Закрыть

Как прозвонить транзистор мультиметром не выпаивая видео: Можно ли проверить транзистор не выпаивая

Содержание

Как проверить транзистор мультиметром — картинки, рекомендации, видео

Современные электронные мультиметры имеют специализированные коннекторы для проверки различных радиодеталей, включая транзисторы.

Это удобно, однако, проверка не совсем корректная. Радиолюбители со стажем помнят, как проверить транзистор тестером со стрелочной индикацией. Техника проверки на цифровых приборах не изменилась. Для точного определения состояния полупроводникового прибора, каждые его элемент тестируется отдельно.

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы.

Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами.
Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

Так называемый «прямой» (см. фото)

С обратным переходом, как изображено на фото

Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром — видео.

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

С помощью мультиметра можно определить назначение выводов.

Важно! Это правило работает лишь в случае с исправным транзистором. Впрочем, если деталь неисправна, вам незачем определять названия контактов.

Мультиметр выставляем в режим измерения сопротивления, предел шкалы – 2000 Ом. Выводы прибора – красный плюс, черный минус. Транзистор располагаем любым удобным способом, выводу условно определяем как «левый», «средний», «правый».

Определение базы

Красный щуп на левый контакт, замеряем сопротивление на среднем и правом выводах. В нашем случае это значение «бесконечность» (на индикаторе «1»), и 816 Ом (типичное сопротивление исправного p-n перехода при прямом подключении). Фиксируем результат измерений.

Красный щуп на середину, производим замер левого и правого контактов. С «бесконечностью» все понятно, обращаем внимание на то, что вторая пара показала результат, отличный от первого измерения. Это нормально, эмиттерный и коллекторный переходы имеют разное сопротивление. Об этом позже.

Красный щуп на правый контакт, производим замеры оставшихся комбинаций. В обоих случаях получаем единичку, то есть «бесконечное» сопротивление.

При таком раскладе, база находится на правом выводе. Этих данных недостаточно для пользования деталью. У производителей нет единого стандарта по расположению эмиттера и коллектора, поэтому определяем выводы самостоятельно.

Определение остальных выводов

Черный щуп на «базу», меряем сопротивление переходов. Одна ножка показала 807 Ом (это коллекторный переход), вторая – 816 Ом (эмиттерный переход).

Важно! Эти значения сопротивления не являются константой, в зависимости от производителя и мощности транзистора величина может незначительно отклоняться. Главное правило – сопротивление коллектора относительно базы меньше, чем сопротивление эмиттера.

Точно таким же способом производится проверка исправности биполярного транзистора. В ходе определения контактов, мы заодно проверили исправность детали. Если вам известно расположение выводов – проверяете переходы «база-эмиттер» и «база коллектор», меняя полярность щупов.

При прямом подключении – вы увидите значения, аналогичные предыдущим замерам. При обратном – сопротивление должно быть бесконечным. Если это не так – переходы относительно базы неисправны.
Последняя проверка – переход «эмиттер-коллектор». В обоих направлениях исправная деталь покажет бесконечное сопротивление.

Если в ходе тестирования вы получили именно такие результаты – ваш биполярный транзистор исправен.

Как проверить транзистор мультиметром не выпаивая

Прежде всего, проверьте расположение на монтажной плате остальных радиодеталей, относительно выводов транзистора. Иногда переходы шунтируются резисторами с небольшим сопротивлением.

Если при замерах переходов, сопротивление будет измеряться десятками Ом – транзистор придется выпаивать. Если шунтов нет – см. методику, описанную выше, проверить транзистор на плате не получится.

Как проверить полевой транзистор мультиметром

Полупроводниковые транзисторы – MOSFET (на слэнге радиолюбителей – «мосфеты»), имеют несколько иное расположение p-n переходов. Название выводов также отличается: «сток», «исток», «затвор». Тем не менее, методика проверки прекрасно моделируется диодными аналогиями.


Принципиальное отличие – канал между «истоком» и «стоком» в состоянии покоя имеет небольшую проводимость с фиксированным сопротивлением. Когда «мосфет» получает запирающее напряжение на «затворе», этот переход закрывается. При проверке он принимается открытым (в случае, если транзистор исправен).

Проверить полевой транзистор с помощью тестера можно по такой же методике, что и биполярный. Прибор в положение «измерение сопротивления» с пределом 2000 Ом.

Сопротивление по линии «исток» «сток» проверяется в обе стороны. Значение должно быть в пределах 400-700 Ом, и немного отличаться при смене полярности.

Линия «исток» «затвор» должна иметь проводимость с аналогичным сопротивлением, но только в одном направлении. Такая же ситуация при проверке «сток» «затвор».

Проверить полевой транзистор мультиметром не выпаивая из схемы можно, если нет шунтирующих деталей. Определить их наличие можно визуально. Однако, «мосфеты» обычно окружены т.н. обвесом из управляющих элементов. Поэтому их проверку лучше проводить отдельно от схемы.
P.S.
Если ваш прибор стрелочный – проверка производится также точно.
Метод проверки полевого транзистора от Чип и Дип — видео

About sposport

View all posts by sposport

Загрузка…

Как проверить транзистор мультиметром — картинки, рекомендации, видео

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра.

Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета — с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена.

Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный — к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Полевой транзистор

Полевой транзистор — это полупроводниковый прибор, в котором ток стока (С) через полупроводниковый канал п- или р-типа управляется электрическим полем, возникающим при приложении напряжения между затвором (З) и истоком (И).

Полевые транзисторы изготавливают:

— с управляющим затвором типа p-n-перехода для использования в высокочастотных (до 12_18 ГГц) преобразовательных устройствах. Условное их обозначение на схемах приведено на рис. 24, а, б;

— с изолированным (слоем диэлектрика) затвором для использования в устройствах, работающих с частотой до 1_2 ГГц. Их изготавливают или со встроенным каналом в виде МДП_структуры (см. их условное обозначение на рис. 24, в и г), или с индуцированным каналом в виде МОП_структуры (см. их условное обозначение на рис. 24, д, е).

Рисунок 24-Виды полевых транзисторов

Схема включения полевого транзистора с затвором типа p-n-перехода и каналом n-типа, его семейство выходных характеристик IС= f(UС), UЗ = const и стокозатворная характеристика IC= f(UЗ), UС= const изображены на рис. 25.

Рисунок 25 — Схема включения полевого транзистора и его стокозатворной характеристикой

При подключении выходов стока С и истока И к источнику питания Un по каналу n- типа протекает ток IC, так как p-n-переход не перекрывает сечение канала (рис. 25, а).

При этом электрод, из которого в канал входят носители заряда, называют истоком, а электрод, через который из канала уходят основные носители заряда, называют стоком.

Электрод, служащий для регулирования поперечного сечения канала, называют затвором. С увеличением обратного напряжения UЗ уменьшается сечение канала, его сопротивление увеличивается, и уменьшается ток стока IC.

Итак, управление током стока ICпроисходит при подаче обратного напряжения на p-n-переход затвора З. В связи с малостью обратных токов в цепи затвор-исток, мощность, необходимая для управления током стока, оказывается ничтожно малой.

При напряжении -UЗ = -UЗО, называемым напряжением отсечки, сечение канала полностью перекрывается обеднённым носителями заряда барьерным слоем, и ток стока I(ток отсечки) определяется неосновными носителями заряда p-n-перехода (см. рис. 25, б).

Схематичная структура полевого транзистора с индуцированным n-каналом представлена на рис 26. При напряжении на затворе относительно истока, равным нулю, и при наличии напряжения на стоке, ток стока оказывается ничтожно малым. Заметный ток стока появляется только при подаче на затвор напряжения положительной полярности относительно истока, больше так называемого порогового напряжения UЗПОР.

Рисунок 26-Схематичная структура полевого транзистора с индуцированным n-каналом

При этом в результате проникновения электрического поля через диэлектрический слой в полупроводник при напряжениях на затворе, больших UЗПОР, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком.

Толщина и поперечное сечение канала изменяются с изменением напряжения на затворе, соответственно будет изменяться ток стока. Так происходит управление тока стока в полевом транзисторе с индуцированным затвором. Важнейшей особенностью полевых транзисторов является высокое входное сопротивление (порядка нескольких мегаом) и малый входной ток. Одним из основных параметров полевых транзисторов является крутизна S стоко-затворной характеристики (см. рис. 25, в). Например, для полевого транзистора типа КП103Ж S = (3…5) мА/В.

  • Типы биполярных транзисторов и их диодные схемы замещения.
  • Полевые транзисторы с изолированным затвором.
  • Силовые (мощные) полевые транзисторы. IGBT-транзистор.
  • Транзисторы со статической индукцией.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Основные типы транзисторов

Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Проверка работоспособности полевого транзистора

Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.

Типовая схема полевого транзистора представлена на рисунке. Основные выводы — затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.

Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.

Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.

Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный — к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности

Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов

После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.

В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.

Подготовка инструментов

У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).

Рисунок 1 – Лицевая панель мультиметра

Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:

  1. Батарея должна быть заряжена.
  2. При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
  3. Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
  4. Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.

Если Вы не знаете, как использовать данный прибор, рекомендуем прочитать подробную инструкцию для чайников о том, как пользоваться мультиметром!

Советы: как проверить полевой транзистор

Чтобы диод начал пропускать ток, необходимо к аноду подключить щуп красного цвета (плюс), а щуп черного цвета (минус) подключить к катоду, после чего на мультиметре будет отражено прямое напряжение

Важно понимать, что на величину напряжения влияет тип полупроводника. Так, например, кремниевые диоды характеризуются напряжением от 650 до 800 мВ, в то время как на германиевых транзисторах от 180 до 300 мВ

Как только вы поменяете плюс и минус местами, мультиметр покажет «1», что подтверждает закрытие перехода, т.е. ток не проходит.

В целом, прозвонить биполярный транзистор можно следующим образом:

  1. Производим проверку обратного сопротивления, для чего необходимо подключить плюс к базе транзистора.
  2. Производим подключение минуса к эмиттеру, чтобы протестировать переход.
  3. Чтобы проверить коллектор, к нему нужно подключить минус.

По итогам измерительных операций на дисплее должны появляться показатели в пределах единицы, что говорит о бесконечности сопротивления. Если же ток проходит в двух направлениях, то переход «пробит» (что сопровождается характерным звуковым сигналом), а если ток не проходит вообще, то это является признаком «обрыва». В этом случае можно утверждать о неисправности транзистора. Стоит отметить, что данным способом можно проверять только транзисторы биполярного типа, а вот для полевых или составных приборов это может оказаться бесполезным.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A – 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять

Это важно, так как при определении работоспособности, эта информация нам понадобится

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Читать также: Лазерный излучатель для резки металла

Определение вывода базы (затвора)

Наиболее простой способ определить назначение выводов транзистора (цоколевку) — скачать на него документацию. Поиск ведется по маркировке на корпусе. Этот буквенно-цифровой код набирают в строке поиска и далее добавляют «даташит».

Если документацию обнаружить не удается, базу и прочие выводы биполярного транзистора распознают исходя из его особенностей:

  • p-n-p транзистор: открывается приложением к базе отрицательного напряжения;
  • n-p-n транзистор: открывается приложением к базе положительного напряжения.

Действуют так:

  1. Настраивают мультиметр: красный щуп подсоединяют к разъему со значком «V/Ω» (плюсовой потенциал), черный — к разъему COM (минусовой потенциал), а  переключатель устанавливают в режим «прозвонка» или, если такого нет, в сектор измерения сопротивления (значок «Ω») на верхнюю позицию (обычно «2000 Ом»).
  2. Определяют базу. Красный щуп подсоединяют к первому выводу транзистора, черный — поочередно к остальным. Затем красный подсоединяют ко второму выводу, черный снова по очереди к 1-му и 3-му. Признак того, что красный подсоединен к базе, — одинаковое поведение прибора при контакте черного щупа с другими выводами. Прибор оба раза пискнул или показал на дисплее некое конечное сопротивление — транзистор относится к n-p-n типу; прибор оба раза промолчал или отобразил на дисплее «1» (отсутствие проводимости) – транзистор принадлежит p-n-p типу.
  3. Распознают коллектор и эмиттер. Для этого к базе подсоединяют щуп, соответствующий типу проводимости: для n-p-n транзистора – красный, для p-n-p транзистора: черный.

Конструкция полевого транзистора с управляющим p-n-переходом и канлом n-типа а) с затвором со стороны подложки; b) с диффузионным затвором

Второй щуп поочередно подсоединяют к другим выводам. При контакте с коллектором на дисплее отображается меньшее значение сопротивления, чем с эмиттером.

Выводы полевого транзистора обычно промаркированы:

  • G: затвор;
  • S: исток;
  • D: сток.

Если маркировки нет, затвор обнаруживают по той же схеме, что и у биполярного транзистора.

Полевые транзисторы чувствительны к статическому электричеству. Из-за этого их выводы при хранении закорачивают фольгой, а перед началом манипуляций надевают антистатический браслет или хотя бы касаются заземленного металлического предмета (приборный шкаф), чтобы снять статический заряд.

Оцените статью:

Как проверить транзистор?

Проверка транзистора цифровым мультиметром

Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.

Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.

Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.

Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.

Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.

Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.

Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.

Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p. Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.

Транзистор со структурой n-p-n в виде двух диодов.

Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс (+) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс (+) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.

Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.

Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.

Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.

Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.

Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп (красный) в гнездо с обозначением буквы омега Ω, буквы V и, возможно, других букв. Всё зависит от функционала прибора.

Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!

Теперь, когда сухая теория изложена, перейдём к практике.

Какой мультиметр будем использовать?

В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805+, хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.

Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503. Он имеет структуру n-p-n. Вот его цоколёвка.

Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.С), эмиттер (Э или англ.- Е), база (Б или англ.- В).

Сначала подключаем красный (+) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).

Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.

Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.

Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении. В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1». Если на дисплее единица «1», то это означает, что сопротивление перехода велико, и он не пропускает ток.

Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…

…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.

Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении.

Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.

Пробой P-N перхода транзистора.

В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.

Обрыв P-N перехода транзистора.

При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.

Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.

В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.

В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.

Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.

То же самое проделываем и для перехода Б-Э.

Как видим, он также исправен. На дисплее – 724 мВ.

Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.

Переход Б-К при обратном включении…

Переход Б-Э при обратном включении.

В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.

Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:

  • Определение цоколёвки транзистора и его структуры;

  • Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;

  • Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;

При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т. д.

Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Особенности проверки транзистора мультиметром без выпаивания

Радиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.

Типы транзисторов

Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.

Биполярные приборы

Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.

Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.

Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области. Внутренняя область — база.

Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.

Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.

На схемах вывод эмиттера обозначается стрелкой, которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.

Полевые транзисторы

Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).

Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными.

Проверка мультиметром

Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.

Приборы биполярного типа

Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.

Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.

Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.

При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.

Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.

Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.

Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:

  • определение типа прибора и схемы его выводов;
  • проверка сопротивлений его «p — n» переходов в прямом направлении;
  • смена полярности щупов и определение сопротивлений переходов при таком подключении;
  • проверка сопротивления «коллектор — эмиттер» в обоих направлениях.

Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.

К признакам неисправности биполярных транзисторов можно отнести следующие:

  • «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
  • «p — n» переход не «прозванивается» в обе стороны.

В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.

Второй случай показывает внутренний обрыв в структуре прибора.

В обоих случаях данный экземпляр не может быть использован для работы в схеме.

Полевые транзисторы

Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.

Для проверки элемента первого типа необходимо выполнить следующие действия:

  • определить сопротивление участка «сток — исток» закрытого транзистора;
  • произвести открытие перехода;
  • определить сопротивление открытого полевика;
  • произвести закрытие перехода;
  • повторно сделать замер сопротивления закрытого полевого транзистора.

Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».

Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).

Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.

Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.

При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.

Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.

При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.

Проверка приборов в схеме

Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.

Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.

Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.

Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.

Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.

Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.

Как проверить и прозвонить транзистор: особенности работы мультиметром

Проверка транзисторов является важным моментом в электронике и радиотехнике. Попытайтесь самостоятельно разобраться, как проверить транзистор мультиметром, не выпаивая. Это достаточно простая процедура, которую можно выполнить различными способами. Наиболее практичный вариант — проверка транзистора мультиметром. Именно об этом способе и пойдет речь в рассматриваемой статье.

Общие сведения

На сегодняшний день существует два типа транзисторов — биполярный и полевой. У первого выходной ток создается с участием обоих зарядов в виде дырок и электронов, а в другом варианте участвует только один из носителей.

  • Биполярные элементы являются полупроводниковыми приборами с тремя выводами и двумя переходами типа p-n. Принцип действия таких приборов основывается на использовании положительных и отрицательных зарядов. Управление же ведется специально выделенным управляющим током. Широко применяются в различных технических схемах.
  • У полевого варианта имеются затвор, сток и исток, через которые осуществляется управление. В случае каких-либо неисправностей процедуру осуществляют различными способами, включая мультиметр. Рассмотрев указанное устройство и их основные особенности, перейдем к вопросу, как прозвонить транзистор мультиметром.

Проверка биполярного транзистора

Указанная процедура для биполярных транзисторов начинается с грамотной настройки прибора. Устройство переключают в режим проверки полупроводников, на дисплее должна высвечиваться единица. Выводы подключаются по аналогии с режимом измерения сопротивления. С портом СОМ соединяют провод черного цвета, а на выходе для измерения напряжения, сопротивления и частоты подключают красный провод. Если мультиметр не имеет соответствующего режима, то процесс следует вести в режиме измерения сопротивления при выставлении на максимум.

Еще важно, чтобы батарея мультиметра была полностью заряжена и исправны щупы. При соединении кончиков об исправности свидетельствуют писк прибора и нули на экране. Порядок действий в данном случае идет по таким шагам:

  • Правильно соединяем выводы мультиметра и транзистора. Определяем местонахождение базы, коллектора и эмиттера. Щупы меняют местами до тех пор, пока не произойдет падение напряжения. Проводим проверку по парам база-эмиттер или база-коллектор.
  • Пара база-коллектор означает, что красный щуп подведен к базе, черный же — к коллектору. Соединение работает в режиме диода и проводит ток лишь в одном направлении.
  • При проверке через соединение база-эмиттер черный провод подключают к эмиттеру. Ток также проходит исключительно в прямом направлении.
  • Переход эмиттер-коллектор исправен в том случае, если сопротивление на экране стремится к бесконечности.
  • Подключаем мультиметр к каждой паре контактов в обоих направлениях в обратном направлении, к базе включают черный щуп. Полученные результаты сравниваются.
  • Работоспособность устройства подтверждается наличием конечного сопротивления, обратная полярность показывает единицу.

В результате не потребуется выпаивания элемента на предмет его исправности. Если же вы хотите использовать для проверки лампочки и другие элементы, то не рекомендуется этого делать, поскольку есть риск окончательно испортить транзистор биполярного типа.

Испытание полевого устройства

Процедура по таким элементам аналогична биполярным. Однако здесь имеются некоторые особенности:

  1. Если положительный щуп приложен к мультиметру, а отрицательный к истоку, то происходит зарядка емкости и открытие перехода.
  2. Перед проверкой канала сток-исток выполняют короткое замыкание всех выводов для разрядки емкости. Сопротивления снова увеличивают и можно повторно прозванивать их мультиметром.
  3. Нередко ставятся внутренние диоды. Во время процедуры проявляются свойства полупроводникового прибора.
  4. По указанной выше причине нужно убедиться в наличии диода, дабы измерение проходило без ошибок.
  5. После первого процесса меняют местами щупы. На дисплее появится единица, указывая на бесконечное сопротивление. В противном случае транзистор неисправен.

За счет указанных моментов удается произвести качественную проверку полевых устройств, не задействовав при этом выпаивания. Если же у вас составной прибор, то проверка аналогична методике по биполярным устройствам.

Преимущество метода

Проверка транзистора с применением мультиметра выгодна тем, что нет необходимости выпаивания элемента, и она — достаточно точная. Методика проверки биполярных и полевых устройств схожа, но необходимо учитывать ряд моментов и нюансов, которые способствуют улучшению методики. Грамотная настройка мультиметра и умение работать с различными элементами позволит произвести наиболее точную и качественную проверку исправности приборов любого вида.

особенности проверки современных транзисторов (95 фото)

В мире электроники существует большое количество разных приспособлений и деталей. Их счёт идёт на миллионы и постоянно возрастает с изобретением всё новых приборов.

Несмотря на большое количество элементов электроники, каждый специалист данного направления знает о транзисторах. Это радиоэлектронный прибор, работающий на особых частотах, который имеет 3 вывода. Его работа заключается в уменьшении сопротивления силы тока.

Как уже можно было догадаться сегодня речь пойдёт о том, как проверить транзистор мультиметром.

Краткое содержимое статьи:

С чего нужно начать?

Прежде чем начать работу с мультиметром, нужно уметь им пользоваться, знать какую модель вы применяете, а также уметь подсоединять его к сети.

Узнать, что за модель вы используете, можно посмотрев на его маркировку.

Обычно маркировка находится на коробке от прибора и там имеется полная информация о нём, а именно:

  • Модель транзистора.
  • Страна производитель.
  • Выпускающая фирма.
  • Гарантия на товар.

Если же по каким-то причинам у вас нет коробки от транзистора, исправить это можно путём поиска похожей фотографии в интернете, где и будет подробное описание прибора.

Проверка биполярного транзистора мультиметром

Далее мы поговорим об инструкции, как проверить транзистор:

  • Присоединить большой красный щуп (СЕМ) – это будет считаться минусом, а чёрный присоединить к (МА) – это плюс.
  • Далее необходимо включить устройство и перенаправить его в режим прозвонки или можно перевести в режим сопротивления на ваше усмотрение.
  • После чего на экране вы увидите величину сопротивления энергии. В норме она колеблется от 0,3 до 0,7 Ом.
  • Чтобы отобразить минимальное сопротивление необходимо обозначить мощность вашего перехода, и после всего проделанного ваш прибор полностью настроен и готов к его активному и длительному использованию.

Как проверить транзистор не выпаивая его?

Выпаивание любой детали из электроприбора очень ответственно дело, при котором допущение малейшей ошибки может полностью вывести из строя любой электроприбор.

Так как проверить транзистор не выпаивая его из схемы?

  • Сначала нужно убедиться в его целостности.
  • Затем проверить его генерацию.
  • Далее вам следует обратить внимание на Л2, которое находится близ размыкания красных щупов.
  • Свечение лампы Л2 свидетельствует о его работоспособности.

Если лампа Л2 не будет гореть, то это является верным признаком того, что прибор сломан. В таком случае не рекомендуется чинить его самостоятельно, так как велика вероятность того, что во время ремонта вы повредить остальные детали.

Советуем вам обратиться с такой проблемой к грамотному специалисту, который сможет починить транзистор.

Проверяем транзистор на плате

Теперь мы переходим к тому, как проверить транзистор на плате? Следует отметить, что это один из самых популярных вопросов по данной тематике.

На просторах интернета существует множество ответов на этот вопрос, но не все являются правильными с точки зрения физики и инженерии. Тестирование транзистора на плате происходит следующим образом:

Его сначала нужно подключить к плюсовой базе с помощью мощного источника. Если сделать всё правильно, то у вас должна загореться лампочка.

Чтобы провести аналогичное тестирование нужно аккуратно подать минус, в результате чего лампочка должна перестать светиться.

Проведение таких несложных манипуляций с прибором должно удостоверить вас о работоспособности детали. Если вы не получите таких результатов, то это свидетельствует о поломке транзистора.

Проверяем мультиметр транзистором IGBT

Транзистор IGBT был создан в Литве, и поэтому он несколько будет отличаться от отечественных приборов. Для его проверки вам необходимо осуществить каскадное соединение в биполярной структуре и затем посмотреть на показатели.

Далее провести прибор в режим полупроводника. Если все манипуляции сделаны верно, это показатель исправности мультиметра.

Заключение

Спасибо что воспользовались нашей статьёй. Мы попытались грамотно изложить мысли и ответить на все интересующие вопросы.

При работе с электроприборами будьте внимательны и тогда работа с ними принесёт невероятный энтузиазм и удовольствие. Желаем удачи!

Фото советы как проверить транзистор мультиметром

Вам понравилась статья? Поделитесь 😉  

Как проверить igbt транзистор мультиметром не выпаивая

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов,…

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.

Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

Отклонения от этих значений говорят о неисправности компонента.

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.

Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Тестирование производится следующим образом:

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.

Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Вернуться в блог

Написано Эли в четверг, 4 мая 2017 г.

Спросите любого полевого техника или специалиста по стендовым испытаниям, какое у них наиболее часто используемое испытательное оборудование, и он, вероятно, скажет, что это цифровой мультиметр (цифровой мультиметр). Эти универсальные устройства могут использоваться для тестирования и диагностики широкого спектра цепей и компонентов. В крайнем случае, цифровой мультиметр может даже заменить дорогое специализированное испытательное оборудование. Один особенно полезный навык — это знание того, как проверить транзистор с помощью цифрового мультиметра.Для решения этой задачи существуют специализированные анализаторы компонентов, но для обычного хобби может быть трудно оправдать расходы.

Распиновка транзистора

К счастью, использование цифрового мультиметра для получения базовых показаний «годен / не годен» с подозреваемого неисправного двухполюсного транзистора NPN или PNP — это простая и быстрая задача. Некоторые мультиметры имеют встроенную функцию тестирования транзисторов, если она у вас есть, вы можете пропустить этот пост в блоге — просто вставьте свой транзистор в гнездо на мультиметре и установите измеритель в правильный режим.Вы, вероятно, получите такую ​​информацию, как коэффициент усиления (hFE), который можно будет проверить по таблице данных, а также результаты проверки пройден / не пройден. Если ваш измеритель не имеет функции тестирования транзисторов, не бойтесь — транзисторы можно легко проверить с помощью настройки тестирования «Диод». (Некоторые счетчики имеют функцию проверки диодов в сочетании с проверкой целостности цепи — это нормально).

Тестирование транзистора

Удалите транзистор из схемы для получения точных результатов.

Шаг 1: (от базы к эмиттеру)

Подсоедините плюсовой провод мультиметра к BASE (B) транзистора.Подсоедините отрицательный вывод измерителя к ЭМИТТЕРУ (E) транзистора. Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).

Шаг 2: (от базы к коллектору)

Держите положительный провод на ОСНОВАНИИ (B) и вставьте отрицательный провод в КОЛЛЕКТОР (С).

Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).

Шаг 3: (от эмиттера к базе)

Подсоедините плюсовой провод мультиметра к ЭМИТТЕРУ (E) транзистора. Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.

Для исправного транзистора NPN вы должны увидеть «OL» (превышение предела). Если вы проверяете транзистор PNP, измеритель должен показать падение напряжения между 0,45 и 0,9 В.

Шаг 4: (от коллектора к базе)

Подсоедините плюсовой провод мультиметра к КОЛЛЕКТОРУ (С) транзистора.Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.

Для исправного транзистора NPN вы должны увидеть «OL» (превышение предела). Если вы проверяете транзистор PNP, измеритель должен показать падение напряжения между 0,45 и 0,9 В.

Шаг 5: (от коллектора к эмиттеру)

Подсоедините положительный провод измерителя к КОЛЛЕКТОРУ (C), а отрицательный провод измерителя к ЭМИТТЕРУ (E) — исправный транзистор NPN или PNP покажет на измерителе «OL» / превышение предела. Поменяйте местами выводы (положительный на эмиттер и отрицательный на коллектор). Еще раз, хороший транзистор NPN или PNP должен показывать «OL».

Если размеры вашего биполярного транзистора противоречат этим шагам, считайте это плохим.

Вы также можете использовать падение напряжения, чтобы определить, какой вывод является эмиттером на немаркированном транзисторе, поскольку переход эмиттер-база обычно имеет немного большее падение напряжения, чем переход коллектор-база.

Помните: этот тест проверяет только то, что транзистор не закорочен или не открыт, он не гарантирует, что транзистор работает в пределах своих проектных параметров.Его следует использовать только для того, чтобы решить, нужно ли вам «заменить» или «перейти к следующему компоненту». Этот тест работает только с биполярными транзисторами — вам нужно использовать другой метод для тестирования полевых транзисторов.

В качестве особой благодарности нашим клиентам и читателям блогов мы хотели бы предложить 10% скидку на весь ваш заказ, используя КОД: «BLOG1000»

Чтобы получить месяц признательности нашим клиентам, все, что вам нужно сделать, это использовать код «BLOG1000» при оформлении заказа в вашей карте покупок.

И когда появится окошко, введите соответствующий текущий активный промокод.В данном случае это: BLOG1000

И продолжаем проверять!

Спасибо, что являетесь клиентом Vetco!

Вернуться в блог

Транзисторы — learn.sparkfun.com

Добавлено в избранное Любимый 77

Введение

Транзисторы вращают мир электроники. Они критически важны как источник управления практически в каждой современной цепи.Иногда вы их видите, но чаще всего они спрятаны глубоко внутри кристалла интегральной схемы. В этом уроке мы познакомим вас с основами самого распространенного транзистора: биполярного переходного транзистора (BJT).

В небольших дискретных количествах транзисторы могут использоваться для создания простых электронных переключателей, цифровой логики и схем усиления сигналов. В количествах тысяч, миллионов и даже миллиардов транзисторы соединены между собой и встроены в крошечные микросхемы для создания компьютерной памяти, микропроцессоров и других сложных ИС.

, описанные в этом учебном пособии

После прочтения этого руководства мы хотим, чтобы вы получили широкое представление о том, как работают транзисторы. Мы не будем углубляться в физику полупроводников или эквивалентные модели, но мы углубимся в предмет, чтобы вы поняли, как транзистор можно использовать в качестве переключателя или усилителя .

Это руководство разделено на несколько разделов, охватывающих:

Существует два типа базовых транзисторов: биполярный переход (BJT) и металлооксидный полевой транзистор (MOSFET).В этом уроке мы сосредоточимся на BJT , потому что его немного легче понять. Если копать еще глубже в типы транзисторов, на самом деле существует две версии BJT: NPN и PNP . Мы сфокусируемся еще больше, ограничив наше раннее обсуждение NPN. Если сузить фокус — получить твердое представление о NPN — будет легче понять PNP (или даже MOSFET), сравнив, чем он отличается от NPN.

и nbsp

и nbsp

Рекомендуемая литература

Перед тем, как углубиться в это руководство, мы настоятельно рекомендуем просмотреть эти руководства:

  • Напряжение, ток, сопротивление и закон Ома — Введение в основы электроники.
  • Основы электричества — Мы немного поговорим об электричестве как потоке электронов. Узнайте, как текут эти электроны, в этом уроке.
  • Electric Power — Одно из основных применений транзисторов — усиление — увеличение мощности сигнала. Увеличение мощности означает, что мы можем увеличить либо ток, либо напряжение, узнайте почему в этом руководстве.
  • Диоды — Транзистор — это полупроводниковый прибор, как и диод. В некотором смысле это то, что вы получили бы, если бы сложили два диода вместе и связали их аноды вместе.Понимание того, как работает диод, во многом поможет раскрыть принцип работы транзистора.

Хотите изучить транзисторы?

Символы, булавки и конструкция

Транзисторы — это в основном трехконтактные устройства. На биполярном переходном транзисторе (BJT) эти контакты обозначены как коллектор (C), база (B) и эмиттер (E). Обозначения схем как для NPN, так и для PNP BJT приведены ниже:

Единственное различие между NPN и PNP — это направление стрелки на эмиттере.Стрелка на NPN указывает, а на PNP указывает. Полезная мнемоника для запоминания:

NPN:

N ot P ointing i N

Обратная логика, но работает!

Конструкция транзистора

Транзисторы полагаются на полупроводники, чтобы творить чудеса. Полупроводник — это не совсем чистый проводник (например, медный провод), но и не изолятор (например, воздух). Проводимость полупроводника — насколько легко он позволяет электронам течь — зависит от таких переменных, как температура или наличие большего или меньшего количества электронов.Заглянем вкратце под капот транзистора. Не волнуйтесь, мы не будем углубляться в квантовую физику.

Транзистор как два диода
Транзисторы

— это своего рода продолжение другого полупроводникового компонента: диодов. В некотором смысле транзисторы — это всего лишь два диода со связанными вместе катодами (или анодами):

Диод, соединяющий базу с эмиттером, здесь важен; он соответствует направлению стрелки на схематическом символе и показывает , в каком направлении должен проходить ток через транзистор.

Изображение диодов — хорошее место для начала, но оно далеко не точное. Не основывайте свое понимание работы транзистора на этой модели (и определенно не пытайтесь воспроизвести ее на макете, это не сработает). Существует множество странных вещей на уровне квантовой физики, управляющих взаимодействием между тремя терминалами.

(Эта модель полезна, если вам нужно проверить транзистор. Используя функцию проверки диодов (или сопротивления) на мультиметре, вы можете провести измерения на клеммах BE и BC, чтобы проверить наличие этих «диодов».)

Структура и работа транзистора
Транзисторы

состоят из трех разных слоев полупроводникового материала. В некоторые из этих слоев добавлены дополнительные электроны (процесс, называемый «легированием»), а в других электроны удалены (допирование «дырками» — отсутствие электронов). Полупроводниковый материал с дополнительными электронами называется n-типа ( n для отрицательного заряда, потому что электроны имеют отрицательный заряд), а материал с удаленными электронами называется p-типа (для положительного).Транзисторы создаются путем наложения n поверх p поверх n или p поверх n поверх p .

Упрощенная схема структуры NPN. Заметили происхождение аббревиатур?

Если немного помахать рукой, мы можем сказать, что электронов могут легко перетекать из n областей в p областей , если у них есть небольшая сила (напряжение), толкающая их.Но переход от области p к области n действительно затруднен (требуется лот напряжения). Но особенность транзистора — та часть, которая делает нашу модель с двумя диодами устаревшей, — это тот факт, что электронов могут легко перетекать с базы p-типа на коллектор n-типа до тех пор, пока база- эмиттерный переход имеет прямое смещение (это означает, что база находится под более высоким напряжением, чем эмиттер).

NPN-транзистор предназначен для передачи электронов от эмиттера к коллектору (поэтому обычный ток течет от коллектора к эмиттеру).Эмиттер «испускает» электроны в базу, которая контролирует количество электронов, испускаемых эмиттером. Большая часть испускаемых электронов «собирается» коллектором, который отправляет их в следующую часть цепи.

PNP работает таким же, но противоположным образом. База по-прежнему контролирует ток, но этот ток течет в противоположном направлении — от эмиттера к коллектору. Вместо электронов эмиттер испускает «дырки» (концептуальное отсутствие электронов), которые собираются коллектором.

Транзистор похож на электронный клапан . Базовый штифт похож на ручку, которую вы можете отрегулировать, чтобы позволить большему или меньшему количеству электронов течь от эмиттера к коллектору. Давайте исследуем эту аналогию дальше …


Расширение аналогии с водой

Если вы в последнее время читали много руководств по концепциям электричества, вы, вероятно, привыкли к аналогиям с водой. Мы говорим, что ток аналогичен скорости потока воды, напряжение — это давление, проталкивающее воду по трубе, а сопротивление — это ширина трубы.

Неудивительно, что аналогию с водой можно распространить и на транзисторы: транзистор похож на водяной клапан — механизм, который мы можем использовать для управления скоростью потока .

Есть три состояния, в которых мы можем использовать клапан, каждое из которых по-разному влияет на скорость потока в системе.

1) Вкл — короткое замыкание

Клапан можно полностью открыть, позволяя воде течь свободно. — проходить, как если бы клапана даже не было.

Аналогичным образом, при определенных обстоятельствах, транзистор может выглядеть как , закороченное между выводами коллектора и эмиттера. Ток может свободно течь через коллектор и выходить из эмиттера.

2) Выкл. — обрыв цепи

В закрытом состоянии клапан может полностью перекрыть поток воды.

Таким же образом можно использовать транзистор для создания разрыва цепи между выводами коллектора и эмиттера.

3) Линейное управление потоком

С некоторой точной настройкой можно точно настроить клапан для точного управления расходом до некоторой точки между полностью открытым и закрытым.

Транзистор может делать то же самое — линейно регулирует ток через цепь в какой-то момент между полностью выключенным (разомкнутая цепь) и полностью включенным (короткое замыкание).

Из нашей аналогии с водой, ширина трубы аналогична сопротивлению в цепи. Если клапан может точно регулировать ширину трубы, то транзистор может точно регулировать сопротивление между коллектором и эмиттером. Таким образом, транзистор подобен переменному регулируемому резистору .

Усилительная мощность

Есть еще одна аналогия, которую мы можем провести здесь. Представьте себе, если бы с легким поворотом клапана вы могли контролировать скорость потока затворов плотины Гувера. Ничтожное количество силы, которое вы можете приложить для поворота этой ручки, может создать силу в тысячи раз сильнее. Мы расширяем аналогию до предела, но эта идея распространяется и на транзисторы. Транзисторы особенные, потому что они могут усиливать электрических сигналов, превращая сигнал малой мощности в аналогичный сигнал гораздо большей мощности.


Вид. Это еще не все, но это хорошее место для начала! В следующем разделе вы найдете более подробное объяснение работы транзистора.


Режимы работы

В отличие от резисторов, которые обеспечивают линейную зависимость между напряжением и током, транзисторы являются нелинейными устройствами. У них есть четыре различных режима работы, которые описывают протекающий через них ток. (Когда мы говорим о токе, протекающем через транзистор, мы обычно имеем в виду ток , протекающий от коллектора к эмиттеру NPN .)

Четыре режима работы транзистора:

  • Насыщение — Транзистор действует как короткое замыкание . Ток свободно течет от коллектора к эмиттеру.
  • Отсечка — Транзистор действует как разомкнутая цепь . Нет тока от коллектора к эмиттеру.
  • Активный — Ток от коллектора до эмиттера пропорционален току, протекающему в базу.
  • Reverse-Active — Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении.Ток течет от эмиттера к коллектору (не совсем то, для чего были предназначены транзисторы).

Чтобы определить, в каком режиме находится транзистор, нам нужно посмотреть на напряжения на каждом из трех выводов и на то, как они соотносятся друг с другом. Напряжения от базы к эмиттеру (V BE ) и от базы к коллектору (V BC ) задают режим транзистора:

Упрощенный квадрантный график выше показывает, как положительное и отрицательное напряжение на этих клеммах влияет на режим.На самом деле все немного сложнее.

Давайте рассмотрим все четыре режима транзистора по отдельности; мы исследуем, как перевести устройство в этот режим и как это влияет на ток.

Примечание: Большая часть этой страницы посвящена NPN-транзисторам . Чтобы понять, как работает транзистор PNP, просто поменяйте полярность или знаки> и <.

Режим насыщенности

Насыщенность — это в режиме транзистора.Транзистор в режиме насыщения действует как короткое замыкание между коллектором и эмиттером.

В режиме насыщения оба «диода» транзистора смещены в прямом направлении. Это означает, что V BE должен быть больше 0, и , так же как и V BC . Другими словами, V B должен быть выше, чем V E и V C .

Поскольку переход от базы к эмиттеру выглядит как диод, в действительности, V BE должно быть больше, чем пороговое напряжение , чтобы войти в режим насыщения.Есть много сокращений для этого падения напряжения — V th , V γ и V d несколько — и фактическое значение варьируется между транзисторами (и даже больше в зависимости от температуры). Для многих транзисторов (при комнатной температуре) это падение может составить около 0,6 В.

Еще один облом реальности: между эмиттером и коллектором не будет идеальной проводимости. Между этими узлами образуется небольшое падение напряжения. В технических характеристиках транзисторов это напряжение определено как CE напряжение насыщения V CE (sat) — напряжение от коллектора к эмиттеру, необходимое для насыщения.Это значение обычно составляет 0,05-0,2 В. Это значение означает, что V C должно быть немного больше, чем V E (но оба все еще меньше, чем V B ), чтобы транзистор находился в режиме насыщения.

Режим отсечки

Режим отсечки противоположен насыщению. Транзистор в режиме отсечки — , а — нет тока коллектора и, следовательно, нет тока эмиттера. Это почти похоже на обрыв цепи.

Чтобы перевести транзистор в режим отсечки, базовое напряжение должно быть меньше, чем напряжения эмиттера и коллектора.Оба V BC и V BE должны быть отрицательными.

На самом деле, V BE может быть где угодно между 0 В и V (~ 0,6 В) для достижения режима отсечки.

Активный режим

Для работы в активном режиме транзистор V BE должен быть больше нуля, а V BC должен быть отрицательным. Таким образом, базовое напряжение должно быть меньше, чем на коллекторе, но больше, чем на эмиттере. Это также означает, что коллектор должен быть больше эмиттера.

На самом деле нам нужно ненулевое прямое падение напряжения (сокращенно V th , V γ или V d ) от базы к эмиттеру (V BE ), чтобы «включить» транзистор. Обычно это напряжение обычно составляет около 0,6 В.

Усиление в активном режиме

Активный режим — это самый мощный режим транзистора, потому что он превращает устройство в усилитель . Ток, идущий на вывод базы, усиливает ток, идущий в коллектор и выходящий из эмиттера.

Наше сокращенное обозначение для усиления (коэффициент усиления) транзистора — β (вы также можете увидеть его как β F или h FE ). β линейно связывает ток коллектора ( I C ) с базовым током ( I B ):

Фактическое значение β зависит от транзистора. Обычно это около 100 , но может варьироваться от 50 до 200 … даже 2000, в зависимости от того, какой транзистор вы используете и сколько тока проходит через него.Если, например, у вашего транзистора β = 100, это будет означать, что входной ток в 1 мА на базу может производить ток 100 мА через коллектор.

Модель с активным режимом. V BE = V th и I C = βI B .

А как насчет тока эмиттера, I E ? В активном режиме токи коллектора и базы идут в устройство , а выходит I E . Чтобы связать ток эмиттера с током коллектора, у нас есть другое постоянное значение: α .α — коэффициент усиления по току общей базы, он связывает эти токи как таковые:

α обычно очень близко к, но меньше 1. Это означает, что I C очень близко, но меньше, чем I E в активном режиме.

Вы можете использовать β для вычисления α или наоборот:

Если, например, β равно 100, это означает, что α равно 0,99. Так, если, например, I C равен 100 мА, то I E равен 101 мА.

Реверс активен

Так же, как насыщение противоположно отсечке, обратный активный режим противоположен активному режиму.Транзистор в обратном активном режиме проводит, даже усиливает, но ток течет в обратном направлении, от эмиттера к коллектору. Обратной стороной активного режима является то, что β (β R в данном случае) на намного меньше на .

Чтобы перевести транзистор в обратный активный режим, напряжение на эмиттере должно быть больше, чем на базе, которая должна быть больше, чем на коллекторе (V BE <0 и V BC > 0).

Обратный активный режим обычно не является состоянием, в котором вы хотите управлять транзистором.Приятно знать, что он есть, но он редко превращается в приложение.

Относительно PNP

После всего, о чем мы говорили на этой странице, мы все еще покрыли только половину спектра BJT. А как насчет транзисторов PNP? Работа PNP очень похожа на работу NPN — у них те же четыре режима, но все изменилось. Чтобы узнать, в каком режиме находится транзистор PNP, поменяйте местами все знаки <и>.

Например, чтобы перевести PNP в режим насыщения, V C и V E должны быть выше, чем V B .Вы опускаете базу ниже, чтобы включить PNP, и поднимаете ее выше, чем коллектор и эмиттер, чтобы выключить его. И, чтобы перевести PNP в активный режим, V E должен иметь более высокое напряжение, чем V B , которое должно быть выше, чем V C .

Итого:

Соотношение напряжений Режим NPN Режим PNP
V E B C Активный Обратный
V E B > V C Насыщенность Отсечка
V E > V B C Отсечка Насыщенность
V E > V B > V C Обратный Активный

Другой противоположной характеристикой NPN и PNP является направление тока.В активном режиме и режиме насыщения ток в PNP течет от эмиттера к коллектору . Это означает, что эмиттер обычно должен иметь более высокое напряжение, чем коллектор.


Если вы перегорели концептуальными вещами, перейдите к следующему разделу. Лучший способ узнать, как работает транзистор, — это изучить его в реальных схемах. Давайте посмотрим на некоторые приложения!


Приложения I: переключатели

Одно из самых фундаментальных применений транзистора — использовать его для управления потоком энергии к другой части схемы — используя его в качестве электрического переключателя.Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.

Транзисторные переключатели являются важными строительными блоками; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.

Транзисторный переключатель

Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:

Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.

В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.

Когда напряжение на базе больше 0,6 В (или какое бы там значение у вашего транзистора V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6 В транзистор находится в режиме отсечки — ток не течет, потому что это похоже на разрыв цепи между C и E.

Схема, приведенная выше, называется переключателем низкого уровня , потому что переключатель — наш транзистор — находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:

Подобно схеме NPN, база — это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору со стороны земли.

Эта схема работает так же хорошо, как и коммутатор на основе NPN, но есть одно огромное отличие: для включения нагрузки база должна быть низкой. Это может вызвать осложнения, особенно если высокое напряжение нагрузки (V CC — 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить переключатель , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .

Базовые резисторы!

Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Напомним, что в некотором смысле транзистор — это просто пара соединенных между собой диодов. Мы смещаем диод база-эмиттер в прямом направлении, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.

Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.

Резистор должен быть достаточно большим, чтобы эффективно ограничивать ток , но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.

Цифровая логика

Транзисторы

можно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.

(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)

Инвертор

Вот схема транзистора, которая реализует инвертор , или НЕ вентиль:

Инвертор на транзисторах.

Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC

.

(На самом деле это основная конфигурация транзистора, называемая с общим эмиттером .Подробнее об этом позже.)

И Ворота

Вот пара транзисторов, используемых для создания логического элемента И с 2 входами :

2-входной логический элемент И на транзисторах.

Если один из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.

OR Выход

И, наконец, логический элемент ИЛИ с двумя входами :

Логический элемент ИЛИ с 2 входами, построенный на транзисторах.

В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.

Н-образный мост

H-мост — это транзисторная схема, способная приводить двигатели как по часовой, так и против часовой стрелки . Это невероятно популярная трасса — движущая сила бесчисленных роботов, которые должны уметь двигаться как вперед на , так и на назад.

По сути, H-мост представляет собой комбинацию из четырех транзисторов с двумя входными линиями и двумя выходами:

Вы можете догадаться, почему это называется Н-мостом?

(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)

Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.

H-мост имеет таблицу истинности, которая выглядит примерно так:

905

Осцилляторы

Генератор — это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.

Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов.

Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора поочередно включаются и выключаются.

Анализ работы этой схемы — отличное исследование работы как конденсаторов, так и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняется напряжение около V CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:

  • Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0 В. Это позволит C1 разряжаться через коллектор Q1.
  • Пока C1 разряжается, C2 быстро заряжается через резистор меньшего номинала — R4.
  • Как только C1 полностью разрядится, его правая пластина будет подтянута примерно до 0,6 В, что включит Q2.
  • На этом этапе мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь танцуем в другую сторону.
  • Q2 включен, позволяет C2 разряжаться через коллектор Q2.
  • Когда Q1 выключен, C1 может относительно быстро заряжаться через R1.
  • Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в состояние, в котором мы начали.

Может быть трудно с головой окунуться. Вы можете найти еще одну отличную демонстрацию этой схемы здесь.

Выбирая определенные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:

Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора будет около 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.


Как вы, наверное, уже заметили, существует тонны схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров!


Applications II: Усилители

Некоторые из самых мощных транзисторных приложений включают усиление: преобразование сигнала малой мощности в сигнал большей мощности.Усилители могут увеличивать напряжение сигнала, беря что-то из диапазона мкВ и преобразовывая его в более полезный уровень в мВ или В. Или они могут усиливать ток, что полезно для превращения мкА тока, создаваемого фотодиодом, в ток гораздо большей величины. Существуют даже усилители, которые принимают ток и производят более высокое напряжение или наоборот (называемые транссопротивлением и крутизной соответственно).

Транзисторы являются ключевым компонентом многих усилительных схем. Существует бесконечное количество разнообразных транзисторных усилителей, но, к счастью, многие из них основаны на некоторых из этих более примитивных схем.Запомните эти схемы, и, надеюсь, с небольшим сопоставлением с образцом вы сможете понять более сложные усилители.

Общие конфигурации

Три основных транзисторных усилителя: общий эмиттер, общий коллектор и общая база. В каждой из трех конфигураций один из трех узлов постоянно связан с общим напряжением (обычно с землей), а два других узла являются либо входом, либо выходом усилителя.

Общий эмиттер

Общий эмиттер — одна из наиболее популярных схем транзисторов.В этой схеме эмиттер подключен к общему напряжению как для базы, так и для коллектора (обычно заземления). База становится входом сигнала, а коллектор — выходом.

Схема с общим эмиттером популярна, потому что она хорошо подходит для усиления напряжения , особенно на низких частотах. Например, они отлично подходят для усиления аудиосигналов. Если у вас небольшой входной сигнал с размахом 1,5 В, вы можете усилить его до гораздо более высокого напряжения, используя немного более сложную схему, например:

Одна особенность обычного эмиттера в том, что он инвертирует входной сигнал (сравните его с инвертором с последней страницы!).

Общий коллектор (эмиттерный повторитель)

Если мы подключим коллектор к общему напряжению, используем базу как вход, а эмиттер как выход, то получится общий коллектор. Эта конфигурация также известна как эмиттерный повторитель .

Общий коллектор не усиливает напряжение (фактически, выходное напряжение будет на 0,6 В ниже входного). По этой причине эту схему иногда называют повторителем напряжения .

Эта схема имеет большой потенциал в качестве усилителя тока .В дополнение к этому, высокий коэффициент усиления по току в сочетании с коэффициентом усиления по напряжению, близким к единице, делает эту схему отличным буфером напряжения . Буфер напряжения предотвращает нежелательные помехи цепи нагрузки цепи, управляющей ею.

Например, если вы хотите подать 1 В на нагрузку, вы можете пойти простым путем и использовать делитель напряжения, или вы можете использовать эмиттерный повторитель.

По мере увеличения нагрузки (что, наоборот, означает уменьшение сопротивления) выход схемы делителя напряжения падает.Но выходное напряжение эмиттерного повторителя остается стабильным, независимо от нагрузки. Большие нагрузки не могут «нагружать» эмиттерный повторитель, как это могут быть цепи с большим выходным сопротивлением.

Общая база

Мы поговорим об общей базе, чтобы завершить этот раздел, но это наименее популярная из трех основных конфигураций. В усилителе с общей базой эмиттер является входом, а коллектор — выходом. База общая для обоих.

Общая база похожа на антиэмиттер-повторитель.Это приличный усилитель напряжения, и ток на входе примерно равен току на выходе (на самом деле ток на входе немного больше, чем на выходе).

Схема с общей базой лучше всего работает как буфер тока . Он может принимать входной ток с низким входным сопротивлением и подавать почти такой же ток на выход с более высоким сопротивлением.

Вкратце

Эти три конфигурации усилителей лежат в основе многих более сложных транзисторных усилителей. У каждого из них есть приложения, где они сияют, будь то усиление тока, напряжения или буферизация.

Вход A Вход B Выход A Выход B Направление двигателя
0 0 1 1 Остановлено (торможение)
1 0 По часовой стрелке
1 0 0 1 Против часовой стрелки
1 1 0
Входное сопротивление
Общий эмиттер Общий коллектор Общая база
Коэффициент усиления по напряжению Средний Низкий Высокий
Усиление по току Низкое Низкое
Среднее Высокое Низкое
Выходное сопротивление Среднее Низкое Высокое

Многокаскадные усилители

Мы можем продолжать говорить о большом разнообразии транзисторных усилителей.Вот несколько быстрых примеров, демонстрирующих, что происходит, когда вы комбинируете одноступенчатые усилители, указанные выше:

Дарлингтон

Усилитель Дарлингтона соединяет один общий коллектор с другим для создания усилителя с высоким коэффициентом усиления по току .

Выходное напряжение составляет примерно на то же самое, что и входное напряжение (минус 1,2–1,4 В), но коэффициент усиления по току является произведением двух коэффициентов усиления транзистора . Это β 2 — более 10 000!

Пара Дарлингтона — отличный инструмент, если вам нужно управлять большой нагрузкой с очень малым входным током.

Дифференциальный усилитель

Дифференциальный усилитель вычитает два входных сигнала и усиливает эту разницу. Это важная часть цепей обратной связи, где вход сравнивается с выходом для получения будущего выхода.

Вот основа дифференциального усилителя:

Эту схему также называют длинной хвостовой парой . Это пара схем с общим эмиттером, которые сравниваются друг с другом для получения дифференциального выхода.Два входа подаются на базы транзисторов; выход представляет собой дифференциальное напряжение на двух коллекторах.

Двухтактный усилитель

Двухтактный усилитель является полезным «заключительным каскадом» многих многокаскадных усилителей. Это энергоэффективный усилитель мощности, часто используемый для управления громкоговорителями.

Основной двухтактный усилитель использует транзисторы NPN и PNP, оба сконфигурированы как общие коллекторы:

Двухтактный усилитель на самом деле не усиливает напряжение (выходное напряжение будет немного меньше входного), но усиливает ток.Это особенно полезно в биполярных цепях (с положительным и отрицательным питанием), потому что оно может как «проталкивать» ток в нагрузку от положительного источника питания, так и «вытягивать» ток и погружать его в отрицательный источник питания.

Если у вас есть биполярный источник питания (или даже если у вас его нет), двухтактный — отличный конечный каскад для усилителя, действующий как буфер для нагрузки.

Собираем их вместе (операционный усилитель)

Давайте рассмотрим классический пример многокаскадной транзисторной схемы: операционный усилитель.Умение распознавать общие транзисторные схемы и понимание их назначения может очень помочь! Вот схема внутри LM3558, действительно простого операционного усилителя:

Внутреннее устройство операционного усилителя LM358. Узнали какие-то усилители?

Здесь определенно больше сложности, чем вы можете быть готовы усвоить, однако вы можете увидеть некоторые знакомые топологии:

  • Q1, Q2, Q3 и Q4 образуют входной каскад. Выглядит очень похоже на общий коллектор (Q1 и Q4) в дифференциальный усилитель , верно? Он просто выглядит перевернутым, потому что использует PNP.Эти транзисторы образуют входной дифференциальный каскад усилителя.
  • Q11 и Q12 являются частью второго этапа. Q11 — это общий коллектор, а Q12 — это общий эмиттер . Эта пара транзисторов буферизует сигнал с коллектора Q3 и обеспечивает высокий коэффициент усиления, когда сигнал поступает на финальный каскад.
  • Q6 и Q13 являются частью финальной стадии, и они тоже должны выглядеть знакомо (особенно если не обращать внимания на R SC ) — это двухтактный ! Этот этап буферизует выходной сигнал, позволяя ему управлять большими нагрузками.
  • Есть множество других распространенных конфигураций, о которых мы не говорили. Q8 и Q9 сконфигурированы как токовое зеркало , которое просто копирует величину тока, проходящего через один транзистор, в другой.

После этого ускоренного курса по транзисторам мы не ожидаем, что вы поймете, что происходит в этой схеме, но если вы начнете определять общие схемы транзисторов, вы на правильном пути!


Покупка транзисторов

Теперь, когда вы контролируете источник управления, мы рекомендуем SparkFun Inventor’s Kit, чтобы воплотить в жизнь полученные вами новые знания.Мы также предоставили ссылки на комплект полупроводников и одиночные транзисторы для использования в ваших собственных проектах.

Наши рекомендации:

N-канальный полевой МОП-транзистор 60 В, 30 А

В наличии COM-10213

Если вы когда-нибудь задумывались, как управлять фарами автомобиля с помощью микроконтроллера, MOSFET — это то, что вам нужно.Это ве…

4

Пакет дополнений SparkFun Inventor’s Kit — v4.0

На пенсии КОМПЛЕКТ-14310

С помощью Add-On Pack вы сможете включить некоторые из старых частей, которые раньше были включены в SIK, которые были обновлены…

Пенсионер

Ресурсы и дальнейшее развитие

Если вы хотите глубже изучить транзисторы, мы рекомендуем несколько ресурсов:

  • Начало работы в электронике Форрест Мимс — Мимс — мастер объяснения электроники простым для понимания и применимым образом.Обязательно ознакомьтесь с этой книгой, если вы хотите более подробно познакомиться с транзисторами.
  • LTSpice и Falstad Circuit — это бесплатные программные инструменты, которые вы можете использовать для моделирования цепей. Цифровые эксперименты со схемами — отличный способ научиться. Вы получаете все эксперименты, без боли макетирования или страха взорвать все. Попробуйте собрать воедино то, о чем мы говорили!
  • 2N3904 Техническое описание — Еще один способ узнать о транзисторах — это изучить их техническое описание.2N3904 — действительно распространенный транзистор, который мы используем постоянно (а 2N3906 — его брат по PNP). Ознакомьтесь с таблицей данных, чтобы узнать, узнаете ли вы какие-нибудь знакомые характеристики.

Кроме того, наш собственный технический директор Пит снял серию видеороликов «По словам Пита», в которых основное внимание уделяется транзисторам и транзисторным усилителям. Обязательно посмотрите его видео о диодах и транзисторах:

.

Затем вы можете перейти к: Конфигурации смещения транзисторов, часть 1 и часть 2, и, наконец, текущие зеркала.Качественный товар!

Идем дальше

Или, если вам не терпится узнать больше об электронике в целом, ознакомьтесь с некоторыми из этих руководств по SparkFun:

  • Интегральные схемы — Что вы получите, если объедините тысячи транзисторов и поместите их в черный ящик? IC!
  • Регистры сдвига
  • — регистры сдвига — одна из наиболее распространенных интегральных схем. Узнайте, как с помощью транзистора мигать десятки светодиодов всего за несколько входов.
  • Руководство по подключению мини-полевого транзистора
  • — это действительно простой щиток Arduino, который использует 8 полевых МОП-транзисторов для управления 8 сильноточными выходами.Это хороший пример использования транзистора в качестве переключателя из реальной жизни.
  • Проектирование печатных плат с EAGLE — Выведите свои новые навыки работы с транзисторами на новый уровень. Сделайте из них печатную плату! В этом руководстве объясняется, как использовать бесплатное программное обеспечение (Eagle) для проектирования печатных плат.
  • Как паять. Если вы разрабатываете печатную плату, вам также нужно знать, как паять. Узнайте, как паять через отверстия в этом руководстве.

Или ознакомьтесь с некоторыми из этих сообщений в блогах, чтобы найти идеи:

Как пользоваться и читать мультиметр

Готовьтесь! Мы собираемся начать с основ использования и чтения мультиметра.Когда мы закончим, вы получите четкое представление об основных функциях и преимуществах этого незаменимого инструмента, чтобы вы могли успешно реализовать те проекты, которые откладывали. Или просто лучше понять, как использовать мультиметр в работе.

Мультиметр — это не только гайки и болты для электрика, но и для любого домовладельца, который хочет проверить проводку вокруг своего дома или выполнить некоторые из своих собственных электрических проектов.

И для вашего удобства мы рассмотрели лучшие мультиметры для электриков, чтобы помочь вам выбрать лучший для ваших нужд.

С помощью этого простого в использовании устройства даже новичок может измерить важные электрические характеристики своих приборов, розеток, арматуры и блока выключателей.

Содержание

1 . Основные сведения о мультиметре
2. Важный совет по безопасности
3. Для чего можно использовать мультиметр?
4. Основы работы с электричеством и электрическими агрегатами

a. Цепи
б. Напряжение
c. Текущий
д. Сопротивление
5.Части цифрового мультиметра
6. Как использовать и считывать показания мультиметра для измерения напряжения
7. Как измерять ток
8. Как измерять ток с помощью токоизмерительных клещей
9. Как измерить сопротивление
10. Как рассчитать мощность

Основы мультиметра

Так почему этот инструмент называется мультиметром? Дело в том, что это комбинация вольтметра, амперметра и омметра, дающая вам возможность измерить:

  • переменное напряжение
  • постоянное напряжение
  • ампер
  • сопротивление
  • непрерывность
  • и многое другое!

Если вам нужно выполнить простые электромонтажные работы по дому, и вы не хотите нанимать дорогого электрика, почему бы не попробовать сами?

Мы собираемся показать вам все, что вам нужно знать об использовании и считывании мультиметра, в том числе:

  • базовое устройство для освежения электричества
  • части и терминология мультиметра
  • испытательное напряжение
  • проверка тока
  • проверка сопротивления
  • измерение электрического power

Важный совет по безопасности

Выполнение любых электромонтажных работ сопряжено с определенными опасностями, поэтому вам нужно защитить себя.

Перед тем, как приступить к подобным работам, примите некоторые меры предосторожности для вашей собственной безопасности.

  1. Всегда знайте, где находится ваш выключатель, и четко маркируйте отдельные выключатели. Большинство электромонтажных работ следует выполнять с выключенными выключателями.
  2. Убедитесь, что ваше рабочее место хорошо освещено (солнечный свет и освещение с питанием от батареек) и не имеет препятствий, чтобы вы могли свободно передвигаться.
  3. Используйте защитное снаряжение, такое как очки, перчатки и длинные рукава.

Ваш мультиметр сам по себе является безопасным устройством.Приведенные выше шаги расскажут вам, как использовать и читать мультиметр в безопасных условиях.

Для чего можно использовать мультиметр?

Теперь мультиметр представляет собой довольно впечатляющий инструмент, который имеет широкий спектр применений для нескольких профессий или целей:

  • Проверьте сопротивление предохранителей в вашем автомобиле или приборах.
  • Измерьте ток, чтобы предотвратить срабатывание выключателей в вашем доме.
  • Используйте мультиметр в вашем блоке HVAC, чтобы убедиться, что компрессор получает нужное количество электроэнергии.
  • Если ваш автомобиль не запускается, вы можете проверить напряжение зажигания с помощью мультиметра.
  • Проверьте переключатели, розетки и силовые кабели на наличие проблем.
  • Вы также можете использовать его для проверки старых батарей, удлинителей и лампочек, не вставляя их в розетку.
  • Устранение любых проблем с электричеством в вашем доме, автомобиле или личных устройствах.

Основы работы с электричеством и электрическими устройствами

Электричество может быть сложной задачей, и мы понимаем, как это может сбивать с толку, когда мы говорим о схемах, мензурках, амперах и вольтах.Быстрое напоминание поможет вам без труда научиться пользоваться и читать мультиметр.

Цепи

Электричество выполняет для нас работу, когда оно перемещается по цепи. Если это слово звучит как круг, это потому, что оно аналогично кругу.

Ток течет по этому «кругу» в цепи, начиная с выключателя или предохранителя в электрической коробке, а затем возвращается по нейтральному проводу. На всякий случай, нейтральный провод будет белым.

Как вы знаете, если цепь тока прерывается, электричество перестает течь и свет, розетки и т. Д. Перестают работать.

Так почему же цепь должна быть прервана?

Одной из причин может быть неплотное соединение или поврежденный провод.

Или автоматический выключатель просто выполняет свою работу. Предохранители и автоматические выключатели предназначены для размыкания цепи, если они чувствуют, что через эту цепь протекает слишком большой ток.

Это защищает провод от перегрева, что было бы плохо.

В любом случае, при правильном использовании мультиметр может помочь вам диагностировать и устранить многие из этих неисправностей.

Напряжение

Напряжение проще понять как «давление».

Представьте себе воду, протекающую через садовый шланг.

Это просто конец из-за силы тяжести, или его толкают?

Нажатие, верно?

Где-то насос нагнетает эту воду так, что она течет с силой. Мы измеряем давление воды в фунтах на квадратный дюйм.

Электроэнергия также «подталкивается» генератором, и мы измеряем это «давление» с помощью вольт .

Чем больше сила, тем выше напряжение.

Мы также говорим об электрическом потенциале.

Вернемся к примеру с водой. Представьте, что вы открываете кран, но закрываете форсунку на конце шланга.

Шланг находится под давлением, не так ли? Приложена сила, хотя потока нет.

Можно ли измерить это давление?

Совершенно верно.

В примере с водяным шлангом манометр вычисляет силу, поэтому вы знаете силу потока воды, если она течет.Манометр сравнивает давление внутри шланга с атмосферным давлением снаружи и сообщает вам разницу в фунтах на квадратный дюйм.

Аналогично, электрический потенциал — это величина силы в цепи, доступная для проталкивания электрического тока, если ему разрешено течь. Как и водомер, ваш мультиметр является сравнительным устройством. Он сравнивает разность электрических потенциалов между двумя точками, а затем выражает эту разницу в вольтах.

Ток

Ампер, , что сокращенно от «ампер», — это то, что мы называем единицей измерения электрического тока.

Постойте — я думал вот какое напряжение!

Не совсем так.

Помните наш водяной шланг?

Если давление, движущее воду (фунт / кв. Дюйм), аналогично напряжению, то количество воды (галлонов в минуту) похоже на ток.

Когда мы говорим об электрическом токе, мы имеем в виду количество электричества, а не силу, стоящую за ним. По сути, это количество электронов, проходящих через точку за определенный период времени.Поэтому это число также важно, и мы называем его ампер (сокращение от ампер).

Мультиметр также может измерять ток (в амперах).

Допустим, ваш выключатель на 15 А продолжает отключаться. Возможно, в этой цепи слишком большая нагрузка.

Как 5 красителей используются одновременно.

Вы можете использовать настройку усилителя на мультиметре, чтобы определить, какой ток протекает через цепь.

  • Прямой Ток — то, что мы называем DC
  • Переменный Ток — называется AC

Совет: для правильной настройки вы хотите знать, какой ток вы измеряете перед использованием мультиметра.Как правило, аккумулятор вырабатывает постоянное напряжение (например, ваш автомобиль или фонарик), а электрическая сеть вашего дома — это переменное напряжение.

Сопротивление

Как следует из этого слова, сопротивление — это тенденция проводника к сопротивлению току.

Имеет ли сопротивление вода, протекающая по шлангу?

На самом деле это так.

Трение между водой и поверхностью шланга.

Также — если перегибать шланг, сопротивление определенно возрастает.Точно так же нет идеального электрического проводника. Что касается проводников, то алюминий очень хорош, медь лучше, а золото намного лучше. Тем не менее, сопротивление будет всегда.

Чем больше сопротивление в цепи, тем сильнее должно работать напряжение для протекания тока.

Интересный факт — Планируется некоторое сопротивление. Резистор — это часто в первую очередь вся суть электрической цепи. Лампочка — это резистор высокой стоимости. Он пропускает ток так сильно, что лампочка становится очень горячей, пока не начинает светиться.

Величину сопротивления в цепи можно измерить мультиметром.

А вот еще один термин — Ом. Сопротивление предмета или прибора электрическому току измеряется в омах, а его символ — греческая заглавная буква омега (Ом).

Итак, зачем вам измерять сопротивление? Один из способов использования настройки сопротивления на вашем мультиметре — это проверить целостность цепи.

Непрерывность означает, что ток может непрерывно течь от одной точки к другой.Если ток может течь через проводник из одной точки в другую, мы говорим, что проводник «имеет непрерывность».

Установка сопротивления — это безопасный способ проверки целостности цепи перед подачей высокого напряжения. Так же найдем:

  • Поврежденные провода
  • Короткие замыкания
  • Неопознанные провода
  • Неисправные устройства
  • Перегоревшие лампочки
  • И многое другое!

Части вашего цифрового мультиметра

На первый взгляд части мультиметра могут показаться сложными.Но немного попрактиковавшись, вы быстро научитесь пользоваться и читать мультиметр.

Настройки находятся на лицевой панели мультиметра. Символы на циферблате могут показаться вам чужими, но не волнуйтесь. Здесь мы все объясним.

Маркировка шкалы

Обычно настройки шкалы делятся на три категории: напряжение, ток и сопротивление. Категория напряжения может быть дополнительно разделена на напряжение переменного и постоянного тока.

Циферблаты мультиметра обозначены следующим образом:

  • Категории напряжения обозначены буквой V для Вольт
  • Категория тока обозначена буквой A для ампер
  • Категория сопротивления обозначена (Ω) для Ом .

Каждая категория на вашем дисковом переключателе может иметь несколько настроек для различных диапазонов (если у вас нет измерителя с автоматическим выбором диапазона. Подробнее об этом позже). Если вы измеряете слаботочный предохранитель или небольшую батарею, вам, возможно, придется переключить шкалу на более низкий диапазон, чтобы получить точные показания. Однако, если вы измеряете напряжение и ток в домашних розетках, вам следует использовать более высокий диапазон.

Также важно понимать префиксы перед единицами измерения:

  • K означает кг и означает 1000x.
  • M означает мега и означает на миллион .
  • м означает для милли и означает 1/1000.
  • (µ) обозначает micro и означает одну миллионную.

Теперь мы соберем все вместе:

  • мВ означает милливольты или тысячные доли вольта
  • кОм обозначает килоом, или 1000 Ом
  • мкА обозначает микроампер, или миллионные доли ампер

Имейте в виду, что эти префиксы важны для умения читать мультиметр.

Дисплей

Вы найдете цифровой ЖК-дисплей над циферблатом. Он должен четко читать значения, которые вы пытаетесь измерить. Убедитесь, что рядом с числами или над ними, на дисплее отображается соответствующий символ единицы измерения (например, мВ, мкА или кОм) для измеряемого электрического свойства.

Тестовые щупы

В нижней части мультиметра вы обычно найдете гнезда для ваших испытательных щупов. Ваши испытательные щупы будут использоваться для установления контакта с проводами, клеммами или соединениями.

Помните, что черный щуп всегда подключается к общему разъему (№ 3, помечено COM). Он также известен как терминал возврата.

Красный пробник или активный пробник подключается к одному из других разъемов, в зависимости от электрических свойств, которые вы пытаетесь измерить.

  1. Первое красное гнездо для пробника (выход №1) предназначено для измерения тока в диапазоне от 0-4 до 10 ампер или для частоты и рабочего цикла тока. Этот домкрат должен иметь маркировку A .
  2. Второе красное гнездо датчика (выход № 2) предназначено для измерения тока от 0 до 400 мА или для частоты этого низкого тока. Этот разъем должен иметь маркировку мА или мкА .
  3. Третий красный разъем для датчика (выход №4) предназначен для измерения напряжения, сопротивления, диода, емкости, частоты, рабочего цикла и, возможно, температуры. Он может быть обозначен как В, Ом или различными символами для диодов, емкостей или градусов.

Кнопки

Теперь, чтобы вы не запутались, у вашего мультиметра может быть любое количество дополнительных кнопок на лицевой стороне.Чтобы понять назначение этих кнопок, лучше обратиться к руководству по эксплуатации.

Мультиметры различных производителей включают в себя множество различных опций и кнопок. Мы не будем пытаться здесь и сейчас обобщать их цель.

Как использовать и считывать показания мультиметра для измерения напряжения

Чтобы измерить напряжение мультиметром, выполните следующие действия.

  1. Определите, какое напряжение вы измеряете: переменным или постоянным. Если вы измеряете напряжение в своем доме, вероятно, это переменный ток.Если он в вашей машине или в устройстве с батарейным питанием, скорее всего, это постоянный ток.
  2. Установите переключатель выбора на соответствующее напряжение. Напряжение переменного тока имеет символ, который выглядит как синусоида, который является универсальным символом для переменного тока. Символ DC — сплошная линия с пунктирной линией под ней.
  3. Подключите черный щуп к разъему COM на мультиметре.
  4. Вставьте красный щуп в гнездо с маркировкой V .
  5. Установите селекторный переключатель в положение наивысшего значения в соответствующей категории напряжения.Помните, что мВ означает тысячные доли вольта, так что это очень низкое значение.
  6. Если вы проверяете напряжение переменного тока, наденьте защитные перчатки. При работе с электричеством всегда полезно использовать перчатки.
  7. Включите розетку или компонент, напряжение которых вы проверяете, замкнув выключатель в коробке выключателя, включив зажигание в автомобиле или включив устройство с батарейным питанием.
  8. Прикоснитесь черным щупом к клемме на одной стороне компонента, который вы измеряете, а красным щупом — к клемме на другой стороне компонента.

    Пример: проверьте розетку с помощью мультиметра: Предположим, розетка закреплена на своем месте и все провода подключены правильно.

    На этой розетке должно быть 3 слота.
    а. Два верхних вертикальных слота предназначены для питания (самый короткий слот) и нейтрального (самый длинный слот).
    г. Круглая щель внизу — это земля.

    Если вы используете ручной мультиметр, подключите красный провод к разъему с надписью V (вольт), а черный провод — к разъему COM (общий).

    Включите розетку и просто вставьте красный провод в разъем питания на розетке, а черный провод — в нейтральный разъем.

    Вы должны прочитать 110–120 вольт, если вы находитесь в США. Если это так, то вы только что доказали, что ваша розетка имеет 120 вольт от горячего к нейтральному. Ура!

    Теперь возьмите черный щуп и вставьте его в гнездо заземления, вы должны прочитать то же значение. Если да, то вы только что доказали, что у вас есть четкий путь к земле. Если какой-либо из этих тестов показывает менее 110 вольт, теперь вы знаете, что что-то не так.

    Давайте проверим аккумулятор вашего автомобиля с помощью мультиметра: Переключитесь на постоянное напряжение. Подключите черный провод к отрицательной клемме, а красный провод к положительной клемме. Вы читали хотя бы 12 вольт постоянного тока? Это хорошо!

    Теперь давайте проверим ваш генератор с помощью мультиметра: Проделайте тот же тест, что и выше, на работающем автомобиле. Теперь вы должны показывать от 13 до 16 вольт. Если да, то ваш генератор заряжает аккумулятор должным образом. Поздравляю! Иди выпей пива.

  9. Если вы не получаете четких показаний, поверните селектор на следующую максимальную настройку, пока не получите записываемое число.

Примите к сведению эти дополнительные важные меры безопасности перед проверкой напряжения.

  • Убедитесь, что датчики не повреждены и на тестовых проводах нет оголенных точек.
  • Еще раз проверьте, подключен ли красный щуп к розетке В на мультиметре. Подключение к неправильному разъему может серьезно повредить мультиметр.
  • Всегда начинайте с самого высокого диапазона напряжения на переключателе выбора мультиметра.
  • Если на щупах мультиметра есть зажимы, это обеспечивает дополнительную безопасность. Вы можете прикрепить щупы к цепи перед включением устройства или выключателем.

Как использовать и считывать показания мультиметра для измерения тока

Вот шаги, которые необходимо предпринять для измерения тока с помощью мультиметра:

1. Отключите питание цепи, которую вы будете измерять.

2. Поверните диск выбора на A , который является текущим.

3.Подключите черный разъем для щупа к разъему COM на мультиметре.

4. Вставьте красное гнездо датчика в соответствующую розетку, будь то сильноточная (А) или слаботочная (мА или мкА).
Предупреждение. Если измеренный ток превышает нижний предел тока, вы можете перегореть предохранитель в мультиметре, если случайно воспользуетесь этой розеткой.

Хорошо, давайте приступим к делу. Если вы не измеряете стержень пламени или термопару, вам, скорее всего, не нужно будет находить тысячные или (доброе дело!) Миллионные доли ампер.Так что просто вставьте красный щуп в гнездо A.

Вот здесь и получается беспорядок. Если у вас есть токоизмерительные клещи, просто пропустите все это и перейдите к разделу о том, как измерять ток с помощью токоизмерительных клещей.

5. Если вы все еще читаете, вот что вам нужно сделать. Амперметр должен быть помещен в серии со схемой для измерения тока. Таким образом, проволока, питающая цепь, должна быть разомкнута, а измерительные щупы должны быть помещены в зазор. Например, если вы хотите измерить ток в цепи с розеткой, вы можете

a) Отсоединить токоведущий провод от вилки

b) Поместите красный провод от вашего измерителя на отключенный провод

c) Поместите черный провод на клемму вилки, где был провод под напряжением до

d) Убедитесь, что вы не прикасаетесь ни к одной из открытых частей этих проводов

e) Снова включите питание

Теперь ваш измеритель является частью цепи и подсчитывает токи, пока они пролетают.

Напоминание: перед тем, как делать это , убедитесь, что на вашем мультиметре установлен ток.

Как измерить ток с помощью клещевого мультиметра

Токоизмерительный мультиметр — это мультиметр со специальной откидной губкой. Мы называем это зажимным амперметром.

Этот считыватель с зажимным усилителем — это быстрый способ считывания тока на проводнике. Вместо использования зондов для прикосновения к оголенным проводам зажим окружает провод (даже изолированный провод) и определяет ток внутри него посредством магнитной индукции — считывая силу магнитного поля вокруг проводника.

Для большинства задач наилучшим выбором является накладной датчик, потому что он простой и быстрый. Вы просто зажимаете челюсть вокруг провода, выбираете ампер на циферблате, и цифровой дисплей покажет вам, сколько тока проходит через провод.

Конечно, вы получите более точные показания с помощью датчиков, поскольку они могут обнаруживать гораздо меньшие значения тока, такие как миллиампер и микроампер. Но я считаю это ненужным для большинства домашних нужд.

Не обнажая провода, мультиметр-клещи делает измерение тока намного безопаснее без риска поражения электрическим током.Он также не требует прерывания цепи, поэтому вы можете поддерживать работу своей электроники во время тестирования.

Обнаружение магнитной индукции более безопасно для самого измерителя, и мультиметры-клещи могут использоваться для гораздо более высоких токов, чем мультиметр с пробниками. Убедитесь, что вы зажимаете только один провод за раз.

Как использовать и считывать показания мультиметра для измерения сопротивления

Поскольку омы — это единицы измерения сопротивления, мы начинаем с установки шкалы в омах для измерения сопротивления.

Предупреждение: Всегда выключайте питание в области, где вы читаете, всякий раз, когда вы используете функцию измерения сопротивления. В противном случае вы рискуете повредить мультиметр .

Вот почему: когда вы выбираете показание в омах, батарея в измерителе посылает небольшое напряжение между двумя вашими датчиками, и именно так измеритель считывает сопротивление.

Схема вашего мультиметра, используемая при установке сопротивления, получает доступ к примерно 3 вольтам постоянного тока от батарей. Если вы подадите через эту цепь 100 вольт, вы наверняка что-нибудь повредите.Скорее всего, вы просто перегорите предохранитель.

Но кто хочет заниматься поиском и заменой маленького предохранителя в своем счетчике?

Чтобы измерить сопротивление с помощью мультиметра, выполните следующие действия:

Примечание: Некоторые из этих шагов относятся к измерителям диапазона с ручным управлением. Если у вас автоматический выбор диапазона, вы можете пропустить шаги 3-5.

  1. Выключите питание!
  2. Установите переключатель выбора в положение сопротивления, или Ом (Ом).
  3. Вставьте датчики в соответствующие гнезда.Черный зонд войдет в третий разъем, помеченный «COM». Красный зонд подключается к четвертому разъему.
  4. Если мультиметр имеет переключатель включения / выключения (кроме переключателя выбора), включите его. Убедитесь, что дисплей активирован.
  5. Установите переключатель выбора в положение наивысшего сопротивления, чтобы начать измерение.
  6. Коснитесь наконечниками щупа проводов на противоположных сторонах предохранителя или предмета, сопротивление которого вы измеряете. Измерения сопротивления будут выполняться всегда. Ваш измеритель будет измерять сопротивление, которое он «видит» между двумя датчиками.Например, если ваши щупы находятся на обоих концах предохранителя, он будет измерять сопротивление предохранителя.
  7. Если на дисплее отображаются нули или очень маленькие десятичные дроби, установите переключатель выбора в следующий самый высокий диапазон, пока не увидите больше цифр в показании. Это даст вам более точные показания.
  8. После того, как вы записали свои показания, выключите мультиметр, чтобы сберечь батарейки.
  9. Наконец, верните переключатель выбора в положение с максимальным сопротивлением.Это сделано для защиты мультиметра на тот случай, если для следующего измерения потребуется больший ток.

Это также отличный способ доказать наличие непрерывности или целостности провода между двумя точками.
Если бы вы измеряли сопротивление от одного конца провода до другого, и если бы этот провод не прерывался, что бы вы ожидали, что измеритель покажет? Высокое или низкое сопротивление? Он будет низким, так как провод сплошной. Вы бы прочитали ноль или небольшую часть от 1. Если, с другой стороны, где-то вдоль линии есть разрыв, что бы вы прочитали? Это будет бесконечное сопротивление или OL, что означает перегрузку .

Вот несколько дополнительных советов, которые помогут правильно измерить сопротивление:

  • Компонент, который вы измеряете, должен быть удален из цепи или прибора, чтобы случайно не измерить сопротивление через другой путь.
  • Измеряемый компонент также должен быть отключен от любых батарей или внешнего источника питания. Батарейки мультиметра обеспечат необходимое питание для проверки сопротивления.
  • Если вы проверяете конденсатор, убедитесь, что он разряжен, чтобы предотвратить электрический разряд в мультиметре.
  • Конденсаторам может потребоваться некоторое время для стабилизации, когда вы примените щупы мультиметра. Это потому, что пробники могут немного заряжать конденсатор.
  • Если вы проверяете сопротивление диода и не можете получить показания, включите щупы на выводах диода. Диоды проводят ток только в одном направлении, поэтому, если ваши щупы подключены не к тем клеммам, вы получите либо нулевое значение, либо необоснованно высокое значение сопротивления.
  • Если вы измеряете особенно высокое сопротивление и ваши пальцы соприкасаются с выводами, возможно, ваши пальцы повлияют на показания сопротивления.Только убедитесь, что вы не прикасаетесь к металлической части щупов.

Как использовать и считывать показания мультиметра для расчета мощности

Мультиметр не измеряет напрямую мощность или ватт.

Напротив, мощность прибора можно довольно просто рассчитать, измерив напряжение и ток, а затем умножив их.

Вот 2 простых шага для определения ватт:

  • Внимательно следуйте шагам выше, чтобы измерить напряжение и ток.
  • После измерения обоих значений умножьте их вместе.

Теперь у вас есть ватты.

Заключение

Единственный способ справиться с этим — это выйти и начать делать это! Не стесняйтесь оставлять любые комментарии или вопросы.

И, если вы нашли эту статью полезной, пожалуйста, поделитесь ею с другими!

Если вам понравилась эта статья, возможно, она вам тоже понравится!

Как пользоваться мультиметром | Как использовать цифровой и аналоговый мультиметр

Узнайте, как использовать мультиметр — Как использовать цифровой и аналоговый мультиметр — Используйте мультиметр для проверки напряжения, целостности цепи, тестовой розетки, напряжения проводов под напряжением, сопротивления, проверки электронных компонентов.

Узнайте, как использовать мультиметр — Как использовать цифровой и аналоговый мультиметр — Используйте мультиметр для проверки напряжения, целостности цепи, тестовой розетки, напряжения проводов под напряжением, сопротивления, проверки электронных компонентов, таких как диод, конденсатор, резистор (сопротивление ), транзистор, Аккумулятор, трансформатор и т. Д.

Типы мультиметров — цифровые и аналоговые

Мультиметры

бывают двух типов: Аналоговый мультиметр и цифровой мультиметр . Единственное отличие состоит в том, что цифровой мультиметр имеет цифровую индикацию всех показаний.Аналоговый мультиметр имеет стрелку-указатель, которая перемещается к показаниям при проверке любого устройства или электронного компонента.

Характеристики мультиметра

Большинство мультиметров, часто обозначаемых как Multi Meter, имеют следующее:

  1. Переключатель функций и диапазонов : Этот переключатель используется для выбора функции и желаемого диапазона, а также для поворота прибора. Чтобы продлить срок службы батареи мультиметра, этот переключатель необходимо держать в положении « OFF », когда прибор не используется.
  2. Дисплей или ЖК-дисплей : для отображения всех показаний.
  3. Общий разъем : Разъем для черного ( отрицательный ) измерительного провода или зонда.
  4. VOhmsmA Jack : Вставьте разъем для красного ( положительный ) измерительного провода или щупа для всех измерений напряжения, сопротивления и тока ( кроме 10A ).
  5. Гнездо на 10 А : Разъем для красного ( положительный ) измерительного провода или щупа для измерения 10 А.Как использовать мультиметр

Упаковочный лист нового мультиметра
  1. Мультиметр.
  2. Установите красный и черный измерительные провода или щупы.
  3. Аккумулятор.
  4. Термоэлектрическая пара.
  5. Руководство по эксплуатации.

Как пользоваться мультиметром (аналоговым и цифровым): инструкция

Как к Измерение DC (Постоянный ток) Измерение напряжения / постоянного напряжения
  1. Подключите красный измерительный провод к « В, Ом, мА, гнездо », а черный провод к

    Обозначение цепи постоянного тока

    Разъем « COM ».

  2. Установите « Range Switch » в желаемое положение постоянного напряжения. Если измеряемое напряжение неизвестно, установите переключатель на самый высокий диапазон и уменьшайте его до получения удовлетворительного значения.
  3. Подключите измерительные провода к измеряемому устройству или электрической цепи.
  4. Включите питание измеряемого устройства, инструмента или компонента. Напряжение будет отображаться на цифровом дисплее цифрового мультиметра вместе с полярностью напряжения.

Как измерить напряжение переменного тока (переменного тока) с помощью мультиметра / Измерение напряжения переменного тока
  1. Подключите красный измерительный провод к « В, Ом, мА, гнездо », а черный провод к

    Обозначение цепи переменного тока

    Разъем « COM ».

  2. Установите « Range Switch » в желаемое положение переменного напряжения.
  3. Подключите измерительные провода к измеряемому устройству, электронному компоненту или цепи.
  4. Значение напряжения отобразится на цифровом или аналоговом дисплее мультиметра.

Как выполнить Измерение DC (Постоянный ток) Ток с помощью мультиметра / Измерение постоянного тока
  1. Подключите красный датчик к разъему « В, Ом, мА, », а черный датчик — к разъему « COM ».Чтобы измерить постоянный ток в диапазоне от 200 мА до 10 А, подключите красный зонд к разъему « 10A », полностью нажав.
  2. Установите « Range Switch » в желаемое положение постоянного тока A.
  3. Разомкните цепь, которую необходимо измерить, и последовательно подключите щупы к нагрузке, в которой необходимо измерить ток.
  4. Считайте значение на дисплее.

Как измерить сопротивление с помощью мультиметра / Измерение сопротивления
  1. Подключите красный датчик к « В, Ом, мА, гнездо », а черный датчик к

    Обозначение цепи сопротивления

    Разъем « COM ».

  2. Установите « Range Switch » в желаемое положение Ом .
  3. Если измеряемый резистор подключен к цепи, ВЫКЛЮЧИТЕ ПИТАНИЕ и разрядите все конденсаторы перед измерением.
  4. Подключите датчики к измеряемой цепи.
  5. Считайте значение сопротивления на дисплее.

Как измерить диод / измерение диода
  1. Подключите красный измерительный провод к « В, Ом, мА, гнездо », а черный провод к

    Обозначение диодной цепи

    Разъем « COM ».

  2. Установите « Range Switch » в положение диода .
  3. Подключите красные измерительные выводы к аноду диода и черные измерительные выводы к катоду.
  4. Прямое падение напряжения в мВ будет отображаться на экране или дисплее. Если диод перевернут, отобразится цифра « 1 ».

Как измерить транзистор hFE / измерение диода
  1. Установите переключатель диапазонов в положение hFE .

    Обозначение цепи транзистора

  2. Определите тип транзистора NPN или PNP и найдите эмиттерный, базовый и коллекторный выводы . Вставьте провода в соответствующие отверстия hFE Socket на передней панели мультиметра.
  3. Мультиметр покажет приблизительное значение hFE при условии базового тока 10 мкА и VCD 2,8 В.

Как измерить непрерывность / звуковой зуммер Измерение непрерывности
  1. Подключите красный измерительный провод к разъему « В, Ом, мА, », а черный провод — к разъему « COM ».
  2. Установите « Range Switch » на Buzzer .
  3. Подключите измерительные провода к двум проверяемым точкам. Если сопротивление ниже 100 Ом, то раздастся звуковой сигнал, что означает, что цепь в норме.

Использование тестового сигнала
  1. Установите « Range Switch » на Сигнальный символ .
  2. Тестовый сигнал появляется между гнездами « В, Ом, мА, разъем » и « COM, ».Выходное напряжение составляет примерно 5 В от до Ом при сопротивлении 50 кОм.

Как измерить температуру / Измерение температуры
  1. Подключите термоэлектрическую пару типа k к гнездам « В, Ом, мА, » и « COM, ».
  2. Установите « Range Switch » в « Temperature Position ».
  3. На дисплее отображается значение температуры в градусах Цельсия или Фаренгейта.

Как измерить комнатную температуру / Измерение комнатной температуры

Большинство мультиметров могут легко измерять температуру в помещении от 0 до 35 градусов Цельсия.Просто установите « Range Switch » в положение RT, и будет отображаться текущая комнатная температура.

Предупреждение
  1. Во избежание поражения электрическим током, опасности или повреждения не измеряйте напряжение, превышающее 1000 В или 750 В над землей. У разных мультиметров может быть разный диапазон измерения. Перед использованием мультиметра внимательно прочтите руководство по эксплуатации.
  2. Перед использованием мультиметра осмотрите измерительные провода, разъемы и щупы на предмет трещин, разрывов или трещин в изоляции.
  3. Прежде чем пытаться открыть корпус мультиметра, обязательно отключите измерительные провода или щупы от всех находящихся под напряжением электронных цепей, чтобы избежать поражения электрическим током.

Как ухаживать за мультиметром

Когда вы используете мультиметр, вы несете ответственность за его надлежащий уход и предотвращение каких-либо повреждений:

Замена предохранителя

Предохранитель мультиметра редко перегорает или требует замены. Если это происходит, то это из-за ошибки или ошибки оператора.При необходимости просто замените старый предохранитель новым, соблюдая полярность.

Аккумулятор Замена

Если на дисплее появляется символ батареи, это означает, что батарею необходимо заменить.

Видео — Как пользоваться мультиметром

Видео — Обзор лучшего мультиметра для начинающих

Похожие сообщения:

Как проверить транзистор мультиметром

Мы можем зарабатывать деньги, просматривая продукты по партнерским ссылкам на этом сайте.Спасибо вам всем!

Транзисторы действуют как затвор или переключатель для электрических сигналов с возможностью регулирования напряжения или тока. Обычно они имеют три слоя, которые сделаны из полупроводниковых материалов, которые могут проводить ток. Такими полупроводниковыми материалами являются:

Как работает транзистор

Если небольшое изменение напряжения или тока происходит во внутренних слоях полупроводника транзистора, происходит быстрое и сильное изменение тока, которое передается на весь компонент.Затем транзисторы действуют как переключатель, многократно замыкаясь и открываясь, а также как электрический затвор.

  • Транзисторы используются в обеих комбинациях, называемых интегральными и одиночными схемами.
  • Транзисторы, используемые в комбинированных / интегральных схемах, встречаются в таком оборудовании, как высокопроизводительные компьютеры, сотовые телефоны, планшеты, ноутбуки и настольные компьютеры.
  • В этой статье вы услышите о различных типах транзисторов, таких как PNP и NPN.
  • Транзистор PNP — положительный, отрицательный, положительный.Это также известно как поиск источников.
  • Транзистор NPN означает отрицательный, положительный, отрицательный. Это также известно как опускание.

Итак, в чем разница между этими двумя транзисторами?

В транзисторе NPN ток обычно течет от коллектора к выводу эмиттера. С другой стороны, PNP-транзистор обычно включается, когда на выводе базы транзистора нет тока. В транзисторе PNP ток часто течет от эмиттера к клемме коллектора.

Транзистор NPN включается при высоком уровне сигнала, в то время как транзистор PNP обычно включается при очень низком уровне сигнала.

Основное различие между транзистором NPN и транзистором PNP обычно заключается в правильном смещении их соединений транзисторов. Полярности напряжения и направления тока обычно постоянно противоположны друг другу.

Когда дело доходит до мультиметров, технические специалисты и профессионалы используют их чаще всего.От цифрового мультиметра до аналогового мультиметра — этот электрический инструмент используется для диагностики и тестирования многих электрических компонентов и цепей широкого диапазона.

Когда дело доходит до тестирования или проверки транзисторов, этот универсальный компонент — мультиметр — лучше всего подходит для этой работы. Большинство цифровых мультиметров имеют встроенную функцию тестирования транзисторов. В таких случаях тестирование транзисторов становится очень быстрым и простым.

Как проверить транзистор с помощью мультиметра со встроенными функциями транзистора

Если ваш цифровой мультиметр имеет встроенную функцию тестирования транзисторов, все, что вам нужно, это выполнить следующие простые шаги:

  1. Первый шаг — вставить транзистор в гнездо цифрового мультиметра.
  2. После этого вам нужно установить мультиметр в правильный режим.
  3. После завершения вы получите такие показания, как усиление (hFE). Имея это значение, вы можете перепроверять показания «не прошел / прошел» и таблицы данных.

Проверка транзистора мультиметром (настройки диодов)

Для мультиметров без встроенной функции тестирования транзисторов вы можете проверить свои транзисторы с помощью функции тестирования диодов.

Для получения точных и правильных показаний вам необходимо удалить транзистор из схемы.Ниже приведены шаги, которые необходимо выполнить:

1. Подключение базы к излучателю

Первое, что нужно сделать на этом этапе, — это подключить положительный вывод цифрового мультиметра к БАЗУ транзистора (B).

После этого подсоедините отрицательный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).

Если ваш NPN-транзистор в идеальном состоянии, цифровой мультиметр должен показать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).

2. Подсоединение базы к коллектору

На этом этапе вам нужно, чтобы цифровой мультиметр оставался положительным, провод к ОСНОВАНИЮ (B), а затем подключил отрицательный провод цифрового мультиметра к КОЛЛЕКТОРУ (C).

Для правильно функционирующего транзистора NPN цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).

3. Подключение излучателя к базе

Первое, что нужно сделать на этом этапе, — это подсоединить положительный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).

После этого подключите отрицательный вывод цифрового мультиметра к БАЗУ транзистора (B)

.

Для исправного функционирования NPN-транзистора цифровой мультиметр должен давать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.

4. Подключение коллектора к базе

На этом этапе вам нужно будет подключить положительный провод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный провод цифрового мультиметра к ОСНОВАНИЮ (B).

Для исправного функционирования NPN-транзистора цифровой мультиметр должен давать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.

5. Подключение коллектора к эмиттеру

На этом этапе вам нужно будет подключить положительный провод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный провод цифрового мультиметра к ЭМИТТЕРУ (E).

Для правильно функционирующего транзистора NPN и PNP цифровой мультиметр должен давать показания OL (превышение предела).

6. Подключение эмиттера к коллектору

Наконец, вам нужно будет держать положительный вывод цифрового мультиметра на ЭМИТТЕРЕ (E), а затем подсоединить отрицательный вывод цифрового мультиметра к КОЛЛЕКТОРУ (C)

.

Для правильно функционирующего транзистора NPN и PNP цифровой мультиметр должен давать показания OL (превышение предела).

Для любого неисправного транзистора показания цифрового мультиметра будут отличаться от приведенных выше результатов.

ПРИМЕЧАНИЕ

Проверка транзистора мультиметром позволит определить только неисправность транзистора; он не определит, работает ли ваш транзистор в том диапазоне, в котором они должны работать.

подсказки

В наши дни, когда у вас неисправный транзистор, его можно заменить на Mosfet. Хотя и МОП-транзистор, и транзистор могут иметь похожие стили, функции и могут выглядеть одинаково, они оба отличаются по своим конфигурациям и характеристикам.

Основное различие между ними заключается в том, что транзисторы зависят от тока и должны увеличиваться пропорционально нагрузке, в то время как Mosfet зависит от напряжения.

Какой трансформатор я должен использовать с The Ring Doorbell 2? — OneHourSmartHome.com

Итак, мы обратились к нашим партнерам по домашней автоматизации, компаниям Same Day Smart Homes и Greenfii, чтобы решить некоторые вопросы, которые нам задавали, связанные с обеспечением питанием Ring Doorbell 2 и каким трансформатором использовать с Ring Doorbell 2.

Звонок дверного звонка 2 не требует трансформатора или проводного соединения , но если вы его предоставите, он будет постоянно заряжать аккумулятор, и вам не нужно будет когда-либо заменять или перезаряжать аккумуляторы в дверном звонке 2.

Добавление трансформатора к Ring Doorbell 2 также сделает беспроводное соединение более сильным и стабильным, поскольку хорошее соединение Wi-Fi требует изрядного количества энергии, а если у вас возникают проблемы с медленной потоковой передачей или нестабильным подключением, добавьте трансформатор с питанием к дверной звонок помогает создать более сильное соединение Wi-Fi.

Какое напряжение требуется для дверного звонка Ring Pro?

Ring Doorbell 2 не требует постоянного источника питания и может работать от батарей, но если вы хотите избавиться от необходимости заряжать батарею и обеспечить более надежный прием изображения, вы можете добавить трансформатор низкого напряжения для питания Ring 2. Дверной звонок.Питание дверного звонка Ring 2 напряжением от 16 до 24 В и силой тока не менее 30 ВА обеспечит наилучшие результаты для питания вашего умного дверного звонка. Наши профессионалы в области умного дома обнаружили, что на Среднем Западе только около 20% домов, построенных до 1995 года, имеют достаточное напряжение для питания дверного звонка 2. Это означает, что для получения достаточной мощности для вашего дверного звонка 2 вам может потребоваться модернизировать существующий трансформатор. В большинстве старых домов есть только трансформаторы 10 В, которые не обеспечивают достаточного напряжения для дверного звонка 2 и не позволяют вашему дверному звонку 2 работать должным образом.

Вот как выглядит существующий установленный трансформатор, установленный на старой распределительной коробке. Это пример трансформатора, который необходимо заменить из-за недостаточного напряжения.

Как найти неисправные компоненты на плате

Прежде чем вы сможете отремонтировать электронное оборудование, вы должны сначала найти неисправные компоненты на его печатной плате или печатной плате. Это может быть сложной задачей, потому что для разных компонентов требуются разные процедуры тестирования.Имеет смысл сначала проверить транзисторы, потому что вы можете провести быстрый внутрисхемный тест. Пассивные компоненты, такие как резисторы и катушки индуктивности, имеют тенденцию выходить из строя реже, хотя даже они могут сломаться или сгореть.

Инструкции

1 Отключите питание схемы перед осмотром платы. Отсоедините шнур питания от розетки переменного тока.

2 Проверьте печатную плату на наличие предохранителей. Если вы найдете его, вытащите его плоскогубцами и посмотрите, не взорвалось ли оно.Если у вас стеклянный предохранитель, посмотрите на нить накала внутри. Перегоревший предохранитель будет иметь обрыв нити накала. Если у вас керамический предохранитель, проверьте его мультиметром. Установите измеритель на непрерывность и прикоснитесь щупами измерителя к металлическим концам предохранителя. Если прибор издает звуковой сигнал, предохранитель исправен и исправен.

3 Осмотрите компоненты на плате на предмет физических повреждений. Вы можете увидеть следы ожогов, трещины, сломанные провода, вздутия или раздавленные детали. Предположим, что любые детали, которые кажутся поврежденными, являются неисправными.

4 Включите цифровой мультиметр и настройте его на функцию проверки диодов.

5 Найдите биполярные (NPN или PNP) транзисторы на схеме и найдите их на печатной плате. Прикоснитесь щупами мультиметра к контактам коллектора и эмиттера на каждом транзисторе. Счетчик должен показывать «обрыв» или «высокое сопротивление».

6 Прикоснитесь отрицательным щупом к коллектору, а положительным щупом к базе каждого NPN-транзистора. Вы должны получить показание в несколько сотен милливольт.Поднесите отрицательный зонд к эмиттеру. У вас должно получиться подобное чтение. Поменяйте местами датчики. Теперь измеритель должен показывать «бесконечность», «перегрузка» или «высокое» сопротивление. Поднесите положительный зонд к коллектору. У вас должно получиться подобное чтение.

7 Подключите положительный щуп к коллектору, а отрицательный щуп к базе каждого PNP-транзистора. Счетчик должен показывать несколько сотен милливольт. Поднесите положительный зонд к эмиттеру. У вас должно получиться подобное чтение. Поменяйте местами датчики.Теперь измеритель должен показывать «высокое» сопротивление. Поднесите отрицательный зонд к коллектору. У вас должно получиться подобное чтение.

8 Замените отдельные интегральные схемы (ИС) запасными частями того же типа, если ИС вставлены в гнезда. Проверьте цепь, снова подключив шнур питания и включив устройство.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *