Закрыть

Как узнать где фаза где ноль: Как определить фазу и ноль без приборов

Содержание

Фаза в розетке – слева или справа, как это определить мультиметром или тестером? С какой стороны должна быть, и как это проверить

Современная жизнь невозможна без электричества, но иногда возникает необходимость в смене розеток или включателей. Приступая к работе с электропроводкой, нужно знать расположение фазы и ноля. Это обезопасит человека от ударов током и возможных ожогов, а также избежать короткого замыкания в проводке.

Содержание

  1. Методы определения фазы в розетке
  2. Фаза и ноль в розетке: зачем это нужно знать?
  3. Ноль – справа или слева в старых розетках?
  4. Как узнать, где фаза, а где ноль в современной розетке
  5. Индикаторная отвертка
  6. Мультиметр: бесконтактный или контактный способ
  7. Указатель напряжения
  8. Как можно определить фазу и ноль без специальных устройств
  9. Опасные способы определения: цветовая маркировка и «контрольная лампа»
  10. Советы по работе с “пробниками”
  11. Полезное видео

Методы определения фазы в розетке

Совершая монтаж или демонтаж розеток самостоятельно, человеку, незнакомому с тонкостями подключения электроприборов, необходимо знать, как правильно определить фазу и ноль.

В электроэнергетике есть несколько видов проводов разного назначения. Некоторые используются для питания сети, другие применяются с целью защиты. Подключая розетку, важно не перепутать какой провод куда подключить, чтобы не возникло замыкание.

Фаза и ноль в розетке: зачем это нужно знать?

Важнее правильно подсоединить провода к розетке. В конструкциях старого образца подключается два провода – один из них под напряжением, второй – нулевой. Современные устройства имеют еще и место для подсоединения заземлительного провода.

Есть мнение, что при неверном подключении фазы и нуля возникнет короткое замыкание, от чего бытовые устройства выйдут из строя или возникнет пожар. Но этого бояться не нужно, поскольку штепсельные розетки, которыми человек пользуется ежедневно, не имеют полярности. Кроме того, вилки приборов созданы без симметричного устройства, что позволяет подключать их к питанию любой стороной. При этом с фазой переменно контактирует то один штырь, то второй.

Ноль – справа или слева в старых розетках?

Для подключения розетки старого образца используются только два провода – один фазный, второй нулевой. Фаза может быть подключена справа или слева.

Некоторые современные электрические приборы подключаются строго по инструкции, и поэтому расположение фазного провода играет важную роль. Установка производится только профессионалами. Например, газовый котел, в который встроен электроконтролер, не имеющий вилки и поэтому подключаемый стационарно.

Расположение фазы не указано и в правилах установки электроприборов. Электрики придерживаются определенного стандарта: с правой стороны фаза, с левой – ноль.

Как узнать, где фаза, а где ноль в современной розетке

Для определения фазы в розетке и электромонтажных работ воспользуйтесь следующими инструментами:

  • индикаторной отверткой;
  • тестером;
  • мультиметром;
  • маркером;
  • пассатижами;
  • ножом, для зачистки изоляции.

Приступая к замене розетки, нужно обесточить квартиру. Для этого в распределительном щитке перевести рычаг в положение «выкл» или выкрутить пробки.

Ремонтные работы проводятся только при выключенном питании.

Индикаторная отвертка

С помощью индикаторной отвертки определить фазу и ноль можно только в розетках старого образца. Для этого инструмент рабочей частью вставляется в одно из отверстий.

Если лампочка загорается, то здесь подключена фаза. Если индикатор не горит – сюда подсоединен нулевой провод.

Свечения на нуле нет потому, что в нем отсутствует напряжение до тех пор, пока не произойдет соединение с фазой.

Ни в коем случае при проверке фазы в розетке нельзя прикасаться рукой к рабочей части отвертки. Незначительное напряжение тока причинит вред здоровью человека и несет угрозу для жизни.

Мультиметр: бесконтактный или контактный способ

В квартирах, где установлены современные розетки, определить месторасположение фазы и нуля с помощью индикаторной отвертки уже не получится. Воспользуйтесь мультиметром. Прибор работает в диапазоне от 220В и выше.

Один щуп вставляют в отверстие, обозначенное маркировкой «COM» или «V». Если на экране появится показатель от 8 до 15 вольт, то здесь подключен фазный провод. Во втором отверстии, где ноль, прибор не будет показывать напряжения.

Чтобы определить где заземление, а, где ноль, потребуется провести измерения двумя щупами. Один вставляется в отверстие с фазой, а вторым поочередно прикасаются к другим клемам. При касании фазного провода к нулю мультиметр покажет напряжение в 220В, к заземлению – намного меньшее напряжение.

Указатель напряжения

Определить напряжение в розетке можно с помощью двухполюсного указателя напряжения.

Прикоснитесь одновременно двумя щупами к гнездам розетки и на индикаторе увидите, есть ли напряжение или нет. Также указатель издает световой или звуковой сигнал.

Аппарат подходит и для установления обрыва цепи электропроводки.

Как можно определить фазу и ноль без специальных устройств

При условии, что проводку в квартире прокладывал профессионал, определить, где фаза и ноль, можно визуально. Изоляция проводников имеет разную расцветку:

  • Провод, предназначенный для постоянного напряжения, коричневый.
  • Нулевой – синий.
  • Заземление – желтый с зеленым.

Проверьте расположение проводников в распределительном щитке, если изоляция имеет другие цвета. Затем осмотрите узлы в квартире. Если проводка сделана правильно, то для определения фазы прикоснитесь к проводу соответствующего цвета индикаторной отверткой.

Опасные способы определения: цветовая маркировка и «контрольная лампа»

Определение фазы и нуля без специальных устройств возможно. Для этого можно воспользоваться цветовой маркировкой. Но в старых домах, где электропроводка проводилась достаточно давно, часто использовали провода одинаковых цветов.

Поэтому визуальное определение практически не возможно. Чтобы в будущем не путаться промаркируйте проводку самостоятельно, насадив на них при монтаже розетки термоусадочные трубочки разных цветовых оттенков.

Еще один способ, цель которого определить наличие напряжения в розетке, – это «контрольная лампочка». Легко делается своими руками. Для этого понадобится взять:

  • патрон;
  • обычную лампочку;
  • два полуметровых многожильных провода.

«Контролька» делается следующим способом:

  1. Провода подсоединяются к патрону.
  2. В патрон закручивается лампа.

Чтобы проверить наличие фазы в розетке необходимо подыскать предмет для заземления. К примеру, труба отопительной системы, небольшую часть которой очистить от краски до железа. Один провод присоединить к заземлению, а вторым проверять жилы проводки. Когда коснетесь фазы, лампочка засветится.

Озвученные методы опасны, поскольку при малейшей неосторожности высок риск получения удара током.

Советы по работе с “пробниками”

Используя контрольную лампу, нужно быть максимально осторожным. Кроме того, что человека может поразить током, лампа при неправильном подключении взорвется и поранит человека осколками стекла.

Изготавливая самостоятельно указатели напряжения, нужно выбирать металлический стержень, который не превысит двух сантиметров. В противном случае возможно прикасание рукой к рабочей поверхности, что приведет к удару током. Кроме того, со стороны стержня рекомендуется закрепить защитное кольцо, которое не позволит руке соскальзывать с корпуса.

Для индикатора используется лампочка, которая выдерживает более, чем 90В. Материал для изготовления аппарата должен быть темного цвета, что позволит заметить свечение лампочки. Изготавливать прибор лучше из эбонита. При работе с электроприборами необходимо выполнять правила техники безопасности.

Если человек не разбирается в электричестве, а также не уверен в своих силах, то лучше попросить мастера произвести работу с электропроводкой. Таким образом можно избежать неприятных последствий, которые могут возникнуть при малейшей ошибке.

Полезное видео

Как определить фазу и ноль без приборов как найти мультиметром

В состав любого кабеля в обязательном порядке входит одна нулевая жила и одна либо несколько фазных.

От правильного определения функционального назначения жил кабеля зависит простота монтажа и эксплуатации системы электроснабжения, а также безопасность лиц, обслуживающих ее и производящих какие-либо электромонтажные работы.

Содержание

  • 1 Основные понятия
  • 2 Как отличить фазу от нуля
    • 2.1 Как мультиметром определить фазу и ноль
    • 2.2 Как определить ноль и фазу индикаторной отверткой или отверткой для прозвонки сети
    • 2.3 Визуальное определения фазы и нуля
    • 2.4 Контрольная лампочка
    • 2.5 Контрольная картофелина

Основные понятия

Давайте сперва разберемся, что такое ноль и фаза в электричестве.

Итак, фаза в электричестве – это проводник, по которому электрический ток движется в направлении энергопринимающего устройства. Ноль, в свою очередь, является проводником, по которому электрический ток движется в обратном направлении.

Современные требования, предъявляемые к безопасности организации электрических сетей, предполагают также наличие еще одного проводника в составе токоведущего кабеля, который будет выполнять защитную функцию. Заземляющий проводник – это элемент, преднамеренно соединенный с заземляющим контуром и предназначенный для того, чтобы уберечь человека от поражения электрическим током.

Неправильное определение, а также соединение нулевых и фазных жил токоведущего кабеля может привести к непредвиденным ситуациям – короткому замыканию, выходу из строя дорогостоящего оборудования и поражению человека электрическим током. По этой причине чрезвычайно важно уметь отличать фазный и нулевой проводники.

Как отличить фазу от нуля

Существует целый ряд способов – как профессиональных, так и не очень – для определения функционального назначения проводников, входящих в состав кабеля.

С применением мультиметра

Как мультиметром определить фазу и ноль

Просто и надежно определить, где ноль, а где фаза в электропроводке, можно при помощи мультиметра (тестера). Прежде всего, необходимо включить мультиметр в режим измерения переменного напряжения и выбираем подходящий предел измерения (выше напряжения в электрической сети). Далее вы можете избрать один из описанных ниже способов идентификации фазного проводника.

  1. Один из щупов мультиметра зажимается пальцами, другим необходимо коснуться той или иной жилы токоведущего кабеля. В случае соприкосновения щупа с фазой на дисплее мультиметра отобразится показание, приближенное к 220 В.
  2. Если вы ни в коем случае не желаете прикасаться к щупам мультиметра руками, то один из них, как и в предыдущем случае, скоммутируйте с идентифицируемым контактом, а другим дотроньтесь до оштукатуренной стены либо заведомо заземленной металлической поверхности.
  3. Как упоминалось выше, в современных системах электроснабжения предусмотрен также заземляющий проводник. Чтобы разобраться в назначении жил трехжильного либо многожильного кабеля следует попеременно касаться пар проводов щупами мультиметра. На его дисплее при контакте с фазой и нулем, а также с фазой и заземлением будет отображаться значение напряжения, близкое к 220 В (при этом фаза и заземление дают меньшее значение, нежели фаза и ноль). При одновременном касании щупами нулевого и заземляющего проводов, как и при касании двух фаз, на дисплее мультиметра будет «0».

Важно! При идентификации проводников по первому из вышеописанных методов обязательно убедитесь в том, что мультиметр включен в режим измерения напряжения, до того, как будете касаться пальцами одного из его щупов.

Как определить ноль и фазу индикаторной отверткой или отверткой для прозвонки сети

Со специальной индикаторной отверткой работать еще проще. Этот инструмент внешне очень похож на отвертку обыкновенную, но имеет относительно непростую внутреннюю конструкцию. Такую отвертку в народе также называют «контролькой».

 

Индикаторные отвертки

Важно! Не следует применять индикаторную отвертку для осуществления манипуляций над винтовыми соединениями (откручивания винтов и их закручивания). Такие действия являются наиболее распространенной причиной выхода из строя описываемого устройства.

Для того, чтобы определить функциональное назначение кабельных жил с ее помощью, нужно просто поочередно коснуться каждой из них жалом данного инструмента, нажимая при этом специальную кнопку в торцевой его части. Если в процессе указанных манипуляций светодиодная лампочка на отвертке загорится, значит, вы касаетесь фазного проводника, в противном случае – нулевого.

Не стоит путать индикаторную отвертку с отверткой, предназначенной для прозвонки сети. Последней также можно определить функционал той или иной жилы, однако нажимать на металлическую пластину в ее верхней части не нужно – иначе отвертка будет светиться в любом случае. Отвертка для прозвонки сети предусматривает в своей конструкции наличие батареек.

Визуальное определения фазы и нуля

При отсутствии вышеупомянутого инструментария вы можете задаться вопросом, как определить фазу и ноль без приборов. Одним из таких способов является их визуальная идентификация. Дело в том, что в соответствии с требованиями к монтажу электропроводки изоляция каждой жилы кабеля должна быть окрашена в свой собственный цвет.

При этом если с заземлением и нулем все понятно – они должны иметь желто-зеленую (желтую, зеленую) и синюю (голубую) окраску соответственно, то изоляционный слой фазного провода может быть выполнен в одном из следующих цветов: коричневый, черный, серый, а также красный, фиолетовый, розовый, белый, оранжевый, бирюзовый, — в зависимости от действующих на момент прокладки кабельной трассы нормативов.

По цвету проводки

Помимо цветовой, имеет место и буквенно-цифровая маркировка кабельных жил. В соответствии с ней ноль, фаза и земля обозначаются соответственно буквами N (neutral), L (line), PE (protectearth).

Контрольная лампочка

Еще один способ решения вопроса, как найти фазу и ноль без приборов, это самостоятельная сборка так называемой контрольной лампочки. Для ее изготовления потребуется обыкновенная лампа накаливания, подходящий к ней патрон, а также два отрезка медного провода (примерно по 50 сантиметров длиной).

Лампочка вкручивается в патрон, а проводники подключаются к его контактам. Другой конец одного из проводников необходимо закрепить на зачищенном до металлического блеска радиаторе системы отопления (либо на иной заведомо заземленной поверхности), а другим концом второго следует попеременно касаться проводников неопределенного функционала. При этом во время контакта с фазным проводом лампочка должна начать светиться.

Важно! В случае планирования систематического использования контрольной лампочки целесообразно ее саму поместить в защитный кожух, а к концам подсоединенных к патрону проводников прикрепить щупы (как у мультиметра).

Контрольной лампочкой

Контрольная картофелина

Название данного подраздела звучит весьма абсурдно, но тем не менее можно определить функциональное назначение токоведущих жил электрического кабеля и при помощи обыкновенной картофелины. Как и в вышеописанном методе с использованием самодельной контрольной лампочки, нам понадобятся два пятидесятисантиметровыхпровода.

Картофель разрезается пополам и в срез овоща на довольно приличном друг от друга расстоянии вставляются подготовленные проводники. Далее конец одного размещается на отопительной батарее(либо на иной заведомо заземленной поверхности), а конец другого соединяется с идентифицируемой жилой кабеля. Чтобы получить результат, придется подождать пять-десять минут. Если по прошествии указанного времени на срезе картофелины образовалось темное пятно, значит вы проверяли фазный проводник. Если изменений не произошло – нулевой.

Важно! Последние два из вышеописанных методов идентификации функционала токоведущих проводников кабеля системы электроснабжения вы используете на свой страх и риск. При работе с такого рода конструкциями следует соблюдать предельную осторожность, чтобы не получить поражение электрическим током.

Разобравшись с тем, что такое фаза и ноль в электричестве, а также найдя для себя сразу несколько ответов на вопрос, как найти эти самые фазу и ноль в проводке, вы можете выбрать любой подходящий для вас способ. Тем не менее, для того, чтобы проверить фазу и ноль, рекомендуем вам такие методы, как проверка тестером либо специализированной отверткой.

Используйте формулу фазового угла, чтобы понять мощность

Ключевые выводы

  • Подача мощности в системе переменного тока зависит от фазового угла между напряжением и током.

  • Фазовый угол также зависит от импеданса цепи, который вызывает изменение фазы.

  • При наличии разности фаз между напряжением и током реальная мощность, подаваемая на нагрузку, может быть довольно низкой. Вы можете определить, когда это произойдет, посмотрев на графики для вашей схемы.

Поддерживайте высокий коэффициент мощности при работе с 3-фазным питанием в ваших системах переменного тока.

Работа с подачей энергии может быть опасной и сложной, особенно когда мы рассматриваем реактивное сопротивление в практических цепях переменного тока. Обеспечение реальной подачи мощности на резистивную нагрузку зависит от поддержания высокого коэффициента мощности в ваших цепях, что в свою очередь требует поддержания фазового угла в вашей системе близким к нулю. Время от времени вам нужно будет проверять фазовый угол между напряжением и током в реактивной цепи, чтобы обеспечить достаточную подачу мощности на ваш элемент нагрузки.

Просто взглянув на разницу во времени между подаваемым напряжением и током на вашем компоненте нагрузки, вы можете определить фазовый угол, определяющий реальную подачу мощности. Затем вы можете использовать формулу фазового угла для реальной и полной мощности, чтобы определить коэффициент мощности в вашей системе. Затем вы можете определить, потребуется ли коррекция коэффициента мощности, которая будет зависеть от входного напряжения и мощности в системе.

Формула фазового угла

Фазовый угол цепи зависит от разности фаз между напряжением и током в цепи. Предполагая, что у нас есть простая система LTI, состоящая только из резисторов, конденсаторов и катушек индуктивности, вы можете определить простое соотношение фазового угла между напряжением и током в каждом элементе схемы.

Разность фаз в различных цепях RLC графически показана на изображении ниже, где мы видим, что напряжение и ток смещены друг относительно друга во временной области. Здесь реактивное сопротивление элементов C и L создает разность фаз между напряжением и током. Эта разность фаз станет важной позже, когда вы захотите рассчитать реальную мощность, подаваемую на компонент нагрузки.

Комплексные напряжения и токи в различных цепях, а также их разности фаз.

Фазовый угол можно определить, просто взглянув на разницу во времени между кривыми напряжения и тока. Это равно разнице во времени между соседними пиками тока и напряжения, деленной на 180 градусов. В качестве альтернативы, если вы знаете импеданс в вашей цепи переменного тока, вы можете рассчитать разницу фаз, которую вы увидите между напряжением и током:

Формула фазового угла в терминах импеданса.

Обратите внимание, что это относится к цепям LTI, где фаза является постоянной величиной (т. е. не зависит от напряжения или тока). Для обычной сети RLC фазовый угол может быть функцией частоты, даже если цепь представляет собой систему LTI. Теперь, когда у нас есть четкое определение разности фаз в цепи переменного тока, мы можем определить реальную мощность, подаваемую на компонент нагрузки в цепи переменного тока.

Отдаваемая мощность и фазовый угол

Когда ток и напряжение имеют некоторую разность фаз между собой, мощность в цепи представляется комплексным числом S. Действительная и мнимая части комплексной мощности представляют реальную отдаваемую мощность и реактивную мощность соответственно.

Следующая формула определяет комплексную мощность S, которая выражается через комплексное сопротивление Z.

Комплексная мощность через комплексное сопротивление.

Обратите внимание, что резистивные части цепи всегда рассеивают активную мощность, как мы сейчас увидим, а реактивные части получают только реактивную мощность. Физически реактивная мощность представляет собой мощность, ограниченную реактивным элементом в цепи (т. е. элементами L и C). Напротив, реальная мощность рассеивается в виде тепла в резистивных элементах.

Если вы знаете фазовый угол из импеданса или разницы во времени между током и напряжением, то вы можете рассчитать реальную мощность, подаваемую на нагрузку. Это определяется ниже с точки зрения величины S и фазового угла:

Фактическая мощность, подаваемая на компонент нагрузки.

Чтобы рассчитать реактивную мощность, просто замените косинус на синус в приведенном выше уравнении. Обратите внимание на знак фазового угла в этом расчете, так как он покажет вам, когда мощность ограничивается реактивными элементами, а когда она рассеивается в резистивных элементах. Это различие между кажущейся мощностью и реальной мощностью становится более ясным, когда мы исследуем распределение тока и напряжения в последовательной цепи RLC, как показано на рисунке ниже.

Распределение напряжения и тока в последовательной цепи RLC.

На этом изображении ток и индуктивность имеют напряжения, которые не совпадают по фазе друг с другом, поэтому общая реактивная мощность в LC-ветви цепи равна нулю. Другими словами, элементы C и L имеют противоположное реактивное поведение в разные моменты времени; один элемент генерирует реактивную мощность, а другой ограничивает ее.

Фазовый угол от активной и реактивной мощности

Другой важной величиной является кажущаяся мощность |S|, которая учитывает активную и реактивную мощности вместе без фазовой постоянной. В другом случае вы можете уже знать реальную мощность Re[S] и кажущуюся мощность |S|, и вам нужно найти фазовый угол. Отношение этих двух величин известно как коэффициент мощности, который очень важен в регулируемых системах преобразования переменного тока в постоянный. Коэффициент мощности определяется по фазовому углу следующим образом:

Определение коэффициента мощности по фазовому углу.

В идеале, коэффициент мощности системы преобразования мощности должен быть равен 1. Поскольку реальные схемы регуляторов имеют коэффициент мощности где-то около ~0,7, схема PFC обычно добавляется на этапе выпрямления AC-DC, чтобы обеспечить коэффициент мощности как можно ближе к 1. Вычисление фазового угла говорит вам, как вам нужно будет компенсировать низкий коэффициент мощности при проектировании ваших цепей.

После того, как вы использовали формулу фазового угла и определили, какой уровень коррекции коэффициента мощности вам нужен, вы можете создать макет платы с помощью лучшего программного обеспечения для компоновки и проектирования печатных плат с полным набором инструментов проектирования. Allegro PCB Editor включает в себя функции, необходимые для компоновки плат для любого приложения, включая системы преобразования энергии переменного тока. Затем вы можете использовать инструменты анализа Cadence для моделирования и анализа поведения вашей силовой электроники.

Если вы хотите узнать больше о том, как у Cadence есть решение для вас, обратитесь к нам и нашей команде экспертов. Вы также можете посетить наш канал YouTube и посмотреть видеоролики о моделировании и системном анализе, а также узнать, что нового в нашем наборе инструментов для проектирования и анализа.

 

Решения Cadence PCB — это комплексный инструмент для проектирования от начала до конца, позволяющий быстро и эффективно создавать продукты. Cadence позволяет пользователям точно сократить циклы проектирования и передать их в производство с помощью современного отраслевого стандарта IPC-2581.

Подпишитесь на LinkedIn Посетить сайт Больше контента от Cadence PCB Solutions

УЧИТЬ БОЛЬШЕ

фаза | механика | Британика

фаза

Просмотреть все носители

Связанные темы:
волна угол фазы многофазный ток многофазный ток фазовая скорость

См. все связанное содержимое →

фаза , в механике вибраций, часть периода (т. е. время, необходимое для завершения полного цикла), которую точка завершает после последнего прохождения через опорное или нулевое положение. Например, исходная позиция для стрелок часов находится на цифре 12, а минутная стрелка имеет период в один час. В четверть часа минутная стрелка имеет фазу в четверть периода, пройдя фазовый угол 90°, или π /2 радиан. В этом примере движение минутной стрелки представляет собой равномерное круговое движение, но понятие фазы также применимо к простому гармоническому движению, такому как движение волн и вибрирующих тел.

Если положение y точки или частицы изменяется по простому гармоническому закону, то оно изменится за время t согласно произведению амплитуды, или максимального смещения, r, частицы и функция синуса или косинуса, составленная из его угловой скорости, обозначенная греческой буквой омега ( ω ), время t, и то, что называется углом, обозначаемым греческой буквой эпсилон ( ε ): y = r sin ( ωt +

1 2 ε

). Угол ( ωt + ε ) называется фазовым углом в момент времени t, , который в нулевое время равен ε . Сама фаза является дробной величиной — отношением прошедшего времени t к периоду T, или t / T — и равна отношению фазового угла к углу полного цикла, 360 °, или 2 π радиан. Таким образом, фаза для равномерного кругового или гармонического движения имеет значение ( ωt + ε )/2 π . Применяя это выражение к приведенному выше примеру движущейся минутной стрелки, ε равно нулю (нулевой фазовый угол в нулевое время), угловая скорость равна 2 π радиан в час, а время t равно 1 / . 4 час, что дает фазу 1 / 4 .

Подробнее по этой теме

электрогенератор: фазы

Напряжения, индуцируемые в отдельных витках в распределенной обмотке рис. 3, несколько смещены во времени друг от друга. В результате…

При сравнении фаз двух или более периодических движений, таких как волны, говорят, что движения находятся в фазе, когда соответствующие точки одновременно достигают максимального или минимального смещения. Если гребни двух волн проходят одну и ту же точку или линию в одно и то же время, то они находятся в фазе для этого положения; однако, если гребень одного и впадина другого проходят одновременно, фазовые углы различаются на 180°, или π радиан, и говорят, что волны не совпадают по фазе (в данном случае на 180°).

Измерение разности фаз имеет центральное значение в технологии переменного тока. На диаграмме две кривые представляют напряжение ( E ) и ток ( I ) в цепи переменного тока (AC) с чистой индуктивностью. Разница в фазовом угле между напряжением и током составляет 90°, и говорят, что ток отстает по фазе на четверть цикла. Это отставание видно из диаграммы. При передаче электроэнергии переменного тока термины «многофазный» и «многофазный» применяются к токам, которые не совпадают по фазе друг с другом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *