Закрыть

Как получить постоянный ток: виды и типы, какие бывают, примеры источников тока

Содержание

виды, характеристики, сферы применения :: SYL.ru

Постоянный ток существует только в замкнутой цепи и сохраняет свое направление и основные параметры неизменными во времени. Для его поддержания необходимо наличие постоянного напряжения. Это требование является неизменным для различных источников постоянного тока.

Источники постоянного электрического тока

Существует несколько основных видов источников энергии постоянного тока. Каждый из них основан на использовании разных физических принципов и используется в определенных условиях. К ним можно отнести следующие виды:

  • механические, превращающие механическую энергию вращения ротора в электрическую энергию;
  • тепловые, в которых в электрическую энергию преобразуется тепловая энергия;
  • химические, в которых в электрическую энергию преобразуется энергия, выделяющаяся в результате химического процесса;
  • световые, превращающие энергию солнечного света в электрическую энергию.

В основном электроэнергия вырабатывается электростанциями, от которых потребители получают не постоянный, а переменный ток, который затем преобразуется в постоянный.

Но во многих сферах можно применять только тепловые, световые или химические источники постоянного электрического тока.

Тепловые источники

В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

Световые источники

Свойство полупроводников создавать ЭДС при попадании на них потока света используется при создании световых источников постоянного тока.

Объединение большого количества кремниевых структур позволяет создавать солнечные батареи.

Небольшие электростанции, созданные на базе таких солнечных панелей, имеют на сегодняшний день КПД не более 15%.

Химические источники

Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

*ХИТ - химические источники тока.

Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода ("+") и катода ("-").

Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

  • солевые или "сухие";
  • щелочные;
  • литиевые.

В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование - химическая энергия служит источником постоянного электрического тока.

К основным видам аккумуляторов относятся:

  • свинцово-кислотные;
  • никель-кадмиевые щелочные;
  • литий-ионные.

Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов ("банок"). Каждая "банка" обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

Механические источники постоянного тока

Устройствами, преобразующими механическую энергию в электрическую, являются турбо и гидро генераторы. Они вырабатывают переменный электрический ток. Для основной части бытовых приборов источником постоянного тока выступают их блоки питания. В них производится преобразование переменного напряжения генератора в постоянное напряжение, необходимое для работы устройств. Эту задачу выполняют выпрямители, которые должны обеспечивать необходимую мощность источника постоянного тока для их нагрузки и постоянное значение выходного напряжения, не зависящее от потребляемого тока.

Блоки питания могут быть линейными и импульсными. Линейные блоки выполняются по разным схемам, основу которых составляют:

  • однополупериодые выпрямители;
  • двухполупериодные выпрямители.

В выпрямителях используется свойство полупроводниковых диодов пропускать ток только в одном направлении. Выпрямленное таким образом напряжение еще не является постоянным. Емкости последующих за выпрямителем конденсаторов сглаживающего фильтра при своем быстром заряде и медленном разряде поддерживают величину положительного однополярного напряжения на определенном значении. Его величина определяется трансформатором, получающим напряжение от генератора переменного тока. Для однофазного напряжения домашней сети 220 В 50 Гц его стальной сердечник имеет значительные размеры и вес.

Схемы однополупериодных содержат всего один полупроводниковый диод, пропускающий только одну полуволну синусоидального переменного входного напряжения.

Двухполупериодные выпрямители выполняются по мостовой схеме или по схеме с общей точкой. В последнем случае вторичная обмотка сетевого трансформатора имеет вывод от своей середины. Эти выпрямители представляют собой параллельное включение двух однополупериодных выпрямителей. Они действуют на обе полуволны синусоиды переменного входного напряжения.

Мостовая схема выпрямителя является наиболее распространенной. Соединение 4-х диодов в ней напоминает "квадрат". К одной из диагоналей подключается переменное напряжение вторичной обмотки сетевого трансформатора. Нагрузка включается в другую диагональ "квадрата". Им будет входной элемент сглаживающего фильтра.

Регулирование источника

Для обеспечения постоянного значения уровня выходного напряжения, не зависящего от потребляемого нагрузкой тока и колебаний входного переменного напряжения, все современные источники питания постоянного тока имеют ступень стабилизации и регулирования.

В ней выходное напряжение сравнивается с эталонным (опорным) значением.

При появлении различия между ними вырабатывается управляющий сигнал, который по цепи управления изменяет величину выходного напряжения. Величину значения опорного напряжения можно изменять в широких пределах, имея на выходе регулированного источника питания постоянного тока необходимое для работы напряжение.

Импульсные источники

Схемы с использованием входных трансформаторов напряжения сети получили название линейных. В импульсных источниках питания производится двойное преобразование - сначала переменное напряжение выпрямителем преобразуется в постоянное, затем вырабатывается переменное импульсное напряжение более высокой частоты, которое в выходном каскаде снова преобразуется в постоянное напряжение необходимого значения.

Генераторы импульсов вырабатывают непрерывную импульсную последовательность с частотой (15-60) кГц. Регулирование выходного напряжения осуществляется посредством широтно-импульсной модуляции (ШИМ), при которой уровень сигнала на выходе блока питания определяется шириной импульсов, вырабатываемых генератором и значением их скважности. Регулированные источники питания постоянного тока импульсного типа все чаще используются при создании аппаратуры различного назначения.

Сравнение источников

Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.

Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.

Заключение

В статье был дан общий обзор существующих источников постоянного тока. Изложенный материал лишь знакомит читателей с основными принципами их работы. Из него можно сделать вывод, что каждый из видов источников постоянного тока используется в своей области.

Как из постоянного тока сделать переменный? Какой ток опаснее

Использование в повседневной жизни различных электрических приборов и устройств, работающих благодаря электроэнергии, обязывает нас иметь минимальные познания в области электротехники. Это знания, которые сохраняют нам жизнь. Ответы на вопросы о том, как из постоянного тока сделать переменный, какое напряжение должно быть в квартире и какой ток опасен, современный человек должен знать, чтобы избежать поражения и гибели от него.

Способы получения электричества

Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.

Существует несколько способов получения электричества:

  • из тепловой энергии;
  • из энергии воды;
  • из атомной (ядерной) энергии;
  • из ветровой энергии;
  • из солнечной энергии и др.

Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.

Электричество из энергии ветра

Электрический ток - это направленное движение заряженных частиц. Самый простой способ его получения - энергия природных сил.

В данном примере от энергии ветра. Природный феномен дующего с различной силой ветра люди научились использовать давно. Укрощает ветер простой ветряк, оборудованный приводом и соединённый с генератором. Генератор и вырабатывает электрическую энергию.

Излишки тока при постоянном использовании ветряка можно накапливать в аккумуляторных батареях. Выработанный постоянный экологически чистый ток в быту и производстве не применяется.

Полученный и преобразованный в переменный ток, он идет для бытового использования. Накопленные излишки электричества хранятся в аккумуляторных батареях. При отсутствии ветра запасы электричества, хранящиеся в аккумуляторах, преобразуются и поступают на нужды человека.

Электроэнергия из воды

К большому сожалению, этот вид природной энергии, дающий возможность получать электричество, не везде имеется. Рассмотрим способ получения электричества там, где воды много.

Простейшая ГЭС, сделанная из дерева по принципу мельницы, размер которой порядка 1,5 метров, способна обеспечить электричеством, используемым и на отопление, частное подсобное хозяйство. Такую бесплотинную ГЭС сделал русский изобретатель, уроженец Алтая - Николай Ленев. Он создал ГЭС, перенести которую могут два взрослых мужчины. Все дальнейшие действия аналогичны получению электричества от ветряка.

Вырабатывают электричество и крупные электростанции и гидростанции. Для промышленного получения электричества применяют огромные котлы, дающие пар. Температура пара достигает 800 градусов, а давление в трубопроводе поднимается до 200 атмосфер. Этот перегретый пар с высокой температурой и огромным давлением поступает на турбину, которая начинает вращаться и вырабатывать ток.

То же самое происходит и на гидроэлектростанциях. Только здесь вращение происходит за счёт больших скорости и объема воды, падающей с огромной высоты.

Обозначение тока и применение его в быту

Постоянный ток обозначается DC. На английском языке пишется как Direct Current. Он в процессе работы со временем не меняет своих свойств и направления. Частота постоянного тока равна нулю. Обозначают его на чертежах и оборудовании прямой короткой горизонтальной черточкой или двумя параллельными черточками, одна из которых пунктирная.

Используется постоянный ток в привычных нам аккумуляторах и батарейках, используемых в огромном числе различного типа устройств, таких как:

  • счетные машинки;
  • детские игрушки;
  • слуховые аппараты;
  • прочие механизмы.

Все ежедневно пользуются мобильным телефоном. Зарядка его происходит через блок питания, компактный преобразователь DC/AC, включаемый в бытовую розетку.

Электрические приборы потребляют переменный однофазный ток. Электроприборы заработают только с подключением трансформатора и выпрямителя тока. Многие производители устанавливают преобразователь DC/AC непосредственно в сам агрегат. Это намного упрощает эксплуатацию электрооборудования.

Как из постоянного тока сделать переменный?

Выше говорилось, что все аккумуляторы, батарейки для фонариков, пультов телевизоров имеют постоянный ток. Чтобы преобразовать ток, существует современное устройство под названием инвертор, он с легкостью из постоянного тока сделает переменный. Рассмотрим, как это применимо в повседневности.

Бывает, что во время нахождения в автомашине человеку необходимо срочно распечатать на ксероксе документ. Ксерокс имеется, машина работает и, включив в прикуриватель переходник на инвертор, он может подключить к нему ксерокс и распечатать документы. Схема преобразователя достаточно сложна, особенно для людей, которые имеют отдаленное понятие о работе электричества. Поэтому в целях безопасности лучше не пытаться самостоятельно соорудить инвертор.

Переменный ток и его свойства

Протекая, переменный ток в течение одной секунды меняет направление и величину 50 раз. Изменение движения тока - это его частота. Обозначается частота в герцах.

У нас частота тока 50 герц. Во многих странах, например США, частота равна 60 герц. Также бывает трёхфазный и однофазный переменный ток.

Для бытовых нужд приходит электричество, равное 220 вольтам. Это действующее значение переменного тока. Но амплитуда тока максимального значения будет больше на корень из двух. Что в итоге даст 311 вольт. То есть фактическое напряжение бытовой сети составляет 311 вольт. Для изменения постоянного тока на переменный применяются трансформаторы, в которых используются различные схемы преобразователей.

Передача тока по высоковольтным линиям

Все электрические наружные сети несут по своим проводам переменный ток различного напряжения. Оно может колебаться от 330000 вольт до 380 вольт. Передача осуществляется только переменным током. Данный способ транспортировки - самый простой и дешёвый. Как из переменного тока сделать постоянный, давно известно. Поставив трансформатор в нужном месте, получим необходимое напряжение и силу тока.

Схемы преобразователей

Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.

Вторая схема преобразователя переменного тока - это параллельное подключение на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.

Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.

Какой электрический ток опаснее – постоянный или переменный?

В повседневной жизни мы постоянно сталкиваемся на работе и в быту с электроприборами, подключенными в розетки. Ток, бегущий от электрического щита до розетки, однофазный переменный. Происходят случаи поражения электрическим током. Меры безопасности и знания о поражении током необходимы.

В чем принципиальная разница между попаданием под напряжение переменным током и постоянным? Имеется статистика, что переменный DC однофазный ток в пять раз опаснее постоянного AC тока. Поражение током, вне зависимости от его типа, само по себе отрицательный факт.

Последствия от поражения током

Небрежность в обращении с электроприборами может, мягко говоря, негативно сказаться на здоровье человека. Поэтому не стоит экспериментировать с электричеством, если на то нет специальных навыков.

Действие тока на человека зависит от нескольких факторов:

  • сопротивления тела самого потерпевшего;
  • напряжения, под которое попал человек.
  • от силы тока на момент контакта человека с электричеством.

С учетом всего перечисленного можно сказать, что действие переменного тока намного опаснее, чем постоянного. Имеются данные экспериментов, подтверждающие факт, что для получения равного результата при поражении сила постоянного тока должна быть в четыре - пять раз выше, чем переменного.

Сама природа переменного тока отрицательно сказывается на работе сердца. При поражении током происходит непроизвольное сокращение сердечных желудочков. Это может привести к его остановке. Особенно опасно соприкосновение с оголенными жилами людям, имеющим сердечный стимулятор.

У постоянного тока частота отсутствует. Но высокие напряжение и сила тока могут привести также к летальному исходу. Выйти из под контакта с постоянным электрическим током проще, чем из-под контакта с переменным.

Этот небольшой обзор природы электрического тока, его преобразования должен быть полезен людям, далеким от электричества. Минимальные познания в области происхождения и работы электроэнергии помогут понять суть работы обычных бытовых приборов, которые так необходимы для комфортной и спокойной жизни.

Как сделать из переменного тока постоянный

Преобразование переменного тока в постоянный

Электрический ток протекает в различных средах: металлах, полупроводниках, жидкостях и газах. При этом он может быть постоянным или переменным. В статье рассмотрим отдельно постоянный и переменный ток, а также преобразование переменного тока в постоянный.

Постоянный ток и его источники

У постоянного тока величина и направление не изменяются с течением времени. На современных приборах он обозначается буквами DC — сокращением от английского Direct Current (в дословном переводе – прямой ток). Его графическое обозначение:

Источниками постоянного тока являются батарейки и аккумуляторы. На нем работают все полупроводниковые электронные устройства: мобильные телефоны, компьютеры, телевизоры, спутниковые системы.

Для питания этих устройств от сети переменного тока в их входят блоки питания. Они понижают напряжение сети до нужной величины и преобразуют переменный ток в постоянный.

Зарядные устройства для аккумуляторов тоже питаются от сети переменного тока и выполняют те же функции, что и блоки питания.

Переменный ток и его параметры

У переменного тока направление и величина циклически изменяются во времени.

Цикл одного полного изменения (колебания) называется периодом (T), а обратная ему величина – частотой (f).

Буквенное обозначение переменного тока – АС, сокращение от Alternating Current (знакопеременный ток), а графически он обозначается отрезком синусоиды:

̴

После этого знака указывается напряжение, иногда – частота и количество фаз.

Переменный ток характеризуется параметрами:

Характеристика Обозначение Единица измерения Описание
Число фаз Однофазный
Трехфазный
Напряжение U вольт Мгновенное значение
Амплитудное значение
Действующее значение
Фазное
Линейное
Период Т секунда Время одного полного колебания
Частота f герц Число колебаний за 1 секунду

Однофазный ток в чистом виде получается при помощи бензиновых и дизельных генераторов. В остальных случаях он – часть трехфазного, представляющего собой три изменяющихся по синусоидальному закону напряжения, равномерно сдвинутых друг относительно друга. Этот сдвиг по времени называется углом сдвига фаз и составляет 1/3Т.

Для передачи трехфазных напряжений используют четыре провода. Один является их общей точкой и называется нулевым (N), а три остальные называются фазами (L1, L2, L3).

Графики напряжений трехфазного переменного тока

Напряжение между фазами называется линейным, а между фазой и нулем – фазным, оно меньше линейного в √3 раз. В нашей сети фазное напряжение равно 220 В, а линейное – 380 В.

Под мгновенным значением напряжения переменного тока понимают его величину в определенный момент времени t. Она изменяется с частотой f. Мгновенное значение напряжения в точке максимума называется амплитудным значением.

Но не его измеряют вольтметры и мультиметры. Они показывают величину, в √2 раз меньшую, называемую действующим или эффективным значением напряжения.

Физически это означает, что напряжение постоянного тока этой величины совершит такую же работу, как и измеряемое переменное напряжение.

Характеристики трехфазного тока

Достоинства и недостатки переменного напряжения

Так почему же для энергоснабжения выбрали переменный ток, а не постоянный?

При передаче электроэнергии ток проходит по проводам, длиной сотни километров, нагревая их и рассеивая в воздухе энергию. Это неизбежно как для постоянного, так и для переменного токов. Но мощность потерь зависит только от сопротивления проводов и тока в них:

Мощность, которую передается по линии, равна:

Отсюда следует, что при увеличении напряжения для передачи той же мощности нужен меньший ток, и мощность потерь при этом уменьшается. Вот поэтому протяженных ЛЭП напряжение повышают. Есть линии на 6кВ, 10кВ, 35кВ, 110кВ, 220кВ, 330кВ, 500кВ, 750кВ и даже 1150кВ.

Но в процессе передачи электроэнергии от источника к потребителю напряжение нужно неоднократно изменять. Проще это сделать на переменном токе, используя трансформаторы.

Недостатки переменного тока проявляются при передаче энергии по кабельным линиям. Кабели имеют емкостное сопротивление между фазами и относительно земли, а емкость проводит переменный ток. Появляется утечка, нагревающая изоляцию и выводящая со временем ее из строя.

Преобразование переменного тока в постоянный и наоборот

Процесс получения из переменного тока постоянного называется выпрямлением, а устройства – выпрямителями. Основная деталь выпрямителя – полупроводниковый диод, проводящий ток только в одном направлении. В результате выпрямления получается пульсирующий ток, меняющий со временем свою величину, но не изменяющий знак.

Затем пульсации устраняют при помощи фильтров, простейшим из них является конденсатор. Полностью пульсации устранить невозможно, а их конечный уровень зависит от схемы выпрямителя и качества фильтра. Сложность и стоимость выпрямителей зависит от величины пульсаций на выходе и от максимальной мощности на выходе.

Схема простейшего выпрямителя

Графики работы выпрямителя

Для преобразования в переменный ток используются инверторы. Принцип их работы состоит в генерации переменного напряжения с формой, максимально приближенной к синусоидальной. Пример такого устройства – автомобильный инвертор для подключения к бортовой сети бытовых приборов или инструмента.

Чем качественнее и дороже инвертор, тем больше его мощность или точнее выдаваемое им напряжение приближается к синусоиде.

Оцените качество статьи. Нам важно ваше мнение:

Источник: http://electric-tolk.ru/peremennyj-i-postoyannyj-tok/

Преобразователи постоянного напряжения в переменное

В. Д. Панченко, г.Киев

   Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть.

Все это поправимо, если у вас есть автомобильный аккумулятор.

К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (ипи по западной терминологии DC-AC преобразователь).

   На рис.1 и 2 показаны две основные схемы таких преобразователей. В схеме на рис.1 используются четыре мощных транзистора VT1…VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4. Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4.

Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2. В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6.

При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.

   Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8.

От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго – через усилитель тока VT6 на пару VT1, VT4.

Если в качестве VT1…VT4 использовать транзисторы с высоким коэффициентом передачи тока (“супербета”), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.

   В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку. Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.

   Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:

   Т(ч) = (0,7WU)/P, где W – емкость аккумулятора, Ач; U – номинальное напряжение аккумулятора, В; Р – мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85…0,9. Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы

   составит 10…12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.

   Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.

   В таблице: S – площадь сечения магнитопровода; W1, W2 – количество витков первичной и вторичной обмоток; D1, D2 – диаметры проводов первичной и вторичной обмоток.

   Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.

   Если использовать в качестве мощных транзисторов VT1…VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее.

Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора.

При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность – 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.

   Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках.

Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит.

Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром). Этот

   конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ.

При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U. Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора.

Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02…0,05, поэтому КПД преобразователя снижается примерно на 2…5%.

   Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3. Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.

1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает. Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает “пищать”.

Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.

   После использования преобразователя аккумулятор необходимо зарядить.

Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В.

Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.

Источник: http://nauchebe.net/2011/06/preobrazovateli-postoyannogo-napryazheniya-v-peremennoe/

Как делается из постоянного тока переменный ток?

Категории

физика, дом, аккумулятор, солнце, электричество, деталь, использование, ток, энергия, постоянный, изменение, сохранение, переменный

Если из переменного тока можно сделать постоянный ток с помощью диодов, то и из постоянного тока можно сделать переменный, к тому же, кто использует солнечную энергию, как иногда мы видим иногда на крышах домов огромные солнечные батареи, то они дают постоянный ток, и ещё эту энергию нужно сохранять, если вдруг на небе будут облака, и солнце спрячеться, или если будет ночь, то ток поступать не будет, и насколько я слышал, что для этого используются специальные аккумуляторы, которын сохраняют енергию. А какая деталь используется для переделывания постоянного тока в переменный?

больше 4 лет назад

Время вопроса 11:15 01.08.2013 Часовой пояс: Германия. Выход в интернет: Мобильник. Место нахождения: На работе.

Ответы

Ответ выбран автором вопроса

Немного не по теме, но на твой вопрос тебе уже выше ответил Jormungand. Инвертор, конечно, штука хорошая, но большинство современной техники работает от прямого тока при напряжении не более 100В, в основном 5, 12, 15В.

Из сети они берут ~220В, преобразуют в рабочее, выпрямляют, теряют энергию на нагрев трансформатора. Проще, если есть уже постоянный ток нужного напряжения воткнуть его в обход входного трансформатора сразу в схему.

Инвертор потребляет лишнюю электроэнергию, стоит денег, так что если нет острой необходимости, то и не стоит извращаться. Переменным током питаются только нагревательные приборы и трехфазные электромоторы.

Источник: http://vorum.ru/questions/56772/answers/142623

Постоянный и переменный ток

Сегодня наша задача – понять, что такое переменный ток и чем он отличается от постоянного. Хотя этот материал я и поместил в рубрику «Практикум», практики особой не будет, только теория.

Итак, в наших руках гипотетический прибор, который может показывать, что у нас происходит на двух проводах под напряжением. Подключаем его к обычной батарейке, чтобы уяснить принцип работы, и видим следующую картину:

Синяя полоска, проведенная против отметки 1.5 показывает, что напряжение (разность потенциалов) между щупами прибора равно 1.5 вольта, причем напряжение это не изменяется во времени, оно постоянно.

Если к батарейке подключить лампу, то через нее потечет тоже постоянный ток.

Для удобства принято считать, что при постоянном напряжении ток течет от положительного полюса к отрицательному и тоже постоянно.

Теперь подключим наш прибор к осветительной розетке. Картина на экране несколько изменилась:

В первый момент времени напряжение между выводами розетке равно нулю (точка 0), потом оно начнет плавно увеличиваться и в точке 1 достигнет максимума – +220 вольт на одном выводе относительно другого.

Дальше оно снова начнет уменьшаться до 0 (точка 2) и поползет вниз, станет отрицательным. В точке 3 оно достигнет своего отрицательного максимума — -220 В  и снова начнет стремиться к нулю.

В точке 4 напряжение исчезнет, как говорят, период колебания закончится, и дальше процесс повторится.

Что будет, если мы подключим к розетке нагрузку (скажем, лампочку)? В первый момент тока не будет, потом он начнет увеличиваться до максимума, потом снова уменьшаться, а потом… потечет в другую сторону, так как полярность между проводниками изменится. Ток в другую сторону тоже будет увеличиваться, потом постепенно уменьшится до 0 (в точке 4).

Итак, перед нами переменное напряжение, способное вызывать переменный ток – сначала в одну сторону, потом в другую.

В нашей осветительной сети напряжение это равно 220 В – это как раз изображено на графике –  сначала 220 одной полярности, потом 220 другой с плавным переходом через 0.

Меняется полярность в розетке 50 раз в секунду или иначе с частотой 50 герц. Герц (Гц) – единица измерения частоты. 1 Гц – один период колебаний в секунду.

А теперь подведем итоги. Главное отличие переменного напряжения от постоянного – разность потенциалов между двумя проводниками постоянно меняет свою полярность, тогда как при постоянном напряжении «плюс» всегда на одном проводнике, а «минус» на другом.

Вполне естественно, что через нагрузку, подключенную к источнику переменного напряжения, ток потечет переменный – то в одну сторону, то в другую. Чем выше частота, тем чаще будет меняться направление тока, причем, как мы видим из нашего графика, меняться плавно.

Общепринятое обозначение переменного тока и напряжения вы, наверное, видели не раз: « ~ ».

Если вы поближе познакомитесь с переменным напряжением, то узнаете, что оно не так просто, как я описал (к примеру, существует амплитудное (которое, кстати, выше 220 В), мгновенное, среднеквадратичное и т.п. напряжения в одной единственной розетке), но для общего понятия процесса этого материала, я думаю, вполне достаточно.

Ну а по поводу гипотетического волшебного прибора – такие приборы есть и называют их осциллографами:

Источник: http://begin.esxema.ru/?p=295

220 вольт постоянного тока, как сделать сетевое напряжение 220 постоянным. Простой преобразователь переменного напряжения сети в постоянный ток

Тема: как можно получить постоянное напряжение величиной 220 вольт из переменного

Как известно в обычной электрической сети (бытовой) имеется переменное напряжение величиной 220 вольт (с небольшим отклонением, зависящее от различных факторов).

Переменный тип тока достаточно легко поддается преобразованию, то есть при необходимости одну величину переменного напряжения и силы тока можно трансформировать в другую, при этом используется (обычно) всего одно устройство, называемое трансформатором.

Но порой возникает необходимость в наличии именно постоянного типа электрического тока, величиной сетевого напряжения в 220 вольт. В этой статье мы рассмотрим способы, которыми можно сделать преобразование переменного напряжения в постоянное.

Для получения постоянного тока из переменного обычно используют полупроводниковые выпрямительные диоды. Они способны пропускать электрический ток только в одном направлении. При попытке подать на них ток в обратном направлении они закрываются и становятся диэлектриками.

Переменный ток, как известно из курса физики, представляет собой упорядоченное движение электрических зарядов, которые периодически меняют свое направление. Данный тип тока (переменный) имеет синусоидальную форму.

Если просто поставить один диод последовательно нагрузке, то мы уже получим постоянный ток после этого диода, но он будет иметь следующую форму.

В этом случае просто срезается одна часть волны переменного синусоидального тока. Остается лишь одна полуволна. Следовательно мощность на выходы (после этого диода) будет снижена в 2 раза. При подключении обычной лампочки накаливания мы увидим значительные мерцания света. Такой вариант получения постоянного тока с напряжением в 220 вольт используется крайне редко.

Более распространенным и правильным способом получения постоянного тока и напряжения 220 вольт является использование так называемого выпрямительного моста, состоящего из 4 диодов. В этом случае мы на выходе получим оба полупериода, которые имеют один и тот же полюс.

Хотя и в этом случае постоянный ток не будет иметь ровную и прямую форму. Он будет скачкообразным. Решить данную проблему можно при использовании фильтрующего конденсатора электролита.

В зависимости от того с какой мощность мы имеем дело, будет зависеть емкость и величина напряжения этого конденсатора.

Стоит заметить, что после добавления фильтрующего конденсатора электролита величина постоянного напряжения (его амплитуда) на выходе выпрямителя увеличиться где-то на 1,4 раза.

Следовательно, в итоге на выходе простого преобразователя переменного тока в постоянный мы уже получим более чем 220 вольт (если на вход мы подаем переменку 220). Зато форма постоянного тока будет достаточно ровной.

Лишнее напряжение всегда можно убрать (срезать) различными способами: ограничительным резистором, электронной схемой стабилизатора, простым параметрическим стабилизатором напряжения на стабилитроне и т.д.

Теперь по поводу вопроса конкретных диодов. Какие, собственно, диоды нужны для выпрямителя, чтобы получить постоянный ток из переменного для сетевого напряжения 220 вольт? Тут важны два основных параметра, это максимальное напряжение, на который рассчитан диод и максимальная сила тока, который он способен через себя пропускать.

Поскольку мы имеем дело с величиной напряжения в 220 вольт, то и диоды нужно брать те, у которых максимальное напряжение раза в 1,5 больше сетевого напряжения. Ну, и с током, также. Берем полупроводник с запасом по максимальному току.

Наиболее распространенными диодами являются серия 1n4007, у который максимальное напряжение 1000 вольт, ну а сила тока до 1 ампера.

Конденсатор должен быть рассчитан на напряжение более того, что подается на него. В нашем случае (при использовании 220 вольт) напряжение конденсатора должно быть не менее 500 вольт (с учетом увеличения амплитуды после моста).

Емкость должна быть от 1 до 10 000 микрофарад (чем больше емкость, тем сильнее будут сглаживаться импульсы, но и тем больше будут размеры конденсатора, и дороже он будет стоить).

Старайтесь найти наиболее оптимальный вариант, воспользовавшись формулами или онлайн калькуляторами по расчету емкости конденсатора для выпрямительного диодного моста под конкретное напряжение и мощность.

Учтите, что напряжение 220 вольт (хоть переменного, хоть постоянного типа) считается опасным, оно легко может травмировать и даже убить человека! Для гальванической развязки между городской сетью и вашим преобразователем переменного тока желательно поставить силовой трансформатор, у которого входное и выходное напряжение будет одинаковым (220 вольт). Силу тока можно ограничить путем правильного подбора диаметра провода вторичной обмотки на этом трансформаторе. В итоге это позволит снизить риск значительных повреждений и последствий в случае аварии или несчастного случая.

Если вам нужно, чтобы постоянное напряжение выпрямленного сетевого тока было регулируемым, то стоит сделать или приобрести готовое устройство (электронную плату, которая стоит относительно недорого) — регулируемый преобразователь сетевого напряжения с постоянным током на выходе. Такие схемы работают на тиристорах, симисторах вместо диодов. Они управляются дополнительными элементами, что срезают лишнии части напряжения. В итоге мы получаем диммер, что способен выдавать нужное постоянное напряжение от 0 до 220 вольт.

P.S. В настоящее время широко распространены электронные блоки питания (используются в блоках питания компьютера, зарядных устройствах мобильных телефонов и т.д.).

Именно в них применяется вариант, когда необходимо сетевое переменное напряжение преобразовать в постоянное, без снижения амплитуды. В самой начале схемы и ставятся выпрямительные диодные мосты с фильтрующим конденсатором электролитом, о которых и был разговор выше.

Внимание! Учтите, что напряжение 220 вольт считается опасным для жизни. Соблюдайте правила электробезопасности!

Источник: https://electrohobby.ru/post_set_napr_trz.html

Как из постоянного тока сделать переменный? Какой ток опаснее — постоянный или переменный?

Использование в повседневной жизни различных электрических приборов и устройств, работающих благодаря электроэнергии, обязывает нас иметь минимальные познания в области электротехники.

Это знания, которые сохраняют нам жизнь.

Ответы на вопросы о том, как из постоянного тока сделать переменный, какое напряжение должно быть в квартире и какой ток опасен, современный человек должен знать, чтобы избежать поражения и гибели от него.

Способы получения электричества

Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.

Существует несколько способов получения электричества:

  • из тепловой энергии;
  • из энергии воды;
  • из атомной (ядерной) энергии;
  • из ветровой энергии;
  • из солнечной энергии и др.

Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.

Электричество из энергии ветра

Электрический ток — это направленное движение заряженных частиц. Самый простой способ его получения — энергия природных сил.

В данном примере от энергии ветра. Природный феномен дующего с различной силой ветра люди научились использовать давно. Укрощает ветер простой ветряк, оборудованный приводом и соединённый с генератором. Генератор и вырабатывает электрическую энергию.

Излишки тока при постоянном использовании ветряка можно накапливать в аккумуляторных батареях. Выработанный постоянный экологически чистый ток в быту и производстве не применяется.

Полученный и преобразованный в переменный ток, он идет для бытового использования. Накопленные излишки электричества хранятся в аккумуляторных батареях. При отсутствии ветра запасы электричества, хранящиеся в аккумуляторах, преобразуются и поступают на нужды человека.

Электроэнергия из воды

К большому сожалению, этот вид природной энергии, дающий возможность получать электричество, не везде имеется. Рассмотрим способ получения электричества там, где воды много.

Простейшая ГЭС, сделанная из дерева по принципу мельницы, размер которой порядка 1,5 метров, способна обеспечить электричеством, используемым и на отопление, частное подсобное хозяйство.

Такую бесплотинную ГЭС сделал русский изобретатель, уроженец Алтая — Николай Ленев. Он создал ГЭС, перенести которую могут два взрослых мужчины.

Все дальнейшие действия аналогичны получению электричества от ветряка.

Вырабатывают электричество и крупные электростанции и гидростанции. Для промышленного получения электричества применяют огромные котлы, дающие пар. Температура пара достигает 800 градусов, а давление в трубопроводе поднимается до 200 атмосфер. Этот перегретый пар с высокой температурой и огромным давлением поступает на турбину, которая начинает вращаться и вырабатывать ток.

То же самое происходит и на гидроэлектростанциях. Только здесь вращение происходит за счёт больших скорости и объема воды, падающей с огромной высоты.

Обозначение тока и применение его в быту

Постоянный ток обозначается DC. На английском языке пишется как Direct Current. Он в процессе работы со временем не меняет своих свойств и направления. Частота постоянного тока равна нулю. Обозначают его на чертежах и оборудовании прямой короткой горизонтальной черточкой или двумя параллельными черточками, одна из которых пунктирная.

Используется постоянный ток в привычных нам аккумуляторах и батарейках, используемых в огромном числе различного типа устройств, таких как:

  • счетные машинки;
  • детские игрушки;
  • слуховые аппараты;
  • прочие механизмы.

Все ежедневно пользуются мобильным телефоном. Зарядка его происходит через блок питания, компактный преобразователь DC/AC, включаемый в бытовую розетку.

Электрические приборы потребляют переменный однофазный ток. Электроприборы заработают только с подключением трансформатора и выпрямителя тока. Многие производители устанавливают преобразователь DC/AC непосредственно в сам агрегат. Это намного упрощает эксплуатацию электрооборудования.

Как из постоянного тока сделать переменный?

Выше говорилось, что все аккумуляторы, батарейки для фонариков, пультов телевизоров имеют постоянный ток. Чтобы преобразовать ток, существует современное устройство под названием инвертор, он с легкостью из постоянного тока сделает переменный. Рассмотрим, как это применимо в повседневности.

Бывает, что во время нахождения в автомашине человеку необходимо срочно распечатать на ксероксе документ.

Ксерокс имеется, машина работает и, включив в прикуриватель переходник на инвертор, он может подключить к нему ксерокс и распечатать документы.

Схема преобразователя достаточно сложна, особенно для людей, которые имеют отдаленное понятие о работе электричества. Поэтому в целях безопасности лучше не пытаться самостоятельно соорудить инвертор.

Переменный ток и его свойства

Протекая, переменный ток в течение одной секунды меняет направление и величину 50 раз. Изменение движения тока — это его частота. Обозначается частота в герцах.

У нас частота тока 50 герц. Во многих странах, например США, частота равна 60 герц. Также бывает трёхфазный и однофазный переменный ток.

Для бытовых нужд приходит электричество, равное 220 вольтам. Это действующее значение переменного тока. Но амплитуда тока максимального значения будет больше на корень из двух.

Что в итоге даст 311 вольт. То есть фактическое напряжение бытовой сети составляет 311 вольт.

Для изменения постоянного тока на переменный применяются трансформаторы, в которых используются различные схемы преобразователей.

Передача тока по высоковольтным линиям

Все электрические наружные сети несут по своим проводам переменный ток различного напряжения. Оно может колебаться от 330000 вольт до 380 вольт. Передача осуществляется только переменным током.

Данный способ транспортировки — самый простой и дешёвый. Как из переменного тока сделать постоянный, давно известно. Поставив трансформатор в нужном месте, получим необходимое напряжение и силу тока.

Схемы преобразователей

Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.

Вторая схема преобразователя переменного тока — это параллельное подключение на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.

Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.

Какой электрический ток опаснее – постоянный или переменный?

В повседневной жизни мы постоянно сталкиваемся на работе и в быту с электроприборами, подключенными в розетки. Ток, бегущий от электрического щита до розетки, однофазный переменный. Происходят случаи поражения электрическим током. Меры безопасности и знания о поражении током необходимы.

В чем принципиальная разница между попаданием под напряжение переменным током и постоянным? Имеется статистика, что переменный DC однофазный ток в пять раз опаснее постоянного AC тока. Поражение током, вне зависимости от его типа, само по себе отрицательный факт.

Последствия от поражения током

Небрежность в обращении с электроприборами может, мягко говоря, негативно сказаться на здоровье человека. Поэтому не стоит экспериментировать с электричеством, если на то нет специальных навыков.

Действие тока на человека зависит от нескольких факторов:

  • сопротивления тела самого потерпевшего;
  • напряжения, под которое попал человек.
  • от силы тока на момент контакта человека с электричеством.

С учетом всего перечисленного можно сказать, что действие переменного тока намного опаснее, чем постоянного. Имеются данные экспериментов, подтверждающие факт, что для получения равного результата при поражении сила постоянного тока должна быть в четыре — пять раз выше, чем переменного.

Сама природа переменного тока отрицательно сказывается на работе сердца. При поражении током происходит непроизвольное сокращение сердечных желудочков. Это может привести к его остановке. Особенно опасно соприкосновение с оголенными жилами людям, имеющим сердечный стимулятор.

У постоянного тока частота отсутствует. Но высокие напряжение и сила тока могут привести также к летальному исходу. Выйти из под контакта с постоянным электрическим током проще, чем из-под контакта с переменным.

Этот небольшой обзор природы электрического тока, его преобразования должен быть полезен людям, далеким от электричества. Минимальные познания в области происхождения и работы электроэнергии помогут понять суть работы обычных бытовых приборов, которые так необходимы для комфортной и спокойной жизни.

Источник: http://skv-tv.ru/article/321647/kak-iz-postoyannogo-toka-sdelat-peremennyiy-kakoy-tok-opasnee—postoyannyiy-ili-peremennyiy

Отличие переменного тока от постоянного

Август 20, 2014

47003 просмотров

Электрический ток— это направленное или упорядоченное движение заряженных частиц: электронов в металлах, в электролитах — ионов, а в газах — электронов и ионов. Электрический ток может быть как постоянным, так и переменным.

Определение постоянного электрического тока, его источники

Постоянный ток ( DC, по-английски Direct Current) — это электрический ток, у которого  свойства и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Постоянный ток используется в автомобилях и в домах, в многочисленных электронных приборах: ноутбуки, компьютеры, телевизоры и т. д. Перемеренный электрический ток  из розетки преобразуется в постоянный при помощи блока питания или трансформатора напряжения с выпрямителем.

Любой электроинструмент, устройство или прибор, работающие от батареек так же являются потребителями постоянного тока , потому что батарея или аккумулятор- это исключительно источники постоянного тока, который при необходимости преобразуется  в переменный с использованием специальных преобразователей (инверторов).

Принцип работы переменного тока

Переменный ток  (AC по-английски Alternating Current)- это электрический ток, который изменяется по величине и направлению с течением времени. На электроприборах условно обозначается отрезком синусоиды « ~ ».
Иногда после синусоиды могут указываться характеристики переменного тока — частота, напряжение, число фаз.

Переменный ток может быть как одно- , так и  трёхфазным, для которого мгновенные значения тока и напряжения меняются по гармоническому закону.

Основные характеристики переменного тока — действующее значение напряжения и частота.

Обратите внимание, как на левом графике для однофазного тока меняется направление и величина напряжения с переходом в ноль за период времени Т, а на втором графике для трехфазного тока существует смещение трех синусоид на одну третью периода.

На правом графике 1 фаза обозначена буквой «а», а вторая буквой «б». Хорошо известно, что в домашней розетке 220 Вольт. Но мало кто знает, что это действующие значение переменного напряжения, но амплитудное или максимальное значение будет больше на корень из двух, т.

е будет равно 311 Вольт.

Таким образом, если у постоянного тока величина напряжения и направление не изменяются в течении времени, то у переменного тока- напряжение постоянно меняется по величине и направлению (график ниже нуля это обратное направление).

И так мы подошли к понятию частота— это отношение числа полных циклов  (периодов) к единице времени периодически меняющегося  электрического тока. Измеряется в Герцах. У нас и в Европе частота равна 50 Герцам, в США- 60 Гц.

Что означает частота 50 Герц? Она означает, что у нас переменный ток меняет свое направление на противоположное и обратно (отрезок Т- на графике) 50 раз за секунду!

Источниками переменного тока являются все розетки в доме и все то, что подключено напрямую проводами или кабелями  к электрощиту. У многих возникает вопрос: а почему  в розетке не постоянный ток? Ответ прост.

В сетях переменного тока легко и с минимальными потерями преобразовывается величина напряжения до необходимого уровня при помощи трансформатора в любых объемах. Напряжение необходимо увеличивать для возможности передачи электроэнергии на большие расстояния с наименьшими потерями в промышленных масштабах.

  С электростанции, где стоят мощные электрогенераторы, выходит напряжение величиной 330 000-220 000 Вольт, далее возле нашего дома на трансформаторной подстанции оно преобразуется с величины 10 000 Вольт в трехфазное напряжение 380 Вольт, которое и приходит в многоквартирный дом, а к нам в квартиру приходит однофазное напряжение, т. к. между фазой и нулем или землей напряжение равняется 220 В, а между разноименными фазами в электрощите 380 Вольт.

И еще одним из важных достоинств переменного напряжения является то, что асинхронные электродвигатели переменного тока конструктивно проще и работают значительно надежнее, чем двигатели постоянного тока.

Как переменный ток сделать постоянным

Для потребителей, работающих на постоянном токе- переменный преобразуется при помощи  выпрямителей.

  1. Первоначальный этап преобразования— это подключение диодного моста, состоящего из 4 диодов достаточной мощности (на рисунке ниже), который срезает верхние границы переменных синусоид или делает ток однонаправленным.
  2. Второй этап— это подключение параллельно на выход с диодного мостика конденсатора или сглаживающего фильтра, который исправляет провалы между пиками синусоид. Обратите внимание, как выглядит синусоида после прохождения через диодный мост (на рисунке выделена зеленным цветом).

    И как уменьшаются пульсации (изменения напряжения) после подключения конденсатора- на рисунке выделено синим цветом.

  3. Далее при необходимости для уменьшения уровня пульсаций,  дополнительно могут применяются стабилизаторы тока или  напряжения.

Преобразователь постоянного тока в переменный

Если с преобразованием переменного тока в постоянный не возникает сложностей, то со обратным преобразованием все гораздо сложнее. В домашних условиях для этого используется инвертор — это генератор периодического напряжения из постоянного, по форме приближённого к синусоиде.

Инвертор технически сложное устройство, поэтому и цены на него не маленькие. Стоимость зависит напрямую от выходной максимальной мощности переменного тока.

Как правило, преобразование постоянного тока требуется в редких случаях. Например, для подключения от бортовой электросети автомобиля домашних электроприборов, инструмента и т. п. в походе, на даче и т. д.

Что такое фаза, ноль, заземление читайте в следующей нашей статье.

Источник: http://jelektro.ru/elektricheskie-terminy/postojannyj-peremennyj-tok.html

Постоянный ток - Direct current

Однонаправленный поток электрического заряда

Постоянный ток (DC) (красная линия). Вертикальная ось показывает ток или напряжение, а горизонтальная ось «t» измеряет время и показывает нулевое значение.

Постоянный ток ( DC ) - это однонаправленный или однонаправленный поток электрического заряда . Электрохимическая ячейка является ярким примером постоянного напряжения. Постоянный ток может течь через проводник, такой как провод, но также может течь через полупроводники , изоляторы или даже через вакуум, как в электронных или ионных пучках . Электрический ток течет в постоянном направлении, что отличает его от переменного тока. Термин , ранее используемый для этого типа тока был гальванический ток .

Аббревиатуры AC и DC часто используются для обозначения просто переменного и постоянного тока , когда они изменяют ток или напряжение .

Постоянный ток может быть преобразован из источника переменного тока с помощью выпрямителя , который содержит электронные элементы (обычно) или электромеханические элементы (исторически), которые позволяют току течь только в одном направлении. Постоянный ток можно преобразовать в переменный с помощью инвертора .

Постоянный ток имеет множество применений, от зарядки аккумуляторов до больших источников питания для электронных систем, двигателей и многого другого. Очень большие количества электроэнергии, получаемой от постоянного тока, используются при выплавке алюминия и других электрохимических процессах. Он также используется на некоторых железных дорогах , особенно в городских районах . Постоянный ток высокого напряжения используется для передачи большого количества энергии от удаленных объектов генерации или для соединения электрических сетей переменного тока.

История

Центральная электростанция Brush Electric Company с динамо-машинами, вырабатывающими постоянный ток для питания дуговых ламп для общественного освещения в Нью-Йорке. Начав работу в декабре 1880 года по адресу 133 West Twenty-Fifth Street, он работал под высоким напряжением, что позволило ему запитать цепь длиной 2 мили (3,2 км).

Постоянный ток был произведен в 1800 году итальянский физик Алессандро Вольта батарея «s, его Вольтова кучу . Природа того, как течет ток, еще не была понята. Французский физик Андре-Мари Ампер предположил, что ток движется в одном направлении от положительного к отрицательному. Когда французский производитель инструментов Ипполит Пиксии построил первый динамо-электрический генератор в 1832 году, он обнаружил, что, когда используемый магнит проходил петли проволоки каждые пол-оборота, он заставлял электрический ток реверсировать, создавая переменный ток . По предложению Ампера, Pixii позже добавила коммутатор , тип «переключателя», в котором контакты на валу работают вместе с «щеточными» контактами для получения постоянного тока.

В конце 1870-х - начале 1880-х годов электричество начали вырабатывать на электростанциях . Первоначально они были предназначены для электрического дугового освещения (популярный тип уличного освещения), работающего от постоянного или переменного тока очень высокого напряжения (обычно выше 3000 вольт). За этим последовало широкое распространение низковольтного постоянного тока для внутреннего электрического освещения в офисах и домах после того, как изобретатель Томас Эдисон в 1882 году выпустил свою электрическую « утилиту » на основе лампы накаливания . Из-за значительных преимуществ переменного тока над постоянным в использовании трансформаторы для повышения и понижения напряжения, чтобы обеспечить гораздо большие расстояния передачи, постоянный ток был заменен в течение следующих нескольких десятилетий переменным током в подаче энергии. В середине 1950-х годов была разработана высоковольтная передача постоянного тока , которая теперь является опцией вместо высоковольтных систем переменного тока на большие расстояния. Для протяженных подводных кабелей (например, между странами, такими как NorNed ), этот вариант постоянного тока является единственным технически осуществимым вариантом. Для приложений, требующих постоянного тока, таких как энергосистемы третьего рельса , переменный ток распределяется на подстанцию, которая использует выпрямитель для преобразования мощности в постоянный ток.

Различные определения

Виды постоянного тока

Термин « постоянный ток» используется для обозначения энергосистем, в которых используется только одна полярность напряжения или тока, и для обозначения постоянного, нулевого или медленно меняющегося местного среднего значения напряжения или тока. Например, напряжение на источнике постоянного напряжения постоянно, как и ток через источник постоянного тока . Решение для электрической цепи постоянного тока - это решение, в котором все напряжения и токи постоянны. Можно показать, что любую стационарную форму волны напряжения или тока можно разложить на сумму составляющей постоянного тока и изменяющейся во времени составляющей с нулевым средним значением; составляющая постоянного тока определяется как ожидаемое значение или среднее значение напряжения или тока за все время.

Хотя DC означает «постоянный ток», DC часто означает «постоянная полярность». Согласно этому определению, напряжения постоянного тока могут меняться во времени, что видно по необработанному выходному сигналу выпрямителя или колебаниям голосового сигнала на телефонной линии.

Некоторые формы постоянного тока (например, вырабатываемые регулятором напряжения ) почти не имеют изменений напряжения , но могут все же иметь изменения выходной мощности и тока.

Схемы

Цепь постоянного тока - это электрическая цепь , состоящая из любой комбинации источников постоянного напряжения, источников постоянного тока и резисторов . В этом случае напряжения и токи в цепи не зависят от времени. Конкретное напряжение или ток цепи не зависит от прошлых значений напряжения или тока в цепи. Это означает, что система уравнений, представляющая цепь постоянного тока, не включает интегралы или производные по времени.

Если к цепи постоянного тока добавляется конденсатор или катушка индуктивности , полученная цепь, строго говоря, не является цепью постоянного тока. Однако большинство таких схем имеют решение постоянного тока. Это решение выдает напряжения и токи в цепи, когда цепь находится в установившемся режиме постоянного тока . Такая схема представлена ​​системой дифференциальных уравнений . Решение этих уравнений обычно содержит изменяющуюся во времени или переходную часть, а также постоянную или установившуюся часть. Именно эта часть установившегося состояния и является решением постоянного тока. Есть некоторые схемы, которые не имеют решения постоянного тока. Двумя простыми примерами являются источник постоянного тока, подключенный к конденсатору, и источник постоянного напряжения, подключенный к катушке индуктивности.

В электронике цепь, которая питается от источника постоянного напряжения, такого как аккумулятор, или выход источника постоянного тока, обычно называют цепью постоянного тока, даже если имеется в виду, что эта схема питается постоянным током.

Приложения

Бытовые и коммерческие здания

Этот символ , который может быть представлен Unicode , символ U + 2393 (⎓) находится на многих электронных устройствах , которые либо требуют или производят постоянный ток.

Постоянный ток обычно используется во многих приложениях со сверхнизким напряжением и некоторых приложениях с низким напряжением , особенно там, где они питаются от батарей или солнечных энергетических систем (поскольку оба они могут производить только постоянный ток).

Для большинства электронных схем требуется источник питания постоянного тока .

В бытовых установках постоянного тока обычно используются розетки , разъемы , выключатели и приспособления , отличные от тех, которые подходят для переменного тока. В основном это связано с более низким используемым напряжением, что приводит к более высоким токам для получения того же количества энергии .

Обычно важно соблюдать полярность при работе с устройствами постоянного тока, если только устройство не оснащено диодным мостом, позволяющим это исправить.

EMerge Alliance - открытая отраслевая ассоциация, разрабатывающая стандарты распределения электроэнергии постоянного тока в гибридных домах и коммерческих зданиях .

Автомобильная промышленность

В большинстве автомобильных приложений используется постоянный ток. Автомобильная батарея обеспечивает питание для запуска двигателя, освещения и системы зажигания. Генератор представляет собой устройство переменного тока , который использует выпрямитель для создания постоянного тока для зарядки аккумулятора. Большинство шоссе легковых автомобилей используют номинально 12  V систем. Во многих тяжелых грузовиках, сельскохозяйственной технике или землеройной технике с дизельными двигателями используются системы на 24 В. В некоторых старых автомобилях использовалось напряжение 6 В, например, в оригинальном классическом Volkswagen Beetle . В какой-то момент электрическая система на 42 В рассматривалась для автомобилей, но это не нашло применения. Для экономии веса и уменьшения количества проводов металлический каркас автомобиля часто подключается к одному полюсу батареи и используется в качестве обратного проводника в цепи. Часто отрицательный полюс является заземлением шасси, но положительный полюс может использоваться в некоторых колесных или морских транспортных средствах.

Телекоммуникации

В аппаратуре связи телефонной станции используется стандартный источник питания -48 В постоянного тока. Отрицательная полярность достигается заземлением положительной клеммы системы питания и аккумуляторной батареи . Это сделано для предотвращения отложения электролиза . В телефонных установках используется система батарей, обеспечивающая поддержание питания абонентских линий во время перебоев в подаче электроэнергии.

Другие устройства могут получать питание от телекоммуникационной системы постоянного тока с помощью преобразователя постоянного тока в постоянный для обеспечения любого удобного напряжения.

Многие телефоны подключаются к витой паре проводов и используют тройник смещения, чтобы внутренне отделить переменную составляющую напряжения между двумя проводами (аудиосигнал) от составляющей постоянного напряжения между двумя проводами (используется для питания телефона. ).

Передача электроэнергии высокого напряжения

В системах передачи электроэнергии постоянного тока высокого напряжения (HVDC) постоянный ток используется для основной передачи электроэнергии, в отличие от более распространенных систем переменного тока. Для передачи на большие расстояния системы HVDC могут быть менее дорогими и иметь более низкие электрические потери.

Другие

Приложения, использующие топливные элементы (смешивание водорода и кислорода вместе с катализатором для производства электроэнергии и воды в качестве побочных продуктов), также производят только постоянный ток.

Электрические системы легких самолетов обычно имеют напряжение 12 В или 24 В постоянного тока, аналогичные автомобильным.

Смотрите также

Ссылки

внешние ссылки

Переменный ток это - советы электрика

Постоянный или переменный ток

  1. Постоянный ток
  2. Переменный ток
  3. Виды и параметры розеток
  4. Как измерить переменное напряжение в розетке

Люди уже давно пользуются электричеством и практически никогда не задаются вопросом, какой ток в розетке – переменный или постоянный. Ответ достаточно простой, поскольку 98% всей производимой электроэнергии относится к переменному току. Такое преимущество объясняется легкостью производства и возможностью передачи на большие расстояния по сравнению с постоянным током. Во время передачи величина напряжения переменного тока может неоднократно повышаться или понижаться. Таким образом, большинство розеток работают с переменным током. Но, существует немало потребителей из области электроники, работающих от постоянного тока, напряжением от 6 до 12 вольт.

Постоянный ток

Понятие электрического тока заключается в упорядоченном движении заряженных частиц, на которые оказывают воздействие силы электрического поля или другие сторонние силы. Направлением тока считается направление, в котором двигаются положительно заряженные частицы.

Если значение силы электрического тока и его направление остаются неизменными, данный ток считается постоянным. Для его существования необходимы свободные заряженные частицы, а также источник тока, преобразующий энергию в энергетику электрического поля.

Под действием сторонних сил в замкнутой цепи происходит перемещение заряженных частиц. Их возникновение обусловлено разными причинами. Например, для аккумуляторов и гальванических элементов это будут химические реакции. Генераторы вырабатывают ток с использованием проводника, движущегося в магнитном поле.

В фотоэлементах свет воздействует на электроны полупроводников и металлов.

Постоянный ток применяется в промышленности, облегчая запуск оборудования с большим пусковым моментом. Электродвигатели постоянного тока используются для плавной регулировки скорости, с их помощью значительно сглаживается пусковой момент. Постоянный ток вырабатывается аккумуляторами и батарейками. Его величина может колебаться от 6 до 24 вольт.

Переменный ток

В отличие от постоянного тока, переменный обладает способностью изменяться по направлению и величине через одинаковые промежутки времени. Он вырабатывается генераторами переменного тока. В которых возникновение электродвижущей силы происходит под действием электромагнитной индукции.

Переменный ток широко применяется в различных областях, благодаря возможности преобразовывать его силу и напряжение с минимальными потерями энергии. Он может быть однофазным и трехфазным. В последнем случае электрическая система включает в себя три цепи с одинаковой частотой и ЭДС, сдвинутые между собой по фазе на 120 градусов.

С помощью переменного тока стала возможной передача электрической энергии на большие расстояния. Во время проводной передачи возникают определенные потери в количестве, пропорциональном квадрату тока. Чтобы снизить потери, необходимо уменьшение напряжения.

Обратите внимание

Сниженный ток вызывает необходимость в существенном повышении напряжения. Поэтому электроэнергия передается на дальние расстояния только при наличии высокого напряжения.

Преобразование токов до необходимых параметров осуществляется с помощью трансформаторов, представляющих собой электромагнитные аппараты понижающего или повышающего типа.

Виды и параметры розеток

Электрические розетки являются достаточно простыми устройствами. Тем не менее, они обладают важными функциями, прежде всего, обеспечивают надежный контакт между бытовыми приборами и электросетью.

Розетки надежно защищают от прикосновений к токоведущим частям, обеспечивают надежную изоляцию.

В большинстве современных моделей розеток присутствует функция защитного заземления, выполняемая отдельным контактом.

Все электрические розетки разделяются на несколько типов. В соответствии с применяемым креплением, они могут быть открытыми или скрытыми. Например, наружная проводка требует накладных розеток открытого типа.

Они просты в установке и не требуют отверстий для подрозетников.

Встроенные модели розеток отличаются привлекательны внешним видом, надежным креплением и высокой степенью защиты от поражения электротоком за счет расположения токоведущих частей в глубине стены.

Розетки различаются между собой и по величине тока. Большинство современных розеток рассчитано на ток в 6, 10 и 16 ампер. Максимальный ток старых советских моделей составлял всего 6,3 ампера.

Важно

Потребители с повышенной мощностью подключаются к специальным розеткам, обладающих высокой стойкостью к большим токам. Как правило, это стационарное оборудование.

Максимально допустимый ток розетки должен соответствовать мощности потребителя, подключаемого к электрической сети.

Как измерить переменное напряжение в розетке

Чем постоянный ток отличается от переменного и как преобразовывается?

Постоянный электрический ток — это движение частиц с зарядом в определенном направлении. То есть его напряжение или сила (характеризующие величины) имеют одно и то же значение и направление. Это то, чем постоянный ток отличается от переменного. Но рассмотрим все по порядку.

История появления и «войны токов»

Постоянный ток раньше называли гальваническим из-за того, что его открыли в результате гальванической реакции. Томас Эдисон пробовал передавать его по линиям электрических передач. В то время велись нешуточные споры между учеными по этому вопросу. Они даже получили название «войны токов».

Решался вопрос о выборе в качестве основного, переменного или постоянного. «Борьба» была выиграна переменным видом, так как постоянный несет существенные потери, передаваясь на расстоянии. Зато трансформировать переменный вид не составляет никакого труда, это то, чем постоянный ток отличается от переменного.

Поэтому последний легко передавать даже на огромные расстояния.

Источники постоянного электрического тока

В качестве источников могут служить аккумуляторы или другие приборы, где он возникает посредством химической реакции.

Это и генераторы, где он получается в результате электромагнитной индукции, а после этого выпрямляется за счет коллектора.

Применение

В различных устройствах постоянный ток применяется довольно часто. С ним работают, например, многие бытовые приборы, зарядные устройства и генераторы автомобиля. Любой портативный аппарат запитывается от источника, вырабатавающего постоянный вид.

В промышленных масштабах его применяют в двигателях и аккумуляторах. А в некоторых странах им оснащают высоковольтные линии электропередач.

В медицине с помощью постоянного электрического тока проводят оздоровительные процедуры.

На железной дороге (для транспорта) используют и переменный, и постоянный виды.

Переменный ток

Чаще всего, впрочем, применяют именно его. Здесь среднее значение силы и напряжения за определенный период равны нулю. По величине и направлению он постоянно изменяется, причем с равными промежутками времени.

Чтобы вызвать переменный ток, используют генераторы, в которых во время электромагнитной индукции возникает электродвижущая сила. Это осуществляется при помощи магнита, вращаемого в цилиндре (роторе), и статора, выполненного в виде неподвижного сердечника с обмоткой.

Переменный ток используют в радио, телевидении, телефонии и многих других системах ввиду того, что его напряжение и силу возможно преобразовывать, почти не теряя энергию.

Широко применяют его и в промышленности, а также в целях освещения.

Он может быть однофазным и многофазным.

Переменный ток, который изменяется согласно синусоидальному закону, является однофазным. Он изменяется в течение определенного промежутка времени (периода) по величине и направлению. Частота переменного тока является числом периодов за секунду.

Во втором случае самое большое распространение получил трехфазный вариант. Это система из трех электроцепей, которые имеют одинаковую частоту и ЭДС, сдвинуты по фазе на 120 градусов. Ее используют для питания электрических двигателей, печей, осветительных приборов.

Многими разработками в сфере электричества и практическим их применением, а также воздействием на переменный ток высокой частоты человечество обязано великому ученому Николе Тесла. До сих пор не все его труды, оставшиеся потомкам, являются познанными.

Чем постоянный ток отличается от переменного и каков его путь от источника до потребителя?

Итак, переменным называют ток, способный меняться по направлению и величине в течение определенного времени. Параметры, на которые при этом обращают внимание, это частота и напряжение.

В России в бытовых электрических сетях подают переменный ток, имеющий напряжение 220 В и частоту 50 Гц. Частота переменного тока — это количество изменений направления частиц определенного заряда за секунду.

Получается, что при 50 Гц он меняет свое направление пятьдесят раз, в чем постоянный ток отличается от переменного.

Его источником являются розетки, к которым подключают бытовые приборы под различным напряжением.

Совет

Переменный ток начинает свое движение от электрических станций, где имеются мощные генераторы, откуда он выходит с напряжением от 220 до 330 кВ. Далее переходит в трансформаторные подстанции, которые находятся вблизи домов, предприятий и остальных конструкций.

В подстанции ток попадает под напряжением 10 кВ. Там он преобразовывается в трехфазное напряжение 380 В. Иногда с таким показателем ток переходит непосредственно на объекты (где организовано мощное производство). Но в основном его снижают до привычных во всех домах 220 В.

Преобразование

Понятно, что в розетках мы получаем переменный ток. Но часто для электрических приборов необходим постоянный вид. Для этой цели служат специальные выпрямители. Процесс состоит из следующих действий:

  • подключение моста с четырьмя диодами, имеющих необходимую мощность;
  • подключение фильтра или конденсатора на выход с моста;
  • подключение стабилизаторов напряжения для уменьшения пульсаций.

Преобразование может происходить как из переменного в постоянный ток, так и наоборот. Но последний случай будет реализовать значительно труднее. Потребуются инверторы, которые, помимо прочего, стоят совсем недешево.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров «Фотошопа» подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

Какой ток в обычной розетке: постоянный или переменный

Представить жилище современного человека без электрических розеток невозможно.

И поэтому многие хотят знать больше о силе, несущей цивилизации тепло и свет, заставляющей работать все наши электроприборы.

И начинают с вопроса: какой ток в нашей розетке, постоянный или переменный? И какой из них лучше? Чтобы ответить на вопрос, какой ток в розетке и чем обусловлен этот выбор, выясним, чем они отличаются.

Источники постоянного напряжения

Все эксперименты, проводимые учеными с электрическим током, начинались именно с него. Первые, еще примитивные, источники электроэнергии, подобные современным батарейкам, способны были выдавать именно постоянный ток.

Его основная особенность – неизменность величины тока в любой момент времени. Источниками, кроме гальванических элементов, являются специальные генераторы, аккумуляторы. Мощным источником постоянного напряжения является атмосферное электричество – разряды молний.

Источники переменного напряжения

В отличие от постоянного, величина переменного напряжения изменяется во времени по синусоидальному закону. Для него существует понятие периода – времени, за которое происходит одно полное колебание, и частоты – величины, обратной периоду.

В электрических сетях России принята частота переменного тока, равная 50 Гц. Но в некоторых странах эта величина равна 60 Гц. Это нужно учитывать при приобретении бытовых электроприборов и промышленного оборудования, хотя большая его часть прекрасно работает в обоих случаях. Но лучше в этом убедиться, прочитав инструкцию по эксплуатации.

Преимущества переменного тока

В наших розетках протекает переменный ток. Но почему именно он, чем он лучше постоянного?

Дело в том, что только величину переменного напряжения можно изменять с помощью преобразовательных устройств – трансформаторов. А делать это приходится многократно.

Теплоэлектростанции, гидроэлектростанции и атомные электростанции находятся далеко от потребителей. Возникает необходимость передачи больших мощностей на расстояния, исчисляемые сотнями и тысячами километров.

Обратите внимание

Провода линий электропередач имеют малое сопротивление, но все же оно присутствует. Поэтому ток, проходя по ним, нагревает проводники.

Более того, за счет разности потенциалов в начале и конце линии, к потребителю приходит меньшее напряжение, чем было на электростанции.

Бороться с этим явлением можно, либо уменьшив сопротивление проводов, либо снизив значение тока. Уменьшение сопротивления возможно только с увеличением сечением проводов, а это дорого, а порой – невозможно технически.

А вот уменьшить ток можно, увеличив значение напряжения линии. Тогда при передаче одной и той же мощности ток по проводам пойдет меньший. Уменьшаться потери на нагрев проводов.

Технически это выглядит так. От генераторов переменного тока электростанции напряжение подается на повышающий трансформатор. Например, 6/110 кВ. Далее по линии электропередач напряжением 110 кВ (сокращенно – ЛЭП-110 кВ) электрическая энергия отправляется до следующей распределительной подстанции.

Если эта подстанция предназначена для питания группы деревень в районе, то напряжение понижается до 10 кВ.

Если при этом нужно отправить весомую часть принятой мощности энергоемкому потребителю (например, комбинату или заводу), могут использоваться линии напряжением 35 кВ.

На узловых подстанциях для разделения напряжения между потребителями, находящихся на разном удалении и потребляющими разные мощности, используются трехобмоточные трансформаторы. В нашем примере это – 110/35/6 кВ.

Важно

Теперь напряжение, полученное на сельской подстанции, претерпевает новое преобразование. Его величина должна стать приемлемой для потребителя. Для этого мощность проходит через трансформатор 10/0,4 кВ. Напряжение между фазой и нулем линии, идущей к потребителю, становится равным 220 В. Оно и доходит до наших розеток.

Думаете, что это все? Нет. Для полупроводниковой техники, являющейся начинкой наших телевизоров, компьютеров, музыкальных центров эта величина не подойдет. Внутри них 220 В понижаются до еще меньшего значения. И преобразуется в постоянный ток.

Вот такая метаморфоза: передавать на большие расстояния лучше переменный ток, а нужен нам, в основном – постоянный.

Еще одно достоинство переменного тока: проще погасить электрическую дугу, неизбежно возникающую между размыкающимися контактами коммутационных аппаратов. Напряжение питания изменяется и периодически переходит через нулевое положение.

В этот момент дуга гаснет самостоятельно при соблюдении определенных условий. Для постоянного напряжения потребуется более серьезная защита от подгорания контактов.

Но при коротких замыканиях на постоянном токе повреждения электрооборудования от действия электрической дуги серьезнее и разрушительнее, чем на переменном.

Преимущества постоянного тока

Энергию от источников переменного напряжения нельзя хранить. Его можно использовать для зарядки аккумуляторной батареи, но выдавать она будет только постоянный ток. А что будет, если в силу каких-то причин остановится генератор на электростанции или оборвется линия питания села? Его жителям придется пользоваться фонариками на батарейках, чтобы не остаться в темноте.

Но и на электростанциях тоже есть источники постоянного напряжения – мощные аккумуляторные батареи. Ведь для того, чтобы запустить остановившееся из-за аварии оборудование, необходимо электричество. У механизмов, без которых запуск оборудования электростанции невозможен, электродвигатели питаются от источников постоянного напряжения. А также – все устройства защиты, автоматики и управления.

Также на постоянном напряжении работает электрифицированный транспорт: трамваи, троллейбусы, метро. Электродвигатели постоянного тока имеют больший вращающий момент на низких скоростях вращения, что необходимо электропоезду для успешного трогания с места. Да и сама регулировка оборотов двигателя, а, следовательно, и скорости движения состава, проще реализуется на постоянном токе.

Источники: http://electric-220.ru/news/kakoj_tok_v_rozetke_peremennyj_ili_postojannyj/2016-08-14-1038, http://fb.ru/article/241111/chem-postoyannyiy-tok-otlichaetsya-ot-peremennogo-i-kak-preobrazovyivaetsya, http://voltland.ru/na-zametku/kakoj-tok-v-obychnoj-rozetke-postoyannyj-ili-peremennyj.html

Источник: http://electricremont.ru/postoyannyj-ili-peremennyj-tok.html

Какой ток в розетке – постоянный или переменный

Люди, мало-мальски знакомые с электротехникой, без труда ответят на вопрос о том, какой ток в розетке. Конечно же переменный. Этот вид электричества гораздо проще производить и передавать на большие расстояния, а потому выбор в пользу переменного тока очевиден.

Существует два вида тока — постоянный и переменный. Чтобы понять разницу и определить, постоянный или переменный ток находится розетке, следует вникнуть в некоторые технические особенности. Переменный ток имеет свойство изменяться по направлению и величине. Постоянный же ток обладает устойчивыми качествами и направлением передвижения заряженных частиц.

Переменный ток выходит из генераторов электростанции с напряжением, составляющим 220–440 тысяч вольт. При подходе к многоквартирному зданию ток уменьшается до 12 тысяч вольт, а на трансформаторной станции преобразуется в 380 вольт.

Совет

Напряжение между фазами именуют линейным. Низковольтный участок понижающей подстанции выдает три фазы и нулевой (нейтральный) провод. Подключение энергопотребителей осуществляется от одной из фаз и нулевого провода.

Таким образом, в здание заходит переменный однофазный ток с напряжением 220 вольт.

Схема распределения электроэнергии между домами представлена ниже:

В жилище электричество поступает на счетчик, а далее — через автоматы на коробки каждого помещения. В коробках имеется разводка по комнате на пару цепей — розеточную и осветительной техники.

Автоматы могут предусматриваться по одному для каждого помещения или по одному для каждой цепи.

С учетом того, на сколько ампер рассчитана розетка, она может быть включена в группу или быть подключенной к выделенному автомату.

Переменный ток составляется примерно 90% всей потребляемой электроэнергии. Столь высокий удельный вес вызван особенностями этого вида тока — его можно транспортировать на значительные расстояния, изменяя на подстанциях напряжение до нужных параметров.

Источниками постоянного тока чаще всего являются аккумуляторные батареи, гальванические элементы, солнечные панели, термопары.

Постоянный ток широко используется в локальных сетях автомобильного и воздушного транспорта, в компьютерных электросхемах, автоматических системах, радио- и телевизионной аппаратуре.

Постоянный ток применяется в контактных сетях железнодорожного транспорта, а также на корабельных установках.

На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами.

к содержанию ↑

Параметры домашней электрической сети

Основными параметрами электричества являются его напряжение и частота. Стандартное напряжение для домашних электросетей — 220 вольт. Общепринятая частота — 50 герц. Однако в США используется другое значение частоты — 60 герц. Параметр частоты задается генерирующим оборудованием и является неизменным.

Напряжение в сети конкретного дома или квартиры может быть отличным от номинала (220 вольт). На данный показатель влияет техническое состояние оборудования, сетевые нагрузки, загруженность подстанции. В результате напряжение может отклоняться от заданного параметра в ту или другую сторону на 20–25 вольт.

к содержанию ↑

Токовая нагрузка

Все розетки имеют определенную маркировку, по которой можно судить о допустимой токовой нагрузке. Например, обозначение «5A» указывает на максимальную силу тока в 5 ампер. Допустимые показатели следует соблюдать, поскольку в противном случае возможен выход оборудования из строя, в том числе его возгорание.

Маркировка на розетках показана на рисунке внизу:

Ко всем легально продаваемым электроприборам прилагается паспорт, где указана потребляемая мощность или номинал токовой нагрузки.

Крупнейшими потребителями электроэнергии являются такие электробытовые приборы, как кондиционеры, микроволновые печи, стиральные машины, кухонные электроплиты и духовки.

Таким приборам для нормальной работы понадобится розетка с нагрузкой не меньше 16 ампер.

Обратите внимание

Если же в документации к электробытовой технике отсутствуют сведения о потребляемых амперах (сила тока в розетке), определение нужных величин осуществляется по формуле электрической мощности:

Показатель мощности имеется в паспорте, напряжение сети известно. Чтобы определить потребление электричества, нужно показатель мощности (указывается только в ваттах) разделить на величину напряжения.

к содержанию ↑

Разновидности розеток

Розетки предназначены для создания контакта между электрической сетью и бытовой техникой. Они изготовлены так, чтобы обеспечить надежную защиту от случайных прикосновений к токоведущим элементам. Современные модели чаще всего оснащены защитным заземлением, представленным в виде отдельного контакта.

По способу монтажа существует два вида розеток — открытые и скрытые. Выбор разновидности розетки во многом определяется типом монтажа.

К примеру, при организации наружной проводки используют накладные открытые розетки. Такая фурнитура проста в монтаже и не нуждается в нишах для подрозетников.

Встроенные же модели более привлекательны с эстетической точки зрения и более безопасны, поскольку токоведущие элементы находятся внутри стены.

Розетки отличаются по токовой величине. Большая часть устройств предназначена для работы с 6, 10 или 16 амперами. Старые образцы советского производства рассчитаны только на 6,3 ампера.

к содержанию ↑

Методы измерения напряжения и тока

Чтобы измерить показатели напряжения и тока применяются следующие способы:

  1. Наиболее простой метод — подключение к розетке электрического прибора соответствующего напряжения. Если в розетке есть ток, электроприбор будет функционировать.
  2. Индикатор напряжения. Это приспособление может быть однополюсным и представлять собой специальную отвертку. Также выпускаются двухполюсные индикаторы с парой контакторов. Однополюсное устройство определяет фазу в розеточном контакте, но не обнаруживает наличие или отсутствие нуля. Двухполюсный же индикатор показывает ток между фазами, а также между нулем и фазой.
  3. Мультиметр (мультитестер). С помощью специального тестера проводятся измерения любого типа тока, присутствующего в розетке — как переменного, так и постоянного. Также мультиметром проверяют уровень напряжения.
  4. Контрольная лампа. С помощью лампы определяют наличие электричества в розетке при условии, что лампочка в контрольном приборе соответствует напряжению в тестируемой розетке.

Перечисленной выше информации вполне достаточно для общего понимания принципов организации электрической сети в доме. Приступать к проведению любых электротехнических работ следует только с соблюдением всех мер безопасности и при наличии соответствующей квалификации.

Какой ток в розетке – постоянный или переменный

Источник: https://220.guru/electroprovodka/rozetki-vyklyuchateli/kakoj-tok-v-rozetke.html

Как получают переменный электрический ток

Переменный ток – единственный на сегодняшний день способ дешевой передачи электроэнергии на расстояния. Он превосходит постоянный ток по ряду параметров, в том числе и по простоте трансформации. В этой статье мы расскажем, как получают переменный электрический ток в быту и на производстве.

Электромагнитная индукция и закон Фарадея

Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки.

Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась.

Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.

Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.

Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.

Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.

На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.

e = B*l*v*sinα

Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.

Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.

Способы получения переменного тока

Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.

Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше.

При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков.

Таким образом получается не рамка, а катушка.

Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.

По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.

В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.

На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока — ГПТ) или от полупроводникового возбудителя через щеточный аппарат.

Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя.

Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.

Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз.

Совет

Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи.

Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.

Электронные преобразователи

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В. Его можно использовать для питания различных нагревателей и ламп накаливания.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах.

Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX — первой половине XX века.

Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Обратите внимание

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

Наверняка вы не знаете:

Источник: https://samelectrik.ru/kak-poluchayut-peremennyj-elektricheskij-tok.html

Отличие постоянного тока от переменного и их особенности

Не первое десятилетие продолжаются споры, какой же вид тока опаснее — переменный или постоянный. Одни утверждают, что именно выправленное напряжение несет большую угрозу, другие искренне убеждены, что синусоида переменного тока, совпав по амплитуде с биением человеческого сердца, останавливает его.

Но, как всегда бывает в жизни, сколько людей — столько и мнений. А потому, стоит взглянуть на этот вопрос чисто с научной точки зрения. Но сделать это стоит языком, понятным даже для чайников, т.к. не у каждого имеется электротехническое образование.

При этом, наверняка любому хочется узнать происхождение постоянного и переменного тока.

С чего же стоит начать? Да, наверное, с определений — что же такое электричество, почему его называют переменным либо постоянным, какой из этих видов опаснее и почему.

Большинству известно, что постоянный ток можно получить от различных блоков или элементов питания, а переменный поступает в квартиры и помещения посредством электросети и благодаря ему работают бытовые электроприборы и освещение. Но мало кто задумывался, почему одно напряжение позволяет получить другое и для чего это нужно.

Имеет смысл ответить на все возникшие вопросы.

Что такое электрический ток?

Электрическим током называют постоянную или переменную величину, которая возникает на основе направленного или упорядоченного движения, создаваемого заряженными частицами — в металлах это электроны, в электролите — ионы, а в газе — и те, и другие. Иными словами, говорят, что электрический ток «течет» по проводам.

Таблица величин

Некоторые ошибочно полагают, что каждый заряженный электрон двигается по проводнику от источника до потребителя. Это не так. Он лишь передает заряд на соседние электроны, сам оставаясь на месте. Т.е. его движение хаотично, но микроскопично. Ну а уже сам заряд, двигаясь по проводнику, достигает потребителя.

Электрический ток имеет такие параметры измерения, как: напряжение, т.е. его величина, измеряющаяся в вольтах (В) и сила тока, которая измеряется в амперах (А). Что очень важно, при трансформации, т.е.

уменьшении или увеличении при помощи специальных устройств, одна величина воздействует на другую обратно пропорционально.

Это значит, что уменьшив напряжение посредством обычного трансформатора, добиваются увеличения силы тока и наоборот.

Ток постоянный и переменный

Первое, что следует понять — это разницу между постоянным и переменным током. Дело в том, что переменный ток не только проще получить, хотя это тоже немаловажно.

Его характеристики позволяют передачу на любые расстояния по проводникам с наименьшими потерями, особенно при более высоком напряжении и меньшей его силе. Именно поэтому линии электропередач между городами являются высоковольтными.

А уже в населенных пунктах ток трансформируется в более низкое напряжение.

А вот постоянный ток очень просто получить из переменного, для чего используют разнонаправленные диоды (т.н. диодный мост). Дело в том, что переменный ток (АС), вернее частота его колебаний, представляет собой синусоиду, которая, проходя через выпрямитель, теряет часть колебаний. Тем самым на выходе получается постоянное напряжение (АС), не имеющее частоты.

Имеет смысл конкретизировать, чем же, все-таки, они отличаются.

Простейший генератор переменного тока

Различия токов

Конечно же, главным различием переменного и постоянного тока является возможность переправки DC на большое расстояние.

При этом, если таким же путем переправить постоянный ток, его просто не останется. По причине разности потенциалов он израсходуется.

Так же стоит отметить то, что преобразовать в переменный очень сложно, в то время как в обратном порядке подобное действие вполне легко выполнимо.

Намного экономичнее преобразование электричества в механическую энергию именно при помощи двигателей, работающих от АС, хотя и имеются области, в которых возможно применение механизмов только прямого тока.

Важно

Ну и последнее по очереди, но не по смыслу — все-таки переменный ток безопаснее для людей. Именно по этой причине все приборы, используемые в быту и работающие от DC, являются слаботочными. А вот совсем отказаться от применения более опасного в пользу другого никак не получится именно по указанным выше причинам.

Все изложенное приводит к обобщенному ответу на вопрос, чем отличается переменный ток от постоянного — это характеристики, которые и влияют на выбор того или иного источника питания в определенной сфере.

Передача тока на большие расстояния

У некоторых людей возникает вопрос, на который выше был дан поверхностный ответ: почему по линиям электропередач (ЛЭП) приходит очень высокое напряжение? Если не знать всех тонкостей электротехники, то можно согласиться с этим вопросом. Действительно, ведь если бы по ЛЭП приходило напряжение в 380 В, то не пришлось бы устанавливать дорогостоящие трансформаторные подстанции. Да и на их обслуживание тратиться не пришлось бы, разве не так? Оказывается, что нет.

Построение графика переменного тока

Дело в том, что сечение проводника, по которому протекает электричество, зависит только от силы тока и от его потребляемой мощности и совершенно в стороне от этого остается напряжение. А это значит, что при силе тока в 2 А и напряжении в 25 000 В можно использовать тот же провод, как и для 220 В с теми же 2 А. Так что же из этого следует?

Здесь необходимо вернуться к закону обратной пропорциональности — при трансформации тока, т.е. увеличении напряжения, уменьшается сила тока и наоборот. Таким образом, высоковольтный ток отправляется к трансформаторной подстанции по более тонким проводам, что обеспечивает и меньшие потери при передаче.

Особенности передачи

Как раз в потерях и состоит ответ на вопрос, почему невозможно передать постоянный ток на большие расстояния. Если рассмотреть DC под этим углом, то именно по этой причине через небольшой отрезок расстояния электроэнергии в проводнике не останется. Но главное здесь не энергопотери, а их непосредственная причина, которая заключается, опять же, в одной из характеристик AC и DC.

Дело в том, что частота переменного тока в электрических сетях общего пользования в России — 50 Гц (герц). Это означает амплитуду колебания заряда между положительным и отрицательным, равную 50 изменений в секунду. Говоря простым языком, каждую 1/50 с.

заряд меняет свою полярность, в этом и заключается отличие постоянного тока — в нем колебания практически либо совершенно отсутствуют. Именно по этой причине DC расходуется сам по себе, протекая через длинный проводник.

Кстати, частота колебаний, к примеру, в США отличается от российской и составляет 60 Гц.

График разности постоянного и переменного тока

Генерирование

Очень интересен вопрос и о том, как же генерируется постоянный и переменный ток. Конечно, вырабатывать можно как один, так и другой, но здесь встает проблема размеров и затрат. Дело в том, что если для примера взять обычный автомобиль, ведь куда проще было бы поставить на него генератор постоянного тока, исключив из схемы диодный мост. Но тут появляется загвоздка.

Если убрать из автомобильного генератора выпрямитель, вроде бы должен уменьшиться и объем, но этого не произойдет. А причина тому — габариты генератора постоянного тока. К тому же и стоимость при этом существенно увеличится, потому и применяются переменные генераторы.

Вот и получается, что генерировать DC намного менее выгодно, чем АС, и тому есть конкретное доказательство.

Два великих изобретателя в свое время начали так называемую «войну токов», которая закончилась только лишь в 2007 году.

Совет

А противниками в ней были Никола Тесла совместно с Джорджем Вестингаузом, ярые сторонники переменного напряжения, и Томас Эдисон, который стоял за применение повсеместно постоянного тока.

Так вот, в 2007 году город Нью-Йорк полностью перешел на сторону Теслы, ознаменовав тем самым его победу. На этом стоит немного подробнее остановиться.

История

Компания Томаса Эдисона, которая называлась «Эдисон Электрик Лайт», была основана в конце 70-х годов XIX века. Тогда, во времена свечей, керосиновых ламп и газового освещения лампы накаливания, выпускаемые Эдисоном, могли работать непрерывно 12 часов.

И хотя сейчас этого может показаться до смешного мало — это был настоящий прорыв.

Но уже в 1880-е годы компания смогла не только запатентовать производство и передачу постоянного тока по трехпроводной системе (это были «ноль», «+110 В» и «-110 В»), но и представить лампу накаливания с ресурсом в 1200 часов.

Никола Тесла

Именно тогда и родилась фраза Томаса Эдисона, которая впоследствии стала известна всему миру, — «Мы сделаем электрическое освещение настолько дешевым, что только богачи будут жечь свечи».

Ну а уже к 1887-му в Соединенных Штатах успешно функционирует больше 100 электростанций, которые вырабатывают постоянный ток и где используется для передачи именно трехпроводная система, которая применяется в целях хотя бы небольшого снижения потерь электроэнергии.

А вот ученый в области физики и математики Джордж Вестингауз после ознакомления с патентом Эдисона нашел одну очень неприятную деталь — это была огромная потеря энергии при передаче.

В то время уже существовали генераторы переменного тока, которые не пользовались популярностью по причине оборудования, которое бы на подобной энергии работало.

В то время талантливый инженер Никола Тесла еще работал у Эдисона в компании, но однажды, когда ему было в очередной раз отказано в повышении зарплаты, Тесла не выдерживал и ушел работать к конкуренту, которым являлся Вестингауз. На новом месте Никола (в 1988 году) создает первый прибор учета электроэнергии.

Именно с этого момента и начинается та самая «война токов».

Выводы

Попробуем обобщить изложенную информацию. На сегодняшний день невозможно представить пользование (как в быту, так и на производствах) каким-то одним из видов электричества — практически везде присутствует и постоянный, и переменный ток. Ведь где-то необходим постоянный, но его передача на дальние расстояния невозможна, а где-то переменный.

Конечно, доказано, что АС намного безопаснее, но как быть с приборами, помогающими экономить электроэнергию во много раз, в то время как они могут работать только на DC?

Именно по этим причинам сейчас токи «мирно сосуществуют» в нашей жизни, закончив «войну», которая продлилась более 100 лет. Единственное, что не стоит забывать — насколько бы одно ни было безопаснее другого (постоянное, переменное напряжение — не важно), оно может нанести огромный вред организму, вплоть до летального исхода.

Обратите внимание

И именно поэтому при работе с напряжением необходимо тщательно соблюдать все нормы и правила безопасности и не забывать про внимательность и аккуратность. Ведь, как говорил Никола Тесла, электричества не стоит бояться, его стоит уважать.

Источник: https://domelectrik.ru/baza/teoriya/peremennyy-i-postoyannyy-tok

Чем отличается постоянный ток от переменного

Постоянный и переменный ток

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный.

                                                                                                                                   Чем отличается переменный ток от постоянного?                                                       Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении  любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу.

На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос.

                                                                                                                        Важная особенность постоянного электрического тока – это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках.

                                                                                        Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств. 

 

Переменный ток

 (Alternating Current) или АС английская аббревиатура  обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических  аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~».

                              Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.

                                                                         На рисунке обратное направление – это область графика ниже нуля.

 Теперь давай разберемся, что такое частота.  Частота это – период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц.

Важно

                                                                                                                                      Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

       Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду – это и есть, частота переменного тока.

 Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный?  Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов.

                                                                                                                    Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт.

Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны.

Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.            

 Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно  подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”.  Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

   что такое диод  и как работает диодный мост , ты можешь узнать в моих следующих статьях.

Источник: http://slojno.net/peremennyy-i-postoyannyy-tok/

Что такое переменный ток и чем он отличается от тока постоянного

Переменный ток, в отличие от тока неизменного, безпрерывно меняется как по величине, так и по направлению, при этом конфигурации эти происходят временами, т. е. точно повторяются через равные промежутки времени.

Чтоб вызвать в цепи таковой ток, употребляются источники переменного тока, создающие переменную ЭДС, временами изменяющуюся по величине и направлению.
Такие источники именуются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простого генератора переменного тока.

Прямоугольная рамка, сделанная из медной проволоки, укреплена на оси и с помощью ременной передачи крутится в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь совместно с рамкой, скользят по контактным пластинам (щеткам).

Набросок 1. Схема простого генератора переменного тока

Убедимся в том, что такое устройство вправду является
источником переменной ЭДС.

Представим, что магнит делает меж своими полюсами равномерное магнитное поле, т. е. такое, в каком плотность магнитных силовых линий в хоть какой части поля однообразная.

Совет

вращаясь, рамка пересекает силовые полосы магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС.

Стороны же в и г рамки — нерабочие, потому что при вращении рамки они не пересекают силовых линий магнитного поля и, как следует, не участвуют в разработке ЭДС.

В хоть какой момент времени ЭДС, возникающая в стороне а, обратна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом несложно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки.

Для этого нужно ладонь правой руки расположить так, чтоб она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в какой мы желаем найти направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке.

При всем этом с каждым оборотом рамки направление общей ЭДС меняется в ней на оборотное, потому что любая из рабочих сторон рамки за один оборот проходит под различными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также меняется, потому что меняется скорость, с которой стороны рамки пересекают силовые полосы магнитного поля.

Вправду, в то время, когда рамка подходит к собственному вертикальному положению и проходит его, скорость скрещения силовых линий сторонами рамки бывает большей, и в рамке индуктируется большая ЭДС.

В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны вроде бы скользят повдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Обратите внимание

Таким макаром, при равномерном вращении рамки в ней будет индуктироваться ЭДС, временами изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для сотворения тока во наружной цепи.

Используя явление электрической индукции, можно получить переменную ЭДС и, как следует, переменный ток.

Переменный ток для промышленных целей и для освещения вырабатывается сильными генераторами, приводимыми во вращение паровыми либо водяными турбинами и движками внутреннего сгорания.

Графическое изображение неизменного и переменного токов

Графический способ дает возможность наглядно представить процесс конфигурации той либо другой переменной величины зависимо от времени.

Построение графиков переменных величин, меняющихся со временем, начинают с построения 2-ух взаимно перпендикулярных линий, именуемых осями графика. Потом на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в неком масштабе, — значения той величины, график которой собираются выстроить (ЭДС, напряжения либо тока).

На рис. 2 графически изображены неизменный и переменный токи. В этом случае мы откладываем значения тока, при этом ввысь по вертикали от точки скрещения осей О откладываются значения тока 1-го направления, которое принято именовать положительным, а вниз от этой точки — обратного направления, которое принято именовать отрицательным.

Набросок 2. Графическое изображение неизменного и переменного
тока

Сама точка О служит сразу началом отсчета значений тока (по вертикали вниз и ввысь) и времени (по горизонтали на право). По другому говоря, этой точке соответствует нулевое
значение тока и тот исходный момент времени, от которого мы намереваемся проследить, как в предстоящем будет изменяться ток.

Важно

Убедимся в корректности построенного на рис. 2, а графика неизменного
тока величиной 50 мА.

Потому что этот ток неизменный, т. е. не меняющий со временем собственной величины и направления, то разным моментам времени будут соответствовать одни и те же значения тока, т. е.
50 мА.

Как следует, в момент времени, равный нулю, т. е. в исходный момент нашего наблюдения за током, он будет равен 50 мА.

Отложив по вертикальной оси ввысь отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы должны сделать и для последующего момента
времени, соответственного точке 1 на оси времени, т. е. отложить от этой точки вертикально ввысь отрезок, также равный 50 мА. Конец отрезка обусловит нам вторую точку графика.

Проделав схожее построение для нескольких следующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением неизменного тока величиной 50 мА.

Построение графика переменной ЭДС

Перейдем сейчас к исследованию графика переменной ЭДС. На рис. 3 в верхней части показана рамка, крутящаяся в магнитном поле, а понизу дано графическое

изображение возникающей переменной ЭДС.

Набросок 3. Построение графика переменной ЭДС

Начнем умеренно крутить рамку по часовой стрелке и проследим за ходом конфигурации в ней ЭДС, приняв за исходный момент горизонтальное положение рамки.

Совет

В этот исходный момент ЭДС будет равна нулю, потому что стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответственное моменту
t = 0, изобразится точкой 1.

При предстоящем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до того времени, пока рамка не достигнет собственного вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся ввысь кривой, которая добивается собственной верхушки

(точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и свалится до нуля. На графике это изобразится спадающей плавной кривой.

Как следует, за время, соответственное половине оборота рамки, ЭДС в ней успела возрасти от нуля до большей величины и вновь уменьшиться до нуля (точка 3).

При предстоящем вращении рамки в ней вновь возникнет ЭДС и будет равномерно возрастать по величине, но направление ее уже поменяется на оборотное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и размещается сейчас ниже этой оси. ЭДС растет опять-таки до того времени, пока рамка не займет вертикальное положение.

Потом начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка возвратится в свое первоначальное положение, совершив один полный оборот.

На графике это выразится тем, что кривая ЭДС, достигнув в оборотном направлении собственной верхушки (точка 4), повстречается потом с осью времени (точка 5).

Обратите внимание

На этом завершается один цикл конфигурации ЭДС, но если продолжать вращение рамки, тотчас же начинается 2-ой цикл, в точности повторяющий 1-ый, за которым, в свою очередь, последует 3-ий, а позже 4-ый, и так до того времени, пока мы не остановим вращение рамки.

Таким макаром, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл собственного конфигурации.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Приобретенная нами волнообразная кривая именуется синусоидой, а ток, ЭДС либо напряжение, изменяющиеся по такому закону, именуются
синусоидальными.

Сама кривая названа синусоидой поэтому, что она является графическим изображением переменной тригонометрической величины, именуемой синусом.

Синусоидальный нрав конфигурации тока — часто встречающийся в электротехнике, потому, говоря о переменном токе,
почти всегда имеют в виду синусоидальный ток.

Для сопоставления разных переменных токов (ЭДС и напряжений) есть величины, характеризующие тот либо другой ток. Они именуются
параметрами переменного тока.

Период, амплитуда и частота — характеристики переменного тока

Переменный ток характеризуется 2-мя параметрами — периодом и
амплитудой, зная которые мы можем судить, какой это переменный ток, и выстроить график тока.

Набросок 4. Кривая синусоидального тока

Важно

Просвет времени, в протяжении которого совершается
полный цикл конфигурации тока, именуется периодом. Период обозначается буковкой
Т и измеряется в секундах.

Просвет времени, в протяжении которого совершается половина полного цикла конфигурации тока, именуется полупериодом.
Как следует, период конфигурации тока (ЭДС либо напряжения) состоит из 2-ух полупериодов.
Совсем разумеется, что все периоды 1-го и такого же переменного тока равны меж собой.

Как видно из графика, в течение 1-го периода собственного конфигурации ток добивается два раза наибольшего значения.

Наибольшее значение переменного тока (ЭДС либо напряжения) именуется его амплитудой либо амплитудным значением тока.

Im, Em и Um — принятые обозначения амплитуд тока, ЭДС и напряжения.

Мы сначала направили внимание на амплитудное значение тока, но, как это видно из графика, существует бессчетное огромное количество промежных его значений, наименьших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответственное хоть какому избранному моменту времени, именуется его моментальным значением.

i, е и u — принятые обозначения моментальных значений тока, ЭДС и напряжения.

Секундное значение тока, как и амплитудное его значение, просто найти при помощи графика. Для этого из хоть какой точки на горизонтальной оси, соответственной интересующему нас моменту времени, проведем вертикальную линию до точки скрещения с кривой тока; приобретенный отрезок вертикальной прямой обусловит значение тока на этот момент, т. е. секундное его значение.

Разумеется, что секундное значение тока по истечении времени
Т/2 от исходной точки графика будет равно нулю, а по истечении времени —
T/4 его амплитудному значению. Ток также добивается собственного амплитудного значения; но уже в оборотном на
правлении, по истечении времени, равного 3/4 Т.

Совет

Итак, график указывает, как со временем изменяется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При всем этом значение тока на этот момент времени в одной точке цепи будет точно таким же в хоть какой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, именуется
частотой переменного тока и обозначается латинской буковкой
f.

Чтоб найти частоту переменного тока, т. е. выяснить, сколько периодов собственного конфигурации ток сделал в течение 1 секунды, нужно 1 секунду поделить на время 1-го периода
f = 1/T. Зная частоту переменного тока, можно найти период:
T = 1/f

Частота переменного тока измеряется единицей, именуемой герцем.

Если мы имеем переменный ток, частота конфигурации которого равна 1 герцу, то период такового тока будет равен 1 секунде.

И, напротив, если период конфигурации тока равен 1 секунде, то частота такового тока равна 1 герцу.

Итак, мы обусловили характеристики переменного тока — период, амплитуду и частоту, — которые позволяют отличать друг от друга разные переменные токи, ЭДС и напряжения и строить, когда это нужно, их графики.

При определении сопротивления разных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так именуемую угловую либо радиальную частоту.

Радиальная частота обозначается буковкой
ω и связана с частотой
f соотношением  ω
= 2πf

Поясним эту зависимость. При построении графика переменной ЭДС мы лицезрели, что за время 1-го полного оборота рамки происходит полный цикл конфигурации ЭДС. По другому говоря, для того чтоб рамке сделать один оборот, т. е.

Обратите внимание

оборотиться на 360°, нужно время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота.

Как следует, 360°/T есть угол, на который

поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято именовать угловой либо радиальный скоростью.

Но потому что период Т связан с частотой f соотношением f=1/T,
то и радиальная скорость может быть выражена через частоту и будет равна
ω = 360°f.

Итак, мы сделали вывод, что
ω = 360°f. Но для удобства использования радиальный частотой при различных расчетах угол 360°, соответственный одному обороту, подменяют его круговым выражением, равным 2π радиан, где π=3,14.
Таким макаром, совсем получим
ω = 2πf. Как следует, чтоб найти радиальную частоту переменного тока (ЭДС либо напряжения), нужно частоту в герцах помножить на неизменное число 6,28.

Источник: http://elektrica.info/chto-takoe-peremenny-j-tok-i-chem-on-otlichaetsya-ot-toka-postoyannogo/

Принцип получения переменного тока: однофазного и трехфазного

Несмотря на то что многие приборы работают на постоянном токе, вся энергосистема страны построена на переменном.

Последний обладает рядом преимуществ: простота трансформации, низкая стоимость генераторов и двигателей. Как же происходит получение переменного тока?

Принцип получения переменного тока

Преобразование механической энергии в электрическую происходит за счет электромагнитной индукции. Это явление состоит в следующем: если магнитный поток (МП), пересекающий проводник, изменить, в дальнейшем возникнет электродвижущая сила (ЭДС). Добиться изменения МП можно путем перемещения проводника в магнитном поле.

Электродвижущая сила источника тока

ЭДС при этом равна Е = B * L * V * sin α, где:

  • B — индукция МП, Гн;
  • L — длина проводника, м;
  • V — скорость движения сердечника относительно поля, м/с;
  • α — угол между вектором скорости проводника и силовыми линиями поля.

Направление ЭДС определяют по правилу правой руки: если расположить ее так, чтобы силовые линии поля входили в ладонь, а отогнутый под прямым углом большой палец указывал направление движения проводника, 4 соединенных пальца укажут направление ЭДС.

Способы

Таким образом, для получения переменного тока достаточно вращать в поле постоянного магнита проволочную рамку с подсоединенной к ее концам электрической цепью. Источником энергии выступает сила, вращающая рамку и преодолевающая сопротивление магнитного поля.

Каждые пол-оборота проводники рамки меняют направление движения относительно полюсов магнита, соответственно, меняется и направление ЭДС в рамке.

Получение переменного тока

Угол между вектором скорости и силовыми линиями поля меняется по закону α = w*t, где:

  • W — угловая скорость вращения рамки, рад/с;
  • T — время, прошедшее с начального момента, когда вектор скорости был параллелен силовым линиям, с.

То есть ЭДС зависит от sin (wt): E = f (sin (wt)). Следовательно, график изменения значения ЭДС с течением времени имеет вид синусоиды. Вызванный этой ЭДС переменный ток называют, соответственно, синусоидальным.

 Описанный простейший генератор можно усовершенствовать:

  1. постоянный магнит меняют на электрический, размещая в статоре несколько катушек (обмотка возбуждения). В итоге получают равномерное магнитное поле и тем самым добиваются идеальной синусоидальности ЭДС (повышается качество работы приборов). Обмотку возбуждения питает маломощный генератор постоянного тока либо аккумулятор;
  2. вместо одной рамки размещают на роторе несколько: ЭДС кратно увеличивается. То есть ротор также представляет собой обмотку.

Проблемная часть такого генератора — подвижный контакт между вращающимся ротором и электрической цепью.

Он состоит из медного кольца и графитовых щеток, прижимаемых к кольцу пружинами. Чем выше мощность генератора, тем менее надежен этот узел: он искрит, быстро изнашивается. Поэтому в мощных промышленных генераторах, установленных на электростанциях, обмотки статора и ротора меняют местами: обмотку возбуждения размещают на роторе, а индуцирующую — на статоре.

Подвижный контакт остается, но из-за малой мощности обмотки возбуждений требования к нему снижаются. Частота промышленного переменного тока — 50 Гц. То есть напряжение периодически меняет направление и величину 50 раз в секунду или 3000 раз в минуту. При наличии 2-х полюсов в обмотке возбуждения для достижения такой частоты и ротор должен вращаться со скоростью 3000 об/мин.

В генераторах тепловых и атомных электростанций так и происходит. Но в гидроэлектростанциях вращать ротор с такой скоростью невозможно физически: движителем служит падающая вода, а ее скорость намного меньше скорости перегретого пара с давлением в 500 атм.

Кроме того, ротор гидростанции имеет огромные размеры и при частоте вращения в 3000 об/мин.

Его удаленные от центра участки двигались бы со скоростью сверхзвукового истребителя, что приведет к разрушению конструкции. Для сокращения количества оборотов увеличивают число пар полюсов в электромагните. Частота вращения при этом составит W = 3000 / n, где n — число пар полюсов. То есть при наличии 10-ти пар полюсов для генерации переменного тока с частотой 50 Гц ротор необходимо вращать со скоростью всего 300 об/мин, а при 20-ти парах — 150 об/мин.

В электротехнике практикуют и другой способ получения переменного тока — преобразованием постоянного. Применяется электронное устройство — инвертор, состоящее из силовых транзисторов, управляющей ими микросхемы и прочих элементов. На выходе инвертора можно получить переменное напряжение любой величины и частоты. Самые простые схемы выдают прямоугольное переменное напряжение, более сложные и дорогие — стабилизированное синусоидальное.

Примеры применения инверторов:

  • импульсные блоки питания и инверторные сварочные аппараты. Сетевой ток с частотой 50 Гц выпрямляется и затем подается на инвертор, дающий на выходе переменный ток с частотой 60-80 кГц. Назначение: при столь высокой частоте резко уменьшаются габариты трансформатора и потери в нем, то есть устройство в целом становится более компактным и экономичным;
  • автономные дизельные и бензиновые генераторы для питания оборудования, чувствительного к качеству напряжения. Дизель-генератор в чистом виде дает низкокачественный ток, поскольку при преобразовании нагрузки частота вращения вала у него меняется. Инвертор устраняет все эти колебания и дает на выходе стабильное, качественное напряжение;
  • ЛЭП на постоянном токе.

Передавать особенно значительные мощности на сверхбольшие расстояния по ряду причин выгоднее постоянным током, а не переменным. В конечной точке его преобразуют инвертором в переменный промышленной частоты и отправляют в местную энергосистему.

Механизм получения

Известно, что существует два вида переменного тока:

  1. однофазный;
  2. трехфазный.

Однофазное и трехфазное напряжение переменного тока

Стоит рассмотреть отличия в способах получения этих родов тока.

Однофазного

В 1-фазном генераторе все катушки индуцируемой обмотки подсоединены к одной линии. Питание потребителей осуществляется 2-жильным проводом (фаза и нейтраль). Напряжение в 1-фазной сети — 220 В.

Трехфазного

Индуцируемая обмотка 3-фазного генератора состоит из 3-х частей, расположенных на равном удалении друг от друга и подключенных каждая к своей линии. То есть угол между ними составляет 1200. В результате в каждой линии ток смещен по фазе относительно соседней на тот же угол.

Напряжение в каждой линии в распределительной сети составляет те же 220 В, но междуфазное напряжение из-за сдвига фаз образуется уже 380 В. В 3-фазном устройстве-потребителе, например, двигателе, также имеется три цепи, соединенные в 1-й точке («звезда») или в 3-х («треугольник»).

Такая нагрузка называется симметричной и для ее подключения нейтральный провод вообще не нужен: токи каждой фазы в общих точках взаимно гасятся. Но зачастую нагрузка бывает асимметричной: помимо 3-фазных отдельными фазами запитывают 1-фазных потребителей.

Тогда токи в фазах неодинаковы и взаимного погашения не случится — нужен хотя бы 1 нейтральный провод.

Основные преимущества 3-фазного электроснабжения:

  • упрощается передача большой мощности.
  • появляется возможность создавать вращающееся магнитное поле в электродвигателях.

На промышленных электростанциях стоят только 3-фазные генераторы.

При обрыве нейтрального провода на подключенные к разным фазам 1-фазные потребители подается напряжение в 380 В, что приводит к их поломке. Потому в странах Запада нейтральным проводом оснащают каждую фазу. У нас же из-за экономии пока применяют один общий.

Видео по теме

О получении и передаче переменного электрического тока в видео:

В начале XX века развернулась азартная дискуссия между Т. Эдисоном и Н. Теслой по поводу того, на каком токе правильнее строить энергосистему — постоянном или переменном. В споре победил Никола Тесла, потому розетки в наших домах «поставляют» переменное напряжение. Как видно из данной статьи, получают его довольно простым способом.

Выбор сварочного аппарата на постоянном токе (CC) для учебных целей

Выбор сварочного аппарата постоянным током (CC) DC для учебных целей Меню
  • Оборудование
    • Сварщики
    • Механизмы подачи проволоки
    • Сварочный интеллект
    • Автоматизация
    • Плазменные резаки
    • Газовое оборудование
    • Газовый контроль
    • Индукционный нагрев
    • Удаление дыма
    • Тренировочное оборудование
  • Технологии
    • Легкость использования
    • Продуктивность
    • Оптимизация и производительность
  • Безопасность
    • Голова и лицо
    • Рука и тело
    • Сварочный дым
    • Перегрев
  • Аксессуары
    • Аксессуары
  • Расходные материалы
  • Отрасли
    • Отрасли
    • Приложения
  • Ресурсы
  • Служба поддержки
  • Около
  • Ресурсы
    • Руководства по сварке
    • Сварочное образование и обучение
    • Учебные материалы
    • Меры безопасности
    • Калькуляторы сварных швов
    • Часто задаваемые вопросы
    • Галерея проектов
    • Библиотека статей
    • Видео библиотека
    • Информационные бюллетени
    • Форумы
    • Подкаст - Сварка труб
    • Связаться с нами
  • Служба поддержки
    • Пункты обслуживания
    • Руководства и запчасти
    • Гарантия
    • Производители двигателей
    • Настройка системы
    • Программного обеспечения
    • Связаться с нами
    • Часто задаваемые вопросы
    • Регистрация продукта
    • Заказать литературу
  • Около
    • Наша компания
    • Карьера
    • Стипендии
    • Связаться с нами
    • Клуб владельцев
    • Выпуски новостей
    • Сертификаты
    • Связаться с нами
    • События
    • Роуд-шоу
    • Фирменные товары
    • Специальные предложения
    • новые продукты
  • Войти в систему
  • Где купить
  • Поиск Поиск

    Поиск

  • Оборудование Сварщики
    • МИГ (GMAW)
    • TIG (GTAW)
    • Палка (SMAW)
    • С приводом от двигателя
    • Многопроцессный
    • Мультиоператор
    • Затопленная дуга
    Механизмы подачи проволоки Сварочный интеллект

Учебный центр

Это не предложение или ходатайство в какой-либо юрисдикции, где мы не уполномочены вести бизнес или где такое предложение или ходатайство противоречили бы местным законам и постановлениям этой юрисдикции, включая, помимо прочего, лиц, проживающих в Австралии, Канаде. , Гонконг, Япония, Саудовская Аравия, Сингапур, Великобритания и страны Европейского Союза.

Волатильность рынка, объем и доступность системы могут задерживать доступ к счету и исполнение сделок.

Прошлая эффективность ценной бумаги или стратегии не является гарантией будущих результатов или успеха инвестирования.

Торговля акциями, опционами, фьючерсами и валютой предполагает спекуляцию, и риск потерь может быть значительным. Перед торговлей клиенты должны учитывать все соответствующие факторы риска, включая собственное финансовое положение. Маржинальная торговля иностранной валютой сопряжена с высоким уровнем риска, а также со своими уникальными факторами риска.

Опционы подходят не всем инвесторам, поскольку особые риски, присущие торговле опционами, могут подвергнуть инвесторов потенциально быстрым и значительным убыткам. Перед тем, как торговать опционами, вам следует внимательно ознакомиться с характеристиками и рисками стандартизированных опционов.

Спреды, стрэддлы и другие многоплановые опционные заказы, размещенные в Интернете, будут нести комиссию в размере 0,65 доллара США за контракт по каждой части. Заказы, размещенные другими способами, будут иметь дополнительные транзакционные издержки.

Торговля фьючерсами и фьючерсными опционами является спекулятивной и подходит не всем инвесторам.Пожалуйста, прочтите Уведомление о рисках для фьючерсов и опционов, прежде чем торговать фьючерсными продуктами.

Торговля на Форекс предполагает использование кредитного плеча, сопряжена с высоким уровнем риска и подходит не всем инвесторам. Пожалуйста, прочтите «Раскрытие информации о валютных рисках» перед тем, как торговать валютными продуктами.

Счета фьючерсов и форекс не защищены Корпорацией по защите инвесторов в ценные бумаги (SIPC).

Услуги по торговле фьючерсами, фьючерсами и форекс, предоставляемые TD Ameritrade Futures & Forex LLC.Торговые привилегии подлежат рассмотрению и утверждению. Не все клиенты подойдут. Счета Forex недоступны для жителей Огайо или Аризоны.

Доступ к рыночным данным в режиме реального времени возможен при принятии соглашений об обмене. Профессиональный доступ отличается, и может взиматься плата за подписку. Подробнее см. Наши профессиональные тарифы и сборы.

Подтверждающая документация для любых заявлений, сравнений, статистических или других технических данных будет предоставлена ​​по запросу.TD Ameritrade не дает рекомендаций и не определяет пригодность какой-либо безопасности, стратегии или курса действий для вас посредством использования вами наших торговых инструментов. Вы несете исключительную ответственность за любое инвестиционное решение, которое вы принимаете в своей самостоятельной учетной записи.

TD Ameritrade, Inc., член FINRA / SIPC.

TD Ameritrade Inc., член FINRA / SIPC. TD Ameritrade является товарным знаком, которым совместно владеют TD Ameritrade IP Company, Inc. и Toronto-Dominion Bank © 2020 TD Ameritrade IP Company, Inc.Все права защищены. Используется с разрешения.

Получить текущую дату и время »grokonez

пакет com.javasampleapproach.kotlin.datetime

импорт java.time.ZoneId

импорт java.time.ZonedDateTime

импорт java.time.LocalDate

импорт java.time

.LocalTime

import java.time.LocalDateTime

import java.time.format.DateTimeFormatter

import java.time.format.FormatStyle

fun main (args: Array 4

///////////////////////////////////////////////

/ / I.LocalDateTime - получить текущую дату и время

///////////////////////////////////////// ///////

println ("----------------------------- I -------- --------------------- ")

val currentDateTime = LocalDateTime.now ()

// формат по умолчанию - DateTimeFormatter.ISO_DATE_TIME

println (currentDateTime )

/ *

2018-01-25T13: 46: 52.125

* /

/ ********************** **********************

1.использовать определенную константу DateTimeFormatter

***************************************** ** /

println ("---------------------- 1 .------------------ ---------- ")

// формат

println (currentDateTime.format (DateTimeFormatter.BASIC_ISO_DATE))

/ *

20180125

* /

// DateTimeFormatter.ISO - формат по умолчанию

println (currentDateTime.format (DateTimeFormatter.ISO_DATE_TIME))

/ *

2018-01-25T13: 46: 52.125

* /

println (currentDateTime.format (DateTimeFormatter.ISO_DATE))

/ *

2018-01-25

* /

println (currentDateTimeDate) DateTime.Format

/ *

13: 52: 16.716

* /

/ ***************************** ***************

2. Используйте Pattern с DateTimeFormatter.ofPattern ()

******************** ************************ /

println ("-------------------- --2.---------------------------- ")

println (currentDateTime.format (DateTimeFormatter.ofPattern (" yyyy-MM-dd HH: mm: ss ")))

/ *

2018-01-25 14:02:15

* /

println (currentDateTime.format (DateTimeFormatter.ofPattern (" yyyy-MM-dd HH: mm ")))

/ *

2018-01-25 14:02

* /

/ ********************** **********************

3. Используйте языковой стандарт с DateTimeFormatter.ofLocalizedDate ()

******************************************* /

println ("---------------------- 3 .-------------------- -------- ")

//

// 3.1 только текущая дата

//

println (currentDateTime.format (DateTimeFormatter.ofLocalizedDate (FormatStyle.SHORT)))

/ *

25.01.18

* /

println (currentDateTime.format (DateTimeFormatter.ofLocalizedDate (FormatStyle.MEDIUM)))

/ *

25 января 2018 г.

* /

println (currentDateTime.format (DateTimeFormatter.ofLocalizedDate (FormatStyle.LONG)))

/ *

января 2018

* /

println (currentDateTime.format (DateTimeFormatter.ofLocalizedDate (FormatStyle.FULL)))

/ *

Четверг, 25 января 2018 г.

* /

//

.2 просто текущее время

//

println (currentDateTime.format (DateTimeFormatter.ofLocalizedTime (FormatStyle.SHORT)))

/ *

2:11 PM

* /

println. DateTimeFormatter.ofLocalizedTime (FormatStyle.MEDIUM)))

/ *

2:11:12 PM

* /

//

// 3.3 текущая дата и время

//

текущий

print ( .format (DateTimeFormatter.ofLocalizedDateTime (FormatStyle.SHORT)))

/ *

1/25/18 14:14 PM

* /

println (currentDateTime.format (DateTimeFormatter.ofLocalizedDate .MEDIUM)))

/ *

Четверг, 25 января 2018 г. 14:14:58

* /

/////////////////// //////////////////////////////////////

// II. LocalDate и LocalTime - получить текущую дату и время

/////////////////////////////////////// //////////////////

println ("--------------------------- --II ----------------------------- ")

val currentDate = LocalDate.now ()

println (currentDate.format (DateTimeFormatter.ofLocalizedDate (FormatStyle.FULL)))

/ *

Четверг, 25 января 2018 г.

* /

val currentTime = LocalTime.now ()

println (currentTime.format (DateTimeFormatter.ofLocalizedTime (FormatStyle.MEDIUM)))

/ *

2:19:41 PM

* /

///////////// ///////////////////////////////////////////

// III.ZonedDateTime - получить текущую дату и время с часовым поясом

///////////////////////////////////////// /////////////////

println ("---------------------------- -III ----------------------------- ")

val londonZone = ZoneId.of (" Европа / Лондон ")

val londonCurrentDateTime = ZonedDateTime.now (londonZone)

println (londonCurrentDateTime)

/ *

2018-01-25T07: 41: 02.296Z [Европа / Лондон]

* /

londonDate.format (DateTimeFormatter.ofLocalizedDateTime (FormatStyle.FULL, FormatStyle.MEDIUM))

println (londonDateAndTime)

/ *

Четверг, 25 января 2018 г. 7:40:34 AM

* /

//

// коллекция всех доступных зон

val allZoneIds = ZoneId.getAvailableZoneIds ()

println (allZoneIds)

/ *

[Asia / Aden, America / Cuiaba, Etc / GMT + 9, Etc / GMT + 8, Africa / Найроби, Америка / Мариго, Азия / Актау, Тихий океан / Кваджалейн, Америка / Эль_Сальвадор, Азия / Понтианак, Африка / Каир, Тихий океан / Паго-Паго, Африка / Мбабане, Азия / Кучинг, Тихий океан / Гонолулу, Тихий океан / Раротонга, Америка / Гватемала, Австралия / Хобарт, Европа / Лондон, Америка / Белиз, Америка / Панама, Азия / Чунцин, Америка / Манагуа, Америка / Индиана / Петербург, Азия / Ереван, Европа / Брюссель, GMT, Европа / Варшава, Америка / Чикаго, Азия / Кашгар, Чили / континентальный, Тихоокеанский / Яп, центральноевропейское время и т. Д. / GMT-1 и т. Д. / GMT-0, Европа / Джерси, Америка / Тегусигальпа и т. Д. / GMT-5 , Европа / Стамбул, Америка / Эйрунепе и т. Д. / GMT-4, Америка / Микелон и т. Д. / GMT-3, Европа / Люксембург и т. Д. / GMT-2 и т. Д. / GMT-9, Америка / Аргентина / Катамарка и т. Д. / GMT -8, Etc / GMT-7, Etc / GMT-6, Европа / Запорожье, Канада / Юкон, Канада / Атлантика, Атлантика / Сент-Хелена, Австралия / Тасмания, Ливия, Европа / Гернси, Америка / Гранд-Турк, США / Тихоокеанский регион - Новый , Азия / Самарканд, Америка / Аргентина / Кордова, Азия / Пномпен, Африка / Кигали, Азия / Алматы, США / Аляска, Азия / Дубай, Европа / Isle_of_Man, Америка / Арагуаина, Куба, Азия / Новосибирск, Америка / Аргентина / Сальта , Etc / GMT + 3, Africa / Tunis, Etc / GMT + 2, Etc / GMT + 1, Pacific / Fakaofo, Africa / Tripoli, Etc / GMT + 0, Израиль, Африка / Banjul, Etc / GMT + 7, Indian / Коморо и т. Д. / GMT + 6 и т. Д. / GMT + 5 и т. Д. / GMT + 4, Тихий океан / Порт_Моресби, США / Аризона, Антарктида / Сева, Индия / Реюньон, Тихий океан / Палау, Европа / Калининград, Америка / Монтевидео, Африка / Виндхук, Азия / Карачи, Африка / Могадишо, Австралия / Перт, Бразилия / Восток, Etc / GMT, Азия / Чита, Тихий океан / Пасха, Антарктида / Дэвис, Антарктика / Мак-Мердо, Азия / Макао, Америка / М Анаус, Африка / Фритаун, Европа / Бухарест, Азия / Томск, Америка / Аргентина / Мендоса, Азия / Макао, Европа / Мальта, Мексика / Баджасур, Тихий океан / Таити, Африка / Асмера, Европа / Бусинген, Америка / Аргентина / Rio_Gallegos, Африка / Малабо, Европа / Скопье, Америка / Катамарка, Америка / Годхаб, Европа / Сараево, Австралия / ACT, GB-Eire, Африка / Лагос, Америка / Кордова, Европа / Рим, Азия / Дакка, Индия / Маврикий, Тихий океан / Самоа, Америка / Реджайна, Америка / Форт-Уэйн, Америка / Доусон-Крик, Африка / Алжир, Европа / Мариехамн, Америка / Сент-Джонс, Америка / Сент-Томас, Европа / Цюрих, Америка / Ангилья, Азия / Дили, Америка / Денвер, Африка / Бамако, Великобритания, Мексика / Общий, Тихий океан / Уоллис, Европа / Гибралтар, Африка / Конакри, Африка / Лубумбаши, Азия / Стамбул, Америка / Гавана, Новая Зеландия, Азия / Чойбалсан, Америка / Порто-Акре, Азия / Омск, Европа / Вадуц, США / Мичиган, Азия / Дакка, Америка / Барбадос, Европа / Тирасполь, Атлантика / Кейп-Верде, Азия / Екатеринбург, Америка / Луисвилл, Тихий океан / Джонстон, Тихий океан / Чатем, Европа / Любляна, Америка / Сан-Паулу, Азия / Джаяпура , Америка / Кюрасао, Азия / Душанбе, Америка / Гайана, Америка / Гуаякиль, Америка / Мартиника, Португалия, Европа / Берлин, Европа / Москва, Европа / Кишинев, Америка / Пуэрто-Рико, Америка / Ранкин-Инлет, Тихий океан / Понапе, Европа / Стокгольм , Европа / Будапешт, Америка / Аргентина / Жужуй, Австралия / Евкла, Азия / Шанхай, Универсал, Европа / Загреб, Америка / Порт_Испании, Европа / Хельсинки, Азия / Бейрут, Азия / Тель-Авив, Тихий океан / Бугенвиль, США / Центральная, Африка / Sao_Tome, Indian / Chagos, America / Cayenne, Asia / Yakutsk, Pacific / Galapagos, Australia / North, Europe / Paris, Africa / Ndjamena, Pacific / Fiji, America / Rainy_River, Indian / Maldives, Australia / Yancowinna, SystemV / AST4 , Азия / Орал, Америка / Йеллоунайф, Тихий океан / Эндербери, Америка / Джуно, Австралия / Виктория, Америка / Индиана / Вевей, Азия / Ташкент, Азия / Джакарта, Африка / Сеута, Азия / Барнаул, Америка / Ресифи, Америка / Буэнос-Айрес , Америка / Норонья, Америка / Swift_Current, Австралия / Аделаида, Америка / Метлакатла, Африка / Джибути, Америка / Парамарибо, Европа / Симферополь, Европа / София, Африка Рика / Нуакшот, Европа / Прага, Америка / Индиана / Винсеннес, Антарктида / Моусон, Америка / Кралендейк, Антарктида / Тролль, Европа / Самара, Индиана / Рождество, Америка / Антигуа, Тихий океан / Гамбье, Америка / Индианаполис, Америка / Инувик, Америка / Икалуит, Тихий океан / Фунафути, UTC, Антарктика / Маккуори, Канада / Тихий океан, Америка / Монктон, Африка / Габороне, Тихий океан / Чуук, Азия / Пхеньян, Америка / Сент-Винсент, Азия / Газа, Etc / Universal, PST8PDT, Атлантика / Фареры, Азия / Кызылорда, Канада / Ньюфаундленд, Америка / Кентукки / Луисвилл, Америка / Якутат, Азия / Ho_Chi_Minh, Антарктида / Кейси, Европа / Копенгаген, Африка / Асмэра, Атлантика / Азорские острова, Европа / Вена, Республика Корея, Тихий океан / Питкэрн, Америка / Мазатлан, Австралия / Квинсленд, Тихий океан / Науру, Европа / Тиран, Азия / Калькутта, SystemV / MST7, Австралия / Канберра, MET, Австралия / Broken_Hill, Европа / Рига, Америка / Доминика, Африка / Абиджан, Америка / Мендоза, America / Santarem, Kwajalein, America / Asuncion, Asia / Ulan_Bator, NZ, America / Boise, Australia / Currie, EST5EDT, Pacific / Guam, Pacific / Wake, Atlantic / Бермудские острова, Америка / Коста-Рика, Америка / Доусон, Азия / Чунцин, Эйре, Европа / Амстердам, Америка / Индиана / Нокс, Америка / Северная Дакота / Беула, Африка / Аккра, Атлантика / Фарерские острова, Мексика / Баха Норте, Америка / Масейо и т. Д. / UCT, Pacific / Apia, GMT0, America / Atka, Pacific / Niue, Canada / East-Saskatchewan, Australia / Lord_Howe, Europe / Dublin, Pacific / Truk, MST7MDT, America / Monterrey, America / Nassau, America / Jamaica, Asia / Бишкек, Америка / Атикокан, Атлантика / Стэнли, Австралия / Новый Южный Уэльс, США / Гавайи, SystemV / CST6, Индия / Маэ, Азия / Актобе, Америка / Ситка, Азия / Владивосток, Африка / Либревиль, Африка / Мапуту, Зулу, Америка / Кентукки / Монтичелло, Африка / Эль-Аайун, Африка / Уагадугу, Америка / Корал-Харбор, Тихий океан / Маркизские острова, Бразилия / Запад, Америка / Аруба, Америка / Северная Дакота / Центр, Америка / Кайман, Азия / Улан-Батор, Азия / Багдад, Европа / Сан-Марино , America / Indiana / Tell_City, America / Tijuana, Pacific / Saipan, SystemV / YST9, Africa / Douala, America / Chihuahua, America / Ojinaga, Asia / Hovd, America / Anchorage, Chile / EasterIsland, America / H Алифакс, Антарктида / Ротера, Америка / Индиана / Индианаполис, США / Гора, Азия / Дамаск, Америка / Аргентина / Сан-Луис, Америка / Сантьяго, Азия / Баку, Америка / Аргентина / Ушуайя, Атлантика / Рейкьявик, Африка / Браззавиль, Африка / Порто-Ново, Америка / Ла-Паз, Антарктида / Дюмон-Дюрвиль, Азия / Тайбэй, Антарктика / Южный полюс, Азия / Манила, Азия / Бангкок, Африка / Дар_ес_Салаам, Польша, Атлантический океан / Мадейра, Антарктида / Палмер, Америка / залив Грома, Африка / Аддис-Абаба, Азия / Янгон, Европа / Ужгород, Бразилия / ДеНоронья, Азия / Ашхабад, Этк / Зулу, Америка / Индиана / Маренго, Америка / Крестон, Америка / Мексика_Город, Антарктида / Восток, Азия / Иерусалим, Европа / Андорра, США / Самоа, КНР, Азия / Вьентьян, Тихий океан / Киритимати, Америка / Матаморос, Америка / Блан-Саблон, Азия / Эр-Рияд, Исландия, Тихий океан / Понпеи, Азия / Уджунг-Панданг, Атлантика / Южная_Грузия, Европа / Лиссабон, Азия / Харбин, Европа / Осло, Азия / Новокузнецк, CST6CDT, Атлантика / Канарские острова, Америка / Knox_IN, Азия / Кувейт, SystemV / HST10, Тихий океан / Эфате, Африка / Ломе, Америка / Богота, Америка / Меномини, Америка / Адак, Тихий океан / Норфолк, Европа / Киров, Америка / Решительный, Тихий океан / Тарава, Африка / Кампала, Азия / Красноярск, Гринвич, SystemV / EST5, Америка / Эдмонтон, Европа / Подгорица, Австралия / Юг, Канада / Центральный, Африка / Бужумбура, Америка / Санто-Доминго, США / Восточная, Европа / Минск, Тихий океан / Окленд, Африка / Касабланка, Америка / Glace_Bay, Канада / Восточная, Азия / Катар, Европа / Киев, Сингапур, Азия / Магадан, SystemV / PST8, Америка / Порт-о-Пренс, Европа / Белфаст, Америка / Сент-Бартелеми, Азия / Ашхабад, Африка / Луанда, Америка / Нипигон, Атлантика / Ян_Майен, Бразилия / Акко, Азия / Маскат, Азия / Бахрейн, Европа / Вильнюс, Америка / Fortaleza, Etc / GMT0, США / Восточная Индиана, Америка / Эрмосильо, Америка / Канкун, Африка / Масеру, Тихий океан / Косра, Африка / Киншаса, Азия / Катманду, Азия / Сеул, Австралия / Сидней, Америка / Лима, Австралия / LHI, America / St_Lucia, Europe / Madrid, America / Bahia_Banderas, America / Montserrat, Asia / Brunei, America / Santa_Isabel, Canada / Mountain, America / Cambridge_Bay, Asia / Colombo, Australia / West, Indian / Antananari vo, Австралия / Брисбен, Индиана / Майотта, США / Индиана-Старк, Азия / Урумчи, США / Алеутские острова, Европа / Волгоград, Америка / Нижние княжества, Америка / Ванкувер, Африка / Блантайр, Америка / Рио-Бранко, Америка / Данмарксхавн, Америка / Детройт, Америка / Туле, Африка / Лусака, Азия / Гонконг, Иран, Америка / Аргентина / Ла-Риоха, Африка / Дакар, SystemV / CST6CDT, Америка / Тортола, Америка / Порто-Велхо, Азия / Сахалин и т. Д. / GMT + 10, Америка / Скорсбисунд, Азия / Камчатка, Азия / Тхимбу, Африка / Хараре, Etc / GMT + 12, Etc / GMT + 11, Навахо, Америка / Ном, Европа / Таллинн, Турция, Африка / Хартум, Африка / Йоханнесбург, Африка / Банги, Европа / Белград, Ямайка, Африка / Бисау, Азия / Тегеран, WET, Европа / Астрахань, Африка / Джуба, Америка / Кампо-Гранде, Америка / Белен и т. Д. / Гринвич, Азия / Сайгон, Америка / Энсенада, Тихий океан / Мидуэй, Америка / Жужуй, Африка / Тимбукту, Америка / Баия, Америка / Гусь-Бей, Америка / Вирджиния, Америка / Пангниртунг, Азия / Катманду, Америка / Феникс, Африка / Ниамей, Америка / Уайтхорс, Тихий океан / Нумеа, Азия / Тбилиси, Америка / Монреаль, Азия / Ма Кассар, Америка / Аргентина / Сан-Хуан, Гонконг, UCT, Азия / Никосия, Америка / Индиана / Винамак, SystemV / MST7MDT, Америка / Аргентина / ComodRivadavia, Америка / Boa_Vista, Америка / Гренада, Австралия / Дарвин, Азия / Хандыга, Азия / Куала-Лумпур, Азия / Фамагуста, Азия / Тхимпху, Азия / Рангун, Европа / Братислава, Азия / Калькутта, Америка / Аргентина / Тукуман, Азия / Кабул, Индия / Кокосовые острова, Япония, Тихоокеанский регион / Тонгатапу, Америка / Нью-Йорк и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *