Закрыть

Как определить витковое замыкание в асинхронном двигателе: причины, способы проверки и методы ремонта

Содержание

причины, способы проверки и методы ремонта

Во время эксплуатации любого оборудования периодически возникают поломки разного характера, которые требуют качественного ремонта. Распространенные сегодня электродвигатели не являются тому исключением. Такие агрегаты могут выходить из строя в результате межвиткового замыкания. В такой ситуации может сгореть исправный, на первый взгляд, двигатель. Именно поэтому специалисты стараются своевременно определить замыкание межвиткового типа, чтобы качественно устранить причину неисправности.

Описание

Сложное межвитковое замыкание может возникнуть по причине нарушения изоляционного слоя ответственных элементов в многофункциональных электротехнических агрегатах. В классическом двигателе, кроме распространенного замыкания на корпус, часто присутствуют и другие проблемы. Чаще всего это может быть спровоцировано выходом из строя обмотки ротора или же статора. Специалистам удалось установить, что классическое межвитковое замыкание возникает в результате перегрева мотора. Когда на устройство воздействует повышенная температура, то сложно избежать разрушения нанесенного производителем лака, который выполняет роль надежной оболочки. Из-за этого витки оголяются и начинают постепенно взаимодействовать друг с другом, вызывая тем самым короткое замыкание. Даже если это точечная проблема, двигатель все равно не будет функционировать как раньше. Ликвидировать поломку можно только при помощи качественной перемотки.

Элементарная проверка

Первым делом необходимо аккуратно установить индуктор на платформе тормозного изделия и включить его в сеть. Переключатель следует перевести в положение 4. Якорь аккуратно укладывают на полюса индуктора, после чего закрепляют на валу приспособление для проворачивания якоря. Можно включить стенд. Мастеру предстоит аккуратно прижать щупы контактного агрегата к двум соседним коллекторам якоря. Немного проворачивая механизм, нужно отыскать положение, при котором показания механизма будут находиться на максимальной отметке. При помощи резистора устанавливают стрелку устройства на максимально удобную отметку шкалы. Необходимо постепенно проворачивать якорь, не меняя при этом пространственного положения щупов. Мастеру остается только считать показания прибора.

Важные нюансы

Экспертами был разработан универсальный прибор для проверки межвиткового замыкания. Но первым делом нужно точно установить факт отсутствия дополнительной нагрузки на мотор. Проблема может возникнуть по причине засорения воздушной системы или заедания механического отдела. Чтобы безошибочно определить межвитковое замыкание, необходимо некоторое время понаблюдать за работающим двигателем. В такой ситуации мастер заметит интенсивное круговое искрение. Может ощущаться неприятный запах горелой изоляции. Чтобы ликвидировать проблему, нужно ее своевременно определить. При стандартном визуальном осмотре, обмотки якоря не должны быть вспученными или почерневшими. Указывать на проблему может запах горелого. Мастер должен убедиться в том, что между пластинами коллектора нет замыкания.

Универсальный агрегат

При помощи многофункционального прибора для проверки межвиткового замыкания можно безошибочно измерить сопротивление между обмоткой и корпусом. В рабочем состоянии разница полученных данных остается незначительной. Если полученный показатель превышает отметку 11 процентов, то качественного ремонта не избежать. Мастеру придется заменить всю обмотку, которая будет иметь меньшее сопротивление. Основные ремонтные работы должны быть направлены на перематывание неисправных деталей. Такие манипуляции доступны только в специальных условиях. Работу можно доверить исключительно специалистам.

Помощь мультиметра

Универсальность этого устройства позволяет выполнить проверку межвиткового замыкания, чтобы своевременно устранить имеющуюся поломку. Любые ремонтные работы должны начинаться с разборки якоря электродвигателя. Причины могут возникнуть по следующим причинам:

  1. Износ и поломка щеток.
  2. Замыкание между пластинами.
  3. Отсутствие контакта на клеммах.
  4. Плохая изоляция.
  5. Слишком высокая температура для пластин коллектора.

Многолетний опыт экспертов свидетельствует о том, что сломанный стартер издает характерный звук гула, появляются искры, меняется интенсивность вращения якоря, образуются вибрации во время работы.

Самостоятельный ремонт

Чтобы проверить межвитковое замыкание на якоре, нужно аккуратно приложить к пластине коллектора стартер лампы. Нужно посмотреть, загорится лампочка либо нет. Если лампочка сработала, тогда мастеру нужно подумать о замене обмотки или всего ротора. Но если реакции нет, проверку нужно выполнить омметром. Сопротивление должно быть максимально низким, не более 9 кОм. Если замыкание межвитковое, тогда пригодится определенный прибор для проверки якоря стартера. Устранить эту проблему можно в том случае, если выровнять все провода и очистить их от лишнего мусора. Если все перечисленные рекомендации не подействовали, остается только выполнить перемотку якоря. При распайке коллекторных выводов необходимо демонтировать ротор и тщательно зачистить поверхность при помощи бормашины. Определить сгоревший аккумулятор можно только с помощью аккумулятора.

Вариант для профессионалов

Специалисты привыкли использовать качественный прибор для межвиткового замыкания. Такой агрегат предназначен исключительно для профессионального ремонта электрооборудования. Для работы понадобится катушка со скобой. Классическим мультиметром можно определить только обрыв на якоре. Для более качественной диагностики лучше использовать аналоговый тестер. Между всеми ламелями обязательно замеряют сопротивление. Во всех случаях показатели должны быть идентичными. В некоторых случаях обмотки могут не сгореть, да и коллектор остается невредимым. Определить замыкание межвиткового типа можно с помощью прибора с прочной скобой от трансформатора. Мультиметр устанавливают на отметку 180 кОм. Щуп аккуратно замыкают на массу, а второй поочередно прикладывают к каждой ламели коллектора. Если якорь по-прежнему не прозванивается на массу, то он абсолютно исправен.

Замыкание классического статора

Даже такое изделие подвержено межвитковому замыканию. Первым делом специалист обязательно проверяет обмотку статора на факт сопротивления. Но это не самый надежный метод. Многие факторы влияют на мультиметр, из-за чего он может отображать ошибочные данные. Итоговый результат во многом зависит от перемотки двигателя, а также от старости самого железа. Обычными клещами можно измерить ток и сопротивление. Если у мастера есть необходимый опыт, то он может определить поломку даже по звуку работающего двигателя. Но в этом случае обязательно должны быть рабочие подшипники, которые качественно смазаны. При желании мастер может задействовать осциллограф, но такой агрегат отличается большой стоимостью. Из-за этого приобрести агрегат могут далеко не все. На двигателе не должно быть следов масла, подтеков. Недопустимо наличие посторонних запахов. Качественным тестером проверяют обмотки на факт сопротивления. Если результаты отличаются друг от друга более чем на 11%, то причина поломки может крыться в замыкании.

Самодельное приспособление

Устранить межвитковое замыкание электродвигателя можно при помощи агрегата, сооруженного в домашних условиях. Для сборки нужно подготовить транзисторы КТ209 и КТ315, переменные резисторы на 47 кОм и 1 кОм. Питание изделия можно обеспечить при помощи батареи, а также высококачественного стабилизатора. Дополнительно нужно установить зеленый светодиод, который будет сигнализировать о включении агрегата, а оранжевый – контрольный. Последовательно с этими элементами включают резистор на 30 Ом. Стоит отметить, что рабочая плата имеет компактные размеры, за счет чего легко поместится в небольшой корпус.

Причины неисправностей

Межвитковое замыкание электродвигателя не является редкой проблемой. Такая неисправность встречается в 50% всех случаев поломок. Ситуация может возникнуть из-за повышенной нагрузки на электроустановку. Неправильная эксплуатация агрегата часто влечет за собой преждевременные поломки. Номинальную нагрузку можно определить по паспорту установки. Перегрузка может быть спровоцирована механическим повреждением самого мотора. Сухие либо заклинившие подшипники часто вызывают замыкание. Не исключен факт заводского брака. Если электродвигатель хранится в ненадлежащих условиях, то это всегда чревато тем, что обмотка просто отсыреет.

Изменение сопротивления

Определение межвитковое замыкание позволяет существенно упростить ремонтные работы. Чтобы качественно проверить мотор на факт сопротивления изоляции, опытные электрики активно используют мегометр с напряжением 500 В. Таким приспособлением можно безошибочно измерить сопротивление изоляции обмоток двигателя. Если электродвигатели обладают напряжением 12 В или 24 В, то без помощи тестера просто не обойтись. Изоляция таких обмоток не рассчитана на испытание под максимальным напряжением. Производитель всегда в паспорте к агрегату указывает оптимальное значение. Если тестирование показало, что сопротивление изоляции гораздо меньше оптимальных 20 Мом, то обмотки обязательно разъединяют и тщательно проверяют каждую по отдельности. Для собранного мотора показатель не должен быть ниже положенных 21 Мом. Если изделие долгое время пролежало в сыром месте, то перед эксплуатацией его обязательно просушивают в течение нескольких часов накальной лампой.

Неисправности трансформатора

Опытные специалисты привыкли в работе использовать универсальный индикатор межвиткового замыкания, который существенно упрощает поиск возникших поломок. Но даже профессионалы должны помнить о том, что выбор наиболее подходящего источника питания и его местоположения напрямую зависит от количества питаемых изделий и типа подключения. У трансформатора есть довольно распространенная неисправность – непредвиденное замыкание витков между собой.

Эту проблему не всегда можно определить при помощи классического мультиметра. Агрегат нужно тщательно осмотреть на предмет наличия визуальных дефектов. Провод обмоток обладает лаковой изоляцией. В случае ее пробоя между витками возникает сопротивление, которые выше 0. В такой ситуации может возникнуть перегрев оснащения. При визуальном осмотре на трансформаторе не должно быть следов копоти, обуглившихся частиц, вздутия заводской заливки, почернений. Мастер может узнать номинальное напряжение из прилагаемой к агрегату документации. Если отличие показателей составляет 45% и больше, то обмотка вышла из строя. Чтобы не усугубить ситуацию, ремонт столь ответственного элемента лучше доверить специалистам, которые обладают всеми необходимыми навыками.

Проверка межвиткового замыкания обмоток

Мне часто в последнее время друзья и соседи стали задавать вопрос: как проверить электродвигатель мультиметром? Вот я и решил написать небольшой обзор инструкцию для начинающих электриков.

Сразу замечу, что один мультиметр не позволяет выявить со 100% гарантией все возможные неисправности: мало его функций. Но порядка 90% дефектов им вполне можно найти.

Постарался сделать инструкцию универсальной для всех типов движков переменного тока. Эти же методики при вдумчивом подходе можно использовать в цепях постоянного напряжения.

Что следует знать о двигателе перед его проверкой: 2 важных момента

В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.

Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте

Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.

Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.

Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.

Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.

Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:

  • разбитые подшипники;
  • попавшие внутрь механические частицы;
  • неправильная сборка и другие причины.

Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.

Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.

После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.

Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.

Все это необходимо проверять до подачи рабочего напряжения.

Особенности конструкций, влияющие на технологию поиска дефектов

Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.

Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.

Для бытовой сети 220 вольт могут использоваться двигатели:

  • коллекторные с щеточным механизмом;
  • асинхронные однофазные;
  • синхронные и асинхронные трехфазные.

В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.

Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.

Как проверить обмотку электродвигателя на статоре: общие рекомендации

Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.

Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.

Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1.

Аналогично поступают с другими проводами.

Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.

Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.

Межвитковое замыкание тоже сказывается на величине активной составляющей.

Однофазный асинхронный двигатель: особенности статорных обмоток

Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.

Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:

  • меньшая величина — рабочую обмотку;
  • средняя — пусковую;
  • большая — последовательное соединение первых двух.

Как найти начало и конец каждой обмотки

Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.

Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.

Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.

К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.

Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.

В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.

А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.

Личный опыт: проверка статорных обмоток асинхронного электродвигателя

Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.

Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.

Общая оценка состояния изоляции обмоток

Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.

Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.

Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.

Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.

Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.

Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.

Используя этот способ, учитывайте, что:

  • на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
  • даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
  • колба лампы может разбиться: ее надо держать в защитном чехле.

Замер активного сопротивления обмоток

Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.

Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.

Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.

Замер сопротивления изоляции между обмотками

Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.

Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.

Как проверить якорь электродвигателя: 4 типа разных конструкций

Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.

Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.

Синхронные модели с фазным ротором

На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.

Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.

Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.

Якорь асинхронного электродвигателя

В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.

Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.

Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.

Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.

Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.

Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.

Коллекторные электродвигатели: 3 метода анализа обмотки

Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.

Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.

Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.

Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.

Самый простой метод измерения

Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.

Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.

Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.

Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.

Способ №2: диаметральный замер

При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.

Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.

Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.

Способ №3: косвенный метод сравнения величин маленьких сопротивлений

Для измерения нам потребуется собрать схему, в которую входит:

  • аккумулятор на 12 вольт;
  • мощное сопротивление порядка 20 Ом;
  • мультиметр с концами и соединительные провода.

Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:

  • высокой емкости аккумулятора, обеспечивающей одинаковый уровень напряжения во время работы;
  • повышенная мощность резистора, исключающая его нагрев и отклонение параметров при токах до одного ампера;
  • короткие и толстые соединительные провода.

Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.

Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.

Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.

Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.

При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.

Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.

Двигатели постоянного тока

Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.

Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.

Заключительный этап: особенности проверок двигателей под нагрузкой

Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.

Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.

Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.

Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.

Во время эксплуатации любого оборудования периодически возникают поломки разного характера, которые требуют качественного ремонта. Распространенные сегодня электродвигатели не являются тому исключением. Такие агрегаты могут выходить из строя в результате межвиткового замыкания. В такой ситуации может сгореть исправный, на первый взгляд, двигатель. Именно поэтому специалисты стараются своевременно определить замыкание межвиткового типа, чтобы качественно устранить причину неисправности.

Описание

Сложное межвитковое замыкание может возникнуть по причине нарушения изоляционного слоя ответственных элементов в многофункциональных электротехнических агрегатах. В классическом двигателе, кроме распространенного замыкания на корпус, часто присутствуют и другие проблемы. Чаще всего это может быть спровоцировано выходом из строя обмотки ротора или же статора. Специалистам удалось установить, что классическое межвитковое замыкание возникает в результате перегрева мотора. Когда на устройство воздействует повышенная температура, то сложно избежать разрушения нанесенного производителем лака, который выполняет роль надежной оболочки. Из-за этого витки оголяются и начинают постепенно взаимодействовать друг с другом, вызывая тем самым короткое замыкание. Даже если это точечная проблема, двигатель все равно не будет функционировать как раньше. Ликвидировать поломку можно только при помощи качественной перемотки.

Элементарная проверка

Первым делом необходимо аккуратно установить индуктор на платформе тормозного изделия и включить его в сеть. Переключатель следует перевести в положение 4. Якорь аккуратно укладывают на полюса индуктора, после чего закрепляют на валу приспособление для проворачивания якоря. Можно включить стенд. Мастеру предстоит аккуратно прижать щупы контактного агрегата к двум соседним коллекторам якоря. Немного проворачивая механизм, нужно отыскать положение, при котором показания механизма будут находиться на максимальной отметке. При помощи резистора устанавливают стрелку устройства на максимально удобную отметку шкалы. Необходимо постепенно проворачивать якорь, не меняя при этом пространственного положения щупов. Мастеру остается только считать показания прибора.

Важные нюансы

Экспертами был разработан универсальный прибор для проверки межвиткового замыкания. Но первым делом нужно точно установить факт отсутствия дополнительной нагрузки на мотор. Проблема может возникнуть по причине засорения воздушной системы или заедания механического отдела. Чтобы безошибочно определить межвитковое замыкание, необходимо некоторое время понаблюдать за работающим двигателем. В такой ситуации мастер заметит интенсивное круговое искрение. Может ощущаться неприятный запах горелой изоляции. Чтобы ликвидировать проблему, нужно ее своевременно определить. При стандартном визуальном осмотре, обмотки якоря не должны быть вспученными или почерневшими. Указывать на проблему может запах горелого. Мастер должен убедиться в том, что между пластинами коллектора нет замыкания.

Универсальный агрегат

При помощи многофункционального прибора для проверки межвиткового замыкания можно безошибочно измерить сопротивление между обмоткой и корпусом. В рабочем состоянии разница полученных данных остается незначительной. Если полученный показатель превышает отметку 11 процентов, то качественного ремонта не избежать. Мастеру придется заменить всю обмотку, которая будет иметь меньшее сопротивление. Основные ремонтные работы должны быть направлены на перематывание неисправных деталей. Такие манипуляции доступны только в специальных условиях. Работу можно доверить исключительно специалистам.

Помощь мультиметра

Универсальность этого устройства позволяет выполнить проверку межвиткового замыкания, чтобы своевременно устранить имеющуюся поломку. Любые ремонтные работы должны начинаться с разборки якоря электродвигателя. Причины могут возникнуть по следующим причинам:

  1. Износ и поломка щеток.
  2. Замыкание между пластинами.
  3. Отсутствие контакта на клеммах.
  4. Плохая изоляция.
  5. Слишком высокая температура для пластин коллектора.

Многолетний опыт экспертов свидетельствует о том, что сломанный стартер издает характерный звук гула, появляются искры, меняется интенсивность вращения якоря, образуются вибрации во время работы.

Самостоятельный ремонт

Чтобы проверить межвитковое замыкание на якоре, нужно аккуратно приложить к пластине коллектора стартер лампы. Нужно посмотреть, загорится лампочка либо нет. Если лампочка сработала, тогда мастеру нужно подумать о замене обмотки или всего ротора. Но если реакции нет, проверку нужно выполнить омметром. Сопротивление должно быть максимально низким, не более 9 кОм. Если замыкание межвитковое, тогда пригодится определенный прибор для проверки якоря стартера. Устранить эту проблему можно в том случае, если выровнять все провода и очистить их от лишнего мусора. Если все перечисленные рекомендации не подействовали, остается только выполнить перемотку якоря. При распайке коллекторных выводов необходимо демонтировать ротор и тщательно зачистить поверхность при помощи бормашины. Определить сгоревший аккумулятор можно только с помощью аккумулятора.

Вариант для профессионалов

Специалисты привыкли использовать качественный прибор для межвиткового замыкания. Такой агрегат предназначен исключительно для профессионального ремонта электрооборудования. Для работы понадобится катушка со скобой. Классическим мультиметром можно определить только обрыв на якоре. Для более качественной диагностики лучше использовать аналоговый тестер. Между всеми ламелями обязательно замеряют сопротивление. Во всех случаях показатели должны быть идентичными. В некоторых случаях обмотки могут не сгореть, да и коллектор остается невредимым. Определить замыкание межвиткового типа можно с помощью прибора с прочной скобой от трансформатора. Мультиметр устанавливают на отметку 180 кОм. Щуп аккуратно замыкают на массу, а второй поочередно прикладывают к каждой ламели коллектора. Если якорь по-прежнему не прозванивается на массу, то он абсолютно исправен.

Замыкание классического статора

Даже такое изделие подвержено межвитковому замыканию. Первым делом специалист обязательно проверяет обмотку статора на факт сопротивления. Но это не самый надежный метод. Многие факторы влияют на мультиметр, из-за чего он может отображать ошибочные данные. Итоговый результат во многом зависит от перемотки двигателя, а также от старости самого железа. Обычными клещами можно измерить ток и сопротивление. Если у мастера есть необходимый опыт, то он может определить поломку даже по звуку работающего двигателя. Но в этом случае обязательно должны быть рабочие подшипники, которые качественно смазаны. При желании мастер может задействовать осциллограф, но такой агрегат отличается большой стоимостью. Из-за этого приобрести агрегат могут далеко не все. На двигателе не должно быть следов масла, подтеков. Недопустимо наличие посторонних запахов. Качественным тестером проверяют обмотки на факт сопротивления. Если результаты отличаются друг от друга более чем на 11%, то причина поломки может крыться в замыкании.

Самодельное приспособление

Устранить межвитковое замыкание электродвигателя можно при помощи агрегата, сооруженного в домашних условиях. Для сборки нужно подготовить транзисторы КТ209 и КТ315, переменные резисторы на 47 кОм и 1 кОм. Питание изделия можно обеспечить при помощи батареи, а также высококачественного стабилизатора. Дополнительно нужно установить зеленый светодиод, который будет сигнализировать о включении агрегата, а оранжевый – контрольный. Последовательно с этими элементами включают резистор на 30 Ом. Стоит отметить, что рабочая плата имеет компактные размеры, за счет чего легко поместится в небольшой корпус.

Причины неисправностей

Межвитковое замыкание электродвигателя не является редкой проблемой. Такая неисправность встречается в 50% всех случаев поломок. Ситуация может возникнуть из-за повышенной нагрузки на электроустановку. Неправильная эксплуатация агрегата часто влечет за собой преждевременные поломки. Номинальную нагрузку можно определить по паспорту установки. Перегрузка может быть спровоцирована механическим повреждением самого мотора. Сухие либо заклинившие подшипники часто вызывают замыкание. Не исключен факт заводского брака. Если электродвигатель хранится в ненадлежащих условиях, то это всегда чревато тем, что обмотка просто отсыреет.

Изменение сопротивления

Определение межвитковое замыкание позволяет существенно упростить ремонтные работы. Чтобы качественно проверить мотор на факт сопротивления изоляции, опытные электрики активно используют мегометр с напряжением 500 В. Таким приспособлением можно безошибочно измерить сопротивление изоляции обмоток двигателя. Если электродвигатели обладают напряжением 12 В или 24 В, то без помощи тестера просто не обойтись. Изоляция таких обмоток не рассчитана на испытание под максимальным напряжением. Производитель всегда в паспорте к агрегату указывает оптимальное значение. Если тестирование показало, что сопротивление изоляции гораздо меньше оптимальных 20 Мом, то обмотки обязательно разъединяют и тщательно проверяют каждую по отдельности. Для собранного мотора показатель не должен быть ниже положенных 21 Мом. Если изделие долгое время пролежало в сыром месте, то перед эксплуатацией его обязательно просушивают в течение нескольких часов накальной лампой.

Неисправности трансформатора

Опытные специалисты привыкли в работе использовать универсальный индикатор межвиткового замыкания, который существенно упрощает поиск возникших поломок. Но даже профессионалы должны помнить о том, что выбор наиболее подходящего источника питания и его местоположения напрямую зависит от количества питаемых изделий и типа подключения. У трансформатора есть довольно распространенная неисправность – непредвиденное замыкание витков между собой.

Эту проблему не всегда можно определить при помощи классического мультиметра. Агрегат нужно тщательно осмотреть на предмет наличия визуальных дефектов. Провод обмоток обладает лаковой изоляцией. В случае ее пробоя между витками возникает сопротивление, которые выше 0. В такой ситуации может возникнуть перегрев оснащения. При визуальном осмотре на трансформаторе не должно быть следов копоти, обуглившихся частиц, вздутия заводской заливки, почернений. Мастер может узнать номинальное напряжение из прилагаемой к агрегату документации. Если отличие показателей составляет 45% и больше, то обмотка вышла из строя. Чтобы не усугубить ситуацию, ремонт столь ответственного элемента лучше доверить специалистам, которые обладают всеми необходимыми навыками.

Дата: 20.10.2015 // 0 Комментариев

При ремонте двигателей и генераторов, это устройство может стать очень полезным. Схема прибора и его работа очень проста и доступна для сборки даже новичкам. Благодаря этому тестеру станет возможным проверка любых трансформаторов, генераторов, дросселей и разнообразных катушек, индуктивностью от 200 мкГн до 2 Гн. Аппарат позволит определить не только целостность проверяемой обмотки, но также поможет выявить межвитковое замыкание, способен проверить p-n переходы у кремниевых транзисторов или диодов.

Схема прибора для проверки межвиткового замыкания

Схема прибора описывалась в журнале «Радио» №7 за 1990 год, но до сих пор не потеряла свою актуальность благодаря своей простоте и надежности. С таким пробором проверка межвиткового замыкания осуществляется за считанные секунды.

Собранный для сайта тестер немного отличается от этой схемы. О внесенных изменениях в схему читаем в конце статьи.

Основу тестера составляет измерительный генератор. Он собран на транзисторах VT1, VT2. Частота этого генератора не постоянная и зависит от колебательного контура, который образуется конденсатором С1, а также подключаемой катушкой, она подсоединяется к ХР1 и ХР2. Резистором R1 устанавливается нужная глубина положительной обратной связи, для обеспечения надежной работы измерительного генератора. VT3, включен в диодном режиме, он создает нужный сдвиг напряжения между эмиттером VT2 и базой VT4.

VT4, VT5 представляют собой генератор импульсов, вместе с усилителем мощности на транзисторе VT6 способен обеспечить горение светодиода в трех различных режимах: не горит, мигает с постоянной частотой, а также простое свечение. Выбор режима работы генератора импульсов определяется напряжением смещения на базе транзистора VT4.

При сборке устройства целесообразно проверять правильность схемы постепенно. Проверку работоспособности генератора импульсов можно осуществить подключением переменного резистора на 1 кОм, как показано на схеме. Вращая движок этого резистора можно убедиться, что генератор импульсов работает правильно во всех режимах. При установки сопротивления 200-300 Ом, важно убедиться, что происходит мигание светодиода.

Работа тестера осуществляется следующим образом. Если выводы тестера замкнуты, измерительный генератор не возбуждается вовсе, VT2 будет открытым. Напряжения на эмиттере VT2, а значит, на базе транзистора VT4 будет недостаточно, что бы заработал генератора импульсов. VT5, VT6 в таком случае будут открыты, а диод будет гореть постоянно, что сигнализирует о целостности цепи.

В случае подключения к измерительным выводам устройства исправной катушки, припустим, осуществляется проверка трансформатора на межвитковое замыкание, а также произведя подстройку с помощью R1, измерительный генератор начнет возбуждаться. На эмиттере VT2 напряжение будет увеличиваться, это все приведет к увеличению напряжения смещения на базе VT4, а также пуска генератора импульсов. Диод должен мигать.

Если окажется, что обмотка, которую проверяют, имеет короткозамкнутые витки, тогда измерительный генератор не будет возбуждаться, а прибор заработает также, как и в случе замкнутых выводов (контрольный диод засветится).

Когда измерительные выводы будут отключены или появится обрыв, тогда VT2 будет закрыт. Напряжение на его эмиттере, а это значит, что и на базе VT4 возрастает. Он открывается до насыщения, а колебания генератора импульсов будут сорваны. VT5, VT6 закроются, а контрольный диод не засветиться вовсе.

Еще одной особенностью этого тестера есть возможность проверки p-n переходов. Подключая к аппарату кремниевый диод или транзистор (анод к ХР1, катод к ХР2), контрольный светодиод должен мигать. При пробое светодиод просто горит, а в случае обрыва не светится.

Вместо VT1— VT3 можно ставить КТ358В или КТ312В. КТ361Б легко заменяются на КТ502, КТ209. При использовании светодиода необходимо последовательно с ним включать сопротивление около 30-60 Ом.; питания прибора осуществляется от источника — 3В. При использовании кроны целесообразно применить стабилизатор на 3,3В.

Иногда в крайнем правом положении переменного резистора, а также разомкнутых щупах тестера диод может засветиться. Необходимо изменить сопротивление резистора R3 (немного его увеличить), добиться, чтобы диод потух.

Когда проверяются катушки небольшой индуктивности, интенсивность перестройки переменного резистора, возможно, будет чрезмерной. Можно с легкостью выйти из этого положения включением последовательно с резистором R1 дополнительного переменного резистора с небольшим максимальным сопротивлением, например 1 кОм.

Прибор для проверки межвиткового замыкания своими руками

Прибор для проверки межвиткового замыкания своими руками собран из старых советских компонентов.

Для сборки тестера применялись следующие компоненты и внеслись небольшие изменения: транзисторы КТ315 и КТ209. Переменные резисторы на 47кОм (для грубой настройки) и 1кОм (для точной настройки). Питание устройства осуществляется с помощью батареи КРОНА, и стабилизатора AMS1117 на 3,3В. Дополнительно установлен светодиод зеленого цвета который сигнализирует о включении прибора, а красный – контрольный светодиод. Последовательно с обоими светодиодами включен резистор на 30Ом. Плата имеет небольшие габариты и способна поместиться в компактный корпус.

Вот каким получился прибор для проверки межвиткового замыкания катушек индуктивности.

Проверка работы и целостности цепи.

Проверка обмотки. (светодиод мигает)

Имитация короткозамкнутых витков. Светодиод горит при любом положении переменного резистора.

Демонстрация работы прибора:

Как определить витковое замыкание в обмотках

Проверка обмотки возбуждения на межвитковое замыкание.

Межвитковое замыкание вызывает увеличение силы тока воз­буждения. Из-за перегрева обмотки разрушается изоляция и еще большее число витков замыкают между собой. Увеличение тока возбуждения может повлечь выход из строя регулятора напряжения. Эту неисправность определяют сравнением измерен­ного сопротивления обмотки возбуждения с техническими усло­виями. Если сопротивление обмотки уменьшилось, то ее перема­тывают или заменяют.

Межвитковое замыкание в катушке обмотки возбуждения определяют измерением сопротивления катушки возбуждения при помощи омметра, имеющегося на стендах Э211, 532-2М, 532-М и др., отдельного переносного омметра (см. рис. 14, в), или по показаниям амперметра и вольтметра при питании обмотки от аккумуляторной батареи (см. рис. 14, г). Плавкий предохранитель защищает амперметр и батарею при случайном коротком замы­кании цепи. К контактным кольцам ротора подключают щупы и делением величины измеренного напряжения на силу тока опре­деляют сопротивление и сравнивают его с техническими усло­виями (см. табл. 2).

Рис. 14. Проверка обмотки возбуждения:

а—на обрыв; б—на замыкание с валом и полюсом; в — омметром на обрыв и меж­витковое замыкание; г — — подключение приборов для определения сопротивления.

Проверка обмотки статора на обрыв.Проверка обмотки ста тора на обрыв производится при помощи контрольной лампы или омметра. Лампу и источник питания поочередно подключают к концам двух фаз по cxeме рис. 15, а. При обрыве в одной из кату­шек лампа гореть не будет. Омметр, подключенный к этой фазе, покажет «бесконечность При подключении к двум другим фазам он покажет сопротивление этих двух фаз.

Проверка обмотки статора на замыкание с сердечником.При такой неисправности значительно снижается мощность генератора или генератор не работает, увеличивается его нагрев. Аккумуля­торная батарея не заряжается. Проверка производится контроль­ной лампой напряжение 220 В. Лампу подключают к сердечнику и любому выводу обмотки по схеме рис. 15, б. При наличии замы­кания лампа будет гореть.

Проверка обмотки статора на межвитковое замыкание.Меж­витковое замыкание в катушках обмотки статора определяется измерением сопротивления катушек фаз отдельным омметром (см. рис. 15, в), на стендах Э211, 532-2М, 532-М и других, или по схеме, приведенной на рис. 15, г. Если сопротивление двух обмо­ток (замеренное или подсчитанное) меньше указанного в табл. 2, то обмотка статора имеет межвитковое замыкание. Эту неис­правность можно обнаружить, используя нулевую точку обмотки статора. Для этого необходимо замерить или подсчитать сопро­тивление каждой фазы в отдельности и, сравнивая сопротивле­ния

Рис. 15. Проверка обмотки статора:

а — на обрыв; б — на замыкание с сердечником; в — на межвитковое замыкание и обрыв

омметром; г — подключение приборов для определения сопротивления обмотки статора

всех трех фаз, определить, какая из них имеет межвитковое замыкание. Обмотка фазы, имеющая межвитковое замыкание, будет иметь меньшее сопротивление, чем другие. Дефектную обмотку заменяют.

Исправность обмоток статора можно проверить на контрольно-испытательных стендах на симметричность фаз. При этой про­верке замеряется переменное напряжение между фазами обмотки статора до выпрямительного блока при одинаковой (постоянной) частоте вращения ротора генератора. Если напряжение, наводи­мое (индуктируемое) в обмотках статора, неодинаковое, то это указывает на неисправность обмотки статора.

Для измерения напряжения двух фаз проводами вольтметра стенда через окна крышки генератора поочередно касаются двух радиаторов выпрямительного блока (для генераторов с выпрями­тельными блоками типа ВБГ) или головок винтов, соединяющих обмотку статора и выпрямительный блок (для генераторов с выпрямительными блоками типа БПВ).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10824 —

| 7386 — или читать все.

188.64.169.166 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Межвитковое замыкание: причины, способы проверки и методы ремонта

Во время эксплуатации любого оборудования периодически возникают поломки разного характера, которые требуют качественного ремонта. Распространенные сегодня электродвигатели не являются тому исключением. Такие агрегаты могут выходить из строя в результате межвиткового замыкания. В такой ситуации может сгореть исправный, на первый взгляд, двигатель. Именно поэтому специалисты стараются своевременно определить замыкание межвиткового типа, чтобы качественно устранить причину неисправности.

Описание

Сложное межвитковое замыкание может возникнуть по причине нарушения изоляционного слоя ответственных элементов в многофункциональных электротехнических агрегатах. В классическом двигателе, кроме распространенного замыкания на корпус, часто присутствуют и другие проблемы. Чаще всего это может быть спровоцировано выходом из строя обмотки ротора или же статора. Специалистам удалось установить, что классическое межвитковое замыкание возникает в результате перегрева мотора. Когда на устройство воздействует повышенная температура, то сложно избежать разрушения нанесенного производителем лака, который выполняет роль надежной оболочки. Из-за этого витки оголяются и начинают постепенно взаимодействовать друг с другом, вызывая тем самым короткое замыкание. Даже если это точечная проблема, двигатель все равно не будет функционировать как раньше. Ликвидировать поломку можно только при помощи качественной перемотки.

Элементарная проверка

Первым делом необходимо аккуратно установить индуктор на платформе тормозного изделия и включить его в сеть. Переключатель следует перевести в положение 4. Якорь аккуратно укладывают на полюса индуктора, после чего закрепляют на валу приспособление для проворачивания якоря. Можно включить стенд. Мастеру предстоит аккуратно прижать щупы контактного агрегата к двум соседним коллекторам якоря. Немного проворачивая механизм, нужно отыскать положение, при котором показания механизма будут находиться на максимальной отметке. При помощи резистора устанавливают стрелку устройства на максимально удобную отметку шкалы. Необходимо постепенно проворачивать якорь, не меняя при этом пространственного положения щупов. Мастеру остается только считать показания прибора.

Важные нюансы

Экспертами был разработан универсальный прибор для проверки межвиткового замыкания. Но первым делом нужно точно установить факт отсутствия дополнительной нагрузки на мотор. Проблема может возникнуть по причине засорения воздушной системы или заедания механического отдела. Чтобы безошибочно определить межвитковое замыкание, необходимо некоторое время понаблюдать за работающим двигателем. В такой ситуации мастер заметит интенсивное круговое искрение. Может ощущаться неприятный запах горелой изоляции. Чтобы ликвидировать проблему, нужно ее своевременно определить. При стандартном визуальном осмотре, обмотки якоря не должны быть вспученными или почерневшими. Указывать на проблему может запах горелого. Мастер должен убедиться в том, что между пластинами коллектора нет замыкания.

Универсальный агрегат

При помощи многофункционального прибора для проверки межвиткового замыкания можно безошибочно измерить сопротивление между обмоткой и корпусом. В рабочем состоянии разница полученных данных остается незначительной. Если полученный показатель превышает отметку 11 процентов, то качественного ремонта не избежать. Мастеру придется заменить всю обмотку, которая будет иметь меньшее сопротивление. Основные ремонтные работы должны быть направлены на перематывание неисправных деталей. Такие манипуляции доступны только в специальных условиях. Работу можно доверить исключительно специалистам.

Помощь мультиметра

Универсальность этого устройства позволяет выполнить проверку межвиткового замыкания, чтобы своевременно устранить имеющуюся поломку. Любые ремонтные работы должны начинаться с разборки якоря электродвигателя. Причины могут возникнуть по следующим причинам:

  1. Износ и поломка щеток.
  2. Замыкание между пластинами.
  3. Отсутствие контакта на клеммах.
  4. Плохая изоляция.
  5. Слишком высокая температура для пластин коллектора.

Многолетний опыт экспертов свидетельствует о том, что сломанный стартер издает характерный звук гула, появляются искры, меняется интенсивность вращения якоря, образуются вибрации во время работы.

Самостоятельный ремонт

Чтобы проверить межвитковое замыкание на якоре, нужно аккуратно приложить к пластине коллектора стартер лампы. Нужно посмотреть, загорится лампочка либо нет. Если лампочка сработала, тогда мастеру нужно подумать о замене обмотки или всего ротора. Но если реакции нет, проверку нужно выполнить омметром. Сопротивление должно быть максимально низким, не более 9 кОм. Если замыкание межвитковое, тогда пригодится определенный прибор для проверки якоря стартера. Устранить эту проблему можно в том случае, если выровнять все провода и очистить их от лишнего мусора. Если все перечисленные рекомендации не подействовали, остается только выполнить перемотку якоря. При распайке коллекторных выводов необходимо демонтировать ротор и тщательно зачистить поверхность при помощи бормашины. Определить сгоревший аккумулятор можно только с помощью аккумулятора.

Вариант для профессионалов

Специалисты привыкли использовать качественный прибор для межвиткового замыкания. Такой агрегат предназначен исключительно для профессионального ремонта электрооборудования. Для работы понадобится катушка со скобой. Классическим мультиметром можно определить только обрыв на якоре. Для более качественной диагностики лучше использовать аналоговый тестер. Между всеми ламелями обязательно замеряют сопротивление. Во всех случаях показатели должны быть идентичными. В некоторых случаях обмотки могут не сгореть, да и коллектор остается невредимым. Определить замыкание межвиткового типа можно с помощью прибора с прочной скобой от трансформатора. Мультиметр устанавливают на отметку 180 кОм. Щуп аккуратно замыкают на массу, а второй поочередно прикладывают к каждой ламели коллектора. Если якорь по-прежнему не прозванивается на массу, то он абсолютно исправен.

Замыкание классического статора

Даже такое изделие подвержено межвитковому замыканию. Первым делом специалист обязательно проверяет обмотку статора на факт сопротивления. Но это не самый надежный метод. Многие факторы влияют на мультиметр, из-за чего он может отображать ошибочные данные. Итоговый результат во многом зависит от перемотки двигателя, а также от старости самого железа. Обычными клещами можно измерить ток и сопротивление. Если у мастера есть необходимый опыт, то он может определить поломку даже по звуку работающего двигателя. Но в этом случае обязательно должны быть рабочие подшипники, которые качественно смазаны. При желании мастер может задействовать осциллограф, но такой агрегат отличается большой стоимостью. Из-за этого приобрести агрегат могут далеко не все. На двигателе не должно быть следов масла, подтеков. Недопустимо наличие посторонних запахов. Качественным тестером проверяют обмотки на факт сопротивления. Если результаты отличаются друг от друга более чем на 11%, то причина поломки может крыться в замыкании.

Самодельное приспособление

Устранить межвитковое замыкание электродвигателя можно при помощи агрегата, сооруженного в домашних условиях. Для сборки нужно подготовить транзисторы КТ209 и КТ315, переменные резисторы на 47 кОм и 1 кОм. Питание изделия можно обеспечить при помощи батареи, а также высококачественного стабилизатора. Дополнительно нужно установить зеленый светодиод, который будет сигнализировать о включении агрегата, а оранжевый – контрольный. Последовательно с этими элементами включают резистор на 30 Ом. Стоит отметить, что рабочая плата имеет компактные размеры, за счет чего легко поместится в небольшой корпус.

Причины неисправностей

Межвитковое замыкание электродвигателя не является редкой проблемой. Такая неисправность встречается в 50% всех случаев поломок. Ситуация может возникнуть из-за повышенной нагрузки на электроустановку. Неправильная эксплуатация агрегата часто влечет за собой преждевременные поломки. Номинальную нагрузку можно определить по паспорту установки. Перегрузка может быть спровоцирована механическим повреждением самого мотора. Сухие либо заклинившие подшипники часто вызывают замыкание. Не исключен факт заводского брака. Если электродвигатель хранится в ненадлежащих условиях, то это всегда чревато тем, что обмотка просто отсыреет.

Изменение сопротивления

Определение межвитковое замыкание позволяет существенно упростить ремонтные работы. Чтобы качественно проверить мотор на факт сопротивления изоляции, опытные электрики активно используют мегометр с напряжением 500 В. Таким приспособлением можно безошибочно измерить сопротивление изоляции обмоток двигателя. Если электродвигатели обладают напряжением 12 В или 24 В, то без помощи тестера просто не обойтись. Изоляция таких обмоток не рассчитана на испытание под максимальным напряжением. Производитель всегда в паспорте к агрегату указывает оптимальное значение. Если тестирование показало, что сопротивление изоляции гораздо меньше оптимальных 20 Мом, то обмотки обязательно разъединяют и тщательно проверяют каждую по отдельности. Для собранного мотора показатель не должен быть ниже положенных 21 Мом. Если изделие долгое время пролежало в сыром месте, то перед эксплуатацией его обязательно просушивают в течение нескольких часов накальной лампой.

Неисправности трансформатора

Опытные специалисты привыкли в работе использовать универсальный индикатор межвиткового замыкания, который существенно упрощает поиск возникших поломок. Но даже профессионалы должны помнить о том, что выбор наиболее подходящего источника питания и его местоположения напрямую зависит от количества питаемых изделий и типа подключения. У трансформатора есть довольно распространенная неисправность – непредвиденное замыкание витков между собой.

Эту проблему не всегда можно определить при помощи классического мультиметра. Агрегат нужно тщательно осмотреть на предмет наличия визуальных дефектов. Провод обмоток обладает лаковой изоляцией. В случае ее пробоя между витками возникает сопротивление, которые выше 0. В такой ситуации может возникнуть перегрев оснащения. При визуальном осмотре на трансформаторе не должно быть следов копоти, обуглившихся частиц, вздутия заводской заливки, почернений. Мастер может узнать номинальное напряжение из прилагаемой к агрегату документации. Если отличие показателей составляет 45% и больше, то обмотка вышла из строя. Чтобы не усугубить ситуацию, ремонт столь ответственного элемента лучше доверить специалистам, которые обладают всеми необходимыми навыками.

Как определить межвитковое замыкание в двигателе

Добрая половина всех случаев неисправностей электродвигателей приходится на межвитковое замыкание. Межвитковым замыканием называется короткое замыкание между разными витками одной катушки или секции обмотки электрической машины. Причин межвитковых замыканий может быть несколько.

Причины межвитковых замыканий

Одна из причин межвиткового замыкания — перегрузка электродвигателя по току, когда нагрузка на двигатель в течение значительного промежутка времени превышает номинальную. В этом случае обмотка статора разогревается от чрезмерного тока настолько сильно, что изоляция в каком-то ее месте может разрушиться и способствовать короткому замыканию между соседними витками. Нормальный ток статора под нагрузкой всегда можно посмотреть в паспорте двигателя либо на информационном шильдике на его корпусе.

Перегрузка может случиться, например, из-за нештатного режима эксплуатации оборудования, приводимого в действие данным двигателем. Кроме того причиной токовой перегрузки может стать механическое повреждение непосредственно двигателя: заклинивание ротора, стопорение подшипников и т. д.

Не исключен также заводской брак обмотки, либо нарушение целостности изоляции во время ручной перемотки статора в кустарных условиях. При несоблюдении условий хранения или эксплуатации электродвигателя, случайно попавшая внутрь влага способна навредить изоляции и привести к межвитковому замыканию.

Так или иначе, какой бы ни оказалась причина межвиткового замыкания, с ним пострадавший двигатель нормально работать уже точно не сможет, либо проработает, но недолго. Поэтому при обнаружении симптомов межвиткового замыкания, следует незамедлительно начать его поиск с целью скорейшего устранения.

Как выявить межвитковое замыкание

Существует несколько простых проверенных способов выявить наличие межвиткового замыкания. Симптомом обычно является перегрев одной части статора по отношению ко всем остальным его частям. Если данное явление наблюдается, то двигатель необходимо остановить, если надо — снять с оборудования, и подвергнуть точной диагностике.

Прежде всего можно воспользоваться токовыми клещами. Достаточно по очереди измерить токи каждой из фаз обмотки статора, и если в одной из них ток существенно больше чем в остальных, то это — явный признак того, что место замыкания находится в соответствующей части обмотки. Предварительно необходимо убедиться, что напряжение на все выводы (между каждой парой из трех фаз) подается одинаковое, то есть проверить отсутствие перекоса фаз. Для этого пользуются вольтметром, поочередно измеряют напряжения на трех фазах.

Три части трехфазной обмотки следует прозвонить омметром. Сопротивления всех трех обмоток по-отдельности должны быть одинаковыми. Используемый прибор должен обладать достаточно высокой точностью, ведь если имеет место замыкание всего между двумя витками, то различие в сопротивлениях будет минимальным, и его невозможно будет различить если обмотка выполнена толстым проводом.

Наличие замыкания на корпус можно проверить при помощи мегаомметра. Для этого один щуп прибора прикладывается к корпусу двигателя, второй — поочередно к каждому из выводов обмоток. В исправном двигателе сопротивление на каждой из фаз должно быть значительным (смотрите — Как правильно пользоваться мегаомметром ).

Не будет лишним визуально рассмотреть обмотку статора. Чтобы это сделать, нужно будет снять с двигателя крышки, вытащить ротор и внимательно рассмотреть всю обмотку секция за секцией. Если замыкание есть, то подгоревшее место наверняка будет видно сразу.

Если у вас под рукой есть понижающий трехфазный трансформатор на напряжение в районе 40 вольт, то используйте его для проверки целостности статора. Выньте ротор, подключите трансформатор, включите его в сеть. Возьмите железный шарик от подшипника и запустите его в статор, немного ускорив щелчком пальца, так чтобы шарик начал бегать по кругу вслед за вращающимся магнитным полем, имитируя вращение ротора. В случае если шарик остановился и застрял на одном месте статора — значит в этом месте межвитковое замыкание.

Если нет шарика, возьмите пластину трансформаторной стали или железную линейку, приложите ее внутри к статору и перемещайте по кругу. В том месте где пластинка начнет заметно дребезжать — есть межвитковое замыкание. Если межвиткового замыкания нет, то пластинка будет везде примагничиваться к статору. Прежде чем использовать способ с шариком или с пластинкой, убедитесь, что двигатель питается от понижающего трансформатора, иначе можно получить поражение электрическим током.

Если в Вашей школе физику преподавали хорошо, то, наверняка, Вам запомнился опыт, наглядно объяснявший явление электромагнитной индукции.

Внешне это выглядело примерно так: учитель приходил в класс, дежурные приносили какие-то приборы и расставляли на столе. После объяснения теоретического материала начинался показ опытов, наглядно иллюстрирующий рассказ.

Электромагнитная индукция

Для демонстрации явления электромагнитной индукции требовались катушка индуктивности весьма значительных размеров, мощный прямой магнит, соединительные провода и прибор под названием гальванометр.

Гальванометр внешним видом представлял собой плоский ящик размером чуть побольше стандартного листа формата А4, а за передней стенкой, закрытой стеклом помещалась шкала с нулем посередине. За этим же стеклом можно было увидеть толстую черную стрелку. Все это было достаточно различимо даже с самых последних парт.

Выводы гальванометра с помощью проводов соединялись с катушкой, после чего внутри катушки просто рукой перемещался вверх – вниз магнит. В такт перемещениям магнита из стороны в сторону перемещалась стрелка гальванометра, что свидетельствовало о том, что через катушку протекает ток. Правда, уже после окончания школы, один знакомый учитель физики рассказывал, что на задней стенке гальванометра имелась потайная ручка, которой от руки приводилась в движение стрелка, если опыт не удавался.

Сейчас такие опыты кажутся простыми и почти не заслуживающими внимания. Но электромагнитная индукция теперь применяется во многих электрических машинах и приборах. В 1831 году ее изучением занимался Майкл Фарадей.

В то время еще не было достаточно чувствительных и точных приборов, поэтому ушло немало лет на то, чтобы догадаться, что магнит должен ДВИГАТЬСЯ внутри катушки. Пробовались различной формы и силы магниты, намоточные данные катушек также менялись, магнит к катушке прикладывался по-разному, но только переменный магнитный поток, достигнутый движением магнита, привел к положительным результатам.

Исследованиями Фарадея было доказано, что электродвижущая сила, возникающая в замкнутой цепи, (катушка и гальванометр в нашем опыте) зависит от скорости изменения магнитного потока, ограниченного внутренним диаметром катушки. При этом абсолютно безразлично, каким образом происходит изменение магнитного потока: то ли за счет изменения магнитного поля, то ли за счет перемещения катушки в постоянном магнитном поле.

Самоиндукция, ЭДС самоиндукции

Самое интересное в том, что катушка находится в собственном магнитном поле, созданном протекающим через нее током. Если в рассматриваемом контуре (катушка и внешние цепи) ток будет по каким-либо причинам изменяться, то будет изменяться и магнитный поток, вызывающий ЭДС.

Подобная ЭДС носит название ЭДС самоиндукции. Изучением данного явления занимался замечательный русский ученый Э.Х. Ленц. В 1833 году он открыл закон взаимодействия магнитных полей в катушке, приводящий к самоиндукции. Этот закон известен теперь как закон Ленца. (Не путать с законом Джоуля – Ленца)!

Закон Ленца говорит о том, что направление индукционного тока, возникающего в проводящем замкнутом контуре таково, что он создает магнитное поле, противодействующее изменению того магнитного потока, которое вызвало появление индукционного тока.

При этом катушка находится в собственном магнитном потоке, который прямо пропорционален силе тока: Ф = L*I.

В этой формуле присутствует коэффициент пропорциональности L, также называемый индуктивностью или коэффициентом самоиндукции катушки. В системе СИ единица измерения индуктивности называется генри (Гн). Если при силе постоянного тока 1А катушка создает собственный магнитный поток 1Вб, то такая катушка обладает индуктивностью в 1Гн.

Подобно заряженному конденсатору, имеющему запас электрической энергии, катушка, через которую протекает ток, обладает запасом магнитной энергии. За счет явления самоиндукции, если катушка включена в цепь с источником ЭДС, при замыкании цепи ток устанавливается с задержкой.

В точности так же он не сразу прекращается при отключении. При этом на выводах катушки действует ЭДС самоиндукции, значение которой значительно (в десятки раз) превышает ЭДС источника питания. Например, подобное явление используется в катушках зажигания автомобилей, в строчных развертках телевизоров, а также в стандартной схеме включения люминесцентных ламп. Это все полезные проявления ЭДС самоиндукции.

В некоторых случаях ЭДС самоиндукции носит вредный характер: если транзисторный ключ нагружен обмоткой катушки реле или электромагнита, то для защиты от ЭДС самоиндукции параллельно обмотке устанавливают защитный диод полярностью обратной ЭДС источника питания. Это включение показано на рисунке 1.

Рисунок 1. Защита транзисторного ключа от ЭДС самоиндукции.

Как обнаружить короткозамкнутые витки

Часто возникают сомнения, а нет ли в трансформаторе или обмотках двигателя короткозамкнутых витков? Для подобных проверок используются различные приборы, например, RLC – мосты либо самодельные приборы — пробники. Однако, проверить наличие короткозамкнутых витков можно при помощи простой неоновой лампы. Лампа может подойти любая – даже от неисправного электрочайника китайского производства.

Для проведения измерения лампу без ограничительного резистора необходимо подключить к исследуемой обмотке. Обмотка должна иметь наибольшую индуктивность; если это сетевой трансформатор, то подключайте лампу к сетевой обмотке. После этого через обмотку следует пропустить ток силой в несколько миллиампер. Для этой цели можно воспользоваться источником питания с последовательно включенным резистором, как показано на рисунке 2.

В качестве источника питания можно использовать батарейки. Если в момент размыкания питающей цепи наблюдается вспышка лампы, то катушка исправна, короткозамкнутых витков нет. (Чтобы последовательность действий была понятней на рисунке 2 показан выключатель).

Подобные измерения можно проводить, используя в качестве батареек стрелочный авометр, такой как ТЛ-4 в режиме измерения сопротивления *1 Ом. В этом режиме указанный прибор дает ток около полутора миллиампер, что вполне достаточно для проведения описанных измерений. Цифровой мультиметр для этих целей использовать нельзя – его тока не хватает для создания необходимой силы магнитного поля.

Подобные измерения можно провести в точности также, если неоновую лампу заменить собственными пальцами: для повышения разрешающей способности «измерительного прибора» пальцы следует слегка послюнить. При исправной катушке Вы почувствуете достаточно сильный удар током, конечно не смертельный, но и не очень приятный.

Рисунок 2. Обнаружение короткозамкнутых витков с помощью неоновой лампы.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ. 1 Определить междувитковые замыкания в обмотках асинхронного электродвигателя : — Студопедия

1 Определить междувитковые замыкания в обмотках асинхронного электродвигателя :

1.1 Методом индуктированных напряжений (рисунок 5.1а).

Обмотки фаз разъединить и к одной из обмоток (С1—С4) подвести напряжение, равное 36 В, а в двух других фазах вольтметром измерить индуктированные напряжения. Затем поочередно подать напряжение на обмотки (С2—С5) и (С3—С6), а вольтметром измерить напряжение на свободных выводах обмоток.

В обмотке с междувитковым замыканием в замкнутом контуре возникает противо-ЭДС и индуктированное напряжение уменьшается. Измерение выполнить для двух электродвигателей (исправного и с дефектом). Результаты измерений занести в таблицу 5.1.

Таблица 5.1 — Результаты измерений методом индуктированных напряжений

№ п.п.     Наименование     Напряжение, подводимое к обмоткам, В, Напряжение, измеренное на выводах обмоток, В Вывод о витковых замыканиях в обмотках
С25 С36 С14 С36 С14 С25
  Эл. двигат. № 1              
Эл. двигат. № 2              
                   

 


1.2 Методом измерения токов (рисунок 5.1б).

При соединении обмоток статора в звезду с тремя выводными концами невозможно определить витковые замыкания методом индуктированных напряжений. В этом случае используют «метод токов». В каждую фазу включить амперметр и произвести замер тока на работающем электродвигателе. Наибольший ток покажет амперметр, включенный в фазу с поврежденными витками. При соединении обмоток в треугольник наибольший ток покажут два амперметра обмотки с короткозамкнутыми витками (рисунок 1в).

Примечание: 1. При наличии токоизмерительных клещей замер токов произвести клещами, что значительно уменьшит время на выполнение этой операции. 2. Замерить вольтметром напряжение на клеммах электродвигателя и убедиться в его симметрии. Результаты измерений занести в таблицу 5.2 и сделать вывод.

Таблица 5.2 — Результаты измерений методом измерения токов

 

 

№ эл. двиг. Измеренные величины Вывод о наличии витковых замыканий
U (С12), В U (С13), В U (С23), В I А, А I В, А I С, А
№ 1              
№ 2              
               

 


1.3 Определить витковые замыкания в асинхронном электродвигателе с помощью специального прибора типа СМ-1, СМ-2 или ЕЛ-1 (при наличии в лаборатории), в соответствии с инструкцией к нему (рисунок 5.1 г).

Принцип действия аппаратов следующий. К аппарату подсоединяют две обмотки, в которые поочередно посылают импульсы напряжения высокой частоты. Если параметры обмоток совершенно одинаковы (нет витковых замыканий), то одинаковыми будут и импульсы тока в этих обмотках. При таком положении кривые на экране электронно-лучевой трубки, относящиеся к двум сравниваемым цепям, сольются.

Примечание. В настоящее время освоен выпуск прибора для диагностирования межвитковой изоляции ВЧФ-5-3, при наличии его в лаборатории можно использовать в лабораторной работе.

По результатам проведенных исследований сделать выводы.

2. Состояние изоляции обмоток (увлажненность обмоток или развивающийся дефект) наиболее точно определить высоким выпрямленным напряжением с измерением токов утечки по схеме (рисунок 5.2).

Для исследования состояния изоляции используют те же два двигателя, из которых один с нормальной изоляцией, а другой увлажненный или с развивающимся дефектом.

2.1. Собрать схему (рисунок 5.2), где указаны: QS — рубильник, TUV — ЛАТР, ТV — трансформатор повышающий, с первичной обмоткой 220 В и вторичной обмоткой 400…1500 В, VД1—VД4 — выпрямитель, R — токоограничивающее сопротивление, С — сглаживающий пульсации фильтр, РV2 — киловольтметр, РА — микроамперметр с пределами измерения до 1000 мкА (необходимо иметь сменный прибор миллиамперметр, с пределами измерения до 10 mА), КН — реле защиты (использовать блинкер, то есть указательное реле, своим же контактом разрывающее цепь, с номиналом по 0,05 А), SВ— кнопка, включаемая на момент замера токов утечки, М — испытуемый электродвигатель,

2.2. Выполнить измерение на двух двигателях:

а) абсолютное значение токов утечки;

б) степень ассиметрии токов утечки по фазам;

в) значение приращения токов утечки при увеличении напряжения;

г) отсутствие или наличие бросков и колебаний тока утечки при повышении напряжения.

Результаты измерения занести в таблицу5.3.

 

 

Рисунок 5.1 – Схема для определения витковых замыканий в асинхронном электродвигателе

 

 

Таблица 5.3- Результаты измерений выпрямленным напряжением с измерением токов утечки

№ п.п.   Наименование Подводимое напряжение к обмоткам, В Измеренные токи утечки по фазам Аcсиметрия токов утечки различных фаз     Допустимое максимальное значение то­ков утечки, mА Дополнитель­ные сведения по рез. испытания  
Iу(С14), mА Iу(С25), mА Iу(С36), mА  
D I1, mА D I2, mА D I3, mА  
Двиг. № 1                
  Двиг. № 2                
                         

 

Сделать вывод об увлажненности обмоток и развивающемся дефекте.

При наличии стенда с выпрямленным напряжением можно провести дополнительные исследования состояния изоляции электродвигателя.

Примечание.

1. Разница в значениях токов утечки разных фаз не должна превышать 11,5

2. Исходя из требований ПТЭ я ПТБ для электродвигателей, находящихся в эксплуатации, допустимое сопротивление изоляции, измеренное мегомметром на 500 Вольт, должно быть не менее 0,5 МОм. В соответствии с этим допустимый ток утечки при напряжении 500 В должен быть не более 1 mА (1000 mкА).

А (5.1)

 

где U — приложенное напряжение к обмоткам. В;

Rдоп.дв — допустимое сопротивление изоляции = 0,5 МОм (500000 Ом).

По результатам проведенных исследований сделать выводы.

3. Проверить техническое состояние короткозамкнутых обмоток роторов двух двигателей, в одном из которых имеет место обрыв стержня.

Собрать схему (рисунок 5.3). На обмотку электродвигателя подать напряжение 36 В (можно без латра). Провернуть медленно ротор на один оборот, записать значение тока и количество отклонений стрелки амперметра. Повторить измерение на втором электродвигателе. Результаты измерений записать в таблицу 5.4.

Таблица5.4 – Результаты измерений

 

№ п.п. Наименование, Величина тока, А Кол-во полных колебаний (отклонение стрелки амперметра)
Эл. двигатель 1    
Эл. двигатель 2    
       

 

Сделать вывод о наличии обрыва стержней.

4. Определить техническое состояние подшипников двух электродвигателей (в одном из которых подшипник с дефектом) с помощью стетоскопа.

Весьма эффективным способом определения технического состояния подшипников является прослушивание их шумов стетоскопом. Стетоскопы бывают мембранные, электрические и обычные. В мембранном стетоскопе стержень упирается в мембрану, колебание которой усиливает звук.

 

Рисунок 5.2- Принципиальная электрическая схема для измерения сопротивления изоляции обмоток

Рисунок 5.3 — Принципиальная электрическая схема проверки технического состояния короткозамкнутых обмоток роторов двигателя

 

В электрическом стетоскопе имеется вибродатчик, изготовленный на основе пьезоэлектрического телефона и преобразующий механические колебания в электрические. Обычный стетоскоп состоит из стержня с наушником.

В первое время после пуска электродвигателя шум подшипников еще не незначительный, поэтому прослушивают его не ранее, чем через 15 мин. после включения электродвигателя в сеть.

Свистящий звук при работе электродвигателя свидетельствует о недостаточном количестве или о загрязнении смазки подшипников. Иногда вследствие неудовлетворительной смазки шум подшипников может переходить в глухой прерывистый звук.

Поврежденный сепаратор издает звуки, похожие на грохот.

Дефекты на дорожках, шариках и роликах подшипников также вызывают повышенный шум. Особенно влияет на шум и вибрацию подшипников волнистость на дорожках качения. Даже небольшие волны высотой 0,5 мк могут быть причиной шума. Сделать вывод о техническом состоянии подшипников.

ВЫВОДЫ И АНАЛИЗЫ

По результатам диагностирования двух электродвигателей сделать заключение об их техническом состоянии. Дать рекомендации по устранению выявленных неисправностей и указать, в каких условиях можно устранить выявленные неисправности (на месте, текущий ремонт, капитальный ремонт).

 

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Назовите основные неисправности, возникающие у асинхронных электродвигателей в процессе эксплуатации.

2. Какие неисправности асинхронных электродвигателей можно определить без разборки?

3. Укажите методы определения неисправностей без разборки электродвигателя.

4. Укажите, из чего складывается уменьшение трудозатрат (чел.-ч) при диагностике электродвигателя.

5. Как часто выполняют диагностирование электродвигателей в условиях эксплуатации?

6. Как отличить увлажненность изоляции от развивающегося дефекта при диагностировании по токам утечки?

7. Какое влияние оказывают на работу электродвигателя обрывы стержней ротора?

Приложение 1 (справочное) «Руководство по эксплуатации трансформаторов серии ТМ, ТМГ, ТМФ и ТМГФ мощностью 25 — 1600 кВА класса напряжения до 10 КВ»

 

Настоящее руководство по эксплуатации распространяется на стационарные масляные понижающие трехфазные двухобмоточные силовые трансформаторы общего назначения мощностью 25, 40, 63, 100, 160, 250, 400, 630, 1000 и 1600 кВА на напряжение 6 и 10 кВ. РЭ содержит техническое описание, инструкцию по эксплуатации и приложения. Трансформаторы соответствуют требованиям ГОСТ 11677-85 «Трансформаторы силовые. Общие технические условия», ТУ 16-93 ВГЕИ.672133.002 ТУ «Трансформаторы серии ТМ, ТМГ, ТМФ и ТМГФ мощностью 25 -1600 кВА класса напряжения до 10 кВ. Технические условия».

При эксплуатации изделий дополнительно необходимо пользоваться «Правилами устройств электроустановок» издание 6е (ПУЭ), РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования» (Нормы испытаний), «Правилами технической эксплуатации электрических станций и сетей РФ» (ПЭЭП), РД 153-34.003.150-2000 «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок» и местными инструкциями.

Назначение

1.1. Трансформаторы серии ТМ, ТМГ, ТМФ и ТМГФ на напряжение 6,10 кВ предназначены для питания потребителей электроэнергии общего назначения.

1.2. Трансформаторы предназначены для эксплуатации в районах с умеренным климатом на открытом воздухе (исполнение У1 по ГОСТ 15150-69), при этом:

— окружающая среда не взрывоопасная, не содержащая токопроводящей пыли;

— высота установки над уровнем моря не более 1000 м;

— режим работы длительный;

— температура окружающей среды от минус 45 °С до плюс 40 °С;

— трансформаторы не предназначены для работы в условиях тряски, вибраций, ударов, в химически активной среде.

1.3. Условное обозначение типов трансформаторов:

Пример записи условного обозначения трансформатора мощностью 25 кВА герметичного исполнения с высшим напряжением 10кВ низшим напряжением 0.4кВ, схемой и группой соединения У/Ун-0, климатического исполнения У, категории размещения I при его заказе и в документации другого изделия — «Трансформатор типа ТМГ-25/10-У1;10/0,4кВ; У/Ун-0,ТУ 16-93 ВГЕИ.672133.002 ТУ».

Технические данные

2.1. Тип трансформатора, обозначение поставочного документа (ТУ), значение номинальной мощности, номинальных напряжений на всех ответвлениях обмотки высшего напряжения, номинальных токов, напряжение короткого замыкания, ток и потери холостого хода, потери короткого замыкания, схема и группа соединения обмоток, другие технические данные указаны на паспортной табличке и в паспорте трансформатора.

2.2. Схема общего вида, габаритные, установочные размеры приведены на сайте производителя.

2.3. Регулирование напряжения осуществляется переключением без возбуждения ответвлений обмотки ВН ступенями по 2.5% .

Определение начала и конца обмоток электродвигателя

Здравствуйте, дорогие посетители и постоянные читатели сайта «Заметки электрика».

Продолжаю серию статей из раздела «Электродвигатели». В прошлых статьях я рассказывал Вам про устройство асинхронного двигателя, соединение в звезду и треугольник его обмоток, провел эксперимент подключения трехфазного двигателя в однофазную сеть.

Бывают ситуации, когда Вы подходите к двигателю с целью подключить его в сеть, а в клеммной колодке находятся 6 проводов, совершенно без бирочек и маркировки.

Что делать в такой ситуации? 

Делается это не очень трудно. В качестве примера я покажу Вам наглядно как определить начало и конец обмоток электродвигателя АИР71А4.

 

 Шаг 1

Самым первым шагом в определении начала и конца обмоток асинхронного двигателя является написание бирочек (кембриков). Для этого воспользуемся трубкой ПВХ диаметром 5 (мм) и маркером.

Нарезаем из трубки ПВХ шесть отрезков одинаковой длины и подписываем их маркером.

Про маркировку обмоток трехфазного асинхронного двигателя я Вам рассказывал в статье про соединение звездой и треугольником. Кто забыл, то переходите по ссылке и читайте.

Вот что получилось.

 Шаг 2

Вы уже знаете, что обмотка статора асинхронного двигателя состоит из 3 обмоток, сдвинутых относительно друг друга на 120 электрических градуса. Так вот вторым шагом в определении начала и конца обмоток асинхронного двигателя  является определение принадлежности всех шести выводов к соответствующим обмоткам.

Как это делается?

Можно воспользоваться обычным омметром, но я предпочитаю использовать цифровой мультиметр. Кстати, скоро в свет выйдет интересная и подробная статья о том, как пользоваться мультиметром при проведении различных видов электрических измерений.

Чтобы не пропустить выход новых статей на сайте, Вам необходимо подписаться на получение новостей в конце статьи или в правой колонке сайта.

Итак, с помощью мультиметра определяем первую обмотку. Переключатель режима работы  мультиметра ставим в положение 200 (Ом).

Одним щупом встаем на любой из шести проводников. Вторым ищем его конец. Как только попадаем на искомый проводник, показания мультиметра покажут нам значение отличное от нуля. В моем примере это 14,7 (Ом).

Это и есть первая обмотка статора нашего электродвигателя. Одеваем на нее бирки U1 и U2 в произвольном порядке.

Аналогично продолжаем искать остальные две обмотки.

На найденные обмотки одеваем бирочки (кембрики), соответственно, V1, V2 и W1, W2.

В итоге получаем шесть проводов с надетыми на них бирочками (кембриками) в произвольной форме.

Шаг 3

Чтобы перейти к третьему шагу определения начала и концов обмоток трехфазного электродвигателя необходимо вкратце вспомнить теорию электротехники.

Кстати, кое-что Вы уже можете почитать в разделе «Электротехника». Правда этот раздел еще не наполнен статьями, все руки до него не доходят. Также можете почитать мой отзыв про курс электротехники от Михаила Ванюшина. Я его приобрел в свой архив и совсем не пожалел.

Итак, две обмотки, находящиеся на одном сердечнике, можно подключить либо согласовано, либо встречно.

При согласованном включении двух обмоток возникнет электродвижущая сила ЭДС, состоящая из суммы ЭДС первой и второй обмоток. Таким образом, в этих обмотках возникает процесс электромагнитной индукции, который наводит в рядом расположенной обмотке ЭДС, т.е. напряжение.

Если же две обмотки подключить встречно, то сумма ЭДС этих двух обмоток будет равна нулю, т.к. ЭДС каждой обмотки будут направлены друг на друга, и тем самым компенсируют друг друга. Поэтому в рядом расположенной обмотке ЭДС не наведется или наведется, но очень малой величины.

Перейдем к практике.

Берем первую катушку (U1и U2) и соединяем ее со второй (V1 и V2) следующим образом. Напоминаю, что эти обозначения у нас условные.

Эта же схема на моем примере.

На вывод U1 и V2 подаем переменное напряжение порядка 100 (В). Можно подать напряжение и 220 (В), но я ограничился 100 (В).

После этого с помощью вольтметра или мультиметра производим измерение переменного напряжения на выводах W1 и W2.

Если мультиметр покажет некоторое значение напряжения, то первая и вторая обмотки включены согласовано. Если напряжение на выводах будет равняться нулю или иметь совсем маленькое значение, то значит обмотки включены встречно.

Смотрим, что получилось в нашем случае.

Замеряю напряжения на выводах W1 и W2. Получаю значение около 0,15 (В). Это очень маленькое значение, поэтому я делаю вывод, что обмотки я подключил встречно. Поэтому на второй обмотке я меняю местами бирочки V1 и V2 и снова провожу измерение.

После замены на выводах W1 и W2 я измерил напряжение порядка 6,8 (В). Это уже что-то похожее на правду.

Делаю вывод, что первая (U1 и U2) и вторая (V1 и V2) обмотки подключены согласовано, а значит, данная маркировка их начал и концов верна.

Осталось дело за малым – это найти начало и конец у третьей обмотки (W1 и W2). Все делаем аналогично, только подключаем их согласно схемы, приведенной ниже.

Измерение переменного напряжения проводим на выводах V1 и V2.

Получилось напряжение 6,8 (В). Значит маркировка начала и конца третьей обмотки верна.

 

 Шаг 4

После определения начала и конца обмоток трехфазного асинхронного двигателя необходимо проверить себя. Для этого соединяем звездой или треугольником обмотки в зависимости от типа двигателя и напряжения сети. В нашем случае обмотки двигателя я соединил треугольником.

Подаю питающее трехфазное напряжение на обмотки – двигатель работает.

Можно сделать вывод, что начала и концы обмоток двигателя мы нашли правильно.

Существует еще несколько способов определения начала и концов обмоток электродвигателя, но лично я пользуюсь именно этим.

Для наглядности предлагаю посмотреть видео:

P.S. Если статья оказалась Вам полезной. то поделитесь ей со своими друзьями в социальных сетях. А если возникли вопросы по материалу данной статьи, то задавайте их в комментариях.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Как определить место короткого замыкания в обмотках электрических машин переменного тока

Вероятны последующие замыкания в обмотках электронных машин переменного тока: меж витками одной катушки, меж катушками либо катушечными группами одной фазы, меж катушками различных фаз.

Главным признаком, по которому можно отыскать замыкание в обмотках
электродвигателя переменного тока, является нагрев короткозамкнутого контура. Для этого нужно ощупать обмотку
электродвигателя после ее отключения.
Ощупывание обмотки следует создавать только при выключенной обмотке!

Чтоб отыскать недостаток в фазном роторе асинхронного мотора, ротор затормаживают и включают статор в сеть. В случае замыкания значимой части обмотки

ротора либо если движок имеет огромную мощность, затормаживание при номинальном напряжении становится неосуществимым, потому что вызывает огромную силу тока в статоре и срабатывание защиты мотора. В таких случаях испытание рекомендуется создавать при пониженном напряжении.

Набросок 1. Пояснение признаков замыкания в обмотках при соединении звездой
(а) и треугольником (б)

В неких случаях короткозамкнутую часть обмотки электродвигателя можно сходу найти по внешнему облику — по обуглившейся изоляции.

Следует подразумевать, что при наличии параллельных веток в обмотке куцее замыкание в одной из веток фазы (при значимом числе замкнувшихся витков) может вызвать нагрев и другой ветки, не имеющей недлинного замыкания, потому что последняя оказывается замкнутой витками дефектной ветки обмотки.

Фазу, имеющую замыкание, можно отыскать по несимметрии потребляемого тока из сети. При соединении обмотки
электродвигателя звездой (рис.
1, а) в фазе, имеющей замыкание, ток (A3) будет больше, чем в 2-ух других фазах. При соединении обмотки
электродвигателя треугольником (рис.
1, б) в 2-ух фазах сети, к которым присоединена дефектная фаза, токи (А1 и A3) будут больше, чем в третьей фазе (А2).

Опыт определения дефектной фазы рекомендуется создавать при пониженном напряжении (1/3
— 1/4 номинального), в случае асинхронного мотора с фазным ротором обмотка последнего может быть разомкнута, а в случае асинхронного мотора с короткозамкнутым ротором либо же в случае синхронного мотора ротор может крутиться либо быть заторможенным. При проведении опыта с синхронным движком в недвижном состоянии его обмотка возбуждения должна быть замкнута накоротко либо же на разрядное сопротивление.

В опыте с недвижной синхронной машиной токи в ее фазах будут различаться даже в этом случае, если машина исправна, что разъясняется магнитной асимметрией ее ротора. При
поворачивании ротора эти токи будут изменяться, но при исправной обмотке пределы их конфигураций будут схожи.

Фаза, имеющая замыкание, может быть определена и по значению ее сопротивления неизменному току, измеренного мостом или по способу амперметра — вольтметра, наименьшее сопротивление будет иметь фаза с замыканием. Если же нет способности разъединить фазы, то создают измерения 3-х междуфазных сопротивлений.

В случае соединения фаз электродвигателя звездой (рис.
1, а) большим будет междуфазное сопротивление, измеренное на концах фаз, не имеющих замыканий, два других сопротивления будут равны меж собой и будут меньше первого. В случае соединения фаз
электродвигателя треугольником (рис.
1, б) меньшее сопротивление будет на концах фазы, имеющей замыкание, два других измерения дадут огромные значения сопротивления, при этом оба они будут схожи.

Катушечные группы либо катушки, имеющие замыкания, могут быть найдены при питании переменным током всей ей обмотки либо только дефектной фазы по нагреву либо по значению падения напряжения на их концах. Катушечные группы либо катушки, имеющие замыкание, будут очень нагреты и иметь наименьшее падение напряжения (при измерении напряжения комфортно прльзоваться наточенными щупами, которыми прокалывают изоляцию соединительных проводов). В данном случае, так же как и выше, дефектные катушки можно отыскать по значению сопротивления неизменному току.

Замыкания в обмотке генератора могут быть найдены по значению индуктированной ЭДС в фазах обмотки, в ее катушечных группах либо в катушках. Для этого генератор пускают в ход, дают ему маленькое возбуждение и создают измерения фазных напряжений; если обмотки соединены треугольником, то фазы следует разъединить. Фаза, имеющая замыкание, будет иметь наименьшее напряжение. Для нахождения катушечной группы либо катушки, имеющей замыкание, определяют напряжение на их концах. Для высоковольтной машины опыт можно произвести при остаточном напряжении.


В тех случаях, когда нужно узнать, имеется ли недостаток в статорной либо роторной обмотке, поступают последующим образом.

Статорную обмотку включают на пониженное напряжение (1/3 — 1/4 номинального) при разомкнутом роторе и определяют напряжение на кольцах ротора, медлительно проворачивая ротор. Если напряжения на кольцах ротора (попарно) не равны меж собой и изменяются зависимо от положения ротора по отношению к статору, то это показывает на замыкание в статорной обмотке.

При замыкании в роторной обмотке (при исправной
статорной) напряжение меж кольцами ротора будет неодинаковым и не будет
изменяться зависимо от положения ротора.

Опыт может быть произведен при питании ротора и измерении напряжения на
зажимах статора, при всем этом получится оборотная картина. Подводимое к ротору
напряжение должно составлять 1/3 — 1/4 номинального напряжения на кольцах ротора, т. е. напряжения на кольцах при недвижном роторе и статоре, включенном на номинальное напряжение.

После того как установлено, какая из обмоток (роторная либо статорная) имеет соединение меж витками, определяют дефектную фазу, катушечную группу либо катушку рассмотренными выше методами.

В сложных случаях (при замыкании огромного числа катушек) либо когда короткозамкнутую ветвь по любым причинам не удается выявить, прибегают к способу деления обмотки на части. Для этого обмотку делят поначалу напополам и инспектируют мегомметром соединение меж собой этих частей. Потом одну из этих частей делят опять на две части и каждую из их инспектируют на соединение с первой половиной и т.д. до того времени, пока не будут найдены катушки, имеющие соединение.

Для наглядности на рис. 2 схематически представлен этот метод нахождения недостатка в фазе, имеющей восемь катушечных групп, при наличии соединения меж катушками 2 и 6 катушечных групп. Деление обмотки на части показано в поочередном порядке.

Метод поочередного деления на равные части позволяет обойтись наименьшим числом распаек, чем при делении всей обмотки на катушечные группы.

Рис. 2 Нахождение недлинного замыкания меж катушками одной
фазы

Если замыкание вышло меж 2-мя фазами, то место соединения находят аналогично предшествующему, разъединяя обмотки пофазно. Катушки одной из фаз, имеющей соединение, делят на две части и мегомметром инспектируют наличие соединений каждой таковой половины со 2-ой фазой. Потом ту часть, которая соединена с другой фазой, опять делят на две части и каждую из их опять инспектируют и т. д.

Способ поочередного деления на части используют при нахождении замыкания в обмотках, имеющих параллельные ветки. В данном случае нужно дефектные фазы поделить на параллельные ветки и найти поначалу, меж какими ветвями имеется соединение, а потом применить к ним этот способ. 

Потому что замыкания меж фазами либо катушечными группами почаще бывают в лобовых частях обмотки либо соединительных проводниках, то время от времени удается сразу отыскать место соединения методом приподымания и шевеления лобовых частей с одновременной проверкой мегомметром.

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследование
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

Как устранить неполадки в трехфазном асинхронном двигателе: пошаговое руководство

Перед поиском и устранением неисправностей в трехфазном асинхронном двигателе, мы должны знать о трехфазном асинхронном двигателе, пускателе звезда-треугольник и его схеме подключения.Итак, давайте рассмотрим по порядку:

Здесь мы даем вам только обзор трехфазного асинхронного двигателя. 3-х фазный асинхронный двигатель имеет 3 обмотки; Предположим, U, V и W. Каждая обмотка имеет собственное сопротивление. Но все обмотки имеют одинаковое сопротивление. Общее количество проводов, идущих от двигателя, равно 6, то есть U1, U2, V1, V2, W1 и W2. Когда эти три обмотки подключены по схеме ЗВЕЗДА или ТРЕУГОЛЬНИК (пускатель звезда-треугольник), двигатель готов к запуску. Соединение звезды и треугольника показано на рисунке.

Схема подключения трехфазного асинхронного двигателя звезда-треугольник

Теперь могут возникнуть некоторые вопросы, например,

Q1- Как мы проверяем двигатель в рабочем состоянии или нет?

Ответ — Открыть все соединения двигателя.Здесь мы используем мультиметр или серийный тестер для проверки. Но с помощью серийного тестера мы можем проверить только целостность цепи, а не точное сопротивление.

  • Если мы обнаружили бесконечное сопротивление или отсутствие непрерывности в какой-либо обмотке, двигатель неисправен.
  • Если мы обнаружили отсутствие обрыва между землей и обмоткой, двигатель неисправен.
  • Проверить сопротивление обмотки. Если мы обнаружили, что сопротивление неуравновешено или не то же самое. Неисправен двигатель

Q2- Почему двигатель потребляет ток, превышающий номинальный?

Ans- Двигатель потребляет ток, превышающий номинальный, по следующей причине: —

  • Проверьте входное напряжение переменного тока двигателя.Напряжение должно быть в пределах спецификации.
  • Проверить подключение двигателя.
  • Проверить сопротивление обмотки. Несбалансированное сопротивление обмотки означает, что двигатель неисправен.
  • Проверьте механическую нагрузку на двигатель. Нагрузка должна быть плавной или не заклинивать.
  • Отключите двигатель от нагрузки и проверьте ток. Если ток в норме, проверьте нагрузку еще раз.
  • Проверьте ротор вручную или вручную, ротор должен быть свободен или исправен.
  • Если ротор не работает плавно, замените подшипник двигателя.
  • Проверить центровку ротора.

Q3- Перегрев двигателя

Ans-

  • Неправильная вентиляция или высокая температура окружающей среды.
  • Низкое напряжение или однофазный.
  • Двигатель без отключения потребляет ток выше номинального.

Существуют следующие способы запуска двигателя.

  • Устройство прямого пуска: — подает постоянное напряжение на двигатель
  • Пускатель звезда-треугольник: — понижает напряжение во время пуска
  • Пускатель автотрансформатора: — Пуск части обмотки
  • Устройство плавного пуска: — понижающее напряжение во время пуска

Пускатель звезда-треугольник

Пускатель звезда-треугольник является наиболее часто используемым пускателем после прямого пускателя в сети в электрическом мире.По сравнению с другими пускателями с пониженным напряжением, это менее затратная и простая работа.

Большинство асинхронных двигателей запускаются с использованием прямого пускателя, но когда очень мощные двигатели запускаются с помощью прямого включения, они потребляют большой пусковой ток. Из-за большого тока они вызывают нарушение напряжения питания. Чтобы ограничить пусковой ток, большие асинхронные двигатели запускаются при пониженном напряжении, и когда двигатель достигает собственной скорости вращения, полное напряжение питания восстанавливается. Для снижения пускового напряжения используются два метода: пуск со звезды на треугольник и запуск автотрансформатора.

Пускатель со звезды на треугольник используется для снижения пускового напряжения.Это также снижает крутящий момент. В этом стартере двигатель работает в звездообразной обмотке во время пуска, когда двигатель набирает полную скорость, обмотка преобразуется в обмотку треугольником.

Мы знаем, что при соединении звездой напряжение обмотки равно 1 / √3 линейного напряжения, но ток обмотки равен линейному току. Поэтому крутящий момент уменьшается в три раза. С другой стороны, при соединении треугольником напряжение обмотки равно линейному напряжению, а ток обмотки равен 1 / √3 линейному току.

Схема подключения питания: —

6 провод обмотки идет от двигателя как U1, U2, V1, V2, W1, W2.У нас есть 3-фазное линейное напряжение R, Y, B. Для схемы подключения питания нам потребуется 3 контактора, 1 реле перегрузки и 1 MCB. Здесь реле перегрузки используется для защиты от сильного тока.

Давайте начнем делать схему подключения питания.

Рисунок 1:

Шаг 1: — линейное напряжение (R, Y, B,) подключается к входу MCB, а затем выход MCB подключается к входу реле перегрузки.

РИСУНОК 1: — ШАГ 1 И 2 ​​или начальное соединение

Шаг 2: -выход реле перегрузки подключается к входу главного контактора (C1), а выход главного контактора (C1) соединяет двигатель тремя проводами как U1, V1 и W1.Это означает, что фазы R, Y и B подключаются к U1, V1 и W1 через MCB, реле перегрузки и главный контактор. Показать на рисунке 1

Шаг 3: -Теперь мы подключаем U2, V2 и W2 к выходу контактора звездой (C3). И весь ввод контактора звезды закорочен на провод. Используя этот короткий провод, мы делаем обмотку звездой, показанную на рисунке 2.

Рисунок 2: соединение звездой

Рисунок 2: — Шаг 3 или соединение звездой

Шаг 4: -Теперь мы соединяем R1, Y1 и B1 с контактором треугольника (C2). Здесь мы используем наш разум, как мы соединяем U2, V2 и W2 в контакторе треугольником, потому что мы хотим сделать обмотку треугольником, когда этот контактор включен.Подключите провод, показанный на рисунке 3. Подобно тому, как U1 подключается к W2, U2 подключается к V1, V2 подключается к W1.

Рисунок-3: соединение треугольником

Шаг 5: — теперь объедините все вышеперечисленное. Теперь подключение к сети готово.

После объединения всех этапов, показанных на рисунке 4.

Электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть соединены либо по схеме звезды, обычно без внешнего подключения к нейтральной точке, либо по схеме треугольник.Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора проводящим концевым кольцом.

Поперечное сечение трехфазного асинхронного двигателя.

Encyclopædia Britannica, Inc.

Принцип работы асинхронного двигателя может быть разработан, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора.На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести моментов цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на чертеже ток в фазе a является максимально положительным, тогда как ток в фазах b и c составляет половину отрицательного значения. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу.В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения положительный. Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и текущих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле с постоянной величиной и механической угловой скоростью, которая зависит от частоты электроснабжение.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены друг с другом на каждом конце, это приведет к протеканию токов в этих проводниках. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора за момент времени t 1 . Видно, что токи примерно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение снижается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, без избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке является суммой синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласовано со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, поступающий от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *