Закрыть

Как увеличить сечение заземляющего проводника – — , , , ,

Содержание

Нормы сечения для провода переносного заземления

Провод заземления является важным элементом при работе с электроприборами и высоким напряжением. Даже полное отключение электричества не может обеспечить 100% гарантии безопасности, так как на проводах может скапливаться напряжение. Для того чтобы его отвести, используется естественное или искусственное заземление.

Часто применяют переносное устройство, как наиболее удобный и дешевый способ. Важно правильно осуществить расчет сечения провода переносного заземления, поскольку от него зависит надежность работы прибора.

Предназначение устройства

Переносное заземление – это съемная система, которая используется для защиты рабочих при проведении манипуляций с электроустановками или электрооборудованием. Задачей системы является отводить наведенные токи или случайно поданное на объект напряжение. Применяются такие приборы в тех местах, где нельзя использовать стационарные ножи. При использовании переносного защитного устройства в случае попадания напряжения на заземленный участок произойдет короткое замыкание, и персонал избежит удара током.

Характеристики переносного заземления, в том числе требования к сечению, перечислены в государственном стандарте 52853. Там же указано, что при испытаниях проверяется сечение проводника, для этого разбирают провод на пряди, подсчитывают их число, и число жил в пряди. Затем измеряют диаметр жилы, и по известной формуле из школьной геометрии определяют сечение.

Лента-плетенка

Для переносных заземлений может использоваться специальная лента. Она нужна для механического соединения муфт и экранов. Благодаря такой конструкции монтируемый сросток получает более прочное соединение. Лента имеет стабильные параметры, высокую прочность, конструкция не только грамотно проводит ток, но и весьма устойчива на разрыв. Ленту можно использовать в качестве перемычек и экранных шин. Структура материала плетеная, что позволяет просверливать в ней отверстия для болтовых креплений.

Стандартное изделие для переносного сопротивления состоит из 24 прядей. Каждая прядь луженая, имеет 13 проволок, диаметр каждой составляет 0,2 мм.

Провод

Чаще всего провод заземления имеет сечение от 25 мм2 и применяется для трехфазных систем. Для каждой фазы, размещенной на воздушной линии, предусматривается свой провод. При возникновении случайного или непредусмотренного напряжения задачей переносного заземления является отведение его на специальный провод и создание короткого замыкания, предохраняющего рабочих от опасности.

Применять такие переносные провода можно при температуре от -45 до +45 градусов Цельсия. Желательная относительная влажность должна составлять 80% при температуре окружающей среды 20 градусов.

Напряжение до 1000 В

Сечение провода переносного заземления подпадает под строгие технические требования и стандарты. Оно должно выдерживать нагрев в случае возникновения замыкания на трехфазном и однофазном источнике. Провод заземления, используемый в электроустановках с напряжением меньше 1000 В, должен иметь сечение не меньше 16 кв. мм.

Нельзя применять провода, имеющие меньшее сечение. Если напряжение в электроустановке не превышает 6-10 кВ, сечение проводников может колебаться от 120-185 мм2. Такие элементы не слишком удобны, так как имеют большую массу. Можно использовать несколько переносных заземлений с меньшим сечением, они устанавливаются напротив друг друга.

Напряжение выше 1000 В

Если минимальное сечение у проводов переносных заземлений не меньше 16 мм2, то есть переносное заземление рассчитано на величину выше 1000 В, минимальное значение должно быть не меньше 25 мм2. Расчет сечения должен проводиться по следующей формуле:
S = ( Iуст √tф ) / 272.

  • Iуст – является обозначением тока короткого замыкания;
  • tф – время, измеряющееся в секундах;
  • 272– коэффициент, который может отличаться для разных металлов. При точном расчете для меди он равен 250. В данном случае он взят с запасом.

Для того чтобы не изготавливать несколько заземлителей, единицу времени в формулу нужно включать максимальную; следовательно, провод заземления будет более толстым. Если сеть имеет заземляющую нейтраль, то рассчитывать диаметр сечения требуется по току одной фазы. Важным аспектом является обеспечение термической устойчивости, если образуется двухфазное замыкание.

Не разрешается применять для создания заземления обычный изолированный кабель. Изоляция не позволит обнаружить механические повреждения жил, если таковые появятся. Перетирание жил приводит к прожиганию полупроводника, использовать поврежденный кабель нельзя.

Портативное заземление должно быть оснащено специальными зажимами. При помощи этих элементов переносная конструкция закрепляется специальной штангой на токопроводящих частях и позволяет создать надежное заземление. Проводники должны быть присоединены к зажимам без использования переходных наконечников: это обеспечит большую площадь касания и надежность соединения. Отсутствие слабых контактов не позволит конструкции выгореть при воздействии на нее большого напряжения.

Если требуется прикрепить заземляющее соединение к проводнику при работе с трехфазным источником, то соединения приваривают. Можно использовать болты, но тогда провод заземления должен быть пропаян.

Ограничиваться пайкой нельзя, так как при работе с токами выше 1000 будет существенный нагрев, пайка ослабнет, и переносная конструкция будет разрушена.

Значение сопротивления

Сопротивление, которое оказывает заземление – это способность грунта распределить электрический ток, попавший в него при помощи заземлителей. Величина важна для переносного и стационарного устройства. Она измеряется в омах и зависит непосредственно от сопротивления грунта и площади соприкосновения заземлителя с грунтом. Менять площадь можно, увеличивая заглубление электрода или соединяя вместе несколько коротких электродов. В последнем случае увеличивается площадь сечения.

Чем меньше показатель, тем лучше работа с ним. Нулевого значения в естественных условиях добиться нельзя, поэтому чаще всего разные типы электрооборудования имеют разную норму – от 60 до 0.5 Ом.

Если подключение заземления происходит через нейтраль трансформатора, суммарное сопротивление не должно превышать 4 Ома. В противном случае утрачивается смысл его использования. Если требуется обустроить заземление в частном доме, расчет должен опираться на то, что в таких домах величина не превышает 30 Ом.

Обратите внимание, есть ли в доме газопровод. При подключении труб сопротивление не должно превышать 10 Ом. Это объясняется тем, что газопровод является источником повышенной опасности, и минимальное сечение подбирается с учетом данного фактора.

Если требуется установить заземление для подключения молниеприемника, меняя сечение и длину, следует добиться сопротивления не более 10 Ом.
Источник тока в виде трансформатора или генератора при заземлении не должен подключаться к поверхностям, имеющим сопротивление, превышающее отметку 8 Ом. Допустимая величина напрямую зависит от напряжения. Если в трансформаторе напряжение 380, сопротивление должно составлять не более 2 Ом, 220 – не более 4 Ом, 127 – не более 8 Ом.

Если оборудование укомплектовано газовыми разрядниками, использующимися для защиты линий, проведенных по воздуху, заземление не должно выдавать сопротивление больше 2 Ом, некоторое оборудование допускает 4 Ом и имеет об этом специальные пометки.

Для телекоммуникационного оборудования требования к сопротивлению составляют 2-4 Ома. Если используется подстанция, рассчитанная на 110 кВ, сопротивление заземления не должно быть выше 0.5 Ом.

Нормы сопротивления, проиллюстрированные выше, распространяются на нормальные грунты, удельное сопротивление которых не выше 100 Ом*м. К таким почвам относятся глинистые и суглинистые. Например, для песчаных поверхностей характерно удельное сопротивление 500 Ом*м, что превышает общеизвестную и всеми принятую норму в пять раз.

evosnab.ru

Заземляющий проводник: требования и особенности

Заземляющие проводники представляют собой обязательную часть электроустановок любого типа, от небольших бытовых приборов до трансформаторов. Необходимы как защитные элементы от случайного соприкосновения с деталями, находящимися под высоким напряжением.

Их правильный выбор и установка очень важны не только для обеспечения бесперебойной работы, но и для улучшения качества ее безопасности во время эксплуатации.

Подсоединение заземляющего проводника к электроустановке

к содержанию ↑

Немного теории

Чтобы действовать максимально эффективно, необходимо знать некоторую терминологию. Так, глухозаземленная нейтраль — общая точка обмоток для электрического оборудования, которая присоединяется к заземлителю напрямую или с использованием малого сопротивления.

Важно знать следующую информацию:

  1. Основных схем для подключения нейтрали оборудования насчитывается пять. Здесь электрические приборы подключают в звезду (начала обмотки присоединяют к фазным проводам).
  2. В областях соединения обмоток потенциал будет равен нулю при идеальных условиях, как и у почвы. Из-за этого заземление нейтрального кабеля необходимо производить с использованием шины.
  3. Нулевой провод — тот, что подключен к нейтрали. Как правило, его принято обозначать буквой N.
  4. Нулевой защитный проводник заземления обозначается символом РЕ. Его подсоединяют к земле и непосредственно к оборудованию, благодаря чему оказывается возможным получение нулевого потенциала.

Подсоединение заземляющих проводников к шине

Существует три основных типа подключения:

  1. TN-S. К нейтрали соединяют нулевой рабочий проводник и кабель защитного заземления, которые не соединяются до конечного потребителя.
  2. TN-C. Заземляющий проводник и нейтраль соединяются в одной области, образовав сплошной проводник. Такой тип обозначают символом REN.
  3. TN-C-S. Совмещает в себе два предыдущих. Для подключения к нейтрали используется один проводник, который впоследствии разделяется на два — зануления и заземления.

В сетях выше тысячи, требующих специальных знаний, применяется тип IT с применением изолированной нейтрали.

к содержанию ↑

Требования к заземлителям

Главные требования к проводам-заземлителям зависят от места для их подключения. Так, проводы могут быть использованы как для непередвижных, так и передвижных электрических конструкций и приборов.

Следует обратить внимание, что основные требования к продукции, предназначенной для подключения этих типов установок, серьезно различаются. Перед непосредственным проведением работ их необходимо тщательно изучить и произвести все требуемые измерения.

В противном случае техника может выйти из строя, а сами механизмы будут представлять потенциальную опасность для жизни человека.

Гибкий заземляющий провод

к содержанию ↑

Общие требования к проводам заземления

Любой провод заземления должен снижать потенциал на электрооборудовании до близкого к нулю показателя. У него должна быть возможность пропускать такой же ток, значение которого в установке равно значению тока в коротком замыкании.

В связи с этим необходимо обратить внимание на следующие требования:

  1. Сечение проводников заземления не должно быть больше, чем у фазных проводников. Последние должны обеспечивать постоянное протекание тока, защита находится в работе не более двух-трех секунд.
  2. Все кабели должны иметь сечение и маркировки по ГОСТу.
  3. Отдельный расчет показателя проводника заземления возможен. Следует применить формулу, содержащую ток короткого замыкания, способ укладки кабеля, тип проводника.
  4. Нулевой провод, как правило, обозначают голубым цветом, заземление — желтым.
  5. Качество заземления рассчитывают по измерению сопротивления. Как правило, параметр должен составить не больше 4 Ом. Число зависит от сопротивления только внутри проводника.
  6. Наиболее качественного заземления можно добиться при использовании винтовых зажимов. Не рекомендуется делать нулевые проводники и заземление длиннее стандарта длины.
  7. У медного провода для заземления минимальное сечение составит 4 квадратных миллиметров без защиты от повреждений и не менее 2,5 — при ее наличии.

Заземляющие и нулевые проводники

к содержанию ↑

Требования к переносным заземлениям

Переносные заземления должны соответствовать совсем другим требованиям, поскольку применяются к передвижным механизмам для обеспечения безопасных условий эксплуатации и работы.

Основные правила их использования выглядят следующим образом:

  1. Данный тип проводников не оснащается изоляцией. Это необходимо, чтобы можно было легко обнаружить возможные механические повреждения или убедиться в их полной целостности. К устройствам контур заземления прикрепляется при помощи струбцины. Ее присоединение к заземлителю производится с использованием сварки.
  2. Материал для проводника — медь. Такая продукция должна быть многожильной, а ее отдельные проводки — содержать не более пяти процентов брака.
  3. Сечение данных заземлений должно быть не менее 16 квадратных мм, если применяется для механизмов с напряжением меньше 1000 В, и не менее 25 квадратных миллиметров, если больше.

Перед наложением заземления необходимо провести зачистку металлической поверхности. Можно достигнуть максимально доступного качества. Проверить его обычными способами достаточно сложно, поэтому чаще всего выполняют только экспериментальным путем.

к содержанию ↑

Выводы

Соблюдение всех правил выбора и установки нейтральных проводов и кабелей заземления чрезвычайно важно для обеспечения качественной и бесперебойной работы электросистем стационарных и передвижных. Без этого нельзя создать безопасные условия эксплуатации техники и предупредить ее поломки.

Разобраться в основных требованиях к кабельной продукции не так сложно. В большинстве случаев произвести установку всех систем оказывается под силу даже простым обывателям.

Заземляющий проводник: требования и особенности

220.guru

Требования к заземляющим проводникам: что нужно знать

Требование к проводам заземления

Требование к проводам заземления

Заземляющий провод является одним из неотъемлемых элементов любой электроустановки. Его основное назначение — защита от косвенного прикосновения к частям электроустановки, находящимся под напряжением. Косвенным называется прикосновение к частям оборудования, которые в нормальных условиях не находятся под напряжением, например, корпуса двигателей, трансформаторов или даже ручка фена.

Но вследствие нарушения изоляции токоведущих частей  (проводов), они могут оказаться под напряжением. Именно для защиты от таких случайностей и предназначено защитное заземление.

Немного теории

Обычному человеку, не особо вдающемуся в основы электротехники, достаточно сложно разобраться во всех этих нюансах. Особенно когда начинают оперировать такими понятиями как заземление, зануление, глухо заземленная или эффективно заземленная нейтраль. Поэтому, для начала попробуем доступным языком объяснить суть всех этих обозначений, и определить основную цель, с которой их придумали.

Нейтраль электрооборудования

Нейтраль электрооборудования

  • Существует пять основных схем подключения нейтрали электрооборудования. Нейтралью называют общую точку обмоток электрооборудования, соединенного в звезду. Соединение звезда — это кода три начала обмотки подключаются к соответствующим фазным проводам, а концы этих обмоток соединяются между собой — нейтраль.
  • В точке соединения концов этих обмоток, в идеальных условиях потенциал будет равен нулю. Такой же потенциал имеет земля. Поэтому при помощи шины или проводника выполняется заземление нейтрального провода. Обычно подключается он к специальной шине стационарного заземлителя.
  • Такая система называется TN или системой с глухо заземленной нейтралью. В нашей стране она повсеместно используется в электроустановках до 1000В и подразделяется на три подвида.
  • Но прежде чем мы приступим к разбору этих подвидов, давайте определимся, что такое нулевой и защитный провод. Как говорит инструкция, нулевым или нейтральным проводом называется проводник, подключенный к нейтрали. На схемах этот провод обычно обозначают – «N».
Отличия зануления и заземления

Отличия зануления и заземления

  • Кроме того, существует еще так называемый проводник защитного заземления. Он обозначается «РЕ». Используя КС 066 1 зажим плашечный заземляющего провода или другой подобный вид подключения, он подключается к земле и к корпусу оборудования, тем самым, обеспечивая нулевой потенциал на корпусе. Но как мы помним, в сетях с глухо заземленной нейтралью она так же подключается к земле.

Именно, исходя из этого условия, в сетях TN и существует три вида подключения:

Система TN-S

Система TN-S

Первый вариант это TN-S. При этом варианте, к нейтрали одним проводом подключается нулевой проводник, а вторым провод защитного заземления. На всем протяжении до конечного потребителя они не соединяются.
Система TN-С

Система TN-С

Второй вариант это – TN-С. В этом случае провода для заземления и нулевой проводник подключаются к нейтрали в одной точке, и по всей длине идут единым проводником. Такой проводник называется «PEN», то есть нулевой и защитный.
Система TN-C-S

Система TN-C-S

Последним вариантом для систем с глухо заземлённой нейтралью является система TN-C-S, то есть система, совмещающая первые два варианта. Для этой системы характерно использование одного проводника для подключения к нейтрали. Но затем он разделяется на два проводника – заземления и зануления. Провода заземления для снижения потенциала корпуса и зануления для работы электроустановки. В дальнейшем они уже не пересекаются.
Система ТТ

Система ТТ

Кроме приведенных выше систем, существуют еще IT (система с изолированной нейтралью) и TT (система с эффективно заземленной нейтралью). Такие системы обычно используются в сетях выше 1000, куда без должной подготовки и знаний лезть не следует. Ведь цена ошибки там очень велика. Поэтому в нашей статье мы не будем их даже рассматривать.

Важно: Ссылаясь на систему заземления TN -С, некоторые «горе электрики» пытаются реализовать ее у себя дома, используя нулевой проводник в качестве и нейтрального и защитного. Но согласно п.1.7.132 ПУЭ для однофазных сетей это запрещено. Это связано с тем, что при обрыве нулевого провода высока вероятность появления напряжения на корпусе защищаемого оборудования. Поэтому, если нет отдельного контура заземления, то лучше обойтись вообще без него, чем подключать корпус оборудования к нулевому проводнику.

Требования к заземлителям

Ну вот, разобравшись с основными теоретическими аспектами, давайте поговорим и о самих проводниках. В зависимости от места их установки к ним предъявляются совершенно разные требования. Поэтому давайте отдельно рассмотрим включение заземляющих проводов для стационарных и передвижных электроустановок.

Общие требования к проводам заземления

Но начнем мы наш разговор с общих требований, предъявляемых к проводникам, используемым для заземления. Как вы уже должны были понять они должны обеспечивать снижение потенциала на защищаемом оборудовании до нулевого или близкого к нему значения. В связи с этим они должны иметь возможность пропускать ток, равный току короткого замыкания в данной электроустановке.

  • Казалось бы, в связи с этим, сечение таких проводников, в обязательном порядке должно быть не меньше, чем у фазных проводников, но это не так. Дело в том, что фазные проводники должны обеспечивать долговременное протекание больших токов. А вот защитный провод, должен обеспечить такую возможность только на время работы защиты. Обычно это время не превышает 2-3 секунд.
Сечение проводов заземления

Сечение проводов заземления

  • Определить такое сечение вы вполне можете и своими руками благодаря таблице 1.7.5 ПУЭ. Для проводов с сечением рабочих жил до 16 мм2, сечение защитных проводников должно быть идентичным. Для проводов от 16 до 35 мм2 сечение защитных проводов может быть 16 мм2. Для проводов большего сечения защитный проводник должен быть не менее чем в два раза меньшего сечения.
Структура кабеля с нулевым проводом меньшего сечения

Структура кабеля с нулевым проводом меньшего сечения

Согласно нормам ГОСТ, вся кабельно-проводниковая продукция должна содержать маркировку сечения жил. Причем если сечение жил зануления и заземления отличаются от рабочих, то она должна указываться отдельно как на видео.

  • В некоторых случаях допускается отдельный расчёт сечения проводника заземления. Для этого используется формула, в которой учтены такие показатели как ток короткого замыкания, время срабатывания защит, тип изоляции и проводника, а также способ прокладки кабеля. Но используют такой способ определения сечения достаточно редко.
  • Теперь, что касается обозначения заземляющих и нулевых проводников. Их буквенную аббревиатуру вы уже знаете. Но кроме того они имеют еще и цветовую. Заземление при пятипроводной системе заземления должно иметь желто-зеленую окраску. Нулевой провод обозначается голубым цветом.
Знак места подключения заземления

Знак места подключения заземления

  • Отдельным вопросом является качество заземления. Его определяют путем измерения его сопротивления. Согласно п.1.7.101 ПУЭ для трехфазной сети с линейным напряжением в 380В, оно должно быть не более 4 Ом. Это достаточно маленькая величина, которая обуславливается только внутренним сопротивлением проводника.
Схема измерения сопротивления заземления

Схема измерения сопротивления заземления

  • Для достижения соответствующего качества заземления следует использовать винтовые зажимы. Они позволяют достаточно просто отключить проводник для ремонтных работ и испытаний, а также обеспечивают качественный контакт. Удлинение заземления и нулевых проводников не приветствуется, но допускается. В этом случае можно использовать зажим плашечный заземляющего провода КС 066 1 или подобные зажимы для проводов меньшего сечения.
  • Отдельным вопросом является отдельная прокладка проводов заземления и зануления. Согласно п.1.7.127 ПУЭ провод медный для заземления должен быть не менее 2,5 мм2 если он имеет защиту от механических повреждений и не менее 4 мм2, если он не имеет таковой. Для алюминиевого провода, независимо от способа прокладки, сечение должно быть не меньше 16 мм2.

Требования к переносным заземлениям

Отдельной темой стоят проводники для временного использования. С их помощью к заземляющему контуру подключают электроустановки временного характера. Это могут быть передвижные будки, механизмы или автотранспорт.

Переносное заземление

Переносное заземление

  • Для этого используют специальные переносные заземления. Подобные проводники используют и для создания безопасных условий работ.
  • Такие проводники не должны иметь изоляции, это делается для того, чтобы всегда можно было визуально осмотреть его целостность. Для крепления к контуру заземления и механизму он должен иметь струбцины. Струбцина для провода заземления должна крепится к проводу методом сварки или винтового соединения.
Струбцина переносного заземления

Струбцина переносного заземления

  • Проводник обязательно должен быть медным и многожильным. Причем количество оборванных отдельных проволок строго регламентируется и не должно превышать 5%.
  • Сечение таких переносных заземлений должно быть не менее 16 мм2 для электроустановок до 1000В и не менее 25 мм2 для электроустановок более высокого напряжения. Для заземления машин и механизмов можно использовать провод с сечением не менее 16 мм2 независимо от класса напряжения.
На фото переносное заземление для заземления машин и механизмов

На фото переносное заземление для заземления машин и механизмов

Качество такого заземления проверить достаточно сложно. Поэтому единственным условием является обязательная зачистка металлической поверхности перед их наложением.

Вывод

Заземление нейтрального провода и проводника заземления играют очень важную роль не только для создания безопасных условий, но и для работоспособности всей системы. Поэтому этим аспектом электроустановки не следует пренебрегать. И мы очень надеемся, что наша статья помогла вам разобраться в этом вопросе.

elektrik-a.su

Цвет провода заземления и выбор его сечения

Схема заземления

Схема заземления

Какого цвета провод заземления? Такой вопрос часто встает перед многими нашими согражданами при подключении современного высокотехнологичного оборудования, которое выполнено согласно всем нормам и правилам соответствующих нормативных документов.

Ведь заземление стало неотъемлемой частью любых электрических приборов, начиная от обычного светильника и заканчивая мощными электродвигателями. Поэтому в этой статье мы уделим особое внимание вопросу заземления электрооборудования.

Зачем нужен, и какие виды заземления бывают?

Прежде всего следует определиться, зачем вообще нужно это заземление и какие виды заземления бывают? Для ответа на этот вопрос воспользуемся ПУЭ (Правила устройства электроустановок), в которой данному вопросу посвящена целая глава 1.7.

Зачем необходимо заземление?

Для ответа на этот вопрос воспользуемся п. 1.7.29 ПУЭ, которое говорит, что защитное заземление – это заземление, выполняемое в целях электробезопасности. Как следует из определения, основная цель данного соединения — обеспечение защиты человека. Как оно действует и зачем — давайте разберем подробнее.

Итак:

  • Как известно, любая электроустановка или электроприбор имеет проводники и детали схемы, находящиеся под напряжением. Данные проводники и детали схемы имеют изоляцию, которая препятствует наведению напряжения на корпусе электроприбора. Это может быть как изоляционный материал, так и воздушный зазор, достаточный для исключения соприкосновения с корпусом.
  • В случае нарушения изоляционных свойств проводника либо попадания воды на детали схемы, находящиеся под напряжением, возможно появление напряжения на корпусе. Вследствие этого при прикосновении к корпусу такого устройства возникнет ток, цепь которого будет проходить через человека на землю.
  • Как гласит инструкция по оказанию первой помощи, смертельным для человека является ток в 100мА. Это очень маленькая величина. А для цепей постоянного тока она еще меньше.

Обратите внимание! Кто-то сейчас начнет говорить, что это все ерунда и его било током значительно большего значения. Но, во-первых, он вряд ли замерял величину тока, протекавшего через его тело. А во-вторых, здесь многое зависит от цепи протекания тока по человеку, его изоляции, которая достаточно существенно меняется в течение дня, состояния сердца и многих других параметров. Поэтому мы советуем довериться в этом вопросе медикам.

Протекание тока при отсутствии защитного заземления

Протекание тока при отсутствии защитного заземления

  • В случае же, если корпус устройства заземлен, то при появлении на его корпусе напряжения, через защитное заземление потечет ток. При этом напряжение на самом корпусе будет близким к нулю. Поэтому при прикосновении к нему человека нечего не произойдет, ведь какой бы не был человек он имеет большее сопротивление, чем заземляющий проводник.

Виды заземления

На данный момент существует несколько видов заземления. Причем большинство из них обусловлены не столько вопросами электробезопасности, сколько вопросами работы электрических установок.

Мы рассмотрим только вопросы, связанные с защитным заземлением в цепях с глухозаземлённой нейтралью, которая используется в большинстве сетей с напряжением до 1кВ.

Системы заземления в сетях с глухозаземленной нейтралью

Системы заземления в сетях с глухозаземленной нейтралью

Согласно п. 1.7.3 ПУЭ, на данный момент в сети до 1кВ с глухозаземленной нейтралью используются системы TN – C, TN – S, TN – C – S и TT. Каждая из этих систем имеет свои особенности образования нулевого и защитного провода и практически все из них можно создать своими руками.

Итак:

  • Система TN – S предполагает раздельное подключение и пролегание провода нейтрали и защитного заземления по всей длине, в нашем случае от понижающего трансформатора на подстанции до нашего электроприбора.
  • Система TN – C предполагает совместную прокладку провода нейтрали и защитного заземления. Но для данной системы есть определенные ограничения, которые позволяют применять ее только в распределительных устройствах, ведь в противном случае цена использования такой системы будет не целесообразна. Но об этом мы поговорим чуть ниже.
  • Система TN – C – S предполагает совместную прокладку провода нейтрали и защитного заземления с его последующем разделением. Например, от понижающего трансформатора на подстанции до вашего дома они проложены совместно, а для разводки по дому и квартирам разделены на отдельные проводники.
  • И наконец, система TT предполагает прокладку отдельного провода нейтрали от понижающего трансформатора до конечного потребителя. При этом провод защитного заземления подключается к независимому контуру.

Правила обозначения нулевого и защитного проводника

Теперь мы вплотную подошли к вопросу, каким цветом провод заземления обозначается в схемах и по месту. Ведь данный вопрос имеет четкие предписания, которые оговорены в главе 1.1 ПУЭ.

Правила цветового обозначения проводов

Правила цветового обозначения проводов

Итак:

  • Начнем с обозначения нулевого провода. Согласно п.1.1.29 ПУЭ, данный проводник должен быть обозначен голубым цветом. Причем сделано это должно быть по всей длине проводника. Исключение составляют места, не доступные для обслуживания.

Обратите внимание! При нанесении цветовой окраски непосредственно на проводник краска должна отвечать требованиям по нагреву, а также должна сохранять стойкость цвета в процессе эксплуатации.

  • Кроме цветового обозначения для нулевых проводов предусмотрено еще и буквенная маркировка. Ее зачастую используют при обозначении нулевых проводников в схемах. Согласно п.1.1.29 ПУЭ, они должны иметь обозначение – N.
  • Цвет заземляющего провода, предназначенного для электробезопасности, должен быть выполнен в виде желто-зеленых полос. Причем при нанесении окраски непосредственно на проводник это могут быть равные полосы шириной от 15 до 100 мм.
  • Буквенное обозначение для проводников защитного заземления используется в основном в схемах, но может быть применено и на самих проводниках. Согласно п1.1.29 ПУЭ, оно должно быть – РЕ.
  • А вот провод заземления какого цвета необходимо применять для систем TN – C и TN – C – S? Ведь данные системы предполагают использование одной шины в качестве нулевой и в качестве защитной. В этом случае проводник должен иметь голубую окраску по всей длине, а на концах проводников должна быть нанесена желто-зеленая окраска.
  • Отличия данные системы имеют и в плане буквенного обозначения. В системах TN – C и TN – C – S для обозначения нулевого и защитного проводника используются символы PEN.

Выбор сечения нулевых и защитных проводников

Но не только вопрос: какого цвета заземляющий провод ,  должен вас интересовать при создании контура заземления. Одним из важнейших вопросов в этом плане является сечение проводников и непосредственно конструкций, которые можно использовать в качестве заземления.

  • Для заземления могут быть использованы искусственные и естественные заземлители. К естественным заземлителям, согласно п. 1.7.109 ПУЭ, относятся железобетонные и металлические элементы зданий, металлические водопроводные трубы, пролегающие в земле, металлические оболочки кабелей, проложенных в земле, обсадные трубы скважин и многое другое.
  • В то же время в качестве естественных заземлителей запрещено использовать газовые, канализационные и трубы системы отопления, алюминиевые оболочки кабелей и предварительно напряженную арматуру железобетонных конструкций.

Обратите внимание! Запрет на использование данных систем в качестве заземлителей не исключает их подключение к заземлению для выравнивания потенциалов.

На фото представлена таблица выбора сечения проводников для монтажа искусcтвенного заземлителя

На фото представлена таблица выбора сечения проводников для монтажа искусcтвенного заземлителя

  • Искусственные заземлители обязательны для использования в сетях выше 1кВ. В домашних же условиях зачастую можно обойтись искусственными заземлителями. Если же вы собрались монтировать собственный контур заземления, то видео на страницах нашего сайта должно помочь вам в этом вопросе.
  • Искусственный заземлитель должен изготавливаться из медных, оцинкованных или просто металлических изделий. Причем размеры и сечение таковых строго нормируются. Все эти требования сведены в табл.1.7.4 ПУЭ.
  • Что касается сечения проводников заземления, то они должны быть такого же сечения, как и фазный провод. Данное правило распространяется на все проводники сечением до 16 мм2. Для проводников большего сечения имеется табл. 1.7.5 ПУЭ.
Таблица выбора сечения защитных проводников

Таблица выбора сечения защитных проводников

  • Отдельно стоит отметить системы TN – C и TN – C – S. Для данных систем минимальное сечение совместного нулевого и защитного провода должно быть не меньше 10 мм2 для меди и не менее 16 мм2 для алюминиевых проводников. Это делает возможным применение таких систем только в распредустройствах. Совмещать нулевой и защитный проводники при меньшем сечении провода запрещено.

Вывод

Теперь вы знаете, как правильно выбрать заземление и цвет провода для его обозначения. Как видите, это задача не столь уж и сложная, но она требует взвешенного подхода. Ведь от правильности ваших действий зависит не только ваша жизнь, но и членов вашей семьи. Поэтому наплевательское отношение к данному вопросу недопустимо.

elektrik-a.su

Наименьшие размеры заземлителей и заземляющих проводников,

проложенных в земле, [3]

Материал

Профиль сечения

Диаметр, мм

Площадь поперечного сечения, мм

Толщина стенки, мм

Сталь

Круглый:

черная

для вертикальных заземлителей;

16

-

-

для горизонтальных заземлителей

10

-

-

Материал

Профиль сечения

Диаметр, мм

Площадь поперечного сечения, мм

Толщина стенки, мм

Прямоугольный

-

100

4

Угловой

-

100

4

Трубный

32

-

3,5

Сталь

Круглый:

оцинкованная

для вертикальных заземлителей;

12

-

-

для горизонтальных заземлителей

10

-

-

Прямоугольный

-

75

3

Трубный

25

-

2

Медь

Круглый

12

-

-

Прямоугольный

-

50

2

Трубный

20

-

2

Канат многопроволочный

1,8*

35

__________

Примечание*Диаметр каждой проволоки.

Металлическая ограда не должна иметь электрической связи с заземлением.

При эксплуатации ЗУ необходимо выполнить следующие

правила [8]:

  • присоединение заземляющих проводников к заземлителям, заземляющим магистралям, заземляющим конструкциям должно выполняться сваркой;

  • для определения технического состояния заземляющего устроиства периодически производятся:

а) внешний осмотр видимой части ЗУ;

б) проверка отсутствия обрывов и плохих контактов в цепях ЗУ между заземлением и защитными элементами;

в) изменение сопротивления ЗУ;

г) проверка цепи "фаза-ноль";

д) проверка надёжности соединений естественных заземлителей;

е) выборочное вскрытие грунта ЗУ;

Минимально допустимые размеры сечения заземляющих проводников и заземлителей выбираются согласно табл.6

  1. Применение заземления для защиты от поражения электрическим током

Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении [3]: защитное заземление; автоматическое отключение питания; уравнивание потенциалов; выравнивание потенциалов; двойная или усиленная изоляция; сверхнизкое (малое) напряжение; защитное электрическое разделение цепей; изолирующие (непроводящие) помещения, зоны, площадки

Применение двух и более мер защиты в электроустановке не должно оказывать взаимного влияния, снижающего эффективность каждой из них.

Для электроустановок напряжением до 1 кВ приняты следующие обозначения:

система TN– система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников;

система TN-С– система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении;

система TN-S– система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении;

система TN-C-S– система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания;

система IT– система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены;

система ТТ– система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Первая буква – состояние нейтрали источника питания относительно земли:

Т – заземленная нейтраль;

I – изолированная нейтраль.

На рис.2. показан принцип действия защитного заземления в сети с изолированной нейтралью IT. Из анализа схемы следует, что при однофазном замыкании на корпус электроустановки напряжение проводов относительно земли распределяется пропорционально значениям сопротивлений в цепи провод-земля.

Напряжение на корпусе электроустановки с поврежденной изоляцией будет определяться по формуле:

, при . (14)

Так как сопротивление защитного заземления в значительно меньше сопротивления изоляции, то. В результате прикосновение человека к корпусу электроустановки будет безопасным. В трехфазных сетях процессы аналогичны, при этом фазные напряжения относительно земли повышаются до значения линейного напряжения, а напряжения в фазе, замкнутой на корпус, уменьшаются до безопасного.

Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN.

Рис.2. Защитное заземление в сетях с изолированной нейтралью: – сопротивления изоляции проводов;– сопротивление защитного заземления;– напряжение прикосновения;– напряжение источника электроэнергии;– сопротивление нагрузки сети; 3. – место замыкания одного из проводов сети на металлический корпус потребителя электроэнергии

Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания.

Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания.

Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО (устройство защитного отключения). При этом должно быть соблюдено условие

RаIа50 В,

где Iа– ток срабатывания защитного устройства, А;

Ra– суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников – заземляющего проводника наиболее удаленного электроприемника, Ом

При анализе принципа действия заземления в сети примем равным сопротивление фазного и нулевогопроводов (это выполняется при использовании в электропроводке 4-жильного кабеля).

На рис. 3 приведена схема, иллюстрирующая защитные действия заземления при замыкании на корпус электроустановки в сети до 1000 В с глухозаземленной нейтралью системы ТТ. Опасные напряжения на металлических нетоковедущих частях электроустановки возникают с момента замыкания до отключения поврежденного потребителя электроэнергии или участке сети. Отключение производится плавкими предохранителями или автоматическими выключателями, реагирующими на ток короткого замыкания, который протекает в петле “фаза - ноль”. Время отключения может составлять единицы секунд.

При неисправности максимальной токовой защиты корпус электроустановки длительно находится под опасным напряжением.

С учетом принятых допущений

, (15)

при ,.

Величина напряжения прикосновения будет зависеть от взаимного расположения заземляющих электродов, электроустановки и человека (см. эпюру напряжений на рис.3).

Рис.3. Схема растекания тока при однофазном замыкании в сети до 1000 В с глухо-заземленной нейтралью (система ТТ) до срабатывания максимальной токовой защиты:

а) РЗ – рабочее заземление нейтрали источника электроэнергии; ЗЗ – защитное заземление; З – место замыкания; О – нейтраль; А,В,С – фазы; N – нулевой провод;

б) – падение напряжения между точками 0 и 3;– напряжение прикосновения;– падение напряжения на рабочем заземлении;– напряжение шага;– длина шага

При нахождении человека в зоне нулевого потенциала напряжение прикосновения

, (16)

где – сопротивление рабочего заземления;

–сопротивление защитного заземления.

Таким образом, защитное заземление обеспечивает некоторое снижение напряжения прикосновения за счет выравнивания потенциалов и при возникновении делителя напряжения на сопротивлениях и.

При неисправностях в системе зануления (см. методические указания по выполнению лабораторной работы “Исследование условий электробезопасности в трехфазных четырехпроводных сетях 380/220 В с глухо-заземленной нейтралью” Йошкар-Ола; МарГту; 1987 г.) защитное заземление уменьшает значение напряжения прикосновения.

При обрыве нулевого провода (см. рис. 3), аопределяется по формуле.

Большое значение при устройстве заземления имеет требование обеспечения выравнивания потенциалов. На рис. 3,б показано, что за счет градиента напряжений на поверхности грунта человек может быть поражен напряжением шага.

studfile.net

Какое должно быть сечение защитного проводника от корпуса электродвигателя на заземляющую шину? | ЭлектроАС

Дата: 1 декабря, 2009 | Рубрика: Вопросы и Ответы, Электромонтаж
Метки: Заземление, Заземление электрооборудования, Сечение проводника

Этот материал подготовлен специалистами компании "ЭлектроАС".
Нужен электромонтаж или электроизмерения? Звоните нам!

Элиф
Помещение компрессорной, категория Д, класс зоны П-IIа, электродвигатель мощностью 37 кВт, трехфазный с глухозаземленной нейтралью. Каково должно быть сечения защитного проводника от корпуса электродвигателя на заземляющую шину? На основании какого пункта ПУЭ или другого нормативного документа.

Ответ:
Сечение заземляющего проводника зависит от сечения фазного проводника. В Вашем случае, сечение медного заземляющего проводника должно быть не менее 16 мм2. Более подробно о расчёте потребляемой мощности электрооборудования и сечения кабеля можно прочитать, пройдя по ссылке «Расчёт потребляемой мощности, сечения кабеля и номинала автоматического выключателя».

ПУЭ-7
1.7.113
Сечения заземляющих проводников в электроустановках напряжением до 1 кВ должны соответствовать требованиям 1.7.126 к защитным проводникам.
Наименьшие сечения заземляющих проводников, проложенных в земле, должны соответствовать приведенным в табл. 1.7.4.
Прокладка в земле алюминиевых неизолированных проводников не допускается.

1.7.126
Наименьшие площади поперечного сечения защитных проводников должны соответствовать табл. 1.7.5.
Площади сечений приведены для случая, когда защитные проводники изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

Таблица 1.7.5
Наименьшие сечения защитных проводников
Сечение фазных проводников, мм2 = Наименьшее сечение защитных проводников, мм
S ≤ 16 = S
16 < S ≤ 35 = 16
S > 35 = S/2
Допускается, при необходимости, принимать сечение защитного проводника менее требуемых, если оно рассчитано по формуле (только для времени отключения ≤ 5 с):
S ≥ I /k, где S — площадь поперечного сечения защитного проводника, мм2;
I — ток короткого замыкания, обеспечивающий время отключения поврежденной цепи защитным аппаратом в соответствии с табл. 1.7.1 и 1.7.2 или за время не более 5 с в соответствии с 1.7.79, А;
t — время срабатывания защитного аппарата, с;
k — коэффициент, значение которого зависит от материала защитного проводника, его изоляции, начальной и конечной температур. Значение k для защитных проводников в различных условиях приведены в табл. 1.7.6-1.7.9.
Если при расчете получается сечение, отличное от приведенного в табл. 1.7.5, то следует выбирать ближайшее большее значение, а при получении нестандартного сечения — применять проводники ближайшего большего стандартного сечения.
Значения максимальной температуры при определении сечения защитного проводника не должны превышать предельно допустимых температур нагрева проводников при КЗ в соответствии с гл. 1.4, а для электроустановок во взрывоопасных зонах должны соответствовать ГОСТ 22782.0 «Электрооборудование взрывозащищенное. Общие технические требования и методы испытаний».

elektroas.ru

Заземление электроустановок: правила и основные требования

Отсутствие заземления электрооборудования или неправильное его выполнение может привести к производственному травматизму, выходу из строя приборов автоматизации или неправильной их работе, погрешности показаний измерительной техники. Это происходит в результате пробоя изоляции между токоведущими частями и корпусом оборудования. В результате на корпусе появляется напряжение и протекает электрический ток, который может нанести травму человеку и привести к сбоям в работе электрических устройств. Чтобы этого избежать, часть установки, не находящуюся в нормальном состоянии под напряжением, соединяют с заземляющим устройством. Этот процесс называется заземлением.

Заземляющее устройство

Заземляющее устройство – система, состоящая из заземляющего контура и проводников, обеспечивающих безопасное прохождение тока через землю. Исходя из Правил Устройства Электроустановок, естественными заземлителями могут быть:

  1. Каркасы зданий (железобетонные или металлические), которые соединены с землей.
  2. Защитная металлическая оплетка проложенных в земле кабелей (кроме алюминиевой)
  3. Трубы скважин, водопроводов, проложенных в земле (кроме трубопроводов с горючими жидкостями, газами, смесями)
  4. Опоры высоковольтных линий электропередач
  5. Неэлектрифицированные железнодорожные пути (при условии сварного соединения рельсов)

Для искусственных заземлителей, по правилам, используют неокрашенные стальные прутки (с диаметром более 10 мм), уголок (с толщиной полки более 4 мм), листы (с толщиной более 4 мм и сечением в разрезе более 48 мм2). Для создания системы с искусственным заземлением возле сооружения вкапывают или вбивают в землю металлические пруты, уголок или листы с указанными выше толщиной и сечением, но длиной не менее 2,5 м. Затем их сваркой соединяют между собой с помощью прутковой или листовой стали. От поверхности земли данная конструкция должна находиться более 0,5 м. По требованиям, контур заземления здания должен иметь не менее двух соединений с заземлителем.
В зависимости от назначения, заземление оборудования делится на два типа: защитное и рабочее. Защитное заземление служит для безопасности персонала и предотвращает возможность поражения человека электрическим током вследствие случайного прикосновения к корпусу электроустановки. Защитному заземлению подлежат корпуса электроустановок и электрических машин, которые не закреплены на «глухозаземленных» опорах, электрошкафы, металлические ящики распределительных щитов, металлорукав и трубы с силовыми кабелями, металлические оплетки силовых кабелей.
Рабочее заземление используют в том случае, когда для производственной необходимости в случае повреждения изоляции и пробоя на корпус требуется продолжение работы оборудования в аварийном режиме. Таким образом, например, заземляют нейтрали трансформаторов и генераторов. Также, к рабочему заземлению относят подключение к общей сети заземления молниеотводов, которые защищают электроустановки от прямого попадания молний.

Согласно Правилам Устройства Электроустановок обязательно подлежат заземлению электрические сети с номинальным напряжением свыше 42 В при переменном токе и свыше 110 В при постоянном.

Классификация систем заземления

Различают следующие системы заземления:

  • Система ТN (которая в свою очередь разделяется на подвиды TN-C, TN-S, TN-C-S)
  • Система TT
  • Система IT

Буквы в названиях систем взяты из латиницы и расшифровываются так:
Т – (от terre) земля
N – (от neuter) нейтраль
C – (от combine) объединять
S – (от separate) разделять
I – (от isole) изолированный
По буквам в названиях систем заземления можно узнать, как устроен и заземлен источник питания, а также принцип заземления потребителя.

Система ТN

Это наиболее известная и востребованная система заземления. Основным ее отличием является наличие «глухозаземленной» нейтрали источника питания. Т.е. нулевой провод питающей подстанции напрямую соединен с землей.
TN-C – подвид системы заземления, которая характеризуется объединенным заземляющим и нейтральным нулевым проводником. Т.е. они идут одним проводом от питающего трансформатора до потребителя. Отсутствие отдельного РЕ (защитного нулевого) проводника в данной системе однозначно является недостатком. Система TN-C широко использовалась в советских зданиях и непригодна для современных новостроек, т.к. в ней отсутствует возможность выравнивания потенциалов в ванной комнате.
TN-S – система, в которой защитный проводник системы уравнивания потенциалов и рабочий нулевые проводники идут раздельными проводами от источника питания до электроустановки. Эта система только обретает широкое применение при подключении зданий к электроснабжению. Является наиболее безопасной. К недостаткам можно отнести ее дороговизну, т.к. требуется монтаж дополнительного проводника.
TN-C-S – система, в которой нулевой защитный проводник и нейтральный рабочий идут совмещенным проводом, а разделяются на входе в распределительный щит. По требованиям Правил Устройства Электроустановок для этой системы необходимо дополнительное заземление.

Система TT

Это система, в которой питающая подстанция и электроустановка потребителя имеют различные, независимые друг от друга заземлители. Областью применения системы ТТ являются мобильные объекты, имеющие электроустановки потребителей. К ним относят передвижные контейнеры, ларьки, вагончики и т.д. В большинстве случаев для потребителя в системе ТТ применяется модульно-штыревое заземление.

Система IT

Система, в которой источник питания разделен с землей через воздушное пространство или соединен через большое сопротивление, т.е. изолирован. Нейтраль в этой системе соединена с землей через сопротивление большой величины. Система IT используется в лабораториях и медицинских учреждениях, в которых функционирует высокоточное и чувствительное оборудование.

Требования к заземлению электродвигателя

Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом  с контуром заземления здания, выполненного из полосы металла при помощи сварки.

Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу.
Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т.к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат).
Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1:

Таблица 1

Сечение фазных проводников, мм2 Наименьшее сечение защитных проводников, мм2
S≤16 S
16 < S≤35 16
S>35 S/2

Сечение фазных проводников рассчитывается по токовой нагрузке потребителя.

Требования к заземлению сварочных аппаратов

Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.

Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания.
Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним.

electry.ru

Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/yato-tools.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 942 Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/yato-tools.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 975

Отправить ответ

avatar
  Подписаться  
Уведомление о
Notice: ob_end_flush(): failed to delete and flush buffer. No buffer to delete or flush in /var/www/www-root/data/www/yato-tools.ru/adv.php on line 309