Закрыть

Как прозвонить конденсаторы: Как проверить конденсатор?

Содержание

Виды конденсаторов и проверка мультиметром на исправность

Конденсатор (лат. condensare — «сгущать», «уплотнять») популярная двухполюсная система, которую применяют в различных электрических цепях. Устройство способно накапливать и быстро отдавать электрический заряд. Величина емкости может быть, как постоянная, так переменная.

Описание и принцип работы кондесатора

В самом простом случае конденсатор представляет собой две противоположно заряженные пластины с диэлектрической (изолирующей) прокладкой между ними. Диэлектрик имеет очень малую толщину, в сравнении с площадью пластин. Роль диэлектрика может выполнять даже воздух.

В реальном производстве большинство конденсаторов представляют собой многослойные рулоны из токопроводящих электродов, разделенные диэлектриком. Собраны рулоны в цилиндрическом корпусе.

Трудно найти электрическую схему, в которой бы не принимал участия конденсатор.

В различных схемах этот элемент выполняет роль накопителя энергии. Классическая схема, объясняющая действие конденсатора, представлена на рисунке.

Обычная лампочка подсоединена к конденсатору, который с помощью переключателя, через сопротивление, может заряжаться от гальванической батареи. При изменении положения переключатель отсоединяет батарею от конденсатора и соединяет его с лампочкой. Устройство отдает накопленный заряд лампе и можно наблюдать кратковременную вспышку.

На первый взгляд, он напоминает действие батарейки, но отличается от нее по принципу зарядки, скорости разрядки, емкости.

Когда конденсатор подключают к заряжающему устройству, на электродах оказывается много места и ток зарядки сначала максимальный. По мере того как пластины заряжаются, ток уменьшается и исчезает при полной зарядке. На одной пластине собираются электроны — отрицательно заряженные частицы, на другой — ионы, положительные частицы. Чтобы они не перескакивали с одной пластины на другую нужен диэлектрик.

Напряжение, в отличие от тока, растет по мере насыщения конденсатора. Когда от него отключают батарею он сам, как батарейка, становится источником тока. Но, в отличие от батареи, конденсатор разряжается быстро.

Характеристики параметров устройства

Все важные значения параметров конденсатора расположены на корпусе. На нем также указывается тип элемента, дата выпуска, изготовитель.

Самой важной характеристикой является емкость.

Емкость – это величина заряда, который может накопить и отдать элемент. Емкость измеряется в Фарадах. Один Фарад равен емкости, при которой за одну секунду и силе тока в один ампер между прокладками создается напряжение один вольт. Это довольно большая величина и на практике в магнитофонах, плеерах используются миллионные и тысячные части фарады.

После значения ёмкости на корпусе показываются допустимые отклонения от неё.

Следующий важный параметр — номинальное напряжение. Всегда необходимо брать радиодеталь с запасом по напряжению, иначе, может случиться пробой диэлектрика и элемент выйдет из строя.

Кроме того, у каждого конденсатора есть еще различные характеристики: рабочая температура, ток номинальный переменный или постоянный.

Они бывают однофазные и трехфазные.

Классификация конденсаторов

В основном они различаются по типу диэлектрика. Именно от него зависят максимальное напряжение, сопротивление, стабильность.

По диэлектрику

По особенностям диэлектрика можно выделить следующие типы:

  • Жидкий.
  • Вакуумный. Когда пластины находятся в вакууме, и он же выступает диэлектриком.
  • Газовый.
  • Электролитический и оксид-полупроводниковый. Непроводящим слоем здесь выступает оксидный слой анода. У этого типа самая большая удельная емкость.
  • Твердый органический диэлектрик. Изолятором выступает пленка, бумага, метало — бумага.
  • Твердый неорганический диэлектрик. Керамические, слюдяные, стеклянные и комбинированные непроводящие элементы.

По изменению емкости

По этой характеристике можно выделить следующие устройства:

  • Постоянные. Во время работы их емкость не меняется.
  • Переменные. Обладают способностью изменять свою емкость. Это может быть механический метод — реостат. Либо изменение электрического напряжения, либо температуры.
  • Подстроечные. Подстраиваются механически вручную при настройке схемы прибора. Чтобы устройство работало нормально.

По назначению и использованию

По сфере эксплуатации все конденсаторы разделяются на следующие типы:

  • Низковольтные. Часто используемые в схемах бытовых устройств.
  • Высоковольтные. Способные выдержать повышенное напряжение.
  • Импульсные. Применяются в фотовспышках, лазерах.
  • Пусковые. При помощи их запускают электродвигатели.
  • Помехоподавляющие.

Различают конденсаторы полярные и неполярные. Полярными бывают только электролитические кондеры.

Области применения

Конденсаторы находят применение практически во всех областях электротехники:

  • Фильтры выпрямителей и стабилизаторов в источниках питания.
  • Передача сигналов в усилителях.
  • Различные частотные фильтры. Разделяют звуки на низкие, средние, высокие.
  • В таймерах. Они устанавливают временные отрезки пускового механизма стиральной машины, микроволновки.
  • В переходниках. Например, можно подключить электродвигатель, рассчитанный на 380 вольт к сети с напряжением в 220 вольт. Конденсатор подсоединяется к третьему выводу, сдвигая фазу на 90 градусов на третьем выводе. В результате можно трехфазный мотор включать в однофазную сеть 220 вольт.
  • В генераторах. Подбор частоты колебаний и т. д.

В настоящее время сложно встретить электрическую схему, где бы ни использовались конденсаторы.

Несложные конденсаторы практически не выходят из строя, поломка может возникнуть только при механическом воздействии. Электролитические кондеры могут со временем «высыхать». Если прибор продолжительное время не эксплуатируется, то диэлектрический слой ухудшает непроводимость тока.

Если полярные конденсаторы неправильно подсоединить в схеме, перепутав полюса, то элемент тоже может выйти из строя или даже привести к короткому замыканию на плате.

При замене конденсаторов, их обязательно надо тестировать и проверять. Поскольку даже в неиспользуемых ранее элементах, при длительном хранении может высохнуть диэлектрик.

Способов проверки радиоэлементов несколько. В одних случаях достаточно внешнего осмотра. Лучше всего подходит тестирование прибором LC-метром. Но если его нет под рукой, то проверить исправность кондера можно тестером или мультиметром. Последний способ подходит для конденсаторов, с емкостью, превосходящей 0. 25 микрофарад.

Проверка конденсатора тестером

Перед проверкой, как и перед любой работой с конденсатором, его следует разрядить. Если он маломощный, то достаточно отверткой замкнуть ножки элемента. Ручка отвертки должна быть изолирована.

Мощные конденсаторы разряжаются лампочкой накаливания. После вспыхивания лампочки он полностью разрядится.

Теперь можно проводить внешний осмотр. Определить испорченные радиодетали иногда можно невооруженным глазом. Если обнаружены коррозия, вздутие корпуса, подтеки, то деталь требует замены.

В некоторых импортных электролитических конденсаторах в верхней части размечен и выдавлен крест. Стенка корпуса в этом месте элемента тоньше. При пробое, именно там и рвется.

Перед прозвонкой нужно обязательно выпаять ножки. Иначе, остальные детали повлияют своим сопротивлением на показатели. В принципе, можно отпаять только одну ножку, но на практике, особенно у электролитических кондеров, ножки короткие. И технически это трудно сделать.

Для проверки детали на 220 вольт подходит простой способ тестирования:

  • Проверяем степень разрядки.
  • Проверяем тестером нет ли внутри короткого замыкания.
  • Заряжаем конденсатор от сети. Обязательно надо соблюдать технику безопасности.
  • Отключаем деталь от сети.
  • Подключаем лампочку или просто соединяем ножки элемента. Если лампочка вспыхнула или появилась искра, то радиодеталь в порядке.

Тестирование с помощью мультиметра

Мультиметр является универсальным средством измерения различных параметров электрических цепей, узлов и деталей.

Он позволяет измерить:

  • Величину тока как постоянного, так и переменного.
  • Значение напряжения.
  • Параметры сопротивления и прочие параметры.

Мультиметры, в зависимости от способа вывода данных, бывают аналоговые и цифровые. Если мультиметр цифровой, то измеренные параметры выводятся на жидкокристаллическом экране.

При аналоговом варианте, параметры отображаются на дисплее со стрелочкой. Вариант с градуировкой удобнее для измерения и проверки конденсаторов. Визуально проще увидеть отклонение стрелки, чем быстроменяющиеся цифры.

Если конденсаторы переменные, то они пропускают ток в различных направлениях, а постоянные, то только в одном, до тех пор, пока не зарядятся.

Мультиметры имеют свой источник питания, то есть обладают номинальным напряжением и полярностью. Эти качества и используются при диагностике радиоэлементов.

Как проверить мультиметр на работоспособность

Надо перевести переключатель в положение для измерения сопротивления. Обычно это положение обозначается ОНМ. Прибор следует отградуировать механической градуировкой так, чтобы стрелка совместилась с крайней риской.

Замкнуть хвостики отверткой, ножом, одним из щупальцев мультиметра для снятия заряда с конденсатора. На этом этапе надо действовать аккуратно и осторожно. Даже небольшой бытовой элемент может нанести удар по человеческому телу.

После включения прибора, необходимо перевести переключатель в режим измерения сопротивления и соединить щупы. На дисплее должно отразиться нулевое значение сопротивления или близко к нему.

Ход проверки

Определяют визуально на предмет физических нарушений. После чего пробуют крепление ножек на плате. Несильно раскачивают элемент в разные стороны. При обрыве одной из ножек или отслаивании электродорожки на плате, это сразу будет заметно.

Если внешних признаков нарушений нет, то сбрасывают возможный заряд и прозванивают мультиметром.

Если на приборе показано практически нулевое сопротивление, то элемент начал заряжаться и исправен. По мере зарядки, сопротивление начинает расти. Рост значения должен быть плавно, без рывков.

При нарушенной работоспособности:

  • При зажиме разъёмов показания тестера сразу безразмерно велики. Значит, обрыв в элементе.
  • Мультиметр на нуле. Иногда сигнализирует звуковым сигналом. Это признак короткого замыкания или, как говорят, «пробой».

В этих случаях элемент надо заменить на новый.

Если надо проверить работоспособность неполярного конденсатора, то выбирают предел измерения мегаомы. При тестировании исправная радиодеталь не покажет сопротивление выше 2 мОм. Правда, если номинальный заряд элемента меньше 0,25 мкФ, то требуется LC-метр. Мультиметр здесь не поможет.

После проверки на сопротивление следует проверка на ёмкость. Для того чтобы знать, способен ли радиоэлемент накапливать и удерживать заряд.

Тумблер мультиметра переводится в режим СХ. Выбирается предел измерения исходя из емкости элемента. К примеру, если на корпусе обозначена ёмкость в 10 микрофарад, то пределом на мультиметре может быть 20 микрофарад. Значение ёмкости указано на корпусе. Если показатели измерения сильно отличаются от заявленных, то конденсатор неисправен.

Этот вид измерения лучше всего проводить цифровым прибором. Стрелочный покажет лишь быстрое отклонение стрелки, что лишь косвенно говорит о нормальности проверяемого элемента.

Как проверить устройство не выпаивая

Для того чтобы случайно не сжечь паяльником какую-нибудь микросхему на плате, существует способ проверки конденсатора мультиметром не выпаивая.

Перед тем как прозвонить, электродетали разряжаются. После чего тестер переводится в режим проверки сопротивления. Щупальца прибора подключаются к ножкам проверяемого элемента, с соблюдением необходимой полярности. Стрелка прибора должна отклонится, поскольку по мере зарядки элемента его сопротивление увеличивается. Это свидетельствует о том, что конденсатор исправен.

Иногда приходится проверять на плате и микросхемы. Это сложная процедура, не всегда выполнимая. Поскольку микросхема представляет собой отдельный узел, внутри которого находится большое количество микродеталей.

Проверка микросхемы

Мультиметр ставится в режим измерения напряжения. На вход микросхемы подается напряжение в пределах допустимой нормы. После чего необходимо проконтролировать поведение на выходе микросхемы. Это очень сложный прозвонок.

Перед выполнением всех видов работ, связанных с электричеством, проверки, тестирования радиоэлементов, очень важно соблюдать правила безопасности. Мультиметр должен тестировать только обесточенную электрическую плату.

Как проверить работоспособность конденсатора мультиметром в домашних условиях

Вышедшие из строя радиоэлементы можно обнаружить с помощью различных техник и приборов. Но всё становится не так просто, когда нам необходимо с помощью мультитестера протестировать емкостные элементы, так как обычным прозвоном таких элементов не обойтись.

Мультиметр – это электроизмерительный прибор универсального типа. С его помощью можно замерить параметры переменного и постоянного тока, мощность электрической сети, сопротивление сети, радиодеталей, емкости конденсаторов.

Мультиметры делятся на два типа: аналоговый и цифровой. В аналоговом мультиметре измеряемые параметры отображаются на стрелочной шкале. В цифровом мультиметре результаты отображаются на цифровом табло.

На корпусе мультиметра установлен переключатель, регулятор. Иногда таких регуляторов бывает две штуки. Служат они для переключения величин измерений, режимов работы прибора. Для измерения параметров используются щупы. Щуп – это провод, на одном конце которого имеется металлический наконечник, на втором – разъем.

Виды конденсаторов и причины выхода из строя

Конденсаторы по используемым в конструкции материалам делятся на конденсаторы простые и диэлектрические. Конденсаторы бывают с постоянной фиксированной емкостью и с переменной емкостью. Основная единица измерения емкости – Фарад и производные от нее, нанофарады, микрофарады, пикофарады.

Конденсаторы имеют одно неприятное свойство. Со временем они теряют свою способность накапливать и удерживать энергию, емкость. В народе говорят, что они сохнут. В результате этого электросхема теряет свою работоспособность.

Сохнут даже не включенные в схему конденсаторы. Поэтому перед установкой в электросхему конденсатора его нужно обязательно проверять, совпадают ли указанные на нем номиналы с реально существующими на данный момент.

Обязательно проверяют так же и конденсаторы, уже включённые в электросхему. Делается такая проверка обычно раз в два года. Именно за этот срок конденсатор теряет свои свойства. Пришедшие в негодность конденсаторы необходимо выпаять из схемы и заменить новыми.

Как проверить конденсатор

Прежде всего, стоит просто осмотреть его. Со временем корпус конденсатора может разрушиться, ножки могут начать качаться. На электролитических конденсаторах могут появиться подтеки. Конденсатор может изменить свой цвет. Это означает, что произошел пробой конденсатора.

Пробой – это такое состояние детали, когда диэлектрик, лежащий между двумя разноименными прокладками, разрушился, со временем или под воздействием внешних причин, и между прокладками проскочил электрический заряд. В результате конденсатор пришел в негодность. В этом случае, как и в случае появления вышеописанных дефектов, конденсатор подлежит замене.

При визуальном осмотре не всегда удается вывить неисправности конденсатора. Поэтому воспользуемся мультиметром.

Подготовительные работы

Перед проверкой конденсатора его рекомендуется выпаять из электросхемы. Дело в том, что рядом стоящие детали могут вносить искажения в показания прибора. Выпаиваем конденсатор и разряжаем его. Разряжать конденсатор нужно для того, чтобы сбросить накопленную им во время работы емкость. Мощные конденсаторы, рассчитанные на 220 и 380 вольт, лучше разряжать с помощью пробника. Пробник – электропатрон с лампочкой и двумя проводами. Если конденсатор рассчитан на 220 вольт, то пробник может быть с одной лампочкой. Если на 380 вольт, то лучше в пробник поставить несколько лампочек, включенных последовательно. Лампочка на мгновение вспыхнет и погаснет. Конденсатор разрядился.

Для того чтобы разрядить менее мощные конденсаторы можно воспользоваться отверткой с изолированной ручкой.

Жалом отвертки замыкаем концы конденсатора. Проскочит небольшая искорка. Конденсатора разряжен.

Проверки сопротивления, как метод выявление вышедших из строя деталей

Сначала проверим его на сопротивление. При этом надо учесть, что электролитические конденсаторы относятся к полярному типу конденсаторов. То есть одна из прокладок у него положительно заряжена, другая – отрицательно. На корпусе конденсатора они помечены знаками «+» и « — « Полярными бывают только электролитические конденсаторы.

Устанавливаем на мультиметре режим измерения сопротивления. Если проверяем электролитический конденсатор, плюсовым концом щупа прибора касаемся плюса конденсатора, а минусовым – минуса. Если конденсатор исправен, то сразу высветится минимальное значение сопротивления. Потом оно будет плавно возрастать до максимума. Сопротивление может так же возрасти и до бесконечности. Только при исправном конденсаторе рост его происходит плавно. Не рывками.

Если конденсатор неисправен, то в одном случае прибор не показывает никакого сопротивления, т . е . ноль. При этом прибор может пищать. Это означает, что конденсатор пробит, произошло короткое замыкание. Если при касании щупом ножек конденсатора, прибор сразу показывает бесконечность, то в конденсаторе есть обрыв. И в том и в другом случае конденсатор не пригоден для дальнейшего использования, и его следует заменить.

Остальные типы конденсаторов, они, кстати, относятся к неполярным конденсаторам, проверять на сопротивление проще. Не имеет значения, каким контактом вы коснетесь ножки конденсатора, плюсом или минусом. Для измерения сразу устанавливаем величину сопротивления в Мегаомах. Сопротивление неисправного конденсатора никогда не превышает величину в 2 Мегаома. У исправного сопротивление или равно, или больше этой величины.

Проверка на неисправности с помощью измерения ёмкости

Замеряя сопротивление конденсатора, мы только проверяем его исправность. Нам еще нужно определить его емкость — самый главный номинал конденсатора.

Учтите, что на пробой с помощью мультитестора можно проверить только те конденсаторы, емкость которых меньше 0,25 микрофарад.
Для этого устанавливаем соответствующий режим работы прибора с помощью регулятора. Задаем предел измерения. Он должен соответствовать номиналу проверяемого конденсатора. Если на корпусе мультиметра предусмотрены гнезда для установки конденсатора, то вставляем его в эти гнезда. Если нет, вставляем в гнезда концы щупа и касаемся ножек конденсатора. При проверке электролитического конденсатора соблюдаем полярность. При проверке переменного конденсатора замеряем максимальную и минимальную величины емкости.

Как мы видим, нет ничего сложного в проверке с помощью мультиметра работоспособности конденсатора и соответствии его заявленным номиналам. Мы уже говорили, что со временем конденсаторы утрачивают свою способность накапливать и распределять энергию. Они попросту высыхают. Поэтому нужно регулярно проверять свои электронные и электрические схемы и отбраковывать пришедшие в негодность конденсаторы. Этим вы обеспечите надежную и качественную работу своей аппаратуры.

Видео о проверке конденсатора мультиметром

В видео достаточно подробно объясняются нюансы проверки конденсаторов. Обязательно посмотрите его и узнаете новые методы проверки, о которых ещё не слышали.

Как проверить конденсатор мультиметром. Прямые и косвенные методы :: SYL.ru

Причиной поломки электротехники часто является выход из строя конденсатора. Для проведения ремонта нужно знать, как проверить конденсатор мультиметром. Из инструментов еще потребуется паяльник, поскольку деталь придется выпаивать из платы.

Полярные конденсаторы легко проверить в режиме омметра. Если сопротивление детали бесконечно большое (горит единица в левом углу), это означает, что произошел обрыв.

Тестирование емкости конденсатора

Электролитический конденсатор со временем высыхает, и его емкость изменяется. Чтобы ее измерить, нужен специальный прибор. Как проверить электролитический конденсатор мультиметром? Прибор подключается к детали, и переключателем выбирается необходимый предел измерения.

При появлении на индикаторе сигнала о перегрузке, инструмент переключается на меньшую точность. Аналогично измеряется емкость неполярных конденсаторов.

Виды неисправностей конденсаторов

  • Емкость снизилась по причине высыхания.
  • Повышенный ток утечки.
  • Выросли активные потери в цепи.
  • Пробой изоляции (замыкание обкладок).
  • Обрыв внутри между обкладкой и выводом.

Визуальный контроль конденсаторов

Неисправности возникают из-за механических повреждений, перегрева, скачков напряжения и др. Чаще всего наблюдается выход из строя конденсатора по причине пробоя. Его можно увидеть по следующим дефектам: потемнению, вздутию или трещинам. У отечественных деталей при вздутии может произойти небольшой взрыв. Зарубежные конденсаторы защищены от него крестовидной прорезью на торце детали, где происходит небольшое вздутие, различимое глазом. Деталь с данной неисправностью может иметь нормальный вид, но при этом быть неработоспособной.

Для проверки элемент выпаивается из платы, иначе протестировать его невозможно. Проверку можно сделать по карте сопротивлений на плате, но для конкретной модели она не всегда имеется под рукой, даже при сервисном обслуживании.

Диагностика неисправностей неполярных конденсаторов

У неполярного конденсатора замеряется сопротивление. Если оно имеет величину меньше 2 мОм, здесь налицо неисправность (утечка или пробой). Исправная деталь обычно показывает сопротивление более 2 мОм или бесконечность. При замерах нельзя касаться щупов руками, поскольку будет измеряться сопротивление тела.

Тестирование на пробой также можно проводить в режиме проверки диодов.

Обрыв у конденсаторов малой емкости косвенным методом обнаружить невозможно. Как проверить емкость конденсатора мультиметром в подобной ситуации? Здесь нужен прибор, где есть необходимая функция.

Проверка электролитических конденсаторов

Существуют небольшие отличия, как проверить конденсатор мультиметром в режиме омметра. Полярные конденсаторы проверяются аналогично, но порог измерения у них составляет 100 кОм. Как только устройство зарядится и показание перевалит за эту величину, здесь можно судить о том, что деталь исправна.

Важно! Перед тем как проверить работоспособность конденсатора мультиметром, его следует разрядить путем соединения выводов. Высоковольтные детали из блоков питания подключаются на активную нагрузку, например через лампу накаливания. Если заряд оставить, можно испортить прибор или получить ощутимый разряд, дотронувшись до выводов руками.

К конденсатору подсоединяются щупы, показывающие рост сопротивления у исправной детали. Черный щуп с отрицательной полярностью подключается к минусовому проводнику, а красный — к положительному. На поверхности электролитического конденсатора минус обозначается белой полосой на боковой стороне.

На стрелочных приборах подобную проверку производить удобней, поскольку по скорости перемещения стрелки можно судить о величине емкости. Можно протестировать исправные детали с известными показателями и составить таблицу, по которой приблизительно определяется емкость по показаниям скорости падения напряжения.

После того, как конденсатор зарядится при тестировании (обычно до 3 В), на нем замеряется величина напряжения. Если она составляет 1 В или меньше, деталь нужно заменить, поскольку она не зарядилась. После проверки исправный конденсатор припаивается обратно, но его следует предварительно разрядить, закоротив ножки щупом.

Гарантия на электролитический конденсатор означает, что в течение заданного времени величина его емкости не выйдет за указанные пределы, обычно не превышающие 20 %. Когда срок службы превышен, деталь остается работоспособной, но величина емкости у нее другая, и ее необходимо контролировать. Как проверить конденсатор мультиметром в этом случае? Здесь емкость измеряют специальным прибором.

Обрыв трудно обнаружить с помощью омметра. Его признаком служит отсутствие изменения показаний в режиме омметра.

Как проверить конденсатор мультиметром не выпаивая

Сложность проверки конденсатора без демонтажа заключается в том, что с ним соседствуют такие элементы, как обмотки трансформаторов или индуктивности, обладающие незначительным сопротивлением постоянному току. Измерения можно производить обычным способом, когда рядом нет низкоомных деталей.

Заключение

Домашний мастер должен знать, как проверить конденсатор мультиметром. Для этого существуют прямые и косвенные методы. Не следует забывать о необходимости разрядки конденсатора перед каждым измерением.

Как проверить и разрядить высоковольтный конденсатор микроволновки

При массовом использовании в быту микроволновых печах СВЧ происходит и большое количество нарушений в их работе, поломки. Многих людей, кто столкнулся с этим, интересует, как проверить своими силами конденсатор микроволновки. Здесь можно узнать ответ на этот вопрос.

Конденсатор для микроволновки

Принцип устройства

Конденсатор является приспособлением, имеющим способность копить определенный заряд электричества. Он представляет собой две пластины из металла, установленные параллельно, между которыми находится диэлектрик. Увеличение площади пластин увеличивает накопленный заряд в устройстве.

Конденсаторы бывают 2-х видов: полярные и неполярные. Все полярные приспособления – электролитические. Емкость их от 0.1 ÷ 100000 мкФ.

При проверке полярного приспособления важно соблюдение полярности, когда плюсовая клемма присоединена к плюсовому выводу, а минусовая к минусовому.

Высоковольтными являются именно полярные конденсаторы, у неполярных – малая емкость.

Микроволновка с указанием места расположения конденсатора

В цепь питания магнетрона микроволновки входит диод, трансформатор, конденсатор. Через них к катоду идет до 2-х, 3-х киловольт.

Конденсатор – это большая деталь весом до 100 гр. К нему присоединяется вывод диода, второй на корпусе. Вблизи блока размещается также цилиндр. Конкретно данный цилиндр представляет собой высоковольтный предохранитель. Он не должен допустить перегревание магнетрона.

Расположение конденсатора

Как разрядить конденсатор в микроволновке

[adinserter block=»2″]

Разрядить его возможно такими способами:

Отключив от электросети, конденсатор разряжают, осмотрительно замкнув отверткой его клеммы. Хороший разряд свидетельствует о его исправном состоянии. Такой способ разрядки самый распространенный, хотя некоторые считают его опасным, способным нанести вред и разрушить приспособление.

Разряд конденсатора отвертками

У высоковольтного конденсатора есть интегрированный резистор. Он работает для разряда детали. Приспособление располагается под высочайшим напряжением (2 кВ), и потому есть необходимость в его разряде в основном на корпус. Детали с ёмкостью более 100 мкФ и напряжением от 63V лучше разряжать через резистор 5-20 килоОм и 1 – 2 Вт. Для чего концы резистора объединяют с клеммами приспособления на некоторое количество секунд, чтобы снять заряд. Это необходимо для предотвращения возникновение сильной искры. Потому надо побеспокоиться об личной безопасности.

Как проверить высоковольтный конденсатор микроволновки

Высоковольтный конденсатор проверяют его подключением вместе с лампой 15 Вт Х 220 В. Дальше выключают объединенные конденсатор и лампочку из розетки. При рабочем состоянии детали лампа станет светиться в 2 раза меньше, чем обычно. При нарушениях в работе лампочка ярко светит или не светится вообще.

Проверка с лампочкой

Конденсатор микроволновки имеет емкость 1.07 мф, 2200 в, потому испытать его с поддержкою мультиметра достаточно просто:

1. Необходимо подключить мультиметр так, чтобы измерять сопротивление, а именно наибольшее сопротивление. На устройстве сделать до 2000k.

2. Потом необходимо включить незаряженное приспособление к клеммам мультиметра, не дотрагиваясь их. При рабочем состоянии показания станут 10 кОм, переходящие в бесконечность (на мониторе 1).

3. Потом необходимо изменить клеммы.

4. Когда при включении его к устройству на мониторе мультиметра ничто не поменяется, это означает, приспособление в обрыве, когда будет нуль, означает, что в нем пробой. При показании в устройстве постоянного сопротивления, пусть небольшого значения, значит, в приспособлении есть утечка. Его необходимо сменить.

Проверка мультиметром

[adinserter block=»3″]

Проверка мультиметром

Эти испытания сделаны на невысоком напряжении. Часто неисправные приспособления не показывают нарушения на невысоком напряжении. Потому для испытания нужно применять или мегаомметр с напряжением одинаковым напряжению конденсатора, или будет нужен наружный источник высокого напряжения.

Мультиметром его элементарно так испытать невозможно. Он продемонстрирует лишь, что обрыва нет и короткое замыкание. Для этого необходимо в режиме омметра присоединить его к детали – в исправном состоянии он продемонстрирует невысокое сопротивление, которое за некоторое количество секунд вырастет по бесконечности.

Неисправный конденсатор имеет утечку электролита. Сделать определение емкости особым устройством не трудно. Надо его подключить, поставить на большее значение, и соприкоснуться клеммами к выводам. Сверить с нормативными. Когда отличия маленькие (± 15 %), деталь исправна, но когда их нет или значительно ниже нормы, значит, она пришло в негодность.

Для испытания детали омметром:

1. Надо снять наружную крышку и клеммы.

2. Разрядить его.

3. Переключить мультиметр для испытания сопротивления 2000 килоОм.

4. Исследуйте клеммы на присутствие механических дефектов. Плохой контакт станет негативно воздействовать на качество измерения.

5. Соедините клеммы с концами устройства и смотрите за числовыми измерениями. Когда числа начинают изменяться так: 1…10…102.1, означает, что деталь в рабочем состоянии. Когда значения не изменяются или появляется нуль, значит приспособление в нерабочем состоянии.

6. Для другого испытания приспособление надо разрядить и снова подтвердить.

Проверка омметром

Проверка омметром

[adinserter block=»4″]

Испытать конденсатор для обнаружения нарушений в работе возможно и тестером. Для этого надо настроить измерения в килоОм, и смотреть за испытанием. При соприкосновении клемм сопротивление должно снизиться практически до нулевой отметки, и за несколько секунд подрасти до показания на табло 1. Наиболее замедленным этот процесс будет, когда включить замеры на 10-ки и сотки килоОм.

Работа по проверке конденсатора

Проходные конденсаторы магнетрона в микроволновке проходят проверку тоже тестером. Надо тронуть выводами устройства вывод магнетрона и его корпуса. Когда на табло будет 1 — конденсаторы исправны. При появлении показаний сопротивления означает, что один из них пробит или в утечке. Их надо сменить на новые детали.

Проверка исправности проходных конденсаторов

[adinserter block=»5″]

Одной из причин нарушений работы конденсатора есть утрата части емкости. Она становится другой, не так, как на корпусе.

Найти это нарушение при поддержке омметра трудно. Нужен датчик, который есть не в каждом мультиметре. Обрыв в детали бывает при механических воздействиях не так часто. Значительно чаще происходит нарушения за счет пробоя и утраты емкости.

Микроволновка не производит нагревание микроволной из-за того, что в детали есть утечка, которая не обнаруживается обыкновенным омметром. Потому надо целенаправленно испытать деталь при поддержке мегомметра с использованием высокого напряжения.

Действия при испытании будут следующие:

  1. Нужно поставить наибольший предел измерения в режиме омметра.
  2. Щупами измерительного устройства дотрагиваемся до выводов детали.
  3. Когда на табло отражается «1», показывает нам, что сопротивление более 2-ух мегаом, следственно, в рабочем состоянии, в другом варианте мультиметр продемонстрирует меньшее значение, что значит, что деталь в нерабочем состоянии и пришла в негодность.

Перед тем как начинать починку всех электроустройств, нужно удостовериться, что нет питания.

После проверки деталей надо принимать меры к замене тех из них, которые находятся в нерабочем состоянии, новыми, более совершенными.

Разряд конденсатора на корпус

Как проверить конденсатор в микроволновке с помощью мультиметра

В микроволновке имеется конденсатор, который накапливает заряд электричества и служит для выравнивания бросков напряжения при включенной печи. Он представляет собой деталь с двумя металлическими пластинами. В микроволновку устанавливаются конденсаторы различного типа в зависимости от ее конструкции и мощности. Деталь эта имеет большие размеры и весит до 100 г. В этой статье даются рекомендации, как проверить, работает конденсатор в СВЧ или он неисправен.

Проверка конденсатора

Сегодня микроволновые печи является распространенными приборами, применяемыми в быту. Во время эксплуатации микроволновки возникают случаи, когда необходимо проверить, работает ли конденсатор. Данная необходимость возникает при подозрении, что печь работает некорректно и со сбоями. Такую проверку можно выполнить своими руками, без привлечения специалистов. Но ее нужно производить очень осторожно, чтобы случайно не вышли из строя другие элементы СВЧ. Как же правильно осуществить тестирование устройства?

Как найти конденсатор в микроволновке

Первое, что нужно сделать при каких-либо манипуляциях с конденсатором, — отключить микроволновку от электросети в целях исключения негативного воздействия электрического тока на человека. Далее нужно открутить заднюю крышку СВЧ и снять панель, которая закрывает устройство. Найти деталь несложно, если знать, что он из себя представляет по внешнему виду. Обычно он расположен недалеко от трансформатора.

Несмотря на то, что микроволновая печь отключена от сети, есть риск поражения электрическим током, так как эта деталь его накапливает (до 2 кВ). Поэтому прибор необходимо разрядить на корпус. Для разрядки нужно замкнуть чем-нибудь его клеммы, например отверткой. Это наиболее распространенный способ, но считается, что он небезопасен для самого устройства. Только после разрядки прибора его можно подвергать различным манипуляциям. Личная безопасность прежде всего!

Использование мультиметра для проверки

Определить работоспособность конденсатора можно при помощи обычной лампочки мощностью от 40 Вт. Если во время касания проводов клемм устройства лампочка не загорается, но проскакивает искра, то оно находится в рабочем состоянии. Если один провод закрепить на клемме конденсатора, а второй – на его корпусе, можно проверить корпус на пробой. Если искра не обнаруживается, а лампочка не горит, то прибор находится в рабочем состоянии. Если же имеется искрение или лампочка горит вполнакала, то деталь нерабочая. Такой способ применим, если не имеется под рукой мультиметра.

Для более детальной диагностики конденсатора используется специальный прибор — мультиметр. Он предназначен для тестирования приборов и отдельных их деталей. Это устройство имеет два режима: мультиметра и омметра. В режиме «мультиметр» устройство работает на небольшом напряжении. В этом случае прибор покажет только отсутствие обрыва или же присутствие короткого замыкания (КЗ). Для детальной проверки тестер необходимо перевести в режим «омметр». Чтобы испытать конденсатор в этом режиме достаточно: снять крышку, снять клеммы, затем разрядить устройство, перевести прибор в режим «омметр» (сопротивление = 2000 кОм), затем проверить клеммы на отсутствие дефектов (так как плохой контакт влияет на достоверность измерений) и, наконец, соединить клеммы с деталью.

Модели используемого омметра:

Признаки исправного и неисправного конденсатора

Если устройство не работает, то значения на приборе или не изменяются, или имеют нулевое значение. Такой прибор больше непригоден для использования. Если конденсатор протек и имеется протечка электролита, то значение на дисплее будет показывать постоянное маленькое сопротивление. Такая деталь также подлежит замене, использовать ее уже нельзя. Прибор, пробитый вследствие короткого замыкания, показывает нулевое сопротивление на приборе и также подлежит утилизации.

Если при поверке устройства показания прибора изменяются от минимального до единицы, это означает, что деталь работает нормально. Его можно оставить в микроволновке для дальнейшего применения в работе. Для очередной проверки конденсатор необходимо разрядить снова.

Бывает, что деталь утрачивает только часть емкости. Она становится отличной от емкости на корпусе. В таком случае при диагностике необходим датчик, который имеется не в любом мультиметре. Обрыв вследствие механического воздействия случается не очень часто. Чаще возникают пробой или утрата емкости.

Проверку конденсаторов в СВЧ нужно производить своевременно, так как они являются ответственной деталью в СВЧ и непосредственно влияют на ее работоспособность.

Важно соблюдать все основные правила при поверке конденсатора в микроволновке для того, чтобы вовремя находить проблему в работе печи и устранить ее, не обладая специальными знаниями. Прежде, чем начинать диагностику и ремонт электроприборов, нужно обязательно удостовериться, что электропитание отключено.

Бытовая техника Микроволновая печьКонденсаторы

— learn.sparkfun.com

Добавлено в избранное Любимый 71

Теория конденсаторов

Примечание : Материал на этой странице не совсем критичен для понимания новичками в электронике … и к концу все становится немного сложнее. Мы рекомендуем прочитать раздел

Как делается конденсатор , остальные, вероятно, можно пропустить, если они вызывают у вас головную боль.

Как делается конденсатор

Схема обозначения конденсатора на самом деле очень похожа на то, как он сделан.Конденсатор состоит из двух металлических пластин и изоляционного материала, называемого диэлектриком . Металлические пластины расположены очень близко друг к другу, параллельно, но диэлектрик находится между ними, чтобы они не соприкасались.

Ваш стандартный конденсаторный сэндвич: две металлические пластины, разделенные изолирующим диэлектриком.

Диэлектрик может быть изготовлен из любых изоляционных материалов: бумаги, стекла, резины, керамики, пластика или всего, что препятствует прохождению тока.

Пластины изготовлены из проводящего материала: алюминия, тантала, серебра или других металлов. Каждый из них подключен к клеммному проводу, который в конечном итоге подключается к остальной части схемы.

Емкость конденсатора — сколько в нем фарад — зависит от его конструкции. Для большей емкости требуется конденсатор большего размера. Пластины с большей площадью перекрытия поверхности обеспечивают большую емкость, в то время как большее расстояние между пластинами означает меньшую емкость. Материал диэлектрика даже влияет на то, сколько фарад имеет колпачок.Полная емкость конденсатора может быть рассчитана по формуле:

где ε r — относительная диэлектрическая проницаемость диэлектрика (постоянное значение, определяемое материалом диэлектрика), A — площадь перекрытия пластин друг с другом, а d — расстояние между пластинами.

Как работает конденсатор

Электрический ток — это поток электрического заряда, который электрические компоненты используют для зажигания, вращения или выполнения любых действий.Когда ток течет в конденсатор, заряды «застревают» на пластинах, потому что не могут пройти через изолирующий диэлектрик. Электроны — отрицательно заряженные частицы — засасываются в одну из пластин, и она становится в целом заряженной отрицательно. Большая масса отрицательных зарядов на одной пластине отталкивает, как заряды, на другой пластине, делая ее положительно заряженной.

Положительный и отрицательный заряды на каждой из этих пластин притягиваются друг к другу, потому что это то, что делают противоположные заряды.Но с диэлектриком, сидящим между ними, как бы они ни хотели соединиться, заряды навсегда останутся на пластине (до тех пор, пока им не будет куда-то идти). Стационарные заряды на этих пластинах создают электрическое поле, которое влияет на электрическую потенциальную энергию и напряжение. Когда заряды группируются на конденсаторе подобным образом, крышка накапливает электрическую энергию так же, как батарея может хранить химическую энергию.

Зарядка и разрядка

Когда на пластинах конденсатора сливаются положительный и отрицательный заряды, конденсатор становится на

заряженным .Конденсатор может сохранять свое электрическое поле — удерживать свой заряд, потому что положительный и отрицательный заряды на каждой из пластин притягиваются друг к другу, но никогда не достигают друг друга.

В какой-то момент пластины конденсатора будут настолько заряжены, что просто не смогут больше принимать их. На одной пластине достаточно отрицательных зарядов, чтобы они могли отразить любые другие, которые попытаются присоединиться. Здесь вступает в игру емкость конденсатора (фарады), которая говорит вам о максимальном количестве заряда, которое может хранить конденсатор.

Если в цепи создается путь, который позволяет зарядам найти другой путь друг к другу, они выйдут из конденсатора, и он разрядит .

Например, в схеме ниже можно использовать батарею для создания электрического потенциала на конденсаторе. Это вызовет нарастание одинаковых, но противоположных зарядов на каждой из пластин, пока они не станут настолько полными, что оттолкнут ток. Светодиод, расположенный последовательно с крышкой, может обеспечивать путь для тока, а энергия, запасенная в конденсаторе, может использоваться для кратковременного освещения светодиода.

Расчет заряда, напряжения и тока

Емкость конденсатора — сколько в нем фарад — говорит вам, сколько заряда он может хранить. Сколько заряда хранит конденсатор в настоящее время, зависит от разности потенциалов (напряжения) между его пластинами. Эта взаимосвязь между зарядом, емкостью и напряжением может быть смоделирована следующим уравнением:

Заряд (Q), накопленный в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).

Емкость конденсатора всегда должна быть постоянной известной величиной. Таким образом, мы можем регулировать напряжение, чтобы увеличить или уменьшить заряд крышки. Больше напряжения означает больше заряда, меньше напряжения … меньше заряда.

Это уравнение также дает нам хороший способ определить значение одного фарада. Один фарад (F) — это способность хранить одну единицу энергии (кулоны) на каждый вольт.

Расчет тока

Мы можем пойти дальше по уравнению заряда / напряжения / емкости, чтобы выяснить, как емкость и напряжение влияют на ток, потому что ток — это скорость потока заряда.Суть отношения конденсатора к напряжению и току такова: величина тока , проходящего через конденсатор , зависит как от емкости, так и от того, как быстро напряжение растет или падает . Если напряжение на конденсаторе быстро возрастает, через конденсатор будет индуцироваться большой положительный ток. Более медленный рост напряжения на конденсаторе означает меньший ток через него. Если напряжение на конденсаторе стабильное и неизменное, через него не будет проходить ток.

(Это некрасиво, и касается вычислений. Это не все, что нужно, пока вы не перейдете к анализу во временной области, разработке фильтров и другим грубым вещам, поэтому переходите к следующей странице, если вам не нравится это уравнение .) Уравнение для расчета тока через конденсатор:

Часть этого уравнения dV / dt представляет собой производную (причудливый способ сказать мгновенная скорость ) напряжения во времени, это эквивалентно тому, «насколько быстро напряжение растет или падает в этот самый момент».Большой вывод из этого уравнения заключается в том, что если напряжение стабильно , производная равна нулю, что означает, что ток также равен нулю . Вот почему ток не может протекать через конденсатор, поддерживающий постоянное постоянное напряжение.



← Предыдущая страница
Условные обозначения и единицы

Как читать код конденсатора

Просмотры сообщений: 9 223

Загрузить: Руководство по электронике (которое мы даем нашим клиентам)

Полезные ссылки:

Как читать конденсатор:

Конденсаторы — это элементы схемы, которые реагируют на быстро меняющиеся сигналы, а не на медленно меняющиеся или статические сигналы.Конденсаторы могут накапливать энергию сильных быстро меняющихся сигналов и возвращать эту энергию в схему по желанию. Чаще всего конденсаторы используют для поглощения шума, который по определению является быстро меняющимся сигналом, и отводят его от интересующего сигнала. Для улавливания разных типов шума необходимы конденсаторы разной емкости. Воспользуйтесь этими советами, чтобы научиться читать обозначения конденсаторов и определять номинал конденсатора.

ШАГ 1

Разберитесь в единицах измерения, используемых для конденсаторов. Базовая единица измерения емкости — Фарада (Ф). Это значение слишком велико для использования в цепи. Меньшие номиналы емкости используются в электронных схемах.

  • Считать мкФ как мкФ. 1 мкФ составляет 1 умножить на 10 до -6 Фарада в степени.
  • Считать пФ как пикоФарад. 1 пикофарад равен 1 умножению на 10 до -12 Фарада степени.

ШАГ 2

Считайте значение непосредственно на конденсаторах большей емкости. Если поверхность корпуса достаточно большая, значение будет напечатано прямо на конденсаторе.Например, 47 мкФ означает 47 мкФ.

ШАГ 3:

Считайте емкость меньших по размеру конденсаторов как два или три числа. Обозначения мкФ или пФ не отображаются из-за малых размеров корпуса конденсатора.

  • Считайте двузначные числа в пикофарадах (пФ). Например, 47 будет читаться как 47 пФ.
  • Считайте трехзначные числа как значение базовой емкости в пикофарадах и множитель. Первые две цифры указывают значение базового конденсатора в пикофарадах.Третья цифра будет указывать множитель, который будет использоваться для базового числа, чтобы найти фактическое значение конденсатора.
  • Используйте третью цифру от 0 до 5, чтобы поместить соответствующее количество нулей после базового значения. Третья цифра 8 означает умножение базового значения на 0,01. Третья цифра 9 означает умножение базового значения на 0,1. Например, 472 будет обозначать конденсатор 4700 пФ, а 479 — конденсатор 4,7 пФ.
  • цифра-символ-цифра. Некоторые малые конденсаторы имеют коды типа 1n0.Цифры — это значения до и после десятичной точки, а символ указывает размер; поэтому в приведенном примере значение 1,0 нФ (нано-Фарад).

ШАГ 4:

Ищите буквенный код. Некоторые конденсаторы обозначаются трехзначным кодом, за которым следует буква. Эта буква обозначает допуск конденсатора, означающий, насколько близким фактическое значение конденсатора может быть ожидаемое к указанному значению конденсатора.Допуски указаны ниже.

  • Считать B как 0,10 процента.
  • Считайте C как 0,25 процента.
  • Считать D как 0,5 процента.
  • Считайте E как 0,5 процента. Это дублирование кода D.
  • Считайте F как 1 процент.
  • Считайте G как 2 процента.
  • Считайте H как 3 процента.
  • Считайте J как 5 процентов.
  • Считайте K как 10 процентов.
  • Считайте M как 20 процентов.
  • Считайте N как 0,05 процента.
  • Считайте P как от плюс 100 процентов до минус 0 процентов.
  • Считайте Z как от плюс 80 процентов до минус 20 процентов.

КОНДЕНСАТОР ЭЛЕКТРОЛИТИЧЕСКИЙ

Электролитический конденсатор — это поляризованный конденсатор, в котором используется электролит для достижения большей емкости, чем у конденсаторов других типов.


Для сквозных конденсаторов значение емкости, а также максимальное номинальное напряжение указаны на корпусе. Конденсатор, на котором напечатано «4,7 мкФ 25 В», имеет номинальное значение емкости 4.7 мкФ и максимальное номинальное напряжение 25 В, которое никогда не должно превышаться.

В случае электролитических конденсаторов SMD (поверхностного монтажа) существует два основных типа маркировки. В первой четко указано значение в микрофарадах и рабочее напряжение. Например, при таком подходе конденсатор 4,7 мкФ с рабочим напряжением 25 В будет иметь маркировку «4,7 25 В». В другой системе маркировки за буквой следуют три цифры. Буква представляет номинальное напряжение в соответствии с таблицей ниже.Первые два числа представляют собой значение в пикофарадах, а третье число — это количество нулей, добавляемых к первым двум. Например, конденсатор 4,7 мкФ с номинальным напряжением 25 В будет иметь маркировку E476. Это соответствует 47000000 пФ = 47000 нФ = 47 мкФ.

О конденсаторах:

Тональные конденсаторы

для Stratocasters, часть 1

Здравствуйте, и добро пожаловать обратно в «Mod Garage». В последнее время я получил много писем об ограничениях тона для Stratocasters.Я уже несколько раз обсуждал конденсаторы в целом, и эти предыдущие столбцы — хорошее место для начала, если вы хотите узнать больше о тоновых ограничителях для гитар и о том, как определить наилучшее значение для вас. Основываясь на них, мы углубимся в тему и сконцентрируемся на ограничениях для Strats. Я могу дать вам совет о том, что попробовать, основываясь на моем многолетнем опыте работы с разными кепками и стратами, но фиксированных правил нет. Это ваша гитара и ваш звук, и нет закона, запрещающего пробовать все, что вы хотите.Будьте храбрыми и дерзайте, и, возможно, вы случайно найдете что-то, что вам подходит. Один из моих клиентов использует только колпачки от определенного старого немецкого радио 50-х годов. Для него это идеальный тон. Если у вас в подвале или на чердаке есть старые, устаревшие электронные устройства, они станут хорошим источником для диких экспериментов. Я получил электронное письмо от парня из Арканзаса, который открыл некоторые старые военные штучки 50-х годов и нашел тонны бейсболок Sprague Bumblebee … некоторые из них теперь живут своей второй жизнью в его гитарах Les Paul и SG и обеспечивают превосходные тон.

В двух словах, конденсатор — это электрическое / электронное устройство, которое накапливает энергию в электрическом поле между парой проводников (называемых пластинами). Процесс накопления энергии в конденсаторе известен как зарядка и включает в себя электрические заряды равной величины, но противоположной полярности, накапливающиеся на каждой пластине. Конденсаторы часто используются в электрических и электронных схемах в качестве накопителей энергии. Их также можно использовать для различения высокочастотных и низкочастотных сигналов.Это свойство делает их полезными в электронных фильтрах, и именно для этого мы используем их в наших гитарах. В принципе, наш пассивный регулятор тембра можно использовать для ослабления высоких частот. Когда вы закрываете регулятор тона, высокие частоты отключаются, что приводит к более мягкому тону. Регулировка этого элемента управления очень заметно влияет на звук, но это все еще узнаваемая гитара. Как правило, можно сказать, что чем больше крышка, тем темнее тон. В зависимости от значения емкости или емкости эффект может меняться от чуть более теплого (2200–6800 пФ) до «женского тона» (0.01–0,047 мкФ) до полной темноты и «клинически мертвой» (0,1 мкФ и выше). Еще одна вещь, о которой следует помнить, заключается в том, что ограничитель тона всегда является частью цепи и даже влияет на тон гитары, когда регулятор тона остается полностью открытым — вот почему ограничитель тона является такой важной частью звука.

Вот несколько крышек, которые вы должны попробовать в своем Strat:

Orange Drop
Эти легендарные бейсболки ранее производились Sprague. Сегодня они производятся американской компанией SBE, но на тех же старых станках и оригинальной оснастке золотых дней.Это типы пленок, доступные с различными номинальными напряжениями, размерами, формами и значениями. Типичные нам известные нам оранжевые каплевидные колпачки используются в высококачественных ламповых усилителях, особенно в усилителях на 630 В. У них самый «фендерный» тон при использовании в страте: слегка выровненные средние частоты и плотный, перкуссионный басовый отклик, отличный для чистой игры (а также для овердрайва). Доступно несколько различных серий. Наиболее распространенными из них, которые можно приобрести у поставщиков гитарных запчастей, являются серии 715P и 716P более высокого класса.Оба типа полипропиленовой пленки. Серии 225P и PS представляют собой полиэфирные пленки. Это те, которые вы должны попробовать в своем Strat. Они звучат даже более «Fendery», чем серии 715P и 716P. В качестве пленочных крышек оранжевые буквицы неполяризованы, поэтому их ориентация не имеет значения … по крайней мере, это не должно иметь значения, но это тема для следующей статьи.

Mallory 150
Эти колпачки из полиэфирной пленки с осевыми выводами или «поли-пленочные» колпачки легко идентифицировать по их ярко-желтому цвету, похожему на старые колпачки Plessi, которые вы, возможно, знаете по усилителям Music Man.Бейсболки Mallory 150 производятся канадской компанией DuraCap. Благодаря форме с осевыми выводами их очень легко использовать в гитарах. Они звучат очень напористо и с хорошей кромкой — идеальный вариант для страт-тона для блюза и рока. С овердрайвом они звучат очень мягко и музыкально. Этот колпачок отлично работает со звукоснимателями сингловыми катушками, но также будет работать и с хамбакерами. Если вы хотите современного круглого тона, вам стоит попробовать эту кепку.

ERO Roederstein MKT1813
Эти колпачки из полиэфирной пленки с аксиальными выводами, изготовленные Vishay, тоже желтого цвета, но не такие яркие и блестящие, как Mallory 150.У них очень древесный и прозрачный оттенок; в Telecaster они иногда могут звучать как акустическая гитара. Если ваш Strat имеет очень древесный и резонансный первичный тон, этот колпачок при усилении вынесет все на поверхность.

NOS Колпачки из пенопласта
Часто называемые «полистироловыми» колпачками, вы можете легко найти их сегодня на eBay, даже если они больше не производятся. Конденсаторы из полистирола лучше всего использовать для фильтров, схем синхронизации, схем обратной связи и везде, где важна высокая стабильность и низкая утечка, но они также являются отличными ограничителями звука для гитар, усилителей и педалей.Полистирол (полистирол, часто называемый в Европе «стирофлекс» или «стирол») долгое время был предпочтительным материалом для критически важных аналоговых схем. Колпачки из полистирола — прекрасная замена колпачкам из серебряной слюды, но они намного меньше по размеру и их легче найти в типичных значениях, которые мы используем для гитар. Если вам нужна максимальная прозрачность и полное отсутствие окраски тона, вам следует попробовать эту кепку.

В следующем месяце мы поговорим о колпачках из бумаги в масле, серебряных слюдяных колпачках, колпачках для тропических рыбок, бумажных вощеных колпачках и старых добрых керамических колпачках NOS 50-х и 60-х годов.А пока … продолжайте моддинг!


Дирк Вакер
Дирк Вакер живет в Германии и с пяти лет пристрастился к всевозможным гитарам. Его увлекает все, что связано со старыми гитарами и усилителями Fender. В свободное время он играет в стилях кантри, рокабилли, серфинга и Нэшвилла в двух группах, подрабатывает студийным музыкантом в местной студии и пишет для нескольких гитарных журналов. Он также признается, что занимается хардкорным самоделанием гитар, усилителей и педалей эффектов и ведет обширную веб-страницу singlecoil.ком, об этих вещах. .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *