Закрыть

Как подобрать варистор – Общие принципы выбора варисторов для защиты от импульсных напряжений

Содержание

Как подобрать аналог варистора

В предыдущей статье, посвящённой варисторам, мы рассказали как именно заменить варистор и маркировку варисторов.

Но очень часто нам задают вопрос, каким варистором заменить сгоревший, как подобрать аналог и у всех-ли варисторов одинаковая маркировка.

Подбирать варисторы для замены логичней не по фирме производителю и не по цвету, а по:

  • напряжению 
  • диаметру.

Диаметр соответствует способности варистора поглотить определённую мощность импульса, поэтому следует заменять на такой же, или больше.

Напряжение срабатывания можно узнать по маркировке — из таблицы и по нему подобрать аналог из имеющихся.

 Если маркировка не сохранилась, то подобрать можно по:

  • функциональному назначению
  • по электронной схеме

К примеру, если он стоит на входе прибора работающего от переменной сети 220 В, то как правило, он рассчитан на классификационное напряжение — 470 В, 560 В реже 430 В.

Это соответствует среднеквадратичному значению переменного напряжения 300 В, 350 В и 275 В соответственно. В подавляющем большинстве случаев ставят на напряжение 470 В, тогда исключаются частые сгорания предохранителя и радиоэлементы платы защищены надёжней.

 

Параметры и маркировка варисторов разных производителей

 

 

Как измерить параметры варистора

 

Если у вас есть варистор со стёртой маркировкой или такой нет в таблице аналогов, то вполне возможно измерить напряжение срабатывания варистора.

Для этого достаточно подключить его к блоку питания, который может обеспечить необходимое напряжение и у которого можно ограничить максимальный ток, чтобы варистор не разрушился (полярность подключения не имеет значения)

У меня к сожалению такого под рукой не оказалось, поэтому я выбрал другой способ. Я подключил варистор к мегомметру, который измеряет сопротивление высоким напряжением, у данного прибора три предела 250 В, 500 В и 1000 В, что оказалось вполне достаточно.

Я проверял два варистора — на 470 В и на 680 В, первый на пределе 500 В, второй 1000 В.

Как видно на фото, параметры вполне укладываются в допуск 10%.

Перед измерением обязательно прочтите инструкцию к прибору и убедитесь, что данная операция не повредит его, а также соблюдайте все требования по технике безопасности при работе с высоким напряжением.

masterxoloda.ru

обозначение и основные характеристики, маркировка и принцип действия, сферы применения и проверка

Среди радиолюбителей большой популярностью пользуются варисторы. Они применяются практически во всех электронных устройствах и позволяют усовершенствовать некоторые приборы. Для использования в схемах следует понять принцип работы варистора, а также знать его основные характеристики. Кроме того он, как и любая деталь, обладает своими достоинствами и недостатками, которые нужно учитывать при построении и расчете электрических схем.

Общие сведения

Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.

Рисунок 1 — УГО варистора.

Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.

Виды и принцип работы

Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:

  1. Высоковольтные с рабочим напряжением до 20 кВ.
  2. Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.

Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.

В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.

Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Достоинства и недостатки

Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:

  1. Высокое время срабатывания.
  2. Отслеживание перепадов при помощи безинерционного метода.
  3. Широкий диапазон напряжений: от 12 В до 1,8 кВ.
  4. Длительный срок службы.
  5. Низкая стоимость.

У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:

  1. Большая емкость.
  2. Не рассеивают мощность при максимальном значении напряжения.

Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.

При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.

Проверка на исправность

Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:

  1. Отвертка.
  2. Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
  3. Паяльник, олово и канифоль.
  4. Мультиметр для диагностики радиокомпонентов.
  5. Увеличительное стекло для просмотра маркировки.

После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.

Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вольт и его доработка.

Найти варистор и произвести его визуальный осмотр. Корпус должен быть целым и без трещин. Если было обнаружено нарушение целостности корпуса, то его необходимо выпаять и произвести замену на такой же или выбрать аналог. Необходимо отметить, что полярность подключения варистора в цепь не имеет значения. Если механические повреждения не обнаружены, то следует перейти к его диагностике, которая производится двумя способами:

  1. Измерение сопротивления.
  2. Поиск неисправности, исходя из технических характеристик элемента.

В первом случае деталь выпаивается из платы и замеряется значение ее сопротивления при помощи мультиметра. Переключатель ставится в положение максимального диапазона измерений (2 МОм достаточно). При замере не следует касаться руками варистора, поскольку прибор покажет сопротивление тела. Если мультиметр показывает высокие значения, то радиокомпонент исправен, а при других значениях его следует заменить. После замены следует собрать корпус и произвести включение сетевого фильтра.

Существует и другой способ выявления неисправного варистора, основанный на анализе характеристик элемента. Его, как правило, используют в том случае, если замер величины сопротивления не дал необходимых результатов. Для этого следует обратиться к техническим характеристикам варистора, согласно которым можно выявить его неисправность.

Следует проверить силу тока, при которой он работает, поскольку ее значение может быть меньше необходимой. В этом случае он не будет работать. Также нужно проверить величину напряжения, на которую он рассчитан. Если по каким-либо причинам эти показатели меньше допустимых, то полупроводниковый резистор не откроется.

Таким образом, варистор получил широкое применение в различных устройствах защиты от перепадов напряжения и блоках питания, а также статического электричества. Современные технологии позволяют получить низкие показатели времени срабатывания, благодаря которому сферы применения этого радиоэлемента расширяются.

rusenergetics.ru

Варистор: принцип действия, проверка и подключение

Варистор (дословный перевод с английского — резистор с переменным сопротивлением) — полупроводник с нелинейной вольт—амперной характеристикой (вах).

Все электроприборы рассчитаны на свое рабочее напряжение (в домах 220 В или 380В). Если произошел скачок напряжения (вместо 220 В подали 380В) — приборы могут сгореть. Тогда на помощь и придет варистор.

Принцип действия варисторов

В обычном состоянии варистор имеет очень большое сопротивление (по разным источникам от сотен миллионов Ом до миллиардов Ом). Он почти не пропускает через себя ток. Стоит напряжению превысить допустимое значение, как прибор теряет свое сопротивление в тысячи, а то и в миллионы раз. После нормализации напряжения его сопротивление восстанавливается.

Если варистор подключить параллельно электроприбору, то при скачке напряжения вся нагрузка придется на него, а приборы останутся в безопасности.

Принцип работы варистора, если объяснять на пальцах, сводится к следующему. При скачке в электрической сети он выполняет роль клапана, пропуская через себя электрический ток в таком объеме, чтобы снизить потенциал до необходимого уровня. После того как напряжение стабилизируется этот «клапан» закрывается и наша электросхема продолжает работать в штатном расписании. В этом и состоит назначение варистора.

Основные характеристики и параметры

Надо отметить, что это универсальный прибор. Он способен работать сразу со всеми видами тока: постоянным, импульсным и переменным. Это происходит из-за того, что он сам не имеет полярности. При изготовлении используется большая температура, чтобы спаять порошок кремния или цинка.

Параметры, которые необходимо учитывать:

  1. параметр условный, определяется при токе 1мА, В;
  2. максимально допустимое переменное напряжение, В;
  3. максимально допустимое постоянное напряжение, В;
  4. средняя мощность рассеивания, Вт;
  5. максимально импульсная поглощаемая энергия, Дж;
  6. максимальный импульсный ток, А;
  7. емкость прибора в нормальном состоянии, пФ;
  8. время срабатывания, нс;
  9. погрешность.

Чтобы правильно подобрать варистор иногда необходимо учитывать и емкость. Она сильно зависит от размера прибора. Так, tvr10431 имеет 160nF, tvr 14431 370nF. Но даже одинаковые по диаметру детали могут обладать разной емкостью, так S14K275 имеет 440nF.

Виды варисторов

По внешнему виду бывают:

  • пленочные;
  • в виде таблеток;
  • стержневой;
  • дисковый.

Стержневые могут снабжаться подвижным контактом. Выглядеть они будут соответственно названию. Кроме того, бывают низковольтные, 3—200 В и высоковольтные 20 кВ. У первых ток колеблется в пределах 0,0001—1 А. На обозначение по схеме это никак не влияет. В радиоаппаратуре, конечно, применяют низковольтные.

Чтобы проверить работоспособность варистора необходимо обратить внимание на внешний вид. Его можно найти на входе схемы (где подводится питание). Так как через него проходит очень большой ток — по сравнению с защищаемой схемой — это, как правило, сказывается на его корпусе (сколы, обгоревшие места, потемнение лакового покрытия). А также на самой плате: в месте пайки могут отслаиваться монтажные дорожки, потемнение платы. В этом случае его необходимо заменить.

Однако, даже если нет видимых признаков, варистор может быть неисправным. Чтобы проверить его исправность придется отпаять один его вывод, в противном случае будем проверять саму схему. Для прозвонки обычно используется мультиметр (хотя можно, конечно, и мегомметр попробовать, только необходимо учитывать напряжение, которое он создает, чтобы не спалить варистор). Прозвонить его несложно, подключение производится к контактам и измеряется его сопротивление. Тестер ставим на максимально возможный предел и смотрим, чтобы значение было не меньше несколько сотен Мом, при условии, что напряжение мультиметра не превышает напряжение срабатывания варистора.

Впрочем, бесконечно большое сопротивление, при условии, что омметр довольно мощный (если можно это слово использовать), это также говорит о неисправности. При проверке полупроводника необходимо помнить что это всё-таки проводник и он должен показать сопротивление, в противном случае мы имеем полностью сгоревшую деталь.

Справочник и маркировка варисторов

Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.

Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04. При его применении важно соблюдать полярность.

Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

elektro.guru

устройство, принцип действия и назначение

В электронике можно выделить группу компонентов, задача которых ограничение всплесков напряжения. Один из таких элементов — варистор. Чаще всего данный аппарат можно встретить в большинстве хороших блоков питания. В этой статье мы поговорим о том, как работают и где применяются варисторы.

Принцип действия

Варистор — это полупроводниковый прибор с симметричной нелинейной вольтамперной характеристикой. По ее форме можно сделать вывод о том, что варистор работает и в переменном и в постоянном токе. Рассмотрим её подробнее.

В нормальном состоянии ток через варистор предельно мал, его называют током утечки. Его можно рассматривать как диэлектрический компонент с определенной электрической емкостью и можно говорить, что он не пропускает ток. Но, при определенном напряжении (на картинке это + — 60 Вольт) он начинает пропускать ток.

Другими словами, принцип работы варистора в защитных цепях напоминает разрядник, только в полупроводниковом приборе не возникает дугового разряда, а изменяется его внутреннее сопротивление. При уменьшении сопротивления, ток с единиц микроампер возрастает до сотен или тысяч Ампер.

Условное графическое изображение варистора в схемах:

Обозначение элемента на схемах напоминает обычный резистор, но перечеркнутый по диагонали линией, на которой может быть нанесена буква U. Чтобы найти на плате или в схеме этот элемент – обращайте внимание на подписи, чаще всего они обозначаются, как RU или VA.

Внешний вид варистора:

Варистор устанавливают параллельно цепи для ее защиты. Поэтому при импульсе напряжения защищаемой цепи — энергия поступает не в устройство, а рассеивается в виде тепла на варисторе. Если энергия импульса слишком велика — варистор сгорит. Но понятие сгорит размазано, варианта развития два. Либо варистор просто разорвет на части, либо его кристалл разрушится, а электроды замкнутся накоротко. Это приведет к тому, что выгорят дорожки и проводники, или произойдет возгорание элементов корпуса и других деталей.

Чтобы этого избежать перед варистором, последовательно со всей цепью на сигнальный или питающий провод устанавливают предохранитель. Тогда в случае сильного импульса напряжения и долговременного срабатывания или перегорания варистора сгорит и предохранитель, разорвав цепь.

Если сказать вкратце, для чего нужен такой компонент — его свойства позволяют защитить электрическую цепь от губительных всплесков напряжения, которые могут возникать как на информационных линиях, так и на электрических линиях, например, при коммутации мощных электроприборов. Мы обсудим этот вопрос немного ниже.

Устройство

Варисторы устроены достаточно просто — внутри есть кристалл полупроводникового материала, чаще всего это Оксид Цинка (ZiO) или Карбид Кремния (SiC). Прессованный порошок этих материалов подвергают высокотемпературной обработке (запекают) и покрывают диэлектрической оболочкой. Встречаются либо в исполнении с аксиальными выводами, для монтажа в отверстия на печатной плате, а также в SMD-корпусе.

На рисунке ниже наглядно изображено внутреннее устройство варистора:

Основные параметры

Чтобы правильно подобрать варистор, нужно знать его основные технические характеристики:

  1. Классификационное напряжение, может обозначаться как Un. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА, при дальнейшем превышении ток лавинообразно увеличивается. Именно этот параметр указывают в маркировке варистора.
  2. Номинальная рассеиваемая мощность P. Определяет, сколько может рассеять элемент с сохранением своих характеристик.
  3. Максимальная энергия одиночного импульса W. Измеряется в Джоулях.
  4. Максимальный ток Ipp импульса. При том что фронт нарастает в течении 8 мкс, а общая его длительность — 20 мкс.
  5. Емкость в закрытом состоянии — Co. Так как в закрытом состоянии варистор представляет собой подобие конденсатора, ведь его электроды разделены непроводящим материалом, то у него есть определенная емкость. Это важно, когда устройство применяется в высокочастотных цепях.

Также выделяют и два вида напряжений:

  • Um~ — максимальное действующее или среднеквадратичное переменное;
  • Um= — максимальное постоянное.

Маркировка и выбор варистора

На практике, например, при ремонте электронного устройства приходится работать с маркировкой варистора, обычно она выполнена в виде:

20D 471K

Что это такое и как понять? Первые символы 20D — это диаметр. Чем он больше и чем толще — тем большую энергию может рассеять варистор. Далее 471 — это классификационное напряжение.

Могут присутствовать и другие дополнительные символы, обычно указывают на производителя или особенность компонента.

Теперь давайте разберемся как правильно выбрать варистор, чтобы он верно выполнял свою функцию. Чтобы подобрать компонент, нужно знать в цепи с каким напряжением и родом тока он будет работать. Например, можно предположить, что для защиты устройств, работающих в цепи 220В нужно применять варистор с классификационным напряжением немного выше (чтобы срабатывал при значительных превышениях номинала), то есть 250-260В. Это в корне не верно.

Дело в том, что в цепях переменного тока 220В — это действующее значение. Если не углубляться в подробности, то амплитуда синусоидального сигнала в корень из 2 раз больше чем действующее значение, то есть в 1,41 раза. В результате амплитудное напряжение в наших розетках равняется 300-310 В.

240*1,1*1,41=372 В.

Где 1,1 – коэффициент запаса.

При таких расчетах элемент начнет срабатывание при скачке действующего напряжения больше 240 Вольт, значит его классификационное напряжение должно быть не менее 370 Вольт.

Ниже приведены типовые номиналы варисторов для сетей переменного тока с напряжением в:

  • 100В (100~120)– 271k;
  • 200В (180~220) – 431k;
  • 240В (210~250) – 471k;
  • 240В (240~265) – 511k.

Применение в быту

Назначение варисторов — защита цепи при импульсах и перенапряжениях на линии. Это свойство позволило рассматриваемым элементам найти свое применение в качестве защиты:

  • линий связи;
  • информационных входов электронных устройств;
  • силовых цепей.

В большинстве дешевых блоков питания не устанавливают никаких защит. А вот в хороших моделях по входу устанавливают варисторы.

Кроме того, все знают, что компьютер нужно подключать к питанию через специальный удлинитель с кнопкой — сетевой фильтр. Он не только фильтрует помехи, в схемах нормальных фильтров также устанавливают варисторы.

Часто электрики рекомендуют защитить китайские светодиодные лампы, установив варистор параллельно патрону. Также защищают и другие устройства, некоторые монтируют варистор в розетку или в вилку, чтобы обезопасить подключаемую технику.

Чтобы защитить всю квартиру — вы можете установить варистор на дин-рейку, в хороших устройствах в корпусе расположены настоящие мощные варисторы диаметром с кулак. Примером такого устройства является ОИН-1, который изображен на фото ниже:

В заключение хотелось бы отметить, что назначение варистора – защитить какую-либо электрическую цепь. Принцип работы основан на изменении сопротивления полупроводниковой структуры под воздействием высокого напряжения. Напряжение, при котором через элемент начинает течь ток силой 1 мА называют классификационным. Это и диаметр элемента есть основными параметрами при выборе. Пожалуй, мы доступно объяснили, что такое варистор и для чего он нужен, задавайте вопросы в комментариях, если вам что-то непонятно.

Напоследок рекомендуем просмотреть полезные видео по теме статьи:

Наверняка вы не знаете:

samelectrik.ru

Варистор: принцип действия, проверка и подключение

Варистор (дословный перевод с английского — резистор с переменным сопротивлением) — полупроводник с нелинейной вольт—амперной характеристикой (вах).

Все электроприборы рассчитаны на свое рабочее напряжение (в домах 220 В или 380В). Если произошел скачок напряжения (вместо 220 В подали 380В) — приборы могут сгореть. Тогда на помощь и придет варистор.

Принцип действия варисторов

В обычном состоянии варистор имеет очень большое сопротивление (по разным источникам от сотен миллионов Ом до миллиардов Ом). Он почти не пропускает через себя ток. Стоит напряжению превысить допустимое значение, как прибор теряет свое сопротивление в тысячи, а то и в миллионы раз. После нормализации напряжения его сопротивление восстанавливается.

Если варистор подключить параллельно электроприбору, то при скачке напряжения вся нагрузка придется на него, а приборы останутся в безопасности.

Принцип работы варистора, если объяснять на пальцах, сводится к следующему. При скачке в электрической сети он выполняет роль клапана, пропуская через себя электрический ток в таком объеме, чтобы снизить потенциал до необходимого уровня. После того как напряжение стабилизируется этот «клапан» закрывается и наша электросхема продолжает работать в штатном расписании. В этом и состоит назначение варистора.

Основные характеристики и параметры

Надо отметить, что это универсальный прибор. Он способен работать сразу со всеми видами тока: постоянным, импульсным и переменным. Это происходит из-за того, что он сам не имеет полярности. При изготовлении используется большая температура, чтобы спаять порошок кремния или цинка.

Параметры, которые необходимо учитывать:

  1. параметр условный, определяется при токе 1мА, В;
  2. максимально допустимое переменное напряжение, В;
  3. максимально допустимое постоянное напряжение, В;
  4. средняя мощность рассеивания, Вт;
  5. максимально импульсная поглощаемая энергия, Дж;
  6. максимальный импульсный ток, А;
  7. емкость прибора в нормальном состоянии, пФ;
  8. время срабатывания, нс;
  9. погрешность.

Чтобы правильно подобрать варистор иногда необходимо учитывать и емкость. Она сильно зависит от размера прибора. Так, tvr10431 имеет 160nF, tvr 14431 370nF. Но даже одинаковые по диаметру детали могут обладать разной емкостью, так S14K275 имеет 440nF.

Виды варисторов

По внешнему виду бывают:

  • пленочные;
  • в виде таблеток;
  • стержневой;
  • дисковый.

Стержневые могут снабжаться подвижным контактом. Выглядеть они будут соответственно названию. Кроме того, бывают низковольтные, 3—200 В и высоковольтные 20 кВ. У первых ток колеблется в пределах 0,0001—1 А. На обозначение по схеме это никак не влияет. В радиоаппаратуре, конечно, применяют низковольтные.

Чтобы проверить работоспособность варистора необходимо обратить внимание на внешний вид. Его можно найти на входе схемы (где подводится питание). Так как через него проходит очень большой ток — по сравнению с защищаемой схемой — это, как правило, сказывается на его корпусе (сколы, обгоревшие места, потемнение лакового покрытия). А также на самой плате: в месте пайки могут отслаиваться монтажные дорожки, потемнение платы. В этом случае его необходимо заменить.

Однако, даже если нет видимых признаков, варистор может быть неисправным. Чтобы проверить его исправность придется отпаять один его вывод, в противном случае будем проверять саму схему. Для прозвонки обычно используется мультиметр (хотя можно, конечно, и мегомметр попробовать, только необходимо учитывать напряжение, которое он создает, чтобы не спалить варистор). Прозвонить его несложно, подключение производится к контактам и измеряется его сопротивление. Тестер ставим на максимально возможный предел и смотрим, чтобы значение было не меньше несколько сотен Мом, при условии, что напряжение мультиметра не превышает напряжение срабатывания варистора.

Впрочем, бесконечно большое сопротивление, при условии, что омметр довольно мощный (если можно это слово использовать), это также говорит о неисправности. При проверке полупроводника необходимо помнить что это всё-таки проводник и он должен показать сопротивление, в противном случае мы имеем полностью сгоревшую деталь.

Справочник и маркировка варисторов

Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.

Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04. При его применении важно соблюдать полярность.

Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

Оцените статью: Поделитесь с друзьями!

chebo.biz

Варисторы для защиты бытовых электросетей 

В каждом доме есть дорогостоящая электронная техника. Любые приборы на полупроводниковых элементах имеют слабую изоляцию. Так что небольшое повышение напряжение может сжечь электронику. Часто изменение напряжения в бытовых сетях происходит импульсно, то есть напряжение резко повышается на доли секунды, а потом возвращается до нормального уровня.

Импульсы напряжения бывают грозовые и коммутационные.

Грозовые скачки напряжения появляются при ударах молний прямо в электроустановку или линию передачи, или же близко возле них. Грозовые разряды могут причинить вред бытовым сетям, даже если удар в электросеть произойдет на удалении до 20 км.

Коммутационные скачки напряжения создаются при коммутации электрооборудования с реактивными элементами. То есть при включении оборудования, которое построено с использованием большого количества конденсаторов, а также имеет мощные катушки индуктивности и трансформаторы.

Самые высокие коммутационные скачки напряжения создают электродвигатели и конденсаторные батареи.

Для обеспечения надежной защиты от импульсных напряжений должны быть обеспечены три ступени защиты в сетях до 1000 В. В каждой ступени защиты применяются разные по конструкции и по параметрам устройства защиты от импульсных перенапряжений (УЗИП).

Первая ступень защиты должна быть установлена на понижающей подстанции или непосредственно у входа в здание. В качестве УЗИП применяются чаще всего разрядники иногда и мощные варисторы.

Режимы работы УЗИП первой ступени самые тяжелые – величины импульсных токов 25-100 кА, крутизна фронта волны 10/350 мкс, длительность фронта волны 350 мкс. Быстросъемные УЗИП с ножевыми контактами здесь практически не применяются. Потому что импульсные токи величиной 25-50 кА, при разряде молний, создают огромные электродинамические силы, которые легко вырывают съемные части устройства. Кроме того, при разрывании соединения, через воздушный зазор зажигается плазменная дуга, разрушающая ножевые контакты.

Наиболее предпочтительно на первом участке применять воздушные разрядники. Тем более что серийно варисторы для импульсных токов свыше 20 кА не выпускаются. Так как мощные варисторы делаються с большими выводами, которые выполняют роль радиаторов, рассеивая чрезмерное тепло.

Вторая ступень защиты необходима для удаления остаточных, меньших по амплитуде, импульсов после первой ступени. Каждый хозяин дома сам определяет, нужна эта ступень защиты или нет. Устанавливается защита на вводе электричества в дом, в отдельном электрощите.

В качестве УЗИП для второй ступени используются защитные элементы с ножевыми контактами. Внешне защитные элементы с ножевыми контактами представляют собой две отдельные части. Одна часть – гнездо с ножевыми контактами, которое закрепляется на DIN-рейку в электрощите. Другая часть – съемный модуль, который является непосредственно варистором. Защитный варистор должен выдерживать импульсные токи в границе 15-20 кА, с крутизной волны 8/20 мкс. Съемные модули могут быть оснащены индикатором срабатывания, по которому можно определить исправность устройства. Более дорогие модели имеют терморасцепители в своей конструкции, защищающие от перегрева варистор, при длительном протекании импульсных токов.

Третья ступень защиты устанавливается внутри всех электронных бытовых приборов. В качестве УЗИП для бытовых электроприборов применяются только небольшие варисторы, рассчитанные на крутизну волны 1,2/50 мкс, 8/20 мкс и на импульсные токи до 15 кА. Варисторы с монтажными выводами припаиваются внутри прибора на плату или закрепляется отдельно и подключаются отдельными проводами.

Схема включения.

Все варисторы подключаются параллельно нагрузке, правильнее их будет включать между фазовым проводом и проводом заземления.

В трехфазной сети, при подключении нагрузки «звездой», варисторы включаются между каждой фазой и проводом заземления. А при подключении нагрузки «треугольником», варисторы устанавливаются между фазами.

Варисторы, как нелинейные элементы, при повышенном напряжении резко уменьшают свое сопротивление практически до нуля, и поэтому не могут длительно выдерживать повышенные импульсные токи. Поэтому рекомендуется защитить УЗИП второй ступени защиты плавкими предохранителями, которые нужно подключить последовательно с устройством защиты в разрыв фазового провода.

Правильно выбирать варисторы по напряжению срабатывания. При этом напряжении элемент снижает свое сопротивление и гасит опасное импульсное напряжение. Информация о напряжении срабатывания и о крутизне волны импульса наноситься на поверхность варистора или указывается в техническом паспорте к нему.

В тандеме с данной статьей полезно ознакомиться с видео-дополнением:

УЗО – ошибки при подключении

volt-index.ru

принцип работы, характеристики, применение и схемы

В данной статье мы подробно разберем что такое варистор. Опишем принцип его работы и конструкцию, области применения, характеристики, а так же типы.

Описание и принцип работы

В отличие от плавкого предохранителя или автоматического выключателя, который обеспечивает защиту от перегрузки по току, варистор обеспечивает защиту от перенапряжения посредством фиксации напряжения аналогично стабилитрону. Купить варистор на Алиэкспресс:

Слово «варистор» представляет собой сочетание слов VARI-able resi-STOR, используемыми для описания их режима работы еще в первые дни развития, который является немного неверным, так как варистор не может вручную изменять как, например потенциометр или реостат.

Но в отличие от переменного резистора, значение сопротивления которого можно вручную изменять между его минимальным и максимальным значениями, варистор автоматически изменяет значение своего сопротивления при изменении напряжения на нем, что делает его нелинейным резистором, зависящим от напряжения, или сокращенно VDR.

В настоящее время резистивный корпус варистора изготовлен из полупроводникового материала, что делает его типом полупроводникового резистора с неомическими симметричными характеристиками напряжения и тока, подходящими как для переменного, так и для постоянного напряжения.

Во многих отношениях варистор по размеру и конструкции похож на конденсатор, и его часто путают с ним. Однако конденсатор не может подавить скачки напряжения так же, как варистор. Когда к цепи прикладывается скачок высокого напряжения, результат обычно катастрофичен для цепи, поэтому варистор играет важную роль в защите чувствительных электронных схем от пиков переключения и перенапряжений.

Переходные скачки происходят из множества электрических цепей и источников независимо от того, работают ли они от источника переменного или постоянного тока, поскольку они часто генерируются в самой цепи или передаются в цепь от внешних источников. Переходные процессы в цепи могут быстро возрастать, увеличивая напряжение до нескольких тысяч вольт, и именно эти скачки напряжения должны быть предотвращены в чувствительных электронных схемах и компонентах.

Одним из наиболее распространенных источников переходных напряжений является эффект L (di / dt), вызываемый переключением индуктивных катушек и намагничивающими токами трансформатора, приложениями переключения двигателей постоянного тока и скачками напряжения при включении цепей флуоресцентного освещения или других скачков напряжения питания.

Переходные формы волны переменного тока

Варисторы подключены в цепях через сеть питания либо между фазой и нейтралью, либо между фазами для работы от переменного тока, либо с положительного на отрицательный для работы от постоянного тока, и имеют номинальное напряжение, соответствующее их применению. Варистор также можно использовать для стабилизации напряжения постоянного тока и особенно для защиты электронных цепей от импульсов перенапряжения.

Варистор статического сопротивления

При нормальной работе варистор имеет очень высокое сопротивление, отсюда и его название, и работает аналогично стабилитрону, позволяя более низким пороговым напряжениям проходить без изменений.

Однако, когда напряжение на варисторе (любой полярности) превышает номинальное значение варисторов, его эффективное сопротивление сильно уменьшается с ростом напряжения, как показано выше.

Из закона Ома мы знаем, что вольт-амперные характеристики (IV) фиксированного резистора являются прямой линией при условии, что R поддерживается постоянным. Тогда ток прямо пропорционален разности потенциалов на концах резистора.

Но кривые IV варистора не являются прямой линией, так как небольшое изменение напряжения вызывает значительное изменение тока. Типичная нормализованная кривая зависимости напряжения от тока для стандартного варистора приведена ниже.

Кривая характеристик варистора

Из вышесказанного видно, что варистор обладает симметричными двунаправленными характеристиками, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоидальной формы волны, действуя аналогично двум стабилитронам, подключенным вплотную. Если не проводящая, кривая IV показывает линейную зависимость, так как ток, протекающий через варистор, остается постоянным и низким только при нескольких микроамперах тока утечки. Это связано с его высоким сопротивлением, действующим в качестве разомкнутой цепи, и остается постоянным до тех пор, пока напряжение на варисторе (любой полярности) не достигнет определенного «номинального напряжения».

Это номинальное или зажимное напряжение — это напряжение на варисторе, измеренное с указанным постоянным током 1 мА. То есть уровень постоянного напряжения, приложенного к его клеммам, который позволяет току 1 мА течь через резистивный корпус варисторов, который сам зависит от материалов, используемых в его конструкции. На этом уровне напряжения варистор начинает переходить из своего изоляционного состояния в проводящее состояние.

Когда переходное напряжение на варисторе равно или превышает номинальное значение, сопротивление устройства внезапно становится очень малым, превращая варистор в проводник из-за лавинного эффекта его полупроводникового материала. Ток небольшой утечки, протекающий через варистор, быстро возрастает, но напряжение на нем ограничено уровнем чуть выше напряжения варистора.

Другими словами, варистор саморегулирует переходное напряжение через него, позволяя большему току течь через него, и из-за его крутой нелинейной кривой IV он может пропускать широко варьирующиеся токи в узком диапазоне напряжений, срезая любые скачки напряжения.

Значения емкостного сопротивления

Поскольку основная проводящая область варистора между двумя его выводами ведет себя как диэлектрик, ниже его напряжения зажима варистор действует как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет значение емкости, которое напрямую зависит от его площади и обратно пропорционально его толщине.

При использовании в цепях постоянного тока емкость варистора остается более или менее постоянной при условии, что приложенное напряжение не увеличивается выше уровня напряжения зажима и резко падает вблизи своего максимального номинального постоянного напряжения постоянного тока.

Однако в цепях переменного тока эта емкость может влиять на сопротивление корпуса устройства в области непроводящей утечки его характеристик IV. Поскольку они обычно соединены параллельно с электрическим устройством для защиты от перенапряжения, сопротивление утечки варисторов быстро падает с увеличением частоты.

Это соотношение приблизительно линейно с частотой, и полученное в результате параллельное сопротивление, его реактивное сопротивление переменного тока Xc может быть рассчитано с использованием обычного 1 / (2πƒC), как для обычного конденсатора. Затем, когда частота увеличивается, увеличивается и ток утечки.

Но наряду с варисторами на основе кремниевых полупроводников были разработаны варисторы на основе оксидов металлов, чтобы преодолеть некоторые ограничения, связанные с их кузенами из карбида кремния.

Металлооксидный варистор

Металл — оксид варистор или MOV для краткости, это резистор, зависящий от напряжения, в котором материал сопротивления представляет собой оксид металла, в первую очередь оксид цинка (ZnO), прессуют в керамики подобного материала. Металлооксидные варисторы состоят из приблизительно 90% оксида цинка в качестве керамического основного материала плюс другие наполнители для образования соединений между зернами оксида цинка.

Металлооксидные варисторы в настоящее время являются наиболее распространенным типом устройства ограничения напряжения и доступны для использования в широком диапазоне напряжений и токов. Использование металлического оксида в их конструкции означает, что MOV чрезвычайно эффективны в поглощении кратковременных переходных напряжений и имеют более высокие возможности обработки энергии.

Как и в случае обычного варистора, металлооксидный варистор запускает проводимость при определенном напряжении и прекращает проводимость, когда напряжение падает ниже порогового напряжения. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV состоит в том, что ток утечки через материал из оксида цинка MOV очень мал, а при нормальных условиях эксплуатации его скорость срабатывания при переходных процессах зажима намного выше.

MOV обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах. Конструкция типичного металлооксидного варистора имеет вид:

Конструкция металлического оксидного варистора

Чтобы выбрать правильное значение MOV для конкретного применения, желательно иметь некоторые знания об импедансе источника и возможной импульсной мощности переходных процессов. Для переходных процессов на входящей линии или фазе выбор правильного MOV немного сложнее, так как обычно характеристики источника питания неизвестны. В общем, выбор MOV для электрической защиты цепей от переходных процессов и скачков напряжения в сети часто не более чем обоснованное предположение.

Тем не менее, металлооксидные варисторы доступны в широком диапазоне напряжений варистора, от около 10 В до более 1000 В переменного или постоянного тока, поэтому выбор может быть полезен при знании напряжения питания. Например, при выборе MOV или кремниевого варистора в этом отношении его максимальное номинальное постоянное среднеквадратичное напряжение должно быть чуть выше максимального ожидаемого напряжения питания, скажем, 130 вольт среднеквадратичного значения для источника питания 120 вольт, и 260 вольт среднеквадратичного значения для напряжения 230 вольт.

Максимальное значение импульсного тока, которое будет принимать варистор, зависит от длительности переходного импульса и количества повторений импульсов. Можно предположить ширину переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс). Если пиковый импульсный ток недостаточен, варистор может перегреться и повредиться. Таким образом, чтобы варистор работал без сбоев или ухудшений, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно вернуться в свое предимпульсное состояние.

Применение варистора на схеме

Варисторы имеют много преимуществ и могут использоваться во многих различных типах устройств для подавления переходных процессов в сети от бытовых приборов и освещения до промышленного оборудования на линиях электропередач переменного или постоянного тока. Варисторы могут быть подключены непосредственно к электросети и к полупроводниковым переключателям для защиты транзисторов, полевых МОП-транзисторов и тиристорных мостов.

Резюме варистора

В этой статье мы увидели, что основная функция резисторазависимого от напряжения, или варистора, заключается в защите электронных устройств и электрических цепей от скачков напряжения, например, вызванных переходными процессами индуктивного переключения.

Поскольку такие варисторы используются в чувствительных электронных схемах, чтобы гарантировать, что, если напряжение внезапно превысит заранее определенное значение, варистор фактически станет коротким замыканием, чтобы защитить цепь, которую он шунтирует от чрезмерного напряжения, поскольку они способны выдерживать пиковые токи в сотни ампер.

Варисторы относятся к типу резисторов с нелинейной неомической характеристикой напряжения тока и являются надежным и экономичным средством защиты от переходных переключений и перенапряжений.

Они достигают этого, выступая в качестве блокирующего устройства с высоким сопротивлением при более низких напряжениях и как хорошее проводящее устройство с низким сопротивлением при более высоких напряжениях. Эффективность варистора в защите электрической или электронной схемы зависит от правильного выбора варистора в отношении рассеяния напряжения, тока и энергии.

Металлооксидные варисторы, или MOV, как правило, изготавливаются из материала металлического оксида цинка в форме небольшого диска. Они доступны во многих значениях для определенных диапазонов напряжения. Номинальное напряжение MOV, называемое «напряжение варистора», представляет собой напряжение на варисторе, когда через устройство пропускается ток 1 мА. Этот уровень напряжения варистора, по существу, является точкой на характеристической кривой IV, когда устройство начинает проводить. Металлооксидные варисторы также могут быть подключены последовательно для повышения номинального напряжения зажима.

В то время как металлооксидные варисторы широко используются во многих цепях силовой электроники переменного тока для защиты от переходных перенапряжений, существуют также другие типы полупроводниковых устройств подавления напряжения, таких как диоды, стабилитроны и ограничители, которые все могут использоваться при некотором напряжении переменного или постоянного тока.

meanders.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *