Как проверить тиристор — Практическая электроника
Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.
Принцип работы тиристора
Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле — это электромеханическое изделие, а тиристор — чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами и соседкой тетей Валей килограммов под двести и вы перемещаетесь с этажа на этаж. Как же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?
В этом примере и основан принцип работы тиристора. Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.
Тиристоры выглядят как-то вот так:
А вот и схемотехническое обозначение тиристора
В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)
Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.
Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.
Параметры тиристоров
Давайте разберемся с некоторыми важными параметрами тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:
1) Uy — отпирающее постоянное напряжение управления — наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода — анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.
2) Uобр max — обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус — на анод.
3) Iос ср — среднее значение тока, которое может протекать через тиристор в прямом направлении без вреда для его здоровья.
Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.
Как проверить тиристор КУ202Н
Ну и наконец-то переходим к самому важному — проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор — КУ202Н.
А вот и его цоколевка
Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.
На анод подаем «плюс» от блока питания, на катод через лампочку «минус».
Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uy — отпирающее постоянное напряжение управления больше чем 0,2 Вольта. Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!
также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта
Убираем батарейку или щупы, лампочка должна продолжать гореть.
Мы открыли тиристор с помощью подачи на УЭ импульса напряжения. Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.
Как проверить тиристор мультиметром
Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:
Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает. На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.
После отпускания мультиметр снова показывает бесконечно большое сопротивление.
Почему же тиристор закрылся? Ведь лампочка в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.
Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.
Купить современный мультиметр можно тут.
Также советую глянуть видео про проверку тиристора и ток удержания:
youtube.com/embed/7xbYeEnrACI?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Как проверить тиристор мультиметром: особенности тестирования
Довольно большое распространение получили тиристоры. Они применяются при создании различных электрических приборов и мощных силовых установок. Особенности рассматриваемых полупроводников заключаются в том, что проверить их при применении мультиметра достаточно сложно. Для полноценной проверки нужно собрать сложную схему. Важно понимать, как проверить тиристор мультиметром, так как пробой и внутренний обрыв являются распространенными проблемами.
- Предварительная подготовка
- Тест на пробой
- Проверка открытого и закрытого положения
- Самодельный пробник
- Особенности процедуры
- Тестирование детали на плате
- Прозвонка динистора
- Определение исправности устройства
- Выбор мультиметра
Предварительная подготовка
Подобный измерительный прибор получил широкое распространение: применяется для определения различной информации. Предварительная подготовка предусматривает расшифровку спецификации, для чего достаточно рассмотреть маркировку на полупроводниковом изделии.
После определения типа изделия и цоколевки можно приступить к тесту пробоя при помощи мультиметра. В большинстве случаев проводится проверка на пробой, для чего изделие можно оставить на плате, поэтому на этом этапе не требуется паяльник.
Тест на пробой
Проверка тиристора начинается с определения пробоя. Рекомендуется начинать с предварительного тестирования, которое связано с измерением сопротивления между двумя выходами «А» и «К», «К» и «УЭ». Алгоритм действий имеет следующие особенности:
- Для тестирования применяется мультиметр. Его включают в режим «прозвонки», и снимаются показатели между двумя выводами «УЭ» и «К». Если устройство находится в хорошем техническом состоянии, то снятые показатели будут в диапазоне от 40 Ом до 0,55 кОм. Низкое значение может указывать на некоторые проблемы с устройством.
- Далее рекомендуется сменить положение щупов, и процесс повторяется. Снятые показатели должны соответствовать тем, которые были получены в первом случае.
- Следующий шаг заключается в измерении сопротивления между выводами «К» и «А». В этом случае показатель сопротивления должен стремиться к бесконечности. Значение может варьироваться в зависимости от полярности измерительного устройства. Низкий показатель указывает на то, что есть пробой в переходе. Для более точного результата рекомендуют выпаивать устройство, которое тестируется.
Проверка симистора мультиметром подобным образом не позволяет получить точный показатель. Немного усложнив процесс тестирования, можно существенно повысить точность полученных результатов.
Проверка открытого и закрытого положения
Тестирование на пробой не позволяет определить, есть ли внутренний обрыв. Именно поэтому применяемая схема существенно усложняется. Более точный показатель можно достигнуть следующим образом:
- Применяемый мультиметр переводится в режим «прозвонки», после чего к нему подключается тиристор. Щуп, который имеет черный провод, подключается к выводу «К», а красный к «А».
- При применении подобной схемы подключения измерительный прибор указывает бесконечное сопротивление.
- Следующий шаг заключается в подключении «УЭ» с выходом «А». В этом случае происходит частичное падение показателя сопротивления, и после обрыва соединения он снова стремится к значению бесконечности. Тока, проходящего через штыри измерительного прибора, недостаточно для сдерживания тиристора в закрытом состоянии.
Еще больше повысить точность измерений можно при сборке собственного измерительного прибора.
Самодельный пробник
Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.
Схема самодельного пробника представлена сочетанием следующих элементов:
- Лампочка небольшого размера с показателями 0,3 А и 6,3 В.
- Трансформатор со вторичной обмоткой 6,3 В. Рекомендуется использовать вариант исполнения ТН2.
- Диод выпрямительного типа с обратным напряжением около 10 Вольт и сопротивлением не менее 300 мА. Примером можно назвать вариант исполнения Д226.
- В схему также включается конденсатор, емкость которого составляет 1000 мкФ. Устройство должно быть рассчитано на напряжение 16 В.
- Создается сопротивление с номиналом 47 Ом.
- Предохранитель на 0,5 А. При применении мощного силового трансформатора следует повысить номинал предохранителя.
Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.
Особенности процедуры
Следует учитывать, что самодельная конструкция позволяет точно определить работоспособность устройства. Пошаговая инструкция выглядит следующим образом:
- К собранной самодельной конструкции подключается полупроводниковый элемент.
- Для того чтобы тесты могли проводиться в режиме постоянного тока, устанавливается переключатель.
- Включается пробник при помощи тумблера. При этом ток не должен попасть на лампу.
- К тестируемому устройству подводится напряжение через резистор. В этом случае тиристор переводится в открытие положение, на лампочку подается напряжение, и она начинает светиться.
- Далее отпускается кнопка, но тиристор находится в открытом положении, и индикатор должен гореть.
- Проводится смена положения переключателя, после чего тиристор переходит в закрытое состояние, и лампочка гаснет.
- При переводе измерительного устройства в режим работы с переменным током лампочка начинает гореть не полностью.
Если проверяемое устройство проявляло себя так, как в описании, то тиристор находится в хорошем техническом состоянии и работает правильно. Если лампочка горит постоянно, то это говорит о пробое. Если при нажатии на клавишу она не загорается, то это указывает на внутренний обрыв. Именно поэтому можно обойтись без мультиметра.
Тестирование детали на плате
При необходимости можно проверить тиристор мультиметром без демонтажа детали. Однако при применении самодельной конструкции придется выпаять элемент, так как в качестве индикатора используется лампочка. К особенностям этого процесса относятся следующие моменты:
- Требуется паяльник. Подобный инструмент требуется при проведении различной работы с электроникой. Мощность и диаметр жилы выбираются в соответствии с тем, какие размеры имеет плата.
- При проведении работы следует учитывать, что нельзя оказывать слишком высокую температуру на плату. Это может привести к повреждению дорожек и других элементов.
- Нельзя повредить выходы, так как это может осложнить проводимые тесты.
Необходимость в выпаивании детали определяет то, что многие решают использовать мультиметр для проверки. В большинстве случаев полученных результатов вполне достаточно для оценки состояния тиристора.
Прозвонка динистора
При необходимости можно провести проверку динистора. К ключевым моментам относятся следующие моменты:
- Для проведения теста требуется источник питания с высоким напряжением, показатель которого выше, чем у динистора.
- Ограничить ток можно при подключении резистора с показателем сопротивления от 100 до 1000 Ом.
- Плюсовой провод подключается к аноду, а катод к клемме ограничительного резистора. Свободный конец сопротивления соединяется с минусом блока питания.
Применяемый измерительный прибор в соответствующем режиме через специальные щупы соединяется с анодом и катодом. Тестер должен лежать в пределе милливольта, после чего динистор открывается.
Определение исправности устройства
Исправность рассматриваемого устройства можно проверить при применении обычного источника света и измерительного прибора. К особенностям этой техники относятся следующие моменты:
- Источник постоянного тока соединяется через тринистор. В цепь также включается лампа с соответствующим напряжением.
- Щупы мультиметра подводятся к катоду и аноду. Следует установить режим измерения, соответствующий постоянному напряжению.
- Устройство должно быть рассчитано на измерение показателей, которые превышают значения применяемого источника напряжения.
- В качестве источника питания можно использовать батарейку любого номинала.
- Осуществляется подача напряжения для теста устройства.
На момент подключения источника питания тринистор открывается, ток подводится к лампочке, и она загорается. После снятия управляющего воздействия лампа должна продолжать гореть, так как проходит ток удержания.
Выбор мультиметра
Для тестирования различного электрического оборудования требуется специальный измерительный прибор, который называют мультиметром. Основные критерии выбора:
- При выборе практически всегда уделяется внимание степени функциональности устройства.
- Практически все устройства можно разделить на две основные категории: стрелочные и цифровые. Сегодня стрелочные практически не применяются, так как они отображают небольшое количество информации, точность данных может быть невысокой.
- Показатель погрешности может варьировать в довольно большом диапазоне. Качественные модели имеют погрешность не более 3%. Лучше выбирать мультиметр с наименьшим значением погрешности, однако они обходятся дорого.
- Степень комфорта при использовании конструкции. Измерительное устройство может иметь самые различные размеры и форму. Если оно будет некомфортным в применении, то могут возникнуть серьезные проблемы.
- Уделяется внимание и степени защиты от пыли, влаги, ударных нагрузок. При изготовлении измерительного устройства могут использоваться самые различные материалы, некоторые из них характеризуются высокой защитой от воздействия влаги и пыли.
- Класс электробезопасности. По этому показателю устройства классифицируются согласно установленным стандартам.
- Популярность бренда. Хорошие производители цифровых тестеров неоднократно проверяют надежность и качество выпускаемой продукции.
Рассматривая то, как проверить тиристор ку202н мультиметром, следует учитывать, что все подобные измерительные приборы разделяются на несколько классов:
- CAT 1 — устройства, подходящие для работы с низковольтными сетями.
- CAT 11 — класс устройства, подходящего к сети питания.
- CAT 111 — класс, предназначенный для работы внутри сооружений.
- CAT 1 V — для работы с цепью, которая расположена вне здания. Устройства этого класса имеют высокую защиту от воздействия окружающей среды.
После выбора измерительного инструмента можно приступить к тестам. Полученная информация может записываться в блокнот или сохраняться в память устройства, если у него есть соответствующая функция.
Тиристорные/диодные модули— Infineon Technologies
Обзор
Стандартные комбинации тиристоров и диодов в модульной конструкции
Тиристорные/диодные модули, подкатегории
Биполярные силовые полупроводникиприменяются в самых разных областях применения в диапазоне мощностей от нескольких киловатт до нескольких гигаватт.
Мы предлагаем нашим клиентам широкий ассортимент силовых модулей, содержащих тиристоры и диоды, в диапазоне напряжений от 1200 В до 4400 В и токов от 61 А до 1070 А. Модули спроектированы и собраны в высоконадежном прижимном контакте и в пайке. технология связи, отвечающая специфическим требованиям приложений, оптимизированных по стоимости и производительности.
Наши модули предлагаются в нескольких топологиях с двумя и одним устройством практически для всех приложений с фазовым управлением или выпрямителями. Области применения наших модулей, например. Электрические приводы, а также низковольтные устройства плавного пуска и источники питания общего назначения.
Продукты
Основные моменты
Infineon Technologies Bipolar GmbH & Co. KG
Infineon Technologies Bipolar GmbH & Co. KG поставляет основные технологии для мощных тиристорных/диодных модулей и дисков. Эти продукты в различных комплектациях используются во всем мире и по всей энергетической цепочке, от производства, передачи и распределения электроэнергии до ее преобразования в механическую энергию.
Подробнее о Infineon Technologies Bipolar GmbH & Co. KG
Все продукты Infineon Bipolar соответствуют стандарту RoHS (ограничение использования некоторых опасных веществ). RoHS – это директива, ограничивающая использование опасных веществ в электрических и электронных устройствах. |
Семейство блоков Prime
Для достижения максимальной производительности или когда требуемый ток превышает 600 А для площади основания 60 мм, а параллельное подключение модулей невозможно, мы разработали модули Prime Line с лучшей в своем классе плотностью мощности, достигающей 820 А в стандартном корпусе 60 мм.
Модули Eco Block в контакте давления
Чтобы удовлетворить потребность в снижении стоимости больших модулей, Infineon Technologies Bipolar полностью переработала свои 60-мм модули с использованием технологии контакта под давлением (ПК).
Модули силового запуска
Основным преимуществом новых разработанных модулей силового пуска для приложений с плавным пуском является их способность выдерживать большие токи в компактной конструкции (ДxШxВ 134x55x100) и двухстороннее охлаждение для низкого теплового сопротивления.