двух фазах.

Наш основной трансформатор зарядного устройства имеет только четыре вывода, то есть два провода вторичной обмотки и два основных. Весь процесс проверки трансформатора мультиметром заключается в проверке целостности обмоток.Для начала необходимо перевести мультиметр в режим проверки диодов или измерения сопротивления. Затем проверяется одна из обмоток, полярность расположения щупов значения не имеет.

А если проблема возникнет неожиданно, как подобрать обмотки трансформатора? Решить эту проблему можно тем, что сопротивление первичной обмотки понижающего трансформатора часто выше.

Обмотка с расщепленной обмоткой вообще не звонит. При необходимости проверки трансформаторов, имеющих несколько линий первичной обмотки и несколько вторичных обмоток, каждая обмотка такого трансформатора испытывается отдельно.

Этот метод проверки трансформатора мультиметром очень прост и помогает определить целостность обмотки.

Поиск и устранение неисправностей трансформаторов

Исследование замененного трансформатора

Если недавно купленный трансформатор может выйти из строя где-нибудь в одной из цепей. Более высока вероятность того, что эти трансформаторные цепи с большей вероятностью перегорят из-за короткого замыкания.

Когда мы заменяем новый трансформатор на старый, мы действительно должны убедиться, что это больше никогда не повторится.При обнаружении каких-либо повреждений, вероятно, будут проведены дополнительные проверки.

В случае цепей перегрузки трансформатора возникновение перегрева сердечника более вероятно. Подключения основного питания следует отключить, чтобы предотвратить повреждение всего трансформатора.

Изолируйте трансформатор от входа и выхода, чтобы найти причину отказа.

Известно, что этот этап является лучшим методом определения основной причины серьезного сбоя. Линейный предохранитель будет иметь только один вход и выход источника.Это лучший способ оценить, возникла ли проблема во входной или выходной цепи.

Для комплексного удаления входов, а также выходов трансформатора, удаление одного за другим, чтобы выяснить, что вызывает этот отказ, является основным компонентом всей цепи.

Автор
Киран Давэр (Kiran Daware) — младший инженер-электрик в Nicore India Pvt. Ltd. Он входит в группу разработчиков магнитных сердечников из кремнистой стали. Он также является техническим писателем в компании Nicore India, где ведет блог, посвященный электронным легким вещам.

Вы также можете посетить Industry Electric.

Как использовать омметр для проверки трансформатора переменного тока

Трансформаторы — это электрические устройства, используемые для передачи электроэнергии между двумя или более цепями. Обычно используемые для понижения напряжения электроэнергии, вырабатываемой на электростанциях, до токов низкого напряжения, способных питать бытовые приборы, освещение и аналогичные системы, трансформаторы используют электромагнитную индукцию и имеют решающее значение для распределения и потребления энергии.Если ваш трансформатор неисправен, вы можете легко проверить его работу с помощью омметра.

TL; DR (слишком длинный; не читал)

Сопротивление трансформатора переменного тока (AC) поддерживается проводами, намотанными вокруг его сердечника. Трансформаторы испытывают потерю мощности из-за сопротивления нагрузки, которое вы можете проверить с помощью омметра, прикоснувшись красным и черным контактами к противоположным концам проводки трансформатора. Просто будьте или , чтобы отключить трансформатор от цепи перед тестированием, чтобы избежать риска серьезной травмы.Если показания омметра значительно отличаются от сопротивления, указанного в паспорте трансформатора, его следует немедленно снять и заменить.

Омметры и трансформаторы

Омметры используются для проверки электрического сопротивления (иногда называемого импедансом) в устройстве или цепи, измеряемого в омах. В случае трансформатора, который использует переменный ток (AC) для увеличения или уменьшения напряжения электрической энергии, проходящей через него, это сопротивление удерживается внутри спиральных проводов, намотанных вокруг его сердечника.

Подготовка к тесту

Однако для проверки трансформатора вам потребуется , чтобы отключить его от цепи, прежде чем делать что-либо еще. Это предотвратит неточные показания и обеспечит вашу безопасность. Установите омметр на крайнюю нижнюю шкалу и, сняв пластиковые оболочки с проводов, соедините его выводы вместе, чтобы убедиться, что он готов к тестированию. Если показание равно нулю, можно продолжить. Если он не равен нулю, отрегулируйте ручку переменной так, чтобы омметр показывал ноль, прежде чем продолжить.

Простое тестирование

Чтобы проверить трансформатор, просто прикоснитесь красным и черным контактами омметра к противоположным концам проводки трансформатора. Прочтите дисплей и сравните сопротивление на вашем омметре с сопротивлением, указанным в паспорте трансформатора. Иногда это указывается на корпусе трансформатора. Если есть существенная разница между показаниями и указанным сопротивлением, вполне вероятно, что трансформатор неисправен и его следует как можно скорее снять и заменить.Проверьте три раза, прежде чем делать выводы, так как ваш омметр может быть неточным.

Как проверить трансформатор с помощью мультиметра

Используйте мультиметр для измерения сопротивления первичной обмотки (обычно в кОм). Прикоснитесь проводами измерителя к двум входным клеммам первичной катушки (они могут быть помечены как h2 и h3) и проверьте показания.

Fluke Test Equipment Электрический тестер, мультиметр, тестер

Шаг 1 включите трансформатор в электрическую розетку.

Как проверить трансформатор мультиметром . Снимите крышку колокольчика, установите ручку мультиметра на напряжение и коснитесь щупами на проводах. В этой статье я только объясню, как проверить линейный трансформатор. Используйте мультиметр, чтобы проверить напряжение.

Испытание трансформатора наведенным напряжением Испытание трансформатора наведенным напряжением предназначено для проверки межвитковой и конечной изоляции линии, а также основной изоляции относительно земли и между обмотками 1.В этой статье объясняется базовое тестирование трансформатора. Мультиметр используется для проверки вашего трансформатора, пока вы еще дома.

Вы можете проверить сопротивление первичной и вторичной обмоток, оба значения будут довольно низкими, так как это всего лишь медная обмотка. Используйте dmm в режиме переменного тока для измерения первичной обмотки трансформатора. Перед тем, как отправиться в длительную поездку, рекомендуется проверить исправность трансформатора.

Как проверить трансформатор дверного звонка. Хороший изолирующий трансформатор показывает на счетчике около 5 вольт переменного тока.Независимо от типа, измерители сопротивления обмоток всегда оснащены токовым выходом, измерителем напряжения и измерителем сопротивления.

Прочтите следующий раздел для получения подробных инструкций по использованию мультиметра для проверки напряжения. Использование мультиметра дает вам наиболее точную оценку напряжения трансформатора дверного звонка, и это можно сделать, не обнаруживая трансформатор дверного звонка. Хороший трансформатор получает измеренное значение сопротивления.

Настройте мультиметр на измерение напряжения переменного тока по шкале выше 16 вольт.Распутайте шнур и осмотрите разъем на конце шнура. Чтобы привыкнуть к мультиметру, протестируйте его на батарейке.

Попросите кого-нибудь нажать кнопку вместо вас. Cpc 100 для проверки коэффициента мощности и полярности. Мультиметр подаст звуковой сигнал и / или отобразит значение сопротивления, близкое к 0.

Если на выходе мультиметра показывается всего несколько милливольт или меньше, трансформатор неисправен. Это также делается на месте для проверки исправности трансформатора, то есть для проверки ослабленных соединений, обрывов жил проводов, высокого контактного сопротивления в переключателях ответвлений, высокого.Как проверить мультиметром понижающий трансформатор?

Выключите оборудование (отсоедините его от сети) или отключите источник питания от проверяемого трансформатора. Убедитесь, что мультиметр настроен на считывание сопротивления. Если возможно, снимите номинальные параметры трансформатора и коэффициент трансформации.

При тестировании выходного трансформатора вы используете настройку вольтметра для проверки выходного напряжения, когда трансформатор подключен к источнику питания. Весь процесс проверки трансформатора мультиметром заключается в проверке целостности обмоток.Силовой трансформатор линейного типа и импульсный.

Чтобы проверить трансформатор с помощью цифрового мультиметра (dmm), сначала отключите питание цепи. Коснитесь выводами мультиметра входных разъемов трансформатора. Если вы можете найти сам трансформатор, первое испытание будет состоять в том, чтобы отсоединить один или оба провода низкого напряжения от выхода трансформатора, а затем измерить выход измерителем.

Шаг для проверки трансформатора цифровым мультиметром. Испытательный комплект, используемый для силового трансформатора, будет сильно отличаться от комплекта, разработанного для небольших измерительных трансформаторов.Не закрывайте первичную обмотку трансформатора.

Проверка коэффициента передачи и полярности трансформатора напряжения. Подключите измерительные провода к первичной обмотке. Проверьте, указано ли напряжение на вашем существующем дверном звонке.

Установите поворотный переключатель в режим проверки резистора. Для проверки трансформатора не нужно отключать электроэнергию в доме. Он проводится как типовое, так и стандартное испытание.

Переключите мультиметр на сопротивление и вставьте красный и черный щупы в измеритель.Подключите схему, как показано выше, с помощью вольтметра (v a) через первичную обмотку и другого вольтметра (v b) через вторичную обмотку. Для начала необходимо перевести мультиметр в режим проверки диодов или измерения сопротивления.

Затем присоедините выводы вашего dmm к входным линиям. Если мультиметр показывает, что ток течет, но колокольчик звонит, замените его. Полностью проверить трансформатор мультиметром нельзя.

Для большей точности сначала соедините 2 вывода мультиметра вместе, считывая сопротивление, чтобы мультиметр мог проверить целостность цепи.Прикоснитесь тестовыми проводами к выходным клеммам трансформатора. При проверке целостности трансформатора вы отключаете трансформатор от питания и проверяете сопротивление на входной и выходной катушках с помощью функции омметра.

Измерение сопротивления обмотки трансформатора выполняется для расчета потерь i 2 r и расчета температуры обмотки в конце испытания на повышение температуры. Дисплей мультиметра будет меняться по мере прохождения через него тока. Одна из частых причин выхода из строя трансформатора — перегрев, который приводит к физической деформации трансформатора.

Проверить трансформатор очень просто, если следовать процедуре, описанной в этой статье. Порядок проверки полярности трансформатора. Вы можете проверить любой трансформатор, в том числе трансформатор зарядного устройства телефона, с помощью мультиметра.

Как правило, на рынке существует два типа трансформаторов, т. Е. Отсоедините выходные провода от трансформатора. Красный провод вставляется в гнездо для измерения сопротивления, а черный вывод — в общее отверстие.

Перед проверкой трансформатора мультиметром необходимо выполнить несколько шагов.Используйте мультиметр, чтобы проверить трансформатор. Если вы пытаетесь проверить провода под напряжением, найдите винты, фиксирующие провода.

То, что вы не можете проверить, так это то, закорочена ли какая-либо обмотка как исправность. Прижмите черный щуп к отрицательной клемме, а красный щуп — к положительной. Для проведения этого теста трансформатор должен быть полностью отключен, и вам необходимо настроить мультиметр на считывание сопротивления в омах (ω).

Коснитесь наконечниками щупа мультиметра двух вторичных проводов трансформатора.Это скажет вам, в порядке ли трансформатор, есть ли какие-то проблемы с подачей сетевого напряжения переменного тока на трансформатор, или сам трансформатор вышел из строя. Если причина в одном из них, просто замените его.

Если звонок хороший, проверить трансформатор. Затем проверяется одна из обмоток, полярность расположения щупов значения не имеет.

Пин на счетчике энергии

Штифт на SM System

SC (B) h25 Трехколонный трансформатор DryType из аморфного сплава

Как измерить ток с помощью осциллографа

человек.rit.edu jng4080 Изображения Информация Схема

Как использовать мультиметр-мультиметр, электрические поделки

Игрушечный трансформатор Блок питания переменного тока 9 В, 1000 мА Модель

Что такое регулирование напряжения трансформатора? Примеры И

Самая большая скульптура-трансформер из металлолома (С изображениями

Штифт на активных компонентах

Значок «Визуализация звука»

Техническое обслуживание трансформаторов силовых трансформаторов

Как определить первичную и вторичную части обратного хода

Продукция MEMF Страница 5 Трансформатор тока, изолированный, литой

Бесплатный МОП-транзистор от ПК, самодельный инвертор 12В на 220В

Пин на

Установка трехфазной электропроводки в Multi

Пин на любительском радио

Переключающий конденсаторный контактор переменного тока CJ19C, номинальное напряжение при

Силовой трансформатор

Силовой трансформатор

Проблемы с силовым трансформатором

Они бывают разных вкусов.

  • Открытые обмотки, из-за чего усилитель просто не работает, нет звука.
  • Внутреннее короткое замыкание на сердечник трансформатора, подключенный к шасси. Это приводит к срабатыванию предохранителей усилителя или перегреву трансформатора, а также может вызвать поражение электрическим током, если короткое замыкание происходит от первичной обмотки.
  • Внутреннее короткое замыкание витков, которое приведет к перегреву трансформатора без внешней нагрузки.
  • Внутреннее короткое замыкание между обмоткой и обмоткой, которое приводит к «утечке» напряжения одной обмотки в другую обмотку, что может вызвать перегрев или просто неправильную работу, если ток не большой.
  1. Отключите усилитель от сети.
  2. Откройте корпус и определите, где находятся конденсаторы фильтра питания. Подключите зажим к шасси, затем закрепите свободный конец провода зажима на пластинчатом выводе любой трубки предусилителя, чтобы слить любой заряд с конденсаторов фильтра. Пластины 12AX7 находятся на контактах 1 и 6.
  3. Обозначьте клеммы силового трансформатора.
    1. С помощью омметра измерьте сопротивление первичной обмотки. (обычно черный — черный провода) и сопротивление обоих проводов к шасси.Сопротивление первичной обмотки должно быть менее 1 кОм. Если это не так, трансформатор мертв.
    2. Измерьте сопротивление шасси с обоих концов первичной обмотки. Оно должно быть более 1 МОм.
      1. Если он закорочен или сопротивление меньше 100 кОм, трансформатор неисправен. Если оно составляет от 100 кОм до 1 МОм, отпаяйте первичные выводы от клемм, с которыми они контактируют, и измерьте снова.
      2. Если теперь оно меньше 1 МОм, трансформатор вышел из строя и его необходимо заменить.
      3. Если сопротивление превышает 1 МОм, к проводке, ведущей к силовому трансформатору, подключен компонент, который протекает к шасси, и его необходимо отследить.
    3. Измерьте сопротивление обмотки высокого напряжения (обычно красный — красный / желтый — красный, если он с центральным выводом, красный — красный или красный — красный / желтый, если он не с центральным выводом) сопротивление от конца до конца. Оно должно быть меньше 1 кОм. Если это больше, обмотка разомкнута, и трансформатор следует заменить.Центральный ответвитель, если он есть, должен быть привязан к шасси, возможно, через резервный переключатель.
    4. Измерьте сопротивление обмотки нагревателя выпрямителя (обычно? -?) От конца до конца. Оно должно быть меньше 10 Ом. Если больше, то трансформатор плохой. Измерьте сопротивление от любого конца обмотки к шасси. Если оно меньше 100 кОм, распаяйте провода и измерьте снова. Если это значение меньше 100 кОм, трансформатор неисправен.
    5. Измерьте обмотку (и) нагревателя (нити накала) (обычно зеленый — зеленый или зеленый — зеленый / желтый — зеленый), как и на первичной обмотке, с теми же выводами, ЗА ИСКЛЮЧЕНИЕМ того, что нагреватели обычно привязаны к шасси через центральную головку ( зеленый / желтый), либо через потенциометр для уравновешивания помех или постоянные резисторы на 100-500 Ом, так что его можно провести к шасси.
  4. Если ни один из предыдущих тестов не выявил неисправного трансформера, убедитесь, что все выводы правильно припаяны в исходное положение, если вы их распаяли.

    ПРЕДУПРЕЖДЕНИЕ
    Следующие процедуры включают измерение опасного напряжения и выполнение операций внутри корпуса при включенном питании переменного тока. Не пытайтесь их, если вы не знаю, как их безопасно делать. См. Предупреждение о безопасности в начале страницы отладки.Обратите внимание, что эти процедуры могут привести к заряду конденсаторов силового фильтра и стать опасным даже при отключенном питании переменного тока.

    Снимите с усилителя все лампы, оставив его в положении, в котором можно будет проверить клеммы трансформатора.

    1. Установите на измерительном приборе максимальную шкалу переменного напряжения (не менее 750 В переменного тока, предпочтительно 1000 В переменного тока).
    2. Выключите питание.
    3. Вставьте сетевой шнур в розетку.
      1. Закрепите один метровый провод на одной стороне первичной обмотки силового трансформатора.Закрепите второй провод измерителя на другой стороне первичной обмотки силового трансформатора.
      2. Убедитесь, что вы не разместили провода измерителя там, где они могут вызвать короткое замыкание.
      3. Убедитесь, что вы не прикасаетесь к усилителю, за исключением выключателя питания.
      4. Включите выключатель питания.
      5. Следите за показаниями счетчика. Он должен показывать примерно то же, что и ваш местный источник питания переменного тока (120 В переменного тока в США). В противном случае проводка, ведущая к силовому трансформатору, неисправна, и вам следует проверить эту проводку.
      6. Выключите сетевой выключатель.
      7. Отсоедините провода счетчика. Подключите один вывод измерителя к одной стороне обмотки накала (обычно зеленый — зеленый или зеленый — зеленый / желтый — зеленый), а другой вывод счетчика — к другому концу обмотки.
      8. Соблюдая те же меры предосторожности, что и выше, включите, а затем выключите усилитель, обращая внимание на показания напряжения. Это должно быть правильное значение для усилителя или немного выше из-за через него обычно проходит большой ток.Обычно это номинальное напряжение 6,3 В переменного тока, а может достигать 7,3 В переменного тока, что вас не беспокоит. Если оно ниже 6,0 В или выше 8 В, с трансформатором что-то не так. Сделайте это для каждой обмотки накала, если их больше одной.
      9. Как указано выше для обмотки (обмоток) нагревателя (нити накала), измерить напряжение на нагревателе. обмотка для выпрямительной лампы. Это напряжение должно быть от 5,0 до 5,8 В переменного тока.
      10. Используя те же меры предосторожности, что и выше для первичной обмотки, снимите напряжение на одной половине обмотки высокого напряжения, от центрального ответвления до одного конца, а затем до другого конца, если он имеет центральный вывод, или от конца до конца, если высокий напряжение не отводится от центра.Это напряжение должно быть от 250 до 500 В переменного тока, возможно, выше, в зависимости от рассчитанного B + для вашего усилителя. Если это не достаточно близко к правильному напряжению переменного тока, силовой трансформатор неисправен.
      11. Выключите сетевой выключатель, если он еще не выключен.
      12. Отключите шнур питания переменного тока.
      13. Подключите один конец зажима к корпусу. Другой конец подсоедините к разъему для пластины лампы предусилителя — штырь 1 или 6 в 12AX7. Оставьте провод зажима на две минуты, затем снимите его.Это стекает любое постоянное напряжение с конденсаторов силового фильтра, которые могли быть помещены туда во время испытания. Обязательно отсоедините от усилителя провод с зажимом.
  5. Если ни один из этих тестов не дает неправильных результатов, силовой трансформатор может иметь внутреннее короткое замыкание.
    1. Отключите усилитель от сети. Удалите все трубки. Откройте шасси и подключите один конец зажимного провода к шасси, затем коснитесь свободным концом зажимного вывода к каждой клемме конденсаторов силового фильтра, как указано выше, чтобы слить с них любой заряд.Снимите провод зажима.
    2. С помощью омметра убедитесь, что сопротивление шасси от первичной обмотки силового трансформатора превышает 100 кОм. Если оно ниже, вам нужно выяснить, почему, прежде чем продолжить.
    3. Убедитесь, что никакие посторонние предметы или личные детали не контактируют с усилителем.
    4. Включите выключатель питания переменного тока. Оставьте его включенным, периодически прикасаясь к внешней металлической оболочке силового трансформатора, чтобы проверить, не нагревается ли он. Если он издает громкий гул, становится заметно горячим на ощупь или издает запах гари, значит, он неисправен.Оставьте трансформатор включенным на десять минут или пока он не нагреется, в зависимости от того, что наступит раньше.

Считывание напряжения трансформатора с помощью мультиметра

В этом упражнении вы научитесь использовать мультиметр для измерения постоянного напряжения, а также познакомитесь с новой деталью, называемой трансформатором .

Трансформаторы используются для преобразования одного напряжения в другое с помощью индукции.

Необходимые детали

Цифровой мультиметр для измерения постоянного и переменного напряжения. (Предупреждение: проверьте характеристики вольтметра, чтобы убедиться, что вы не превышаете максимальные характеристики вашего мультиметра. Подходящий микроконтроллер и / или источники питания постоянного тока, такие как батарея или стенная бородавка.

Основная конструкция трансформатора состоит из двух электрически изолированных катушек проводов, расположенных рядом друг с другом. Магнитное поле, которое создается за счет прохождения тока в первой катушке (первичной катушке), заставляет ток течь во второй катушке (вторичной катушке) за счет магнитных индуктивных сил.

Адаптер переменного тока или стенная бородавка.

Когда электронный ток течет по металлическим проводам, он также создает магнитное поле непосредственно вокруг провода, по которому движутся электроны. Этот процесс, называемый индукцией, заставляет перемещаться и другие электроны в проводниках вблизи магнитных полей. Как вы помните в главе 2, когда магнитное поле прорезает провод, индуцируется ток.Два самых важных закона Джеймса Клерка Максвелла (1831-79):

Движущиеся электрические заряды создают магнитные поля

Магнитные эффекты могут ускорять электрические заряды

Таким образом, поток электронов в одном проводе может вызвать поток электронов в другом проводе. Это магнитное поле вокруг провода используется во многих электронных устройствах, особенно в трансформаторах.

Так выглядит интерьер трансформера.

Отношение витков в первичной обмотке к количеству витков во вторичной обмотке определяет отношение входного напряжения к выходному. Если бы в первичной катушке было 100 витков при 100 вольт на входе и 50 витков во вторичной катушке, результатом было бы 50 вольт на выходе.

С трансформатором входная катушка переменного тока принимает от стены 115 вольт переменного тока и понижает напряжение до 17 вольт.Схема кондиционирования внутри трансформатора затем преобразует 17 вольт переменного тока в чистые 5 вольт постоянного тока.

В Европе и некоторых частях Азии они используют 220 вольт переменного тока, но трансформаторы по-прежнему преобразуют мощность примерно в 17 вольт постоянного тока на выходе, а затем это напряжение регулируется до 5 вольт, напряжения, которое использует большинство микрочипов.

Представляем еще одну новую деталь

Мультиметр — важный инструмент для измерения электрических характеристик деталей и цепей.Хотя мы не можем видеть электроны в проводах напрямую (хотя мы можем видеть фотоны, которые являются частью электромагнитного спектра), мы можем использовать мультиметр, чтобы позволить нам считывать различные напряжения. Измеритель также является важным инструментом для отладки и выяснения, почему иногда что-то не работает. Часто это будет первый инструмент, к которому вы обращаетесь, чтобы убедиться, что напряжения соответствуют вашим ожиданиям, или определить, где провода кажутся подключенными или нет.

Примечание: , если вы используете другой измеритель, знайте: некоторые цифровые мультиметры имеют автоматический выбор диапазона и, возможно, не требуют настройки.Кроме того, убедитесь, что кнопки удержания не активированы на других счетчиках, так как они могут запутать новичков. При использовании мультиметра необходимо обращать особое внимание на пределы измерения тока и напряжения. Их можно найти в инструкции, прилагаемой к глюкометру. Всегда следует проявлять осторожность при использовании мультиметра, поскольку металлические щупы на наконечнике могут легко замкнуться между проводами или другими электрическими частями.

Причина, по которой мы используем счетчики, заключается в том, что мы НИКОГДА не должны, предполагать, что напряжение является определенной величиной или + или — по отношению к тому, что цепь должна получать.Вы должны ВСЕГДА использовать свой измеритель для подтверждения этих напряжений и полярности, и вы будете вознаграждены схемами, которые не шипят, не трескаются и не горят.

Полярность относится к положительной или отрицательной стороне источника постоянного напряжения. Позже в этой главе вы будете измерять полярность.

Примечание: Помните об абсолютных максимальных номинальных значениях этого измерителя и используйте небольшую брошюру, прилагаемую к измерителю, чтобы подтвердить их, прежде чем измерять любые напряжения, выходящие за пределы диапазона, указанного в этой книге.

Основы электрических трансформаторов

Что такое электрические трансформаторы?

Электрические трансформаторы — это машины, передающие электричество из одной цепи в другую с изменением уровня напряжения, но без изменения частоты. Сегодня они рассчитаны на использование источника переменного тока, а это означает, что колебания напряжения питания зависят от колебаний тока. Таким образом, увеличение тока приведет к увеличению напряжения и наоборот.

Трансформаторы

помогают повысить безопасность и эффективность энергосистем, повышая и понижая уровни напряжения по мере необходимости. Они используются в широком спектре жилых и промышленных применений, в первую очередь и, возможно, наиболее важно для распределения и регулирования мощности на большие расстояния.

Строительство электрического трансформатора

Три важных компонента электрического трансформатора — это магнитный сердечник, первичная обмотка и вторичная обмотка.Первичная обмотка — это часть, которая подключена к источнику электричества, откуда первоначально создается магнитный поток. Эти катушки изолированы друг от друга, и основной поток индуцируется в первичной обмотке, откуда он передается на магнитный сердечник и соединяется со вторичной обмоткой трансформатора через путь с низким сопротивлением.

Сердечник передает поток на вторичную обмотку, чтобы создать магнитную цепь, которая замыкает поток, а внутри сердечника размещается путь с низким сопротивлением, чтобы максимизировать потокосцепление.Вторичная обмотка помогает завершить движение потока, который начинается на первичной стороне, а с помощью сердечника достигает вторичной обмотки. Вторичная обмотка способна собирать импульс, потому что обе обмотки намотаны на один и тот же сердечник, и, следовательно, их магнитные поля помогают создавать движение. Во всех типах трансформаторов магнитный сердечник собирается путем укладки многослойных стальных листов, оставляя минимально необходимый воздушный зазор между ними для обеспечения непрерывности магнитного пути.

Как работают трансформаторы?

В электрическом трансформаторе для работы используется закон электромагнитной индукции Фарадея: «Скорость изменения магнитной индукции во времени прямо пропорциональна наведенной ЭДС в проводнике или катушке».

Физическая основа трансформатора заключается во взаимной индукции между двумя цепями, которые связаны общим магнитным потоком. Обычно он имеет 2 обмотки: первичную и вторичную. Эти обмотки имеют общий магнитный сердечник, который является ламинированным, и взаимная индукция, возникающая между этими цепями, помогает передавать электричество из одной точки в другую.

В зависимости от величины магнитного потока между первичной и вторичной обмотками будут разные скорости изменения магнитного потока.Чтобы обеспечить максимальную потокосцепление, то есть максимальный поток, проходящий через вторичную обмотку и связанный с ней от первичной обмотки, для обеих обмоток размещен путь с низким сопротивлением. Это приводит к повышению эффективности работы и образует сердечник трансформатора.

Приложение переменного напряжения к обмоткам в первичной обмотке создает переменный поток в сердечнике. Это связывает обе обмотки, чтобы навести ЭДС как на первичной, так и на вторичной стороне. ЭДС во вторичной обмотке вызывает ток, известный как ток нагрузки, если к вторичной части подключена нагрузка.

Таким образом электрические трансформаторы передают мощность переменного тока из одной цепи (первичной) в другую (вторичную) посредством преобразования электрической энергии из одного значения в другое, изменяя уровень напряжения, но не частоту.

Видео кредит: Инженерное мышление

Как работает трансформатор — Принцип работы электротехники

Электрический трансформатор — КПД и потери

В электрическом трансформаторе не используются движущиеся части для передачи энергии, что означает отсутствие трения и, следовательно, потерь на ветер.Однако электрические трансформаторы страдают от незначительных потерь в меди и железе. Потери меди возникают из-за потерь тепла при циркуляции токов по медным обмоткам, что приводит к потере электроэнергии. Это самые большие потери в работе электрического трансформатора. Потери в железе вызваны запаздыванием магнитных молекул, находящихся внутри сердечника. Это отставание происходит в ответ на изменение магнитного потока, которое приводит к трению, и это трение производит тепло, которое приводит к потере мощности в сердечнике.Эти потери можно значительно уменьшить, если сердечник изготовлен из специальных стальных сплавов.

Интенсивность потерь мощности определяет КПД электрического трансформатора и выражается в потерях мощности между первичной и вторичной обмотками. Результирующий КПД затем рассчитывается как отношение выходной мощности вторичной обмотки к мощности, потребляемой первичной обмоткой. В идеале КПД электрического трансформатора составляет от 94% до 96%

Типы трансформаторов

Электрические трансформаторы можно разделить на различные категории в зависимости от их конечного использования, конструкции, поставки и назначения.

На основе проектирования
  • Трансформатор с сердечником Этот трансформатор имеет две горизонтальные секции с двумя вертикальными ветвями и прямоугольный сердечник с магнитной цепью. Цилиндрические катушки (ВН и НН) размещены на центральном плече трансформатора сердечника.
  • Корпус типа Трансформатор Трансформатор кожухового типа имеет двойную магнитную цепь и центральную ветвь с двумя внешними ветвями.

На основе поставки
  • Однофазный Трансформатор Однофазный трансформатор имеет только один набор обмоток.Отдельные однофазные блоки могут дать те же результаты, что и трехфазные передачи, когда они соединены внешне.
  • Трехфазный Трансформатор Трехфазный (или трехфазный) трансформатор имеет три набора первичных и вторичных обмоток, образующих группу из трех однофазных трансформаторов. Трехфазный трансформатор в основном используется для производства, передачи и распределения электроэнергии в промышленности.

По целевому назначению
  • Повышающий трансформатор
    Этот тип определяется количеством витков провода.Таким образом, если вторичный набор имеет большее количество витков, чем первичный, это означает, что напряжение будет соответствовать тому, которое образует базу повышающего трансформатора.
  • Понижающий трансформатор
    Этот тип обычно используется для понижения уровня напряжения в сети передачи и распределения электроэнергии, поэтому его механизм полностью противоположен повышающему трансформатору.

На основании использования
  • Силовой трансформатор
    Обычно используется для передачи электроэнергии и имеет высокий рейтинг.
  • Распределение трансформатор Этот электрический трансформатор имеет сравнительно более низкую мощность и используется для распределения электроэнергии.
  • Instrument transformer Этот электрический трансформатор подразделяется на трансформаторы тока и напряжения.
    • Трансформатор тока
    • Трансформатор потенциала

Эти трансформаторы используются для реле и защиты приборов одновременно.

По принципу охлаждения
  • Самоохлаждающиеся масляные трансформаторы Этот тип обычно используется в небольших трансформаторах мощностью до 3 МВА и предназначен для самоохлаждения за счет окружающего воздушного потока.
  • Масляные трансформаторы с водяным охлаждением В электрическом трансформаторе этого типа используется теплообменник для облегчения передачи тепла от масла к охлаждающей воде.
  • С воздушным охлаждением (воздушное охлаждение) Трансформаторы В трансформаторах этого типа выделяемое тепло охлаждается с помощью нагнетателей и вентиляторов, которые заставляют циркулировать воздух по обмоткам и сердечнику.

Основные характеристики трансформатора

Все трансформаторы имеют общие черты, независимо от их типа:

  • Частота входной и выходной мощности одинаковая
  • Все трансформаторы используют законы электромагнитной индукции
  • Первичная и вторичная катушки не имеют электрического соединения (за исключением автотрансформаторов). Передача мощности осуществляется посредством магнитного потока.
  • Для передачи энергии не требуются движущиеся части, поэтому отсутствуют потери на трение или ветер, как в других электрических устройствах.
  • Потери, которые происходят в трансформаторах, меньше, чем в других электрических устройствах, и включают:
    • Потери в меди (потеря электроэнергии из-за тепла, создаваемого циркуляцией токов вокруг медных обмоток, считается самой большой потерей в трансформаторах)
    • Потери в сердечнике (потери на вихревые токи и гистерезис, вызванные запаздыванием магнитных молекул в ответ на переменный магнитный поток внутри сердечника)

Большинство трансформаторов очень эффективны, вырабатывая от 94% до 96% энергии при полной нагрузке.Трансформаторы очень большой мощности могут выдавать до 98%, особенно если они работают с постоянным напряжением и частотой.

Применение электрического трансформатора

Основные области применения электрического трансформатора:

  • Повышение или понижение уровня напряжения в цепи переменного тока.
  • Увеличение или уменьшение значения индуктивности или конденсатора в цепи переменного тока.
  • Предотвращение прохождения постоянного тока из одной цепи в другую.
  • Изоляция двух электрических цепей.
  • Повышение уровня напряжения на объекте выработки электроэнергии перед передачей и распределением электроэнергии.

Общие применения электрического трансформатора включают насосные станции, железные дороги, промышленность, коммерческие предприятия, ветряные мельницы и энергоблоки.

Советы по поиску и устранению неисправностей электрического трансформатора

Использование мультиметра — лучший способ проверить и устранить неисправности в электрической цепи.

  1. Начните с проверки напряжения цепи, которую необходимо проверить.Этот шаг поможет вам определить тип лампочки, необходимой для сборки тестера цепей.
  2. Вырежьте 2 полосы из провода AWG 16 калибра , убедившись, что каждая из них имеет длину не менее 12 дюймов.
  3. Используйте инструмент для зачистки, чтобы удалить четверть внешнего пластика с обоих концов обоих концов проводов и 1 дюйм внешнего пластика с двух других концов. Как только это будет сделано, скрутите оголенную проволоку, чтобы пряди соединялись.
  4. Присоедините два конца, с которых вы сняли 1/4 -го дюйма пластика, к клеммам патрона лампы.
  5. Вставьте лампочку в патрон и прикрепите два оставшихся конца провода к клеммам, которые вы хотите проверить.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. В нем хранится обширный перечень электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводных кабелей, предохранительных выключателей и т. Д.Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

Как проверить понижающий или повышающий трансформатор


Когда дело доходит до понижения КПД трансформатора, клиентам необходимо учитывать некоторые аспекты, такие как снижение нагрева и поддержание КПД трансформатора.Часто трансформатор не работает до ожидаемого уровня производительности. Вызов техника для простого осмотра трансформатора может занять очень много времени. Следовательно, было бы лучше, если бы вы могли проверить трансформатор самостоятельно.

Общая проверка понижающего трансформатора мощности

Вы можете проверить трансформатор на наличие проблем, выполнив следующие действия. Убедитесь, что все питание отключено, а трансформатор обесточен.

  1. Отсоедините провода: Возьмите винт и отсоедините провода от клемм трансформатора.В большинстве случаев на проводах может отсутствовать маркировка, подсказывающая, к каким клеммам их следует подключать. Здесь вы можете использовать прозрачную ленту и ручку, чтобы идентифицировать провода.
  2. Настройте вольтметр: Вольтметр имеет два подводящих провода — обычно один красный, а другой черный. Включите измеритель и вставьте красный провод в отверстие «Ом» на вольтметре. Включите вольтметр, чтобы прочитать сопротивление (в Ом). Коснитесь черным проводом металлического каркаса трансформатора.
  3. Проверка клемм: Проверьте клеммы трансформатора в следующем порядке — h2, h3, X1 и X2.С каждой клеммой измеритель должен показывать бесконечное сопротивление. Омметр отобразит либо пустой экран, либо слово «открыть». Любое сопротивление будет означать, что существует токопроводящий путь от обмотки до корпуса трансформатора. Это внутренняя проблема обмоток и обычно означает, что трансформатор не работает.
  4. Проверьте целостность катушек: Прикоснитесь черным проводом к клемме h2 (начало), а красный провод к клемме h3 (конец).Измеритель должен показывать сопротивление в диапазоне ом. Выполните такой же тест на клеммах X1 и X2. Если какая-либо из клемм показывает бесконечное сопротивление или разомкнута, значит, провода оборваны. Это будет препятствовать правильной работе трансформатора.
  5. Проверьте цепь изоляции: Поднесите красный провод к клемме h2, а черный провод к клемме X1. Измеритель должен показывать бесконечное сопротивление. Выполните такой же тест на клеммах h3 и X2. Если считывается какое-либо сопротивление, изоляция трансформатора нарушена, и это обычно означает, что первичная и вторичная обмотки закорочены вместе.

Эти пять простых шагов помогут вам понять состояние повышающего / понижающего трансформатора. Затем вы можете связаться с вашей компанией по ремонту трансформаторов для получения более подробной информации и шагов.

Как проверить понижающий или повышающий трансформатор Последнее изменение: 21 сентября 2018 г., автор: gt stepp

О gt stepp

GT Stepp — инженер-электрик с более чем 20-летним опытом работы, опытный в исследованиях, оценке и испытаниях & поддержка различных технологий.Посвящен успеху; включая сильные аналитические, организационные и технические навыки. В настоящее время работает менеджером по продажам и операциям в Custom Coils, разрабатывая стратегии продаж и маркетинга, которые увеличивают продажи, чтобы сделать Custom Coils более узнаваемыми и уважаемыми на рынке.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *