Закрыть

Как проверить ноль и фазу: Как определить фазу и ноль

Содержание

Как определить фазу и ноль — Построй свой дом

 

Любые электромонтажные работы в частном доме связаны с определением назначения жил проводки. Если сказать проще, возникает необходимость определить фазу и «ноль», а также заземляющий провод. Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. О том, как определить фазу и ноль в вашей электрической сети мы и поговорим в этой статье.

 

Устройство бытовых электрических сетей

 

В предыдущей статье мы уже говорили, что при технологическом присоединении вашего дома, вам подводится трехфазное напряжение 380 В. Разводка по дому имеет напряжение 220 В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. О том, как устроен заземляющий контур мы говорили в предыдущей статье. В домах старой застройки заземляющего проводника может и не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.

 

Правила подключения электрических приборов

 

Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого провода производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. В выключатель подключают фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения. Это обеспечит безопасность при смене ламп. Сложные бытовые приборы необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.

 

Приборы и инструменты для электромонтажных работ

 

Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:

  • Мультиметр стрелочный или цифровой;
  • Индикаторную отвертку или тестер;
  • Маркер;
  • Пассатижи;
  • Нож для зачистки изоляции.

 

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели и УЗО. Обычно их устанавливают в распределительном щитке. Все операции по подключению электроаппаратуры и зачистке проводов необходимо проводить при отключенных автоматах.

 

Правила работы с индикаторной отверткой

 

Чтобы проверить фазу с помощью индикаторной отвертки необходимо зажать отвертку между большим и средним пальцем руки, не касаясь не изолированной части. Указательным пальцем дотронуться до металлического пятачка на торце ручки. Металлическим концом отвертки прикасаются к оголенным концам проводов. Если провод фазный, загорится светодиод.

 

Визуальный метод определения фазы

 

Если проводка выполнена по всем правилам, то определить фазу, ноль и заземляющий проводник в распределительной коробке можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках. Для этого необходимо сделать следующие действия:
  • Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы может быть подключен только фазный провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
  • Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите соединения проводов. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
  • К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой.
    Это не должно вас смутить.

 

Определение фазы, нуля и заземляющего провода

 

Если сеть трех проводная и выполнена проводом одного цвета, либо вы не уверены в правильности подключения проводов, необходимо определять назначение проводников перед установкой каждого элемента сети.

 

 

  • Определите фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  • Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  • Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  • Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй поочередно к двум другим. Лампа загорится при касании нулевого проводника.

 

Если все указанные рекомендации, как определить фазу и ноль, не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут прозвонку всех цепей. Не забывайте, что речь идет о вашей безопасности.

 

В следующей статье я расскажу о видах ламп и цоколей.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Как определить фазу и ноль правильно: советы и рекомендации

Категория: Электромонтажные работы

Для того чтобы починить розетку или подключить люстру, не обязательно звать на помощь электрика. Все эти работы при наличии определенного минимума знаний может выполнить даже школьник. Чтобы освоить элементарные навыки работы с электрической проводкой в квартире или частом доме необходимо сначала понять принцип устройства электросети, а также обзавестись индикаторной отверткой и недорогим тестером со стрелочной или цифровой индикацией, который называется мультиметром в связи с возможностью измерения сразу нескольких электрических параметров (сила тока, напряжение, сопротивление). Кроме того, для снятия изоляции, резания, сжатия или скрутки проводов, необходимо купить в магазине пассатижи, кусачки, нож и набор отверток различного размера. При этом необходимо чтобы весь инструмент имел надежные рукоятки, изготовленные из изоляционного материала. Из материалов нужна будет только изоляционная лента и клемники, позволяющие быстро соединять провода внутри коробок.

Перед тем, как приступать к подключению или починке электрического устройства или к ремонту электропроводки своими руками, необходимо в первую очередь понять, что представляют собой такие понятия, как фаза и ноль, которыми обычно оперируют электрики. Давайте рассмотрим, чем они отличаются, и

как определить фазу и ноль при помощи различных приборов.

Что такое фаза?

Как известно, генератор, который вырабатывает электроэнергию, в сущности, представляет собой несколько огромных катушек провода, в которых возбуждается электрический ток движением постоянных магнитов. Все эти катушки соединены между собой таким образом, что один конец каждой из них соединен с землей (заземление), а другой представляет собой изолированный проводник, идущий к потребителям в виде воздушной линии или изолированного провода. Соответственно, один из двух проводов, которые заведены в квартиру, протянут от заземленного конца катушек электростанции, и представляет собой так называемый «ноль», а другой, который не соединен с землей, называется «фаза».

Как известно, в обычной бытовой розетке всегда есть ноль и одна фаза. В квартирах заведена всегда только одна фаза и ноль, поскольку все бытовые приборы и оборудование рассчитаны на однофазное питание. Однако от электростанции к потребителям идет всегда три фазы и ноль. Так куда же деваются еще две фазы? Почему их нет в квартире? На этот вопрос ответ находится в подвале многоэтажного дома, где установлен силовой щит. К нему подведены все три фазы, которые затем распределяются равномерно между квартирами для обеспечения одинаковой нагрузки.

Что такое ноль и заземление?

Гораздо проще обстоит дело с нолем. Этот проводник должен быть везде, вне зависимости от количества фаз в помещении. Как уже упоминалось, на электростанции ноль заземлен. Тогда почему же к розетке подведены три провода? Третий провод – это заземление, которое необходимо из соображения безопасности эксплуатации бытовых (и промышленных, кстати, тоже) электроприборов.

Дело в том, что если произойдет разрыв нулевого провода к объекту (жилому дому, предприятию, отдельному помещению), внутри объекта окажется только один (либо три) фазный провод, который подключен к огромному количеству различных устройств и приборов. Это значительно повышает вероятность поражения людей электрическим током путем прикосновения к металлическому корпусу или деталям прибора. Именно поэтому все корпуса бытового и промышленного оборудования дополнительно заземляются непосредственно на месте подключения и эксплуатации.

Как отличить друг от друга фазу и ноль?

Для начала отметим, что сегодня приобрела популярность цветовая маркировка проводов, согласно которой заземление должно представлять собой провод желто-зеленого цвета (зеленый с желтой полоской), фазный провод – в коричневой изоляции, и ноль – в синей (голубой). В случае наличия трех фаз остальные две фазы должны быть серого и черного цвета. Однако не рекомендуется доверять визуальному определению, поскольку во многих случаях оно является ошибочным.

Итак, как найти фазу и ноль, если провода не промаркированы или же вы не доверяете цветной маркировке? В бытовых условиях это можно сделать при помощи нескольких приборов: самодельного индикатора (так называемой «контрольки»), индикаторной отвертки и тестера (мультиметра). В первых двух случаях используется один и тот же принцип, который заключается в том, что между нулем и заземлением не должно быть разницы потенциалов (напряжения). В случае использования индикаторной отвертки проверяется каждый провод отдельно.

Итак, «контролька» – это классическое, хотя и примитивное, самодельное устройство, которое представляет собой небольшую лампочку на 220 вольт с патроном и двумя проводами длиной в несколько десятков сантиметров. «Контролькой» можно легко проверить наличие напряжения в розетке, сунув проводки в отверстия, а также определить таким же методом работоспособность проводки, которая идет к люстре, если она не работает. Для этого нужно лишь подключить «контрольку» параллельно проводам, к которым подключен осветительный прибор. Фаза определяется этим способом путем прикладывания одного провода «контрольки» к заземлению, а другого поочередно к проводам фазы и ноля. В данном случае от ноля лампочка, естественно, не будет светиться, а от фазы зажжется.

При определении мультиметром его необходимо включить в режим измерения переменного напряжения не менее 250 вольт. Принцип определения ноля и фазы точно такой же, как в предыдущем случае, просто индикатором в данном случае будет не лампочка, а стрелка или цифровые сегменты прибора. Преимущество в данном случае заключается в том, что тестером можно еще измерить величину напряжения. Один щуп (провод) прибора подключаем на землю, а вторым ищем ноль и фазу. При прикосновении к нулевому проводу стрелка отклоняться не будет, а на фазном проводе мультиметр покажет напряжение в 220 вольт (разумеется, с небольшой погрешностью).

Дополнительные рекомендации

Так чем же лучше всего воспользоваться, чтобы найти ноль и фазу в розетке? Неужели нельзя воспользоваться самодельной «контролькой» и отказаться от покупки других приборов? Конечно же можно, однако стоимость индикаторной отвертки копеечная, а в использовании она гораздо удобнее лампочки с патроном. Кроме того, некоторые современные отвертки имеют очень высокую чувствительность и способны индицировать фазный провод даже на расстоянии в несколько сантиметров.

Что касается мультиметра, его целесообразно приобрести тем, кто ближе знаком с электрическими приборами и электроникой. Этот прибор имеет широкие функциональные возможности в плане измерения различных электрических величин, поэтому он пригодится далеко не каждому человеку.

Избрав для себя оптимальный способ определения фазы и ноля, помните, что все электрические работы связаны с опасностью поражения током, поэтому строго соблюдайте правила техники безопасности при работе с электроприборами! Более наглядно процесс определения фазы и ноля изложен в видео к этому уроку.

Как самому определить фазу, ноль и заземление?

Смотрите также обзоры и статьи:

Любой человек, который запланировал выполнять любые электромонтажные работы во время ремонта в жилом или производственном помещении, рано или поздно столкнется с важнейшим вопросом: как самому определить где в электрической сети фаза, ноль и заземление. Ведь без этих знаний либо же придется воспользоваться услугами электрика, и нанимать его. Либо же самостоятельно, чтобы подключить люстру, бра, торшер, светильник, светодиодную ленту, любой электрический прибор, научится распознавать где защитный провод, где под напряжением, а где нулевой.

Определение по цветовой маркировке

Все современные кабели или электрические провода под своей изоляционной оболочкой содержат обычно три жилы, каждая из которых помечена изоляцией своего цвета. Таким образом, определить где какая жила можно и просто по цветовой маркировке. Так, обычно в новых проводах:

  • фаза отмечена черным, белым или коричневым цветами;
  • нейтральный провод, он же нулевой по мировым стандартам должен соответствовать синему или голубому цвету,
  • а заземление или защитный кабель обычно выполнен в двухцветном варианте – желто-зеленый, полосатый и т.п.

На постсоветском пространстве закреплен на законодательном уровне стандарт IEC 60446 2004 года, который и регламентирует какого цвета необходимо применять и изготавливать электроизоляцию проводов. Согласно нему в жилых квартирах:

  • синий или сине-белый провод – это ноль,
  • желто-зеленый – земля;
  • все остальные цвета могут быть фазой, как черный, так и красный.

Однако правило применимо в основном только для проводов, которые установлены в доме или офисе последние лет двадцать-тридцать. А как же быть с электросетями, которые были установлены раньше этого периода, где часто попадаются жилы с алюминиевым сечением? Или вам необходимо поменять часть какого-либо устройства или схемы, в которой данные цвета могли по стандартам и не быть использованы? Тогда вам пригодятся другие, более эффективные способы определения жил и напряжения в электропроводке.

Как определить ноль и фазу индикаторной отверткой

Одним из наиболее надежных, простых, доступных и не требующих особых затрат, и умений способом является определение ноль и фазы при помощи индикаторной отвертки. В чем заключается принцип работы индикаторной отвертки? Индикаторная отвертка – это ручной вспомогательный инструмент практически ничем не отличающийся от привычной нам плоской отвертки с пластиковой ручкой и металлическим наконечником, но есть одно «Но»: внутри рукояти есть индикационная лампочка или светодиод, который срабатывает свечением или загорается, если металлической частью коснутся фазы. На некоторых моделях для индикации следует также нажимать на специальную кнопку на рукояти, которая смыкает контакты и подает ток на индикатор. Однако в целях безопасности следует работать с такой отверткой только в резиновых перчатках электрика, чтобы избежать поражения электрическим током.

Как работать с индикаторной отверткой? В первую очередь, необходимо отключить напряжение в сети, и кусачками снять изоляцию на концах всех трех жил, оголив металлическую часть проводов, зачастую она будет медной. Дальше все три жилы необходимо развести между собой, так, чтобы они не соприкасались, чтобы избежать короткого замыкания при подаче на них напряжения.

После этого, одеть резиновые диэлектрические специальные перчатки и включить напряжение в сети. Хорошо, если ваш щиток имеет встроенный при монтаже устройства устройство защитного отключения. Или другими словами УЗО – он в аварийном режиме отключает питание в сети, если есть утечка тока на корпус.

Вооружившись индикаторной отверткой поочередно ее металлическим наконечником прикасаться к металлической оголенной части каждой жилы. Там, где лампочка индикаторной отвертки сработает и загорится – это фаза. Далее для работы с данными проводами следует изолентой после выключения напряжения замотать оголенные концы проводов.

Определение фазы, нуля и заземления контрольной лампой

Способ простой, однако не самый безопасный и требующий определенной ловкости и осторожности. Считается несколько кустарным и часто используется в грубых производственных условиях опытными мастерами, под рукой у которых не оказалось другого контрольного инструмента. Для того, чтобы воспользоваться данным методом, следует для начала собственно и собрать данную контрольную лампу. Для этого нужен патрон, два провода – фазы и нуля – и лампочка, можно самую обыкновенную, накаливания с вольфрамовой нитью. Это все необходимо скрутить, зачистить на концах его провода и поочередно скручивать с другими проводами в проводке, определить где фаза по тому, когда загорится лампа. Конечно же, скрутку нужно делать, отключив подачу напряжения на провода.

Если патрона не оказалось, можно задействовать часть светильника или настольной лампы, произведя ту же манипуляцию с концами его жил. Однако способ весьма сложный для неподготовленного и неопытного мастера, поскольку есть вероятность перепутать провода и пустить вместо постоянного тока, переменный, при котором лампочка тоже будет гореть. Лучше тогда основательно вывести жилу-землю, сделать ее нулем и тогда спокойно искать фазу.

Как определить фазу и ноль мультиметром

Мультиметры — универсальные многофункциональные приборы для измерения емкости, напряжения, сопротивления и силы тока, имеют отдельные выводы под щупы, укомплектованы самыми щупами, которыми легко и удобно пользоваться, точно определив напряжение. Это самый надежный и довольно простой способ определить фазу и ноль, без особых сложностей и безопасно для здоровья. Ведь все мультиметры имеют на своем корпусе прорезиненный диэлектрический чехол, который не только защищает от ударов тока, но и оставит прибор целым, если он случайно выскользнет из рук и упадет с высоты не более полутора метров. Универсальное мультифункциональное устройство для измерения силы тока, напряжения, сопротивления, емкости, частоты используется повсеместно, как автолюбителями, так и электронщиками, электриками, строителями, рабочими технических специальностей.

Есть целых пять причин, по которым стоит выбрать именно мультиметр для домашнего обихода и работы:

  • Высокая точность измерений – при максимальных значениях постоянного напряжения 0,8%, при больших позициях переменного — максимум 1,2%.
  • Возможность измерять переменное значение тока,
  • Одновременное измерение кроме постоянного и переменного напряжения, сопротивления, также такие величины как емкость, частота, скважность, а также температура благодаря термопаре.
  • Эргономический дизайн и большой мультифункциональный экран.
  • Усиленная индикация батареи и перегрузки.

Это надежный и добротный инструмент для качественного измерения всех требуемых показателей для проверки электрических показаний в цепи питания, а также замера целостности цепи, схемы, платы.

Как же определить фазу и ноль мультиметром? Для начала необходимо знать, что практически все современные мультифункциональные приборы данного типа имеют жидкокристаллический экран, на который выводятся показания в цифровом эквиваленте, однако не плавно, как это было в аналоговых устройствах, без экрана, а рывками.

Поэтому при измерении стоит выждать некоторое время, буквально секунду-две, чтобы прибор определил точное напряжение в сети. Кстати, на панельной панели мультиметра есть множество, свыше 20-30 режимов работы, которые выбираются поворотным рычагом. На этом круге нужно найти тот, что отвечает за переменное напряжение в сети и выглядит как обозначение вольт, также в большинстве мультиметров вручную нужно настроить и диапазон измерений, хотя многие могут это сделать и автоматически.

Далее один из щупов присоединяем к разъему мультиметра, а его другую сторону металлическим наконечником прикасаемся к проводу или в розетку. Если показания на экране прибора будут соответствовать 10-15 вольтам, то, скорее всего, вы попали не в фазу, а в ноль. Если показания в пределах от ста и до 250 вольт – то это и есть фаза.

Как определить фазу и ноль без приборов

Без никаких приборов, даже самых примитивных, искать фазу и ноль в сети не особо стоит. Но если у вас крайний случай, то, рискнуть, конечно можно, но нельзя сказать, что безопасность при этом будет выдержана. Есть несколько оригинальных, забавных, но в тоже время достаточно надежных и точных способа это сделать. Для первого из них стоит взять из подручных средств, которые скорее всего найдутся в каждом доме картофелину. Да-да! А помимо этого два провода на полметра и резистор на 1 мегаом. Все это необходимо собрать, чтобы один проводник был подключен к трубе, а второй – вставить в отрезанную половинку картофелины. Второй провод вставить в срез картофелины рядом с первым. Произведя подобную манипуляцию, только спустя минут пять-десять необходимо оценивать результат измерений.

Что же должно произойти? На том месте, где соприкасался проводник с фазой, должно появится сине-зеленый след от взаимодействия крахмалистых соединений с электричеством, т. е. окисление. Где его не окажется – это нулевой провод.

Второй такой же неоднозначный метод – использование чашки с обыкновенной водой. Тут срабатывает принцип, чем-то схожий с функционированием кипятильника – минус будет там, где вода возле проводника начнет пузырится. Соответственно, методом исключения – плюс будет находится на втором проводе.

Как определить заземление

Кроме очевидного способа по определению заземления, который заключается в идентификации земли по цвету изоляции в жиле, в частности желто-зеленого цвета по мировым стандартам, существует и несколько других, менее очевидных.

Например, если у вас в доме были случаи, что электроприборы, будь то стиральная машина, компьютер, микроволновка, бились током, то практически можно быть полностью уверенным, что заземление в вашей проводке отсутствует, поскольку именно оно должно ликвидировать остаточное напряжение на корпусы электроустройств.

Можно определить заземление мультиметром по принципу исключения, провод, в котором вовсе не будет наблюдаться отклонений по переменному напряжению – скорее всего и будет им.

Выводы

Очень важно научится самостоятельно понимать где в розетке в вашем доме фаза, ноль и заземление, ведь скорее всего доведется столкнуться с необходимостью замены или дополнительной установки каких-либо устройств, связанных с электричеством. Однако настоятельно рекомендуем пользоваться надежными методами, а нетрадиционными только в случае крайней необходимости! А лучше – воспользоваться мультиметром, индикаторной отверткой или вызвать опытного и надежного специалиста-электрика.

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Как найти фазу и ноль? несколько способов определения фазного и нулевого провода » сайт для электриков

Способ №3 – Картошка в помощь!

Забавная, но все же эффективная идея, которая позволяет определить фазу и ноль без индикатора, мультиметра либо другого тестера. Все, что Вам нужно – картошина, 2 провода по 50 см и резистор на 1 МОм. Найти напряжение можно по методике, описанной выше. Конец первого проводника подключается к трубе, второй конец вставляется в срез картошки, как показано на фото. Что касается второго провода, один его конец нужно вставить в тот же срез, на максимально возможном расстоянии от уже вставленной жилы, а вторым Вы будете щупать те выводы, на которых Вам нужно найти фазу и ноль без приборов. Определение происходит следующим образом:

  • Если на срезе образовалось небольшое потемнение – это фазный проводник;
  • Никакой реакции не произошло – Вы «нащупали» ноль.

Следует сразу же отметить, что в данном случае определение должно происходить с небольшой выдержкой времени при контакте жилы со срезом картошки. Вы должны дотронуться проводом к картошине и подождать около 5-10 минут, после чего будет виден результат!

Наглядный видео урок по определению полярности без приборов своими руками

По похожей методике можно определить полярность контактов в цепи постоянного тока. Для этого два провода опускаются в чашку с водой и если возле одного из них начинают образовываться пузыри, как показано на фото ниже, значит, это минус и, соответственно, вторая жила – плюс.

Цифровой мультиметр очень полезная вещь в быту. С помощью тестера просто определить, какой из проводов фаза, ноль, а какой заземление.

Любая электросеть, как бытовая, так и промышленная может быть с постоянным током или с переменным. При постоянной подаче электронапряжения электроны перемещаются в одном направлении, при переменной подаче это направление постоянно меняется.

Переменная сеть в свою очередь состоит из двух частей – рабочей и пустой фазы. На рабочую, которую называют в электричестве так и называют — «фазой», подаётся рабочее электронапряжение, а на пустую, которая получила название «ноль» — нет. Она нужна для создания замкнутой сети для работы и подключения электроприборов, а также для заземления сети.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Как отличить друг от друга фазу и ноль?

Для того чтобы отличить «фазу» от других проводов можно воспользоваться таким инструментом, как индикаторная отвёртка.

Если дотронуться до металлической части провода, жалом этой отвёртки при этом, придерживая противоположный торец указательным пальцем то индикатор, будет светиться при наличии фазного провода. Также можно определить «фазу» с помощью мультиметра.

Для этого необходимо включить прибор в режим измерения переменного тока.

Выставить максимально возможное напряжение на приборе. Минусовой щуп необходимо подсоединить к какому-нибудь заземлённому предмету, например, к радиатору отопления, а другой попеременно подключать к проводникам.

Когда прибор покажет напряжение, которое примерно равно 220 В. то проводник, к которому вы подключились и есть фазный провод.

Как определить «фазу» и «ноль» без измерительных приборов.

Для того чтобы обнаружить фазу можно использовать проверенный временем, очень простой и недорогой способ.

С помощью обыкновенного патрона с лампой накаливания несложно определить пару «ноль» — «фаза». Нужно взять патрон и два провода, которые отходят от него попеременно подсоединять к проводам с предполагаемыми фазным и нулевым проводами.

Когда же лампочка загорится это будет означать что один из подключённых проводов является фазным. Теперь останется узнать какой именно. Очень просто это сделать если в электрической сети включена система УЗО. В этом случае если подключить патрон с лампой одним концом к третьему проводу, который является в данном случае заземлением, а другой попеременно к другим проводникам.

В момент, когда произойдёт автоматическое отключение электричества, будет означать то, что второй провод, к которому вы подсоединили щуп мультиметра, является «фазой». Соответственно третий проводник будет «ноль».

Если нет УЗО то после определения пары «фаза» — «ноль», один провод следует подключить к заземлению, а второй будет слегка искрить при соприкосновении с «фазой».

Заблуждения, которые могут возникнуть при определения фазного провода.

Это не совсем заблуждения, просто, если следовать этому способу определения фазы можно неправильно сделать вывод о том, где именно она находится.

Способ определения фазы по цвету провода

Если рабочие, которые занимались монтажом проводки сделали всё правильно то фазный провод должен быть чёрного или коричневого цвета.

Но полностью полагаться на такой способ определения фазы нельзя, т. к. не исключено, что при подключении, провода просто перепутали. И вместо фазного провода чёрного цвета там будет «земля» или «ноль».

В заключении стоит отметить, что заниматься самостоятельными электромонтажными работами стоит только в том случае если вы очень хорошо разбираетесь в том, что делаете, в противном случае стоит обратиться к специалистам, которые выполнят работы по монтажу проводки, качественно и в срок.

О чем еще важно знать?

Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:

  • Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
  • Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
  • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.

Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.

Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!

Наверняка вы не знаете:

  • Способы определения потребляемой мощности электроприборов
  • Что такое чередование фаз
  • Как определить сечение кабеля по диаметру жилы

Как определить ноль и фазу? Самые быстрые способы

Часто при монтаже бытового электрооборудования мастеру важно знать, где находится «фаза». Такая необходимость возникает в тех случаях когда, например, требуется установить выключатель или подключить чувствительные к правильной фазировки электротехнические устройства

Если выключатель света подключён правильно, то при положении «выкл» будет обесточен участок проводки который ведёт к патрону и можно абсолютно спокойно проводить монтажные работы в этом месте, например замену лампочки, не опасаясь удара электрическим током.

Определить наличие или отсутствие электрического тока в цепи «на глаз» не представляется возможным, поэтому стоит приобрести специальные приборы и инструменты.

  • Индикаторная отвёртка.
  • Тестер или мультиметр.
  • Пассатижи.

Цена их, как правило, не велика. При выборе стоит отдать предпочтение только тем моделям, которые имеют надёжную изоляцию.

Определение фазы, нуля и заземляющего провода

Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

  1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Правила работы с индикаторной отверткой

При отсутствии заземляющего провода решить задачу, как определить фазу будет очень легко. Достаточно воспользоваться обыкновенной индикаторной отверткой.

В этом случае действия происходят следующим образом:

  • Вначале обесточивается сеть путем отключения автомата. После этого на проводах острым ножом зачищается изоляция примерно на 1-1,5 см. Жилы нужно развести между собой, чтобы исключить случайное соприкосновение.
  • Включается автомат и подается напряжение. Концом индикаторного устройства нужно по очереди коснуться зачищенных мест проводников. При попадании на фазовый провод светодиод начнет светиться.
  • Обнаруженную фазу следует отметить, после чего вновь выключить автомат и сделать все запланированные подключения.
  • Подключая освещение, выключатель нужно соединять с фазным проводом. Именно он будет обеспечивать разрыв контакта, выключение и включение осветительных приборов.

При работе с трехпроводной сетью все проводники могут оказаться одинакового цвета, поэтому нужно обязательно установить назначение каждого из них. Процесс обнаружения происходит в следующем порядке:

  • Задача, как найти фазу решается теми же способами, что и в двухпроводной сети, после этого провод нужно отметить, отделив его от других проводов.
  • Ноль и землю определяют мультиметром в режиме измерения напряжения. Один щуп касается фазного провода, а другой – нулевого и заземляющего, по очереди. Меньшее напряжение показывает нулевой провод.
  • В случае одинакового напряжения измеряется сопротивление провода заземления. Оно должно быть не выше 4 Ом, а сопротивление нуля будет заметно выше.

Как определить фазу и ноль

Индикаторная отвертка

Что такое фаза, как определить фазу и ноль в электричестве

Цвет проводов фаза, ноль, земля

Схема подключения люстры с 3 лампами

Как определить сечение провода

Народный способ

Существует также народный способ идентификации нулевой и фазовой жилы. Несмотря на то, что некоторые специалисты относятся к нему довольно саркастически, этот метод работает достаточно эффективно.

Для определения понадобятся следующие элементы:

  • 2 многожильных провода, длиною около полуметра;
  • резистор номиналом на 1 МОм;
  • крупная картофелина.

Схема проверки напоминает идентификацию фазы на контрольной лампочке. Один конец провода крепят к металлу (зачастую используют отопительные или водопроводные трубы), другой плотно примыкают к разрезанной вдоль картофелине. Второй проводник также примыкают к овощу, а другой его конец соединяют с резистором и интересующей жилой.

Результат исследования придется подождать около 10 мин. При контакте с фазой мякоть овоща потемнеет, а в случае с нулем она останется неизмененной.

Проверить назначение проводника можно с помощью подручных средств. Но такие методы далеко не безопасны. Поэтому применять их нужно исключительно в крайних случаях. А лучше – обзавестись специальной индикаторной отверткой.

Назначение фазы и нуля

Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность

Тут хорошо работает правило: доверяй, но проверяй!

По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

Другие варианты проверки

Кроме перечисленных способов проверки фазы и нуля мультиметром, существует проверка с использованием контрольной ламы.
Способ довольно необычный и требует особой осторожности, но действенный. Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией

При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно

Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией. При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно.

Правильно определить фазу

Провода трехжильные

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).

  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

Замер сопротивления «кольца фаза-нуль»

Для планового контроля и своевременного обнаружения и устранения нарушений безопасности в электросети обеспечения её нормальной работы, проводятся систематические замеры сопротивления кольца фаза-нуль, так как причинами поломок приборов освещения являются сетевые перегрузки и короткое замыкание.

Самый быстрый и эффективный способ выявления и предотвращения таких случаев – это замер сопротивления.

Не всем известно, что значит понятие «кольцо фаза-нуль». Оно означает контур, созданный соединением нулевого проводника, расположенного в заземленной нейтрали. Замыкание этой электрической сети образует кольцо фаза-нуль.

Сопротивление в контуре измеряется:

  1. Падением напряжения в выключенной цепи.
  2. Падением напряжения вследствие сопротивления растущей нагрузки.

По цвету провода

Узнать назначении жилы можно по цвету ее изоляции. Существует стандарт цветовой маркировки проводников. Нулевые провода принято обозначать голубым либо синим цветом. Заземление можно найти по зеленому цвету изоляционного материала. Впрочем, здесь допустимо использовать также желтую маркировку либо сочетание зеленого и желтого цветов.

С фазовым проводом дело обстоит труднее. Палитра оттенков его обозначения довольно широка:

  • белый;
  • черный;
  • красный;
  • коричневый;
  • серый;
  • оранжевый;
  • розовый;
  • фиолетовый цвет.

Встречаются фазы даже бирюзового цвета. В этом случае следует быть очень аккуратным, чтобы случайно не перепутать его с зеленым заземлением или с голубым нулем.

Строго говоря, определение по цвету изоляции – не самый надежный способ. Поэтому специалисты часто называют его условным. Во-первых, цветная маркировка встречается далеко не всегда, – например, в старых постройках использовали исключительно белый цвет изоляции для всех кабелей. Во-вторых, сами специалисты-электромонтажники часто пренебрегают установленными правилами маркировки, подсоединяя к системе те провода, которые оказались под рукой.

Как определить фазу и ноль без приборов. 3 рабочих варианта | ASUTPP

Потребность в том, чтобы отличить фазный провод от нулевой шины возникает в ситуациях, когда проводятся работы по замене выключателей или установке розеток, например. От правильности определения нужного проводника в первую очередь зависит безопасность пользователя, поскольку любые ошибки в этом случае способны привести к непоправимым последствиям.

Это может быть не только выход из строя подключаемого прибора, но и поражение электрическим током или пожар, возникший из-за короткого замыкания в цепи. В ситуации, когда под рукой не оказалось нужного инструмента – пользователь может воспользоваться проверенными временем способами определения фазы без приборов.

1. Определение по маркировкеОпределение по маркировке

Согласно действующим нормативам ПУЭ каждый провод в современном кабеле должен иметь изоляционное покрытие соответствующей расцветки, а именно:

  • Фазный проводник помещается в изоляцию красного или коричневого цвета.
  • Жила в защитном покрытии синего цвета – это нулевой провод.
  • И, наконец, шина, имеющая изоляцию желто-зеленой раскраски – это заземляющий проводник.
Важно! Некоторые производители не придерживаются указанного порядка маркировки проводов, что вынуждает пользователей прибегать к другим методам их идентификации.

Кроме того, специалисты не советуют полностью полагаться на результаты визуального обследования жил домашней проводки, поскольку неопытный или рассеянный электрик мог подключить их без соблюдения правил.

2. Контрольная лампа

Существует еще один способ решения проблемы с подводящим напряжение электрическим жгутом, связанный с применением контрольной лампочки на 220 Вольт. Для выявления нужной жилы берется обычная лампа накаливания с двумя припаянными к ее цоколю и контактному пятачку проводниками (фото ниже).

Контролька

На ответных концах вспомогательных жил желательно зафиксировать разъемы типа «крокодилы», посредством которых удобно обустраивать любые соединения. Один из них прицепляется к хорошо залуженному держателю трубы отопления, а вторым производится поиск фазы. Если при присоединении вторым «крокодилом», помещенным в изоляцию, лампочка загорается – значит, этот провод будет фазным.

Обратите внимание: Перед коммутацией проводников напряжение с квартиры полностью снимается.

Подключать его можно только после того, как установлен надежный контакт между соединяемыми элементами. Хотя этот способ также достаточно прост, однако его применение не всегда безопасно, особенно – в городских квартирах, где фаза случайно может попасть на общий для подъезда стояк. В частных домах можно действовать без опаски, поскольку в качестве нулевой шины в этом случае можно использовать отвод от заземляющего контура.

3. Индикаторная отвертка

В хозяйстве любого запасливого хозяина должна иметься индикаторная отвертка, воспользовавшись которой удается легко распознать фазный провод.

При обращении с этим инструментом необходимо придерживаться следующих простых правил:

  • Очень важно чтобы отвертка была исправна, то есть действительно показывала наличие фазы.
  • Для этого ее следует заранее проверить на нагрузке, включенное состояние которой различается визуально (на настольной лампе, например).
  • При прикосновении к фазному контакту встроенная в нее неоновая лампочка начинает слабо светиться (фото ниже).
  • При введении жала в «земляную» клемму индикатор гореть не будет.
Использование индикаторной отвертки
Обратите внимание: Свечение появится только в том случае, если проверяющий приложит большой палец к специальной контактной площадке из металла.

Также важно отметить, что проводить проверку не рекомендуется при ярком солнечном свете, не позволяющем различить слабое свечение неонки.

Как определить ноль и фазу индикаторной отверткой

В процессе выполнения электромонтажных работ каждый специалист сталкивается с необходимостью точного определения фазного и нулевого проводников сети. Если провода распределены в соответствии с цветом изоляции, то определить принадлежность каждого из них не будет сложной проблемой. Однако, так бывает далеко не всегда, особенно в старых сетях, и тогда приходится определять ноль и фазу индикаторной отверткой или другим способом. В этом нет ничего сложного, если знать общее устройство электрической сети и основные правила пользования указателями напряжения.

Особенности домашних электрических сетей
Практически во всех квартирах электричество подается через однофазную сеть, с напряжением 220 вольт и частотой 50 Гц. Общее питание к жилому дому подводится посредством мощной трехфазной линии, а потом электроэнергия коммутируется в распределительных щитах. Дальнейшее движение тока к потребителям осуществляется по однофазным линиям с фазным и нулевым проводами.

Распределение нагрузки на каждую фазу должно быть максимально равномерным, чтобы избежать перекосов в процессе эксплуатации. В современных домах дополнительно прокладывается контур защитного заземления. Таким образом, в электрической сети добавляется еще один провод, который в дальнейшем тоже придется идентифицировать при необходимости.

Во многих старых зданиях защитный заземляющий контур отсутствует, следовательно в сети имеется лишь фазный и нулевой провода. С целью повышения уровня электробезопасности при выполнении электромонтажных работ внутренние сети довольно часто подвергаются усовершенствованию и реконструкции путем добавления проводника РЕ.

В частном секторе нередко используются трехфазные линии. Напряжение в 380 вольт может напрямую подводиться к отдельным потребителям – отопительным котлам, электродвигателям и другому оборудованию. Однако для внутренней разводки внутри частного дома все равно используются однофазные линии, в которых равномерно распределяются все три фазы. Таким образом, к розеткам оказывается подведенными три провода – фазный, нулевой и заземление.

Фаза и ноль в электрической сети
Многие потребители даже не догадываются о настоящем предназначении фазы и нуля. Поэтому, если намечается работа с электропроводкой, данный пробел в знаниях должен быть ликвидирован.

Изначально электрическая энергия подводится к жилым домам от трансформаторной подстанции, где она преобразуется из высокого напряжения в допустимые 380 вольт. В общем вводно-распределительном устройстве жилого дома электричество распределяется и расходится по отдельным щиткам, установленным в каждом подъезде. От них в квартиры заводится уже по одной фазе номиналом 220 вольт и заземляющий провод, если он предусмотрен схемой электропроводки.

Один из проводников подающий ток к потребителю, считается фазным. В трансформаторе все три фазы соединяются по схеме «звезда». Их общая точка является нейтралью, защищенной на подстанции заземляющим контуром. Данная нейтраль и выполняет функции нуля, отдельно подводимого к нагрузке. Основной задачей нулевого провода является обеспечение протекания тока обратно, в направлении источника электроэнергии. Дополнительно, нулевой проводник способствует выравниванию фазного напряжения.

Многие потребители не видят особой разницы в подключении бытовой техники в сеть с переменным током 220 вольт. При обычном включении в розетку можно не соблюдать полярность, а при смене контактов напряжение остается неизменным. Но так бывает не всегда. При работах с электропроводкой требуется точно обнаружить расположение фазного и нулевого проводов. Перемена их местами приводит к неправильному подключению, вызывающему сбой в работе оборудования и поражение током.

Определение принадлежности проводов без приборов
Для того чтобы избежать неприятных последствий, необходимо узнать, где и какой провод расположен. Обычно используется индикаторная отвертка, но при её отсутствии проблема может разрешиться другими способами.

Чаще всего принадлежность проводов, в том числе определение фазы, устанавливается визуально, путем изучения цветной маркировки. Если прокладка линий выполнялась квалифицированными специалистами, они обязательно используют стандарт IEC 60446-2004. В соответствии с этим нормативом, нулевой провод маркируется синим или голубым цветом, заземление – желто-зеленым, а фазный – коричневым или другим нейтральным цветом. Самое главное, чтобы расцветка фазы полностью отличалась от нуля и заземления. Рассмотреть маркировку можно внутри распределительной коробки, а также в местах подключений.

Если нет приборов – указателей напряжения, существует вариант проверить сеть с использованием контрольки, состоящей из патрона с лампой накаливания и подключенными проводами. Конец одного из проводников соприкасается с металлическими трубами системы отопления, а другой проводник касается проверяемого участка. Если лампочка загорелась, значит в этом месте есть фаза. Данный способ считается опасным, так как вероятность получения электротравмы очень велика.

Безопаснее всего определить фазу и ноль индикаторной отверткой, с помощью которой выполнить все необходимые проверки сетевых параметров.

Принцип действия индикаторных отверток
Для того чтобы эффективно и правильно пользоваться индикаторными отвертками, рекомендуется ознакомиться с их устройством и общими принципами работы. Несмотря на внешние различия, у каждой из них основной функцией является проверка наличия и отсутствия напряжения, определение фазы и нуля. Для этого достаточно подключиться рабочим органом к одному из контактов.

Наиболее простым устройством считается индикаторная отвертка с неоновой лампочкой. В ее конструкцию входит металлический токопроводящий стержень, на конце у которого расположено плоское жало. В схему индикаторной отвертки дополнительно включен токоограничивающий резистор и неоновая лампочка. Стальная пружина прижимает лампу к резистору.

Одновременное касание жалом контакта фазы и касание пальцем контактной кнопки на рукоятке, приведет к свечению неоновой лампочки. Если фаза отсутствует – лампа погаснет. Данный инструмент обладает ограниченной функциональностью, для определения фазы ему требуется непосредственный контакт. Нижний предел напряжения составляет 90 вольт, более низкие значения не поддаются определению.

Отвертка на светодиоде может работать и с более низким напряжением – до 45 вольт. Для нормального функционирования требуется импульсный режим, то есть, с увеличением силы тока пропорционально снижается время непрерывного горения светодиода. Кроме ограничительного резистора, в схеме имеется диодный мост, выполняющий функцию выпрямителя. Незначительное количество тока, появившееся на контактах моста, поступает к накопительному конденсатору. Далее через транзистор пульсирующий ток подается на светодиод, который начинает гореть мерцающим светом.

Наиболее эффективной, но и самой дорогой считается индикатор, в конструкции которого имеется светодиодный сигнализатор и собственные элементы питания. Данное устройство позволяет не только определить ноль и фазу индикаторной отверткой, но и успешно искать скрытую проводку.

Принцип работы с такой отвёрткой заключается в следующем. Человеческое тело представляет собой своеобразный конденсатор с достаточной емкостью. Когда палец касается сенсора, в цепи возникают слабые электрические токи в пределах 0,5 мкА. Если жало инструмента одновременно касается фазного проводника, происходит увеличение силы тока до значения, достаточного для открытия транзистора. Далее выполняется подключение питающего элемента к светодиоду, который начинает излучать свет.

Показатель напряжения срабатывания составляет около 50 вольт. Порог чувствительности удается снизить за счет использования собственных источников питания. Это дает возможность отличить ложные срабатывания, возникающие под действием наводок электрического поля.

Правила работы с индикаторной отверткой
При отсутствии заземляющего провода решить задачу, как определить фазу будет очень легко. Достаточно воспользоваться обыкновенной индикаторной отверткой.

В этом случае действия происходят следующим образом:

Вначале обесточивается сеть путем отключения автомата. После этого на проводах острым ножом зачищается изоляция примерно на 1-1,5 см. Жилы нужно развести между собой, чтобы исключить случайное соприкосновение.
Включается автомат и подается напряжение. Концом индикаторного устройства нужно по очереди коснуться зачищенных мест проводников. При попадании на фазовый провод светодиод начнет светиться.
Обнаруженную фазу следует отметить, после чего вновь выключить автомат и сделать все запланированные подключения.
Подключая освещение, выключатель нужно соединять с фазным проводом. Именно он будет обеспечивать разрыв контакта, выключение и включение осветительных приборов.
При работе с трехпроводной сетью все проводники могут оказаться одинакового цвета, поэтому нужно обязательно установить назначение каждого из них. Процесс обнаружения происходит в следующем порядке:

Задача, как найти фазу решается теми же способами, что и в двухпроводной сети, после этого провод нужно отметить, отделив его от других проводов.
Ноль и землю определяют мультиметром в режиме измерения напряжения. Один щуп касается фазного провода, а другой – нулевого и заземляющего, по очереди. Меньшее напряжение показывает нулевой провод.
В случае одинакового напряжения измеряется сопротивление провода заземления. Оно должно быть не выше 4 Ом, а сопротивление нуля будет заметно выше.

Как прозвонить фазу и ноль

Очень часто при выполнении в квартире, доме, гараже или на даче ремонтных либо монтажных работ, связанных с электричеством, возникает необходимость отыскать ноль и фазу. Это нужно для правильного подключения розеток, выключателей, осветительных приборов. Большинство людей, даже если они не имеют специального технического образования, представляют себе, что для этого есть специальные индикаторы. Мы рассмотрим вкратце этот метод, а также расскажем вам об ещё одном приборе, без которого не обходится ни один профессиональный электрик. Поговорим о том, как определить фазу и ноль мультиметром.

Понятия ноля и фазы

Перед тем, как определить фазу ноль, хорошо бы вспомнить самую малость физики и разобраться, что это за понятия и зачем их находят в розетке.

Все электросети (и бытовые, и промышленные) подразделяются на два типа – с постоянным и переменным током. Со школы помним, что ток – это передвижение электронов в определённом порядке. При постоянном токе электроны передвигаются в каком-то одном направлении. При переменном токе это направление постоянно меняется.

Нас больше интересует переменная сеть, которая состоит из двух частей:

  • Рабочей фазы (как правило, её называют просто «фазой»). На неё подаётся рабочее напряжение.
  • Пустой фазы, именуемой в электричестве «нулём». Она необходима, чтобы создать замкнутую сеть для подключения и работы электрических приборов, служит также для заземления сети.

Когда мы включаем приборы в однофазную сеть, то особой важности нет, где именно пустая или рабочая фаза. А вот когда монтируем в квартире электрическую проводку и подсоединяем её к общей домовой сети, это знать необходимо.

Разница между нолем и фазой на видео:

Простейшие способы

Существует несколько способов, как найти фазу и ноль. Рассмотрим их вкратце.

По цветовому исполнению жил

Наиболее простым, но в то же время и самым ненадёжным способом, является определение фазы и ноля по цветам изоляционных оболочек проводников. Как правило, фазная жила имеет чёрное, коричневое, серое или белое цветовое исполнение, а ноль делают голубым либо синим. Чтобы вы были в курсе, бывают ещё жилы зелёные или жёлто-зелёные, так обозначаются проводники защитного заземления.

В этом случае никаких приборов не нужно, глянули на цвет провода и определили – фаза это или ноль.

Но почему этот метод самый ненадёжный? А нет никакой гарантии, что во время монтажа электрики соблюдали цветовую маркировку жил и ничего не перепутали.

Цветовая маркировка проводов на следующем видео:

Индикаторной отвёрткой

Более правдивым методом является применение индикаторной отвёртки. Она состоит из не токопроводящего корпуса и встроенных в него резистора с индикатором, который представляет собой обыкновенную неоновую лампочку.

Например, при подключении выключателя главное не перепутать ноль с фазой, так как этот коммутационный аппарат работает только на разрыв фазы. Проверка индикаторной отвёрткой заключается в следующем:

  1. Отключите общий вводной автомат на квартиру.
  2. Зачистите ножом проверяемые жилы от изоляционного слоя на 1 см. Разведите их между собой на безопасное расстояние, чтобы полностью исключить возможность соприкосновения.
  3. Подайте напряжение, включив вводной автомат.
  4. Жалом отвёртки прикоснитесь к оголённым проводникам. Если при этом загорится индикаторное окошко, значит, провод соответствует фазному. Отсутствие свечения говорит о том, что найденный провод – нулевой.
  5. Нужную жилу наметьте маркером либо кусочком изоленты, после чего снова отключите общий автомат и проведите подсоединение коммутационного аппарата.

Более сложные и точные проверки выполняются с помощью мультиметра.

Поиск фазы индикаторной отверткой и мультиметром на видео:

Мультиметр. Что это за прибор?

Мультиметр (электрики его ещё называют тестером) представляет собой комбинированный прибор для электрических измерений, который объединил в себе множество функций, основные из которых омметр, амперметр, вольтметр.

Эти приборы бывают разными:

  • аналоговыми;
  • цифровыми;
  • переносными лёгкими для каких-то базовых измерений;
  • сложными стационарными с большим количеством возможностей.

С помощью мультиметра можно не только определить землю, ноль или фазу, но и померить на участке цепи ток, напряжение, сопротивление, проверить электрическую цепь на целостность.

Прибор представляет собой дисплей (или экран) и переключатель, который можно устанавливать в различные позиции (вокруг него находится восемь секторов). В самом верху (в центре) имеется сектор «OFF», когда переключатель установлен в это положение, значит, прибор выключен. Чтобы выполнять замеры напряжения понадобится установить переключатель в сектора «ACV» (для переменного напряжения) и «DCV» (для постоянного напряжения).

В комплект мультиметра входят ещё два измерительных щупа – чёрный и красный. Чёрный щуп подсоединяется в нижнее гнездо с маркировкой «СОМ», такое подключение является постоянным и используется при проведении любых измерений. Красный щуп в зависимости от замеров вставляется в среднее или верхнее гнездо.

Как использовать прибор?

Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.

Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:

  • Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
  • На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.

  • Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.

Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

В этом случае у нас будут задействованы два гнезда «СОМ» и «V», вставьте в них измерительные щупы. Прибор установите в режим «ACV»,

audio — скрипт для проверки пересечения нуля, чтобы проверить, совмещены ли фазы микрофонов

У меня есть n микрофонов, расположенных квадратно, и я хочу убедиться, что все каналы должны быть выровнены по времени точно так же, если сигнал находится на одинаковом расстоянии от всех n микрофонов, то есть в центре квадрата.

Я написал ниже сценарий, чтобы определить разницу во времени пересечения нуля, и если разница выше некоторой точности, распечатайте это и выйдите из строя.

  из scipy.io import wavfile
импортировать numpy как np
import argparse

parser = argparse.ArgumentParser (description = 'различить пересечение нуля двух файлов')
parser.add_argument ('- f1', '--file_name_1', help = 'укажите имя первого файла')
parser.add_argument ('- f2', '--file_name_2', help = 'укажите второе имя файла')
parser.add_argument ('- p', '--precision', help = 'точность для сравнения', type = float, по умолчанию = 0,0001)

args = parser.parse_args ()
печать (аргументы)
files = []
files.append (args.имя_файла_1)
файлы.добавить (аргумент.имя_файла_2)

sampling_rates = []
сигналы = []
для файла в файлах:
  fs, signal = wavfile.read (файл)
  signal = signal / max (abs (signal)) # масштабный сигнал
  sampling_rates.append (fs)
  signal.append (сигнал)
  assert min (сигнал)> = -1 и max (сигнал) <= 1
  print 'fs ==>', fs, 'Hz' # частота дискретизации
  напечатать 'len (сигнал) ==>', len (сигнал), 'образцы'

sampsPerMilli = 0
# файлы должны иметь одинаковую частоту дискретизации и длину
prev_rate = sampling_rates [0]
для скорости в sampling_rates [1:]:
  cur_rate = ставка
  sampsPerMilli = int (ставка / 1000)
  если prev_rate! = cur_rate:
    print ("rate не соответствует% d% d"% (prev_rate, cur_rate))
    выход (0)
  cur_rate = ставка

# длина сигнала также должна быть такой же
prev_length = len (сигналы [0])
для сигнала в сигналах [1:]:
  cur_length = len (сигнал)
  если prev_length! = cur_length:
    print ("длина сигналов не соответствует% d% d"% (prev_length, cur_length))
    выход (0)
  cur_length = prev_length

zccs = []
для сигнала в сигналах:
  zcc = []
  DC = np.среднее (сигнал)
  newSignal = signal - DC
  для i в диапазоне (1, int (len (newSignal))):
    если ((newSignal [i] * newSignal [i-1]) <0):
      #print ("пересечение через% f секунд"% ((i / sampsPerMilli) * 0,001))
      zcc.append ((i / sampsPerMilli) * 0,001)
  zccs.append (zcc)

для a, b в zip (zccs, zccs [1:]):
  если len (a)! = len (b):
    print ("длина не соответствует% d% d"% (len (a), len (b)))
    для c, d в zip (a, b):
      если c-d> args.precision:
        print ("превысила точность% f c% f d% f"% (args.precision, c, d))
        выход (0)
  

Есть ли лучший подход или этот скрипт можно улучшить?

Частотный спектр

. Должны ли все фазовые коэффициенты ДПФ реального, четного входного сигнала равняться нулю?

Вы правы, конечно, не обязательно ставить вершину треугольника в центр.* [N-n], \ qquad 0 \ le n

, где $ * $ обозначает комплексное сопряжение, а $ N $ — длина ДПФ. Если $ x [n] $ имеет действительное значение, $ (1) $ сокращается до

.

$$ x [n] = x [N-n], \ qquad 0 \ le n

Условия $ (1) $ и $ (2) $ требуют, чтобы периодические продолжения $ x [n] $ (период $ N $) были четными по отношению к $ n = 0 $.

Из вашей первой цифры кажется, что ваш сигнал удовлетворяет

$$ x [n] = x [N-1-n] \ tag {3} $$

с N = 15 $. Конечно, это соответствует определенному условию симметрии, но обратите внимание, что его периодическое продолжение составляет , а не даже около $ n = 0 $, как того требуют $ (1) $ и $ (2) $.{j2 \ pi k} = 1 $. Из $ (6) $, Ур. $ (1) $ следует немедленно. Обратите внимание, что $ (1) $ двойственно тому, что ДПФ вещественнозначной последовательности сопряженно симметрично. В случае, который мы здесь рассмотрели, у нас есть сопряженная симметричная последовательность, приводящая к действительнозначному ДПФ.

версия 1.0 выпущена 29.01.1999

Содержание


Введение

Сейсмические данные часто преобразуются в нулевую фазу для улучшения разрешения и облегчения интерпретации.

вернуться к содержанию


Определение терминов и допущений

В определенной степени это зависит от используемого метода, но большинство методов предполагают, что входные (обычно) перенесенные данные являются минимальной фазой.

вернуться к содержанию


Типы нулевого фазового преобразования

Обычно применяются несколько методов преобразования нулевой фазы.

  1. Самым распространенным методом является так называемый статистический подход . Здесь вокруг целевой области определяется окно входных данных. Средняя автокорреляция окна берется и используется для определения минимальной фазы и нулевой фазы вейвлета, которые имеют тот же амплитудный спектр, что и входные данные. Затем создается оператор, который преобразует вейвлет с минимальной фазой в вейвлет с нулевой фазой, и этот оператор затем применяется к сейсмическим данным.Можно выделить несколько окон и сравнить результаты с синтетическими сейсмограммами для обеспечения точности. Это простейший метод преобразования нулевой фазы, часто улучшает разрешение и привязку к скважинам и является хорошим эталонным тестом. Для разведки это может быть очень эффективным. Кроме того, этот метод может применяться большинством подрядчиков без дополнительных затрат и временных задержек.
  2. Простое чередование фаз может применяться для улучшения связи скважин. По ряду малоизученных причин современный набор 3D сейсмических данных часто ближе к нулевой фазе, чем к минимальной фазе, поэтому этот метод часто работает в пределах погрешности.
  3. Преобразование вейвлета, извлеченного вокруг морского дна. Shell UK в настоящее время использует этот метод в сочетании с фильтрацией с обратной Q-фильтрацией. Этот метод может быть высоко диагностическим для глубоководных данных или данных, полученных с короткими удалениями от трассы, в которых волновой сигнал морского дна не загрязнен преломлениями.
  4. Моделирование подписи источника. Этот метод использовался Shell в течение многих лет. Сигнатура источника была смоделирована для прохождения различных этапов обработки, конечный результат преобразован в нулевую фазу, и оператор применил к сейсмическим данным.Этот метод может привести к непредсказуемым результатам.
  5. Извлечение сейсмической волны из сейсмических данных с использованием каротажа для определения фазы. Этот тип процесса может быть выполнен с помощью программного обеспечения Geoquest, в Hampson-Russell Strata и в LogM.


Приложения после стека

Большая часть преобразования нулевой фазы выполняется после миграции, хотя некоторые люди предпочитают данные с нулевой фазой для повышения разрешения во время пикирования скорости.

вернуться к содержанию


Испытание силового трансформатора — измерение импеданса нулевой последовательности

Защита от замыканий на землю

Цель измерения

Полное сопротивление нулевой последовательности обычно измеряется для всех обмоток, соединенных звездой трансформатора. Измерение выполняется путем подачи тока номинальной частоты между параллельно соединенными фазными клеммами и нейтралью.

Испытание силового трансформатора — Измерение импеданса нулевой последовательности (на фото: подготовка трансформатора 400 кВ для испытательного поля на заводе АББ)

Полное сопротивление нулевой последовательности на каждую фазу в три раза превышает импеданс, измеренный таким образом. Нулевая последовательность необходима для расчета тока замыкания на землю и тока замыкания на землю .


Схема измерения и характеристики измерения

Схема измерения импеданса нулевой последовательности показана ниже, где:

  • G 1 = генератор питания
  • T 1 = трансформатор подлежащие испытанию
  • T 2 = трансформатор напряжения
  • T 3 = трансформатор тока
  • P 2 = вольтметр
  • P 3 = амперметр 900 I93 = испытательный ток
Рисунок 1 — Схема для измерения импеданса нулевой последовательности

Полное сопротивление нулевой последовательности зависит от тока, протекающего через обмотку.Обычно указывается значение, соответствующее номинальному току I N . Это означает, что измерение выполняется с испытательным током , равным 3 x I N .

Однако на практике это не всегда возможно, так как ток должен быть ограничен, чтобы избежать чрезмерной температуры металлических конструктивных частей .

Полное сопротивление нулевой последовательности измеряется как функция испытательного тока, и при необходимости окончательный результат получается путем экстраполяции.

Результат теста

Полное сопротивление нулевой последовательности обычно выражается в процентах от номинального фазного сопротивления.

Когда трансформатор имеет трехполюсный сердечник и не имеет обмоток, соединенных треугольником, полное сопротивление нулевой последовательности составляет примерно 30… 60% . Когда трансформатор имеет обмотку, соединенную треугольником, полное сопротивление нулевой последовательности в 0,8… 1,0 раз больше соответствующего полного сопротивления короткого замыкания .

В протоколе испытаний указаны значения импеданса нулевой последовательности на главном и крайнем ответвлениях.

Артикул: Испытание силовых трансформаторов — ABB

Соответствующее содержание EEP с рекламными ссылками

Фаза переменного тока | Базовая теория переменного тока

Все начинает усложняться, когда нам нужно связать два или более переменного напряжения или тока, которые не совпадают друг с другом. Под «несоответствием» я подразумеваю, что две формы сигнала не синхронизированы: их пики и нулевые точки не совпадают в одни и те же моменты времени. График на рисунке ниже иллюстрирует это.

Сигналы вне фазы.

Две волны, показанные выше (A и B), имеют одинаковую амплитуду и частоту, но они не совпадают друг с другом. Технически это называется фазовым сдвигом . Ранее мы видели, как можно построить «синусоидальную волну», вычислив тригонометрическую функцию синуса для углов от 0 до 360 градусов, то есть полного круга.

Начальной точкой синусоидальной волны была нулевая амплитуда при нулевом градусе, прогрессирующая до полной положительной амплитуды при 90 градусах, нуля при 180 градусах, полной отрицательной при 270 градусах и возврата к начальной точке нуля при 360 градусах.

Мы можем использовать эту угловую шкалу вдоль горизонтальной оси нашего графика формы волны, чтобы выразить, насколько далеко одна волна не совпадает с другой: Рисунок ниже

Волна A опережает волну B на 45 °

Сдвиг между этими двумя формами волны составляет около 45 градусов, причем волна «A» опережает волну «B». Выборка различных фазовых сдвигов представлена ​​на следующих графиках, чтобы лучше проиллюстрировать эту концепцию: Рисунок ниже

Примеры фазовых сдвигов.

Поскольку формы сигналов в приведенных выше примерах имеют одинаковую частоту, они будут отклоняться от шага на одинаковую угловую величину в каждый момент времени. По этой причине мы можем выразить фазовый сдвиг для двух или более сигналов одной и той же частоты как постоянную величину для всей волны, а не просто выражение сдвига между любыми двумя конкретными точками вдоль волн.

То есть, можно с уверенностью сказать что-то вроде: «Напряжение« A »сдвинуто по фазе на 45 градусов с напряжением« B ».Какая бы форма волны ни была впереди в своем развитии, говорят, что она будет , опережая , а следующая — , отстающая .

Фазовый сдвиг, как и напряжение, всегда является измерением относительно двух вещей. На самом деле не существует такой вещи, как форма волны с абсолютным измерением фазы , потому что не существует известного универсального эталона для фазы.

Обычно при анализе цепей переменного тока форма волны напряжения источника питания используется в качестве эталона для фазы, это напряжение указано как «xxx вольт при 0 градусах.”Любое другое переменное напряжение или ток в этой цепи будет иметь фазовый сдвиг, выраженный в терминах относительно этого напряжения источника.

Это то, что делает расчеты цепей переменного тока более сложными, чем вычисления постоянного тока. При применении закона Ома и закона Кирхгофа величины переменного напряжения и тока должны отражать фазовый сдвиг, а также амплитуду. Математические операции сложения, вычитания, умножения и деления должны оперировать этими величинами фазового сдвига, а также амплитуды.

К счастью, существует математическая система величин, называемая комплексных чисел , идеально подходящая для этой задачи представления амплитуды и фазы.

Поскольку комплексные числа так важны для понимания цепей переменного тока, следующая глава будет посвящена только этому предмету.

ОБЗОР:

  • Фазовый сдвиг — это когда две или более формы сигналов не совпадают друг с другом.
  • Величина фазового сдвига между двумя волнами может быть выражена в градусах, как определено в градусах на горизонтальной оси графика формы волны, используемой при построении тригонометрической синусоидальной функции.
  • Сигнал , опережающий сигнал определяется как один сигнал, который опережает другие в своем развитии. Сигнал , запаздывающий, — это сигнал, который отстает от другого. Пример:

  • Расчеты для анализа цепей переменного тока должны учитывать как амплитуду, так и фазовый сдвиг сигналов напряжения и тока, чтобы быть полностью точными. Это требует использования математической системы под названием комплексных чисел .

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

scipy.signal.filtfilt — SciPy v1.6.2 Справочное руководство

Применение цифрового фильтра вперед и назад к сигналу.

Эта функция применяет линейный цифровой фильтр дважды, один раз вперед и один раз назад. Комбинированный фильтр имеет нулевую фазу и порядок фильтрации вдвое больше оригинала.

Функция предоставляет опции для обработки фронтов сигнала.

Функция sosfiltfilt (и конструкция фильтра с использованием вывода = 'sos' ) для большинства задач фильтрации следует отдавать предпочтение перед Filtfilt , так как секции второго порядка имеют меньше числовых проблем.

Параметры
b (N,) array_like

Вектор коэффициентов числителя фильтра.

a (N,) array_like

Вектор коэффициентов знаменателя фильтра. Если a [0] не равно 1, то a и b нормализованы на a [0] .

x array_like

Массив данных для фильтрации.

ось int, необязательно

Ось x , к которой применяется фильтр. По умолчанию -1.

padtype str или None, необязательно

Должен быть «odd», «even», «constant» или None. Это определяет тип расширения, используемого для дополненного сигнала, к которому фильтр применяется. Если padtype — None, заполнение не используется. По умолчанию «странно».

padlen int или None, необязательно

Количество элементов, на которые можно удлинить x на обоих концах Ось до применения фильтра.Это значение должно быть меньше, чем x.shape [ось] - 1 . padlen = 0 не подразумевает заполнения. Значение по умолчанию — 3 * max (len (a), len (b)) .

method str, optional

Определяет метод обработки фронтов сигнала, либо «Пад» или «порыв». Когда метод — «заполнение», сигнал дополняется; то тип набивки определяется padtype и padlen и irlen игнорируется.Когда метод — «порыв», используется метод Густафссона, и padtype и padlen игнорируются.

irlen int или None, необязательно

Когда метод является «порывом», irlen указывает длину импульсная характеристика фильтра. Если irlen — None, то не часть импульсной характеристики игнорируется. Для длинного сигнала указав irlen позволяет значительно улучшить производительность фильтра.

Возвращает
y ndarray

Отфильтрованный вывод такой же формы, как x .

Банкноты

Когда метод — «заполнение», функция заполняет данные по заданной оси. одним из трех способов: нечетным, четным или постоянным. Нечетные и четные расширения имеют соответствующую симметрию относительно конечной точки данных. В постоянное расширение расширяет данные значениями в конечных точках.На как вперед, так и назад, начальное состояние фильтр находится с помощью lfilter_zi и масштабирования по конечной точке расширенные данные.

Когда метод — «порыв ветра», используется метод Густафссона [1]. Исходный выбраны условия для прямого и обратного прохода так, чтобы фильтр вперед-назад дает тот же результат, что и фильтр вперед-назад фильтр.

Возможность использования метода Густаффсона была добавлена ​​в scipy версии 0.16.0.

Список литературы

1

Ф. Густаффсон, “Определение начальных состояний в прямом-обратном фильтрация », Транзакции по обработке сигналов, Том. 46, стр. 988-992, 1996.

Примеры

В примерах будут использоваться несколько функций из scipy.signal .

 >>> из сигнала импорта scipy
>>> импортировать matplotlib.pyplot как plt
 

Сначала мы создаем односекундный сигнал, который представляет собой сумму двух чистых синусов. волны с частотами 5 Гц и 250 Гц с дискретизацией 2000 Гц.

 >>> t = np.linspace (0, 1.0, 2001)
>>> xlow = np.sin (2 * np.pi * 5 * t)
>>> xhigh = np.sin (2 * np.pi * 250 * t)
>>> x = xlow + xhigh
 

Теперь создайте фильтр Баттерворта нижних частот с отсечкой 0,125 раза. частоту Найквиста, или 125 Гц, и примените ее к x с фильтром . Результат должен быть приблизительно xlow без сдвига фазы.

 >>> b, a = signal.butter (8, 0,125)
>>> y = сигнал.filterfilt (b, a, x, padlen = 150)
>>> np.abs (y - xlow) .max ()
9.1086182074789912e-06
 

Мы получаем довольно чистый результат для этого искусственного примера, потому что нечетное расширение является точным, и с умеренно длинным отступом, переходные процессы фильтра рассеялись к тому времени, когда фактические данные достигается. Обычно переходные эффекты на краях неизбежно.

В следующем примере демонстрируется опция method = "gust" .

Сначала создайте фильтр.

 >>> b, a = signal.ellip (4, 0,01, 120, 0,125) # Применяемый фильтр.
>>> np.random.seed (123456)
 

sig — случайный входной сигнал, подлежащий фильтрации.

 >>> п = 60
>>> sig = np.random.randn (n) ** 3 + 3 * np.random.randn (n) .cumsum ()
 

Примените filterfilt к sig , один раз используя метод Густафссона, и один раз, используя заполнение, и постройте результаты для сравнения.

 >>> fgust = signal.filterfilt (b, a, sig, method = "gust")
>>> fpad = signal.filtfilt (b, a, sig, padlen = 50)
>>> plt.plot (sig, 'k-', label = 'input')
>>> plt.plot (fgust, 'b-', linewidth = 4, label = 'gust')
>>> plt.plot (fpad, 'c-', linewidth = 1.5, label = 'pad')
>>> plt.legend (loc = 'лучший')
>>> plt.show ()
 

Аргумент irlen может использоваться для повышения производительности метода Густафссона.

Оцените длину импульсной характеристики фильтра.

 >>> z, p, k = signal.tf2zpk (b, a)
>>> eps = 1e-9
>>> r = np.max (np.abs (p))
>>> приблизительно_импульс_лен = int (np.ceil (np.log (eps) / np.log (r)))
>>> about_impulse_len
137
 

Применение фильтра к более длинному сигналу, с irlen и без него аргумент. Разница между y1 и y2 небольшая. Надолго сигналов, использование irlen дает значительное улучшение производительности.

 >>> х = нп.random.randn (5000)
>>> y1 = signal.filtfilt (b, a, x, method = 'gust')
>>> y2 = signal.filtfilt (b, a, x, method = 'gust', irlen = приблизительно_impulse_len)
>>> print (np.max (np.abs (y1 - y2)))
1,80056858312e-10
 

Что такое обрыв фазы? Как я могу защитить свое оборудование?

Вопрос:

Что такое обрыв фазы? Как я могу защитить свое оборудование?

Ответ:

Когда одна фаза трехфазной системы потеряна, происходит потеря фазы.Это также называется «однофазным». Обычно обрыв фазы вызван перегоревшим предохранителем, тепловой перегрузкой, обрывом провода, изношенным контактом или механическим отказом. Обрыв фазы, который остается незамеченным, может быстро привести к небезопасным условиям, отказам оборудования и дорогостоящим простоям.

В условиях обрыва фазы двигатели, насосы, воздуходувки и другое оборудование потребляют чрезмерный ток на оставшихся двух фазах, что приводит к быстрому перегреву обмоток двигателя. Выходная мощность значительно снижается, и запуск в таких условиях невозможен.Это потенциально может оставить оборудование в состоянии «заблокированного ротора», что приведет к перегреву и еще более быстрому повреждению оборудования.

Часто бывает сложно быстро найти и устранить обрыв фазы и определить основную причину. Напряжения и токи в трехфазной системе обычно не просто падают до нуля при потере фазы. Часто измерения дают сбивающие с толку значения, которые требуют большого сложного анализа для правильной интерпретации. Между тем, повреждения и простои оборудования продолжают расти.

Трехфазное реле контроля, также называемое реле обрыва фазы, является экономичным вложением, которое легко установить. Трехфазное реле контроля защищает от повреждений, вызванных обрывом фазы, а также другими условиями трехфазного короткого замыкания. Эти реле уведомляют об условиях неисправности и предоставляют управляющие контакты для отключения двигателей или другого оборудования до того, как произойдет повреждение. Кроме того, реле обеспечивает четкую индикацию наличия неисправности, что позволяет быстро устранять неисправности и сокращать время простоя.

Трехфазные реле контроля могут быть спроектированы в новых установках или легко модернизированы в существующие установки. Доступно несколько моделей, обеспечивающих различные типы защиты, и предлагается несколько диапазонов напряжения для большинства трехфазных приложений.

Трехфазные двигатели и другое оборудование широко используются в различных отраслях промышленности:

  • ОВК
  • Горное дело
  • Насос
  • Лифт
  • Кран
  • Подъемник
  • Генератор
  • Орошение
  • Петро-Хим
  • Сточные воды
  • И более

Macromatic предлагает единственный в своем роде фазовый монитор, который сохраняет индикацию неисправности и продолжает контролировать все напряжения даже при наличии потери фазы.Проиграйте любую фазу. Вижу это. Каждый раз. Узнайте больше о трехфазных контрольных реле Macromatic, чтобы предотвратить повреждение важных двигателей и оборудования.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *