Начинающим о радиодеталях | Мастер Винтик. Всё своими руками!
Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т.п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже.
Конденсатор.
Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор — это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.
У конденсатора основной параметр — это ёмкость.
Единица ёмкости — микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица — пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше — в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф). А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф = 15 000 пф).
Типы конденсаторов.
Конденсаторы бывают постоянной и переменной емкости.
У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов — подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный — он более дешевле и доступнее.
Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов — не полярные. Другая разновидность конденсаторов — электролитические (полярные). Такие конденсаторы выпускают большой ёмкости — от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать. Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.
Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 10 — 240 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом — 240 пФ. При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно — от 240 до 10 пФ.
Резистор.
Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить. Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.
Резисторы бывают постоянные и переменные.
Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных — СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.
Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.
Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более — до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.
В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.
Полупроводниковые приборы.
Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы. Одни из них — медь, железо, алюминий и другие металлы — хорошо проводят электрический ток — это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.
Диоды.
У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс — к аноду, минус — к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое. Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну — это будет хоть и пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.
Стабилитроны.
Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток. А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения. Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.
Транзисторы.
Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор — усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор. Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое — за выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это и есть показатель усилительных способностей рупора, его коэффициент усиления.
Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.
Но вернемся к транзистору. Если пропустить через участок база — эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор — эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов. В зависимости от наибольшего тока, который можно пропускать через коллектор, транзисторы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три). Усиление транзистор не зависит от его структуры.
А.Зотов
Литература: Б. С. Иванов, «ЭЛЕКТРОННЫЕ САМОДЕЛКИ»
П О П У Л Я Р Н О Е:
- Поговорим о солнечной электростанции.
- Обновляем компьютерное кресло «Престиж»
- Настольная лампа из CD дисков
Солнечная электростанция — современный способ электроснабжения нашего дома. Вопрос использования альтернативных источников энергии возникает у многих. И это не удивительно, ведь постоянный рост цен на электричество заставляет задумываться об этом всё чаще и чаще. Вот и встаёт вопрос: почему бы не использовать бесплатные неиссякаемые природные ресурсы — ветер, солнце, воду? Давайте сегодня поговорим об солнечной энергии, а точнее о солнечной электростанции.
Подробнее…
Ваш «Престиж» пострадал от длительной работы – вы проливали на него кофе, его драл ваш любимый кот 🙂 ткань загрязнилась и выцвела? Мы будем его спасать, поднимая свой собственный престиж в глазах близких.
Подробнее…
Простая настольная лампа для работы за компьютером своими руками
Простую настольную лампу для работы за компьютером или ноутбуком в тёмное время суток можно легко сделать из старых ненужных CD, DVD дисков.
Работая перед монитором в темноте Ваши глаза напряжены и подвержены сильным нагрузкам, поэтому необходимо иметь подсветку рабочего места, особенно клавиатуры. Подробнее…
— н а в и г а т о р —
Популярность: 37 671 просм.
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
www.mastervintik.ru
Радиодетали и электронные компоненты | Go-radio.ru
С чего начинается практическая электроника? Конечно с радиодеталей! Их разнообразие просто поражает. Здесь вы найдёте статьи о всевозможных радиодеталях, познакомитесь с их назначением, параметрами и свойствами. Узнаете, где и в каких устройствах применяются те или иные электронные компоненты.
Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.
Как купить радиодетали через интернет?
Как купить радиодетали через интернет? Этим вопросом задаются многие радиолюбители. В статье рассказывается о том, как можно заказать радиодетали в интернет-магазине радиодеталей с доставкой по почте.
Как покупать радиодетали на AliExpress.com?
В данной статье я расскажу о том, как покупать радиодетали и электронные модули в одном из крупнейших интернет-магазинов AliExpress.com за весьма небольшие деньги:)
Резисторная сборка.
Резисторная сборка (она же Resistor Array или Resistor Networks) активно применяется в цифровой электронике. Здесь вы узнаете, как устроена резисторная сборка, а также познакомитесь с её маркировкой и применением.
SMD резисторы (Surface Mount Chip Resistors).
Так ли много мы знаем об SMD-резисторах? Спешите узнать: устройство, конструкция и технология производства чип-резисторов разных типов.
MELF резисторы.
Кроме широко распространённых плоских SMD-резисторов в электронике применяются MELF-резисторы в корпусе цилиндрической формы. Каковы их достоинства и недостатки? Где они применяются и как определить их мощность?
Размеры SMD-резисторов. Таблица типоразмеров.
Размеры корпусов SMD-резисторов стандартизированы, и многим они, наверняка, известны. Но так ли всё просто? Здесь вы узнаете о двух системах кодирования размеров SMD-компонентов, научитесь определять реальный размер чип-резистора по его типоразмеру и наоборот. Познакомитесь с самыми маленькими представителями SMD-резисторов, которые сейчас существуют. Кроме этого представлена таблица типоразмеров SMD-резисторов и их сборок.
Мощность SMD резистора. Как узнать?
При конструировании и ремонте электроники довольно часто возникает вопрос, а как же узнать мощность SMD-резистора?
Здесь приводится методика определения мощности чип-резистора исходя из его размеров, приводится таблица соответствия типоразмера и мощности чип резистора. Кроме этого, вы научитесь определять мощность резисторов в составе чип-сборок, а также познакомитесь с высокомощными SMD-резисторами.
Приведённая информация является сжатой и компактной «выжимкой», полученной в результате изучения десятков даташитов, рекламных буклетов производителей и технических описаний на современные изделия для поверхностного монтажа.
ТКС резистора (TCR resistor).
Здесь вы узнаете, что такое температурный коэффициент сопротивления резистора (ТКС), а также каким ТКС обладают разные типы постоянных резисторов. Приводится формула расчёта ТКС, а также пояснения насчёт зарубежных обозначений вроде T.C.R и ppm/0С.
Какие бывают переменные резисторы?
Кроме постоянных резисторов в электронике активно применяются переменные и подстроечные резисторы. О том, как устроены переменные и подстроечные резисторы, об их разновидностях и пойдёт речь в предлагаемой статье. Материал подкреплён большим количеством фотографий разнообразных резисторов, что непременно понравится начинающим радиолюбителям, которые смогут легче ориентироваться во всём многообразии этих элементов.
Параметры переменных резисторов.
Как и у любой радиодетали, у переменных и подстроечных резисторов есть основные параметры. Оказывается их не так уж и мало, а начинающим радиолюбителям не помешает ознакомиться с такими интересными параметрами переменных резисторов, как ТКС, функциональная характеристика, износоустойчивость и др.
Терморезисторы.
Здесь вы узнаете о терморезисторах — электронных компонентах для измерения и контроля температуры. NTC-термисторы и позисторы. Применение термисторов в качестве устройств защиты.
Катушка индуктивности.
Что такое катушка индуктивности и зачем она используется в электронике? Здесь вы узнаете не только о том, какими параметрами обладает катушка индуктивности, но и узнаете, как обозначаются разные катушки индуктивности на схеме. Статья содержит множество фотографий и изображений.
Диод Шоттки. Особенности и обозначение на схеме.
В современной импульсной технике активно применяется диод Шоттки. Чем он отличается от обычных выпрямительных диодов? Как он обозначается на схемах? Каковы его положительные и отрицательные свойства? Обо всём этом вы узнаете в статье про диод Шоттки.
Стабилитрон.
Стабилитрон – один из самых важных элементов в современной электронике. Не секрет, что полупроводниковая электроника очень требовательна к качеству электропитания, а если быть точнее, к стабильности питающего напряжения. Тут на помощь приходит полупроводниковый диод – стабилитрон, который активно применяется для стабилизации напряжения в узлах электронной аппаратуры.
Варикап
Что такое варикап и где он применяется? Из этой статьи вы узнаете об удивительном диоде, который используется в качестве переменного конденсатора.
Устройство динамика.
Как устроен динамик? Здесь вы узнаете об устройстве динамической головки прямого излучения, а также о том, как обозначается динамик на принципиальных схемах, а также познакомитесь с основными параметрами динамиков.
Как соединять динамики?
Если вы занимаетесь электроникой, то наверняка сталкивались с задачей соединения нескольких динамиков или акустических колонок. Это может потребоваться, например, при самостоятельной сборке акустической колонки, подключении нескольких колонок к одноканальному усилителю и так далее. Рассмотрено 5 наглядных примеров. Много фото.
Транзистор.
Транзистор является основой современной электроники. Его изобретение произвело революцию в радиотехнике и послужило основой для миниатюризации электроники – создания микросхем. Как обозначается транзистор на принципиальной схеме? Как необходимо впаивать транзистор в печатную плату? Ответы на эти вопросы вы найдёте в этой статье.
Составной транзистор.
Составной транзистор или по-другому транзистор Дарлингтона является одной из модификаций биполярного транзистора. О том, где применяются составные транзисторы, об их особенностях и отличительных свойствах вы узнаете из этой статьи.
Параметры MOSFET транзисторов.
При подборе аналогов полевых МДП-транзисторов приходиться обращаться к технической документации с параметрами и характеристиками конкретного транзистора. Из данной статьи вы узнаете об основных параметрах мощных MOSFET транзисторов.
Обозначение полевого транзистора.
В настоящее время в электронике всё активнее применяются полевые транзисторы. На принципиальных схемах полевой транзистор обозначается по-разному. В статье рассказывается об условном графическом обозначении полевых транзисторов на принципиальных схемах.
IGBT транзистор.
Что такое IGBT-транзистор? Где применяется и как он устроен? Из данной статьи вы узнаете о преимуществах биполярных транзисторов с изолированным затвором, а также о том, как обозначается данный тип транзисторов на принципиальных схемах.
Динистор. Принцип работы и свойства.
Среди огромного количества полупроводниковых приборов существует динистор. Узнать о том, чем динистор отличается от полупроводникового диода, вы сможете, прочитав эту статью.
Варистор.
Что такое варистор и каковы его основные параметры? Здесь вы узнаете, как варистор обозначается на схеме, а также о том, где применяется варистор.
Супрессор.
Что такое супрессор? Защитные диоды или супрессоры всё активней применяются в радиоэлектронной аппаратуре для её защиты от высоковольтных импульсных помех. О назначении, параметрах и способах применения защитных диодов вы узнаете из этой статьи.
Самовосстанавливающийся предохранитель.
Самовосстанавливающиеся предохранители всё чаще применяются в электронной аппаратуре. Их можно обнаружить в приборах охранной автоматики, компьютерах, портативных устройствах… На зарубежный манер самовосстанавливающиеся предохранители называются PTC Resettable Fuses. Каковы свойства и параметры «бессмертного» предохранителя? Об этом вы узнаете из предложенной статьи.
Электромагнитное реле.
Электромагнитное реле. Устройство, принцип работы и основные параметры электромагнитного реле.
Твёрдотельное реле.
В настоящее время в электронике всё активней стали применяться твёрдотельные реле. В чём преимущество твёрдотельных реле перед электромагнитными и герконовыми реле? Устройство, особенности и типы твёрдотельных реле.
Кварцевый резонатор.
В литературе посвящённой электронике кварцевый резонатор незаслуженно лишён внимания, хотя данный электромеханический компонент чрезвычайно сильно повлиял на активное развитие техники радиосвязи, навигации и вычислительных систем.
Разновидности конденсаторов по типу диэлектрика. Электролитические конденсаторы.
Кроме всем известных алюминиевых электролитических конденсаторов в электронике используется большое количество всевозможных электролитических конденсаторов с разным типом диэлектрика. Среди них например танталовые smd конденсаторы, неполярные электролитические и танталовые выводные. Данная статья поможет начинающим радиолюбителям распознать различные электролитические конденсаторы среди всевозможных радиоэлементов.
Устройство танталового конденсатора.
Кроме алюминиевых электролитических конденсаторов в электронике активно используются конденсаторы с танталовым диэлектриком. Здесь вы познакомитесь с устройством танталового конденсатора, его отличительными особенностями и свойствами.
Свойства электролитических конденсаторов.
Наряду с другими конденсаторами, электролитические конденсаторы обладают некоторыми специфическими свойствами, которые необходимо учитывать при их применении в самодельных электронных устройствах, а также при проведении ремонта электроники.
Конденсаторы Low ESR и Low Impedance. В чём разница?
В настоящее время в продаже имеется огромный ассортимент электролитических конденсаторов, в том числе и низкоимпедансных или же с низким ЭПС. В чём отличие обычных конденсаторов от конденсаторов Low ESR и Low Impedance?
Химические источники тока.
Химические источники тока активно используются в электронике. По-другому химический источник тока называют батарейкой или аккумулятором. В чём разница между батарейкой и аккумулятором? Как обозначаются химические источники тока на принципиальной схеме? На эти и другие вопросы вы получите ответы, прочтя статью про химические источники тока.
Литиевые аккумуляторы.
Здесь вы узнаете о том, какие типы литиевых аккумуляторов нашли широкое применение. Рассказано об устройстве и особенностях аккумуляторов на основе лития, которые должен знать каждый пользователь данного класса вторичных источников тока.
Ионистор.
В последнее время в продаже появились ионисторы. Как устроен ионистор? Каковы его свойства и электрические характеристики? Подробнее об этом читайте здесь.
Электронный трансформатор.
Электромагнитные трансформаторы стали всё чаще заменяться электронными трансформаторами. В данной статье рассматривается устройство рядового электронного трансформатора для галогенных ламп. Представлена схема реального устройства.
Температурные датчики и реле KSD.
Термоуправляемые выключатели получили широкое применение в бытовой электронике. Их можно встретить практически в любом бытовом приборе, служащим для нагрева чего-либо. Также они встречаются и в довольно сложных приборах вроде СВЧ-печей. Знание о температурных датчиках и реле (в данном случае серии KSD) помогут в ремонте бытовых электронагревательных приборов и при конструировании самодельных электронных устройств.
ИК-приёмник.
Устройство и особенности приёмников инфракрасного излучения (ИК-модулей) для систем с дистанционным управлением.
go-radio.ru
AM | амплитудная модуляция |
АПЧ | автоматическая подстройка частоты |
АПЧГ | автоматическая подстройка частоты гетеродина |
АПЧФ | автоматическая подстройка частоты и фазы |
АРУ | автоматическая регулировка усиления |
АРЯ | автоматическая регулировка яркости |
АС | акустическая система |
АФУ | антенно-фидерное устройство |
АЦП | аналого-цифровой преобразователь |
АЧХ | амплитудно-частотная характеристика |
БГИМС | большая гибридная интегральная микросхема |
БДУ | беспроводное дистанционное управление |
БИС | большая интегральная схема |
БОС | блок обработки сигналов |
БП | блок питания |
БР | блок развертки |
БРК | блок радиоканала |
БС | блок сведения |
БТК | блокинг-трансформатор кадровый |
БТС | блокинг-трансформатор строчный |
БУ | блок управления |
БЦ | блок цветности |
БЦИ | блок цветности интегральный (с применением микросхем) |
ВД | видеодетектор |
ВИМ | время-импульсная модуляция |
ВУ | видеоусилитель; входное (выходное) устройство |
ВЧ | высокая частота |
Г | гетеродин |
ГВ | головка воспроизводящая |
ГВЧ | генератор высокой частоты |
ГВЧ | гипервысокая частота |
ГЗ | генератор запуска; головка записывающая |
ГИР | гетеродинный индикатор резонанса |
ГИС | гибридная интегральная схема |
ГКР | генератор кадровой развертки |
ГКЧ | генератор качающейся частоты |
ГМВ | генератор метровых волн |
ГПД | генератор плавного диапазона |
ГО | генератор огибающей |
ГС | генератор сигналов |
ГСР | генератор строчной развертки |
гсс | генератор стандартных сигналов |
гг | генератор тактовой частоты |
ГУ | головка универсальная |
ГУН | генератор, управляемый напряжением |
Д | детектор |
дв | длинные волны |
дд | дробный детектор |
дн | делитель напряжения |
дм | делитель мощности |
дмв | дециметровые волны |
ДУ | дистанционное управление |
ДШПФ | динамический шумопонижающий фильтр |
ЕАСС | единая автоматизированная сеть связи |
ЕСКД | единая система конструкторской документации |
зг | генератор звуковой частоты; задающий генератор |
зс | замедляющая система; звуковой сигнал; звукосниматель |
ЗЧ | звуковая частота |
И | интегратор |
икм | импульсно-кодовая модуляция |
ИКУ | измеритель квазипикового уровня |
имс | интегральная микросхема |
ини | измеритель линейных искажений |
инч | инфранизкая частота |
ион | источник образцового напряжения |
ип | источник питания |
ичх | измеритель частотных характеристик |
к | коммутатор |
КБВ | коэффициент бегущей волны |
КВ | короткие волны |
квч | крайне высокая частота |
кзв | канал записи-воспроизведения |
КИМ | кодо-импульсная модуляции |
кк | катушки кадровые отклоняющей системы |
км | кодирующая матрица |
кнч | крайне низкая частота |
кпд | коэффициент полезного действия |
КС | катушки строчные отклоняющей системы |
ксв | коэффициент стоячей волны |
ксвн | коэффициент стоячей волны напряжения |
КТ | контрольная точка |
КФ | катушка фокусирующая |
ЛБВ | лампа бегущей волны |
лз | линия задержки |
лов | лампа обратной волны |
лпд | лавинно-пролетный диод |
лппт | лампово-полупроводниковый телевизор |
м | модулятор |
MA | магнитная антенна |
MB | метровые волны |
мдп | структура металл-диэлектрик-полупроводник |
МОП | структура металл-окисел-полупроводник |
мс | микросхема |
МУ | микрофонный усилитель |
ни | нелинейные искажения |
нч | низкая частота |
ОБ | общая база (включение транзистора по схеме с общей базой) |
овч | очень высокая частота |
ои | общий исток (включение транзистора *по схеме с общим истоком) |
ок | общий коллектор (включение транзистора по схеме с обшим коллектором) |
онч | очень низкая частота |
оос | отрицательная обратная связь |
ОС | отклоняющая система |
ОУ | операционный усилитель |
ОЭ | обший эмиттер (включение транзистора по схеме с общим эмиттером) |
ПАВ | поверхностные акустические волны |
пдс | приставка двухречевого сопровождения |
ПДУ | пульт дистанционного управления |
пкн | преобразователь код-напряжение |
пнк | преобразователь напряжение-код |
пнч | преобразователь напряжение частота |
пос | положительная обратная связь |
ППУ | помехоподавляющее устройство |
пч | промежуточная частота; преобразователь частоты |
птк | переключатель телевизионных каналов |
птс | полный телевизионный сигнал |
ПТУ | промышленная телевизионная установка |
ПУ | предварительный усили^егіь |
ПУВ | предварительный усилитель воспроизведения |
ПУЗ | предварительный усилитель записи |
ПФ | полосовой фильтр; пьезофильтр |
пх | передаточная характеристика |
пцтс | полный цветовой телевизионный сигнал |
РЛС | регулятор линейности строк; радиолокационная станция |
РП | регистр памяти |
РПЧГ | ручная подстройка частоты гетеродина |
РРС | регулятор размера строк |
PC | регистр сдвиговый; регулятор сведения |
РФ | режекторный или заграждающий фильтр |
РЭА | радиоэлектронная аппаратура |
СБДУ | система беспроводного дистанционного управления |
СБИС | сверхбольшая интегральная схема |
СВ | средние волны |
свп | сенсорный выбор программ |
СВЧ | сверхвысокая частота |
сг | сигнал-генератор |
сдв | сверхдлинные волны |
СДУ | светодинамическая установка; система дистанционного управления |
СК | селектор каналов |
СКВ | селектор каналов всеволновый |
ск-д | селектор каналов дециметровых волн |
СК-М | селектор каналов метровых волн |
СМ | смеситель |
енч | сверхнизкая частота |
СП | сигнал сетчатого поля |
сс | синхросигнал |
сси | строчный синхронизирующий импульс |
СУ | селектор-усилитель |
сч | средняя частота |
ТВ | тропосферные радиоволны; телевидение |
твс | трансформатор выходной строчный |
твз | трансформатор выходной канала звука |
твк | трансформатор выходной кадровый |
ТИТ | телевизионная испытательная таблица |
ТКЕ | температурный коэффициент емкости |
тки | температурный коэффициент индуктивности |
ткмп | температурный коэффициент начальной магнитной проницаемости |
ткнс | температурный коэффициент напряжения стабилизации |
ткс | температурный коэффициент сопротивления |
тс | трансформатор сетевой |
тц | телевизионный центр |
тцп | таблица цветных полос |
ТУ | технические условия |
У | усилитель |
УВ | усилитель воспроизведения |
УВС | усилитель видеосигнала |
УВХ | устройство выборки-хранения |
УВЧ | усилитель сигналов высокой частоты |
УВЧ | ультравысокая частота |
УЗ | усилитель записи |
УЗЧ | усилитель сигналов звуковой частоты |
УКВ | ультракороткие волны |
УЛПТ | унифицированный ламповополупроводниковый телевизор |
УЛЛЦТ | унифицированный лампово полупроводниковый цветной телевизор |
УЛТ | унифицированный ламповый телевизор |
УМЗЧ | усилитель мощности сигналов звуковой частоты |
УНТ | унифицированный телевизор |
УНЧ | усилитель сигналов низкой частоты |
УНУ | управляемый напряжением усилитель. |
УПТ | усилитель постоянного тока; унифицированный полупроводниковый телевизор |
УПЧ | усилитель сигналов промежуточной частоты |
УПЧЗ | усилитель сигналов промежуточной частоты звук? |
УПЧИ | усилитель сигналов промежуточной частоты изображения |
УРЧ | усилитель сигналов радиочастоты |
УС | устройство сопряжения; устройство сравнения |
УСВЧ | усилитель сигналов сверхвысокой частоты |
УСС | усилитель строчных синхроимпульсов |
УСУ | универсальное сенсорное устройство |
УУ | устройство (узел) управления |
УЭ | ускоряющий (управляющий) электрод |
УЭИТ | универсальная электронная испытательная таблица |
ФАПЧ | фазовая автоматическая подстройка частоты |
ФВЧ | фильтр верхних частот |
ФД | фазовый детектор; фотодиод |
ФИМ | фазо-импульсная модуляция |
ФМ | фазовая модуляция |
ФНЧ | фильтр низких частот |
ФПЧ | фильтр промежуточной частоты |
ФПЧЗ | фильтр промежуточной частоты звука |
ФПЧИ | фильтр промежуточной частоты изображения |
ФСИ | фильтр сосредоточенной избирательности |
ФСС | фильтр сосредоточенной селекции |
ФТ | фототранзистор |
ФЧХ | фазо-частотная характеристика |
ЦАП | цифро-аналоговый преобразователь |
ЦВМ | цифровая вычислительная машина |
ЦМУ | цветомузыкальная установка |
ЦТ | центральное телевидение |
ЧД | частотный детектор |
ЧИМ | частотно-импульсная модуляция |
чм | частотная модуляция |
шим | широтно-импульсная модуляция |
шс | шумовой сигнал |
эв | электрон-вольт (е • В) |
ЭВМ. | электронная вычислительная машина |
эдс | электродвижущая сила |
эк | электронный коммутатор |
ЭЛТ | электронно-лучевая трубка |
ЭМИ | электронный музыкальный инструмент |
эмос | электромеханическая обратная связь |
ЭМФ | электромеханический фильтр |
ЭПУ | электропроигрывающее устройство |
ЭЦВМ | электронная цифровая вычислительная машина |
www.radioelementy.ru
РАДИОЭЛЕМЕНТЫ
В данном справочном материале приводится внешний вид, наименование и маркировка основных зарубежных радиодеталей — микросхем различных типов, разъёмов, кварцевых резонаторов, катушек индуктивности и так далее. Информация действительно полезная, так как многие хорошо знакомы с отечественными деталями, но с импортными не очень, а ведь именно они ставятся во все современные схемы. Минимальное знание английсого приветствуется, так как все надписи не по русски. Для удобства детали объединены по группам. На первую букву в описании не обращайте внимания, пример: f_Fuse_5_20Glass — означает предохранитель 5х20 миллиметров стеклянный.
Конденсаторы
Коннекторы
Разъёмы
Контактные группы
Панельки микросхем
Микросхемы
Диоды и транзисторы
Конденсаторы электролитические
Предохранители
Дроссели
LCD дисплеи
Светодиоды
LED матрицы и оптоэлементы
Резисторы и сборки
Переменные резисторы
Кварцевые резонаторы
Кнопки и переключатели
Что касается обозначения всех указанных радиоэлементов на электрических принципиальных схемах — смотрите справочную информацию по этому вопросу в другой статье.
Форум по деталям
Обсудить статью РАДИОЭЛЕМЕНТЫ
radioskot.ru
Обозначение радиодеталей на схеме и внешний вид
Если вы только начали разбираться в радиотехнике, я расскажу о том в этой статье, как же обозначаются радиодетали на схеме, как называются на ней, и какой имеют внешний вид.
Тут узнаете как обозначается транзистор,диод,конденсатор,микросхема,реле и т.д
Прошу жмать на подробнее.
Как обозначается биполярный транзистор
Все транзисторы имеют три вывода, и если он биполярный, то и бывет двух типов, как видно из изображения пнп-переход и нпн-переход. А три вывода имеют названия э-эмиттер, к-коллектор и б-база. Где какой вывод на самом транзисторе ищется по справочнику, или же введите в поиск название транзистор+выводы.
Внешний вид имеет транзистор следующий,и это лишь малая часть их внешнего вида,существующих номиналов полно.
Как обозначается полярный транзистор
Тут уже три вывода имеют следующие название,это з-затвор, и-исток, с-сток
Но а внешний вид визуально мало отличается,а точнее может иметь такой же цоколь.Вопрос как же узнать какой он, а это уже из справочников или интернета по обозначению написанном на цоколе.
Как обозначается конденсатор
Конденсаторы бывают как полярные так и неполярные.
Отличие их обозначение в том,что на полярном указывается один из выводов значком «+».И емкость измеряется в микрофарадах»мкф».
И имеют такой внешний вид,стоит учитывать,что если конденсатор полярный,то на цоколе с одной из сторон ножек обозначается вывод,только уже в основном знаком «-«.
Как обозначается диод и светодиод
Обозначение светодиода и диода на схеме отличается тем,что светодиод заключенчек и выходящими двух стрелок. Но роль у них разная-диод служит для выпрямления тока,и светодиод уже для испускания света.
И имеют такой внешний вид светодиоды.
И такой вид обычные выпрямительные и импульсные диоды например:
Как обозначается микросхема.
Микросхемы представляют собой уменьшенную схему,выполняющую ту или иную функцию,при этом могут иметь большое число транзисторов.
И такой внешний вид имеют они.
Обозначение реле
О них думаю впервую очередь слышали автомобилисты, особенно водители жигулей.
Так как когда не было инжекторов и транзисторы не получили широкое распространение, в автомобиле фары,прикуриватель,стартер, да все в ней почти включалось и управлялось через реле.
Такая самая простая схема реле.
Тут все просто,на электромагнитную катушку подается ток определенного напряжения,и та в свою очередь замыкает или размыкает участок цепи.
На этом статья заканчивается.
Если есть желание какие хотите увидеть радиодетали в следующей статье,пишите в комментарии.
radioshemka.ru
коды электронных компонентов на радиосхеме, их УГО
Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.
Чтение электрической схемы
Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.
Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается. Существует 2 вида стандарта:
- государственный, в этот стандарт может входить несколько государств;
- международный, пользуются почти во всем мире.
Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:
- источники питания;
- индикаторы, датчики;
- переключатели;
- полупроводниковые элементы.
Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.
Источники питания
К ним относятся все устройства, способные вырабатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.
В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.
Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые вырабатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.
Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.
Полупроводниковые диоды
Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:
- Диоды.
- Транзисторы.
- Микросхемы.
В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.
Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.
Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.
Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п—перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора — две параллельные прямые.
Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.
Транзисторы полярные и биполярные
Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.
Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку — это эмиттер, другая без стрелки — коллектор.
По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него — то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.
Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.
Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.
Интегральные микросхемы
Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы. Их можно разделить на такие виды:
- аналоговые;
- цифровые;
- аналого-цифровые.
На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.
Прочие элементы
Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.
Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.
Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.
Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.
Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.
Буквенно-цифровой код
Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды — на типы. Ниже приведены коды групп:
- A — устройства;
- B — преобразователи;
- C — конденсаторы;
- D — микросхемы;
- E — элементы разные;
- F — защитные устройства;
- G — источники питания;
- H — индикаторы;
- K — реле;
- L — катушки;
- M — двигатели;
- P — приборы;
- Q — выключатели;
- R — резисторы;
- S — выключатели;
- T — трансформаторы;
- U — преобразователи;
- V — полупроводники, электровакуумные лампы;
- X — контакты;
- Y — электромагнит.
Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие предохранители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.
rusenergetics.ru
Обозначение на схемах радиодеталей
Содержание:
- Резисторы
- Полупроводники
- Конденсаторы
- Диоды и стабилитроны
- Транзисторы
- Буквенные обозначение на схемах радиодеталей
- Видеоурок: условные обозначения на схемах
Начинающие радиолюбители нередко сталкиваются с такой проблемой, как обозначение на схемах радиодеталей и правильное прочтение их маркировки. Основная трудность заключается в большом количестве наименований элементов, которые представлены транзисторами, резисторами, конденсаторами, диодами и другими деталями. От того, насколько правильно прочитана схема, во многом зависит ее практическое воплощение и нормальная работа готового изделия.
Резисторы
К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.
Каждый постоянный резистор обладает двумя основными параметрами – мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока. Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла. Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.
Существуют и другие способы обозначения резисторов на схемах:
- На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
- В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е – 15 Ом; К15 – 0,15 Ом – 150 Ом; 1К5 – 1,5 кОм; 15К – 15 кОм; М15 – 0,15М – 150 кОм; 1М2 – 1,5 мОм; 15М – 15мОм.
- В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья – множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 – 15 Ом; 151 – 150 Ом; 152 – 1500 Ом; 153 – 15000 Ом; 154 – 120000 Ом.
Постоянные резисторы
Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.
Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.
Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.
Переменные резисторы
Начинающие радиолюбители нередко путают переменный резистор с конденсатором переменной емкости, поскольку внешне они очень похожи друг на друга. Тем не менее, у них совершенно разные функции, а также имеются существенные отличия в отображении на принципиальных схемах.
В конструкцию переменного резистора входит ползунок, вращающийся по резистивной поверхности. Его основной функцией является подстройка параметров, заключающаяся в изменении внутреннего сопротивления до нужного значения. На этом принципе основана работа регулятора звука в аудиотехнике и других аналогичных устройствах. Все регулировки осуществляются за счет плавного изменения напряжения и тока в электронных устройствах.
Основным параметром переменного резистора является сопротивление, способное изменяться в определенных пределах. Кроме того, он обладает установленной мощностью, которую должен выдерживать. Этими качествами обладают все типы резисторов.
На отечественных принципиальных схемах элементы переменного типа обозначаются в виде прямоугольника, на котором отмечены два основных и один дополнительный вывод, располагающийся вертикально или проходящих сквозь значок по диагонали.
На зарубежных схемах прямоугольник заменен изогнутой линией с обозначением дополнительного вывода. Рядом с обозначением ставится английская буква R с порядковым номером того или иного элемента. Рядом проставляется значение номинального сопротивления.
Соединение резисторов
В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и смешанным соединением.
При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.
Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы – в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.
Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.
На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.
Полупроводники
Стандартный полупроводниковый диод состоит из двух выводов и одного выпрямляющего электрического перехода. Все элементы системы объединяются в общем корпусе из керамики, стекла, металла или пластмассы. Одна часть кристалла называется эмиттером, в связи с высокой концентрацией примесей, а другая часть, с низкой концентрацией, именуется базой. Маркировка полупроводников на схемах отражает их конструктивные особенности и технические характеристики.
Для изготовления полупроводников используется германий или кремний. В первом случае удается добиться более высокого коэффициента передачи. Элементы из германия отличаются повышенной проводимостью, для которой достаточно даже невысокого напряжения.
В зависимости от конструкции, полупроводники могут быть точечными или плоскостными, а по технологическим признакам они бывают выпрямительными, импульсными или универсальными.
Конденсаторы
Конденсатор представляет собой систему, включающую два и более электродов, выполненных в виде пластин – обкладок. Они разделяются диэлектриком, который значительно тоньше, чем обкладки конденсатора. Все устройство имеет взаимную емкость и обладает способностью к сохранению электрического заряда. На простейшей схеме конденсатор представлен в виде двух параллельных металлических пластин, разделенных каким-либо диэлектрическим материалом.
На принципиальной схеме рядом с изображением конденсатора указывается его номинальная емкость в микрофарадах (мкФ) или пикофарадах (пФ). При обозначении электролитических и высоковольтных конденсаторов, после номинальной емкости указывается значение максимального рабочего напряжения, измеряемого в вольтах (В) или киловольтах (кВ).
Переменные конденсаторы
Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).
Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы – термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.
Постоянные конденсаторы
В принципиальных электрических схемах широко используются графические обозначения конденсаторов с постоянной емкостью. Они изображаются в виде двух параллельных отрезков и выводов из середины каждого из них. Возле значка проставляется буква С, после нее – порядковый номер элемента и с небольшим интервалом – числовое обозначение номинальной емкости.
При использовании в схеме конденсатора с ориентировочной емкостью, вместо его порядкового номера наносится звездочка. Значение номинального напряжения указывается лишь для цепей с высоким напряжением. Это касается всех конденсаторов, кроме электролитических. Цифровой символ напряжения проставляется после обозначения емкости.
Соединение многих электролитических конденсаторов требует соблюдения полярности. На схемах для обозначения положительной обкладки используется значок «+» либо узкий прямоугольник. При отсутствии полярности узкими прямоугольниками помечаются обе обкладки.
Диоды и стабилитроны
Диоды относятся к простейшим полупроводниковым приборам, функционирующим на основе электронно-дырочного перехода, известного как p-n-переход. Свойство односторонней проводимости наглядно передается на графических обозначениях. Стандартный диод изображается в виде треугольника, символизирующего анод. Вершина треугольника указывает направление проводимости и упирается в поперечную черту, обозначающую катод. Все изображение пересекается по центру линией электрической цепи.
Для маркировки диодов используется буквенное обозначение VD. Оно отображает не только отдельные элементы, но и целые группы, например, диодные мосты. Тип того или иного диода указывается возле его позиционного обозначения.
Базовый символ применяется и для обозначения стабилитронов, представляющих собой полупроводниковые диоды с особыми свойствами. В катоде присутствует короткий штрих, направленный в сторону треугольника, символизирующего анод. Данный штрих располагается неизменно, независимо от положения значка стабилитрона на принципиальной схеме.
Транзисторы
У большинства радиоэлектронных компонентов имеется лишь два вывода. Однако такие элементы как транзисторы оборудованы тремя выводами. Их конструкции отличаются разнообразными типами, формами и размерами. Общие принципы работы у них одинаковые, а небольшие отличия связаны с техническими характеристиками конкретного элемента.
Транзисторы используются преимущественно в качестве электронных коммутаторов для включения и выключения различных устройств. Основное удобство таких приборов заключается в возможности коммутировать большое напряжение с помощью источника малого напряжения.
По своей сути каждый транзистор является полупроводниковым прибором, с помощью которого генерируются, усиливаются и преобразуются электрические колебания. Наибольшее распространение получили биполярные транзисторы с одинаковой электропроводностью эмиттера и коллектора.
На схемах они обозначаются буквенным кодом VT. Графическое изображение представляет собой короткую черточку, от середины которой отходит линия. Данный символ обозначает базу. К ее краям проводятся две наклонные линии под углом 600, отображающие эмиттер и коллектор.
Электропроводность базы зависит от направления стрелки эмиттера. Если она направлена в сторону базы, то электропроводность эмиттера – р, а у базы – n. При направлении стрелки в противоположную сторону, эмиттер и база меняют электропроводность на противоположное значение. Знание электропроводности необходимо для правильного подключения транзистора к источнику питания.
Для того чтобы обозначение на схемах радиодеталей транзистора было более наглядным, оно помещается в кружок, означающий корпус. В некоторых случаях выполняется соединение металлического корпуса с одним из выводов элемента. Такое место на схеме отображается в виде точки, проставляемой там, где вывод пересекается с символом корпуса. Если же на корпусе имеется отдельный вывод, то линия, обозначающая вывод, может подсоединяться к кружку без точки. Возле позиционного обозначения транзистора указывается его тип, что позволяет существенно повысить информативность схемы.
Буквенные обозначение на схемах радиодеталей
Основное обозначение | Наименование элемента | Дополнительное обозначение | Вид устройства |
А | Устройство | АА | Регулятор тока |
|
| АК | Блок реле |
|
| AKS | Устройство |
В | Преобразователи | ВА | Громкоговоритель |
|
| BF | Телефон |
|
| ВК | Датчик тепловой |
|
| BL | Фотоэлемент |
|
| ВМ | Микрофон |
|
| BS | Звукосниматель |
С | Конденсаторы | СВ | Батарея конденсаторов силовая |
|
| CG | Блок конденсаторов зарядный |
D | Интегральные схемы, микросборки | DA | ИС аналоговая |
|
| DD | ИС цифровая, логический элемент |
Е | Элементы разные | ЕК | Теплоэлектронагреватель |
|
| EL | Лампа осветительная |
F | Разрядники, предохранители, устройства защитные | FA | Дискретный элемент защиты по току мгновенного действия |
|
| FP | То же, по току инерционного действия |
|
| FU | Предохранитель плавкий |
|
| FV | Разрядник |
G | Генераторы, источники питания | GB | Батарея аккумуляторов |
|
| GC | Синхронный компенсатор |
|
| GЕ | Возбудитель генератора |
Н | Устройства индикационные и сигнальные | НА | Прибор звуковой сигнализации |
|
| HG | Индикатор |
|
| HL | Прибор световой сигнализации |
|
| HLА | Табло сигнальное |
|
| HLG | Лампа сигнальная с зеленой линзой |
|
| HLR | Лампа сигнальная с красной линзой |
|
| HLW | Лампа сигнальная с белой линзой |
|
| HV | Индикаторы ионные и полупроводниковые |
К | Реле, контакторы, пускатели | КА | Реле токовое |
|
| КН | Реле указательное |
|
| КК | Реле электротепловое |
|
| КМ | Контактор, магнитный пускатель |
|
| КТ | Реле времени |
|
| KV | Реле напряжения |
|
| КСС | Реле команды включения |
|
| КСТ | Реле команды отключения |
|
| KL | Реле промежуточное |
L | Катушки индуктивности, дроссели | LL | Дроссель люминесцентного освещения |
|
| LR | Реактор |
|
| LM | Обмотка возбуждения электродвигателя |
М | Двигатели | МА | Электродвигатели |
Р | Приборы измерительные | РА | Амперметр |
|
| РС | Счетчик импульсов |
|
| PF | Частотомер |
|
| PI | Счетчик активной энергии |
|
| PK | Счетчик реактивной энергии |
|
| PR | Омметр |
|
| PT | Измеритель времени действия, часы |
|
| PV | Вольтметр |
|
| PW | Ваттметр |
Q | Выключатели и разъединители силовые | QF | Выключатель автоматический |
R | Резисторы | RK | Терморезистор |
|
| RP | Потенциометр |
|
| RS | Шунт измерительный |
|
| RU | Варистор |
|
| RR | Реостат |
S | Устройство коммутации в цепях управления, сигнализации и измерительных цепях | SA | Выключатель или переключатель |
|
| SB | Выключатель кнопочный |
|
| SF | Выключатель автоматический |
Т | Трансформаторы, автотрансформаторы | TA | Трансформатор тока |
|
| TV | Трансформаторы напряжения |
U | Преобразователи | UB | Модулятор |
|
| UR | Демодулятор |
|
| UG | Блок питания |
|
| UF | Преобразователь частоты |
V | Приборы электровакуумные и полупроводниковые | VD | Диод, стабилитрон |
|
| VL | Прибор электровакуумный |
|
| VT | Транзистор |
|
| VS | Тиристор |
Х | Соединители контактные | ХА | Токосъемник |
|
| ХР | Штырь |
|
| XS | Гнездо |
|
| XW | Соединитель высокочастотный |
Y | Устройства механические с электромагнитным приводом | YA | Электромагнит |
|
| YAB | Замок электромагнитный |
electric-220.ru