Как выбрать стабилизатор?
Каждый человек, столкнувшийся с проблемой некачественного электроснабжения, когда напряжение сети изменяется в значительных пределах, приходит к единственно верному решению — установке стабилизатора.
В этой статье мы рассмотрим параметры, по которым осуществляется выбор стабилизатора, а так же определим алгоритм для самостоятельного выбора стабилизатора для вашей сети.
- Первое, с чего стоит начать, это определение количества фаз. Бытовая сеть может быть однофазной (220В), либо трехфазной (380В). Стабилизаторы также подразделяются на однофазные и трехфазные. Трехфазный стабилизатор представляет из себя три однофазных стабилизатора, объединенных в одном корпусе и управляемых единым блоком контроля (при пропадании или перекосе одной из фаз стабилизатор отключится). Если в трехфазной бытовой сети отсутствует трехфазная нагрузка, могут быть подключены три однофазных стабилизатора.
- Второй крайне важный параметр это
- Третий важный параметр – это диапазон входных напряжений. Этот параметр указывает разброс входных напряжений, при которых стабилизатор способен выдавать стабильное напряжение с заявленной погрешностью.
- Четвертый параметр, который надо учитывать – это точность стабилизации. В большинстве случаев для бытовых приборов достаточно точности 7-8%. Более надежную защиту могут дать стабилизаторы с точностью стабилизации 3-6%. Если есть необходимость защитить оборудование с высокими требованиями к входному напряжению (серверное оборудование, медицинское, точные измерительные приборы, профессиональное фото/видео оборудование), используют стабилизаторы с точностью 1-1,5%
Давайте рассмотрим алгоритм выбора стабилизатора на конкретном примере:
Допустим, в связи с регулярными перепадами напряжения в диапазоне 160-245В есть необходимость обеспечить качественным напряжением трехфазную сеть загородного дома. Набор потребителей стандартный – насос, котел, освещение, посудомоечная и стиральная машины, холодильник и прочее. Потребители по фазам распределены равномерно.
Первым делом необходимо определиться – будет использован трехфазный стабилизатор, либо три однофазных. В случае отсутствия трехфазных нагрузок, рационально использовать три однофазных прибора – это позволит при выходе из строя одного из них продолжить эксплуатировать оставшиеся.
Второй момент с которым необходимо определиться – это мощность. Рассмотрим на примере наиболее часто встречающегося варианта – это загородные дома с трехфазной сетью и выделенной мощностью 5,5 кВт на фазу (вводной автомат 25А), оптимальным выбором будут три стабилизатора мощностью 7500 ВА.
Касаемо выбора по диапазону входных напряжений, большинство стабилизаторов перекрывают 160-245В (например у стабилизаторов Энерготех этот диапазон составляет 121-259 В рабочего напряжения и 60-267 В предельного). В случае более серьёзных отклонений может быть установлен прибор со смещённым диапазоном.
Если приборы с повышенными требованиями к входному напряжению не используются, выбор можно остановить на приборах точностью 7% или 5% этого будет достаточно в большинстве случаев.
Посмотреть фотографии наших монтажей стабилизаторов напряжения можно здесь
Рекомендуем посмотреть наиболее популярные модели стабилизаторов напряжения
Если у Вас остаются сомнения в правильности выбора модели стабилизатора, обращайтесь в компанию RealSolar.
Наши специалисты имеют огромный опыт в установке и эксплуатации стабилизаторов напряжения.Проконсультируйтесь у специалистов
Как выбрать стабилизатор напряжения — Статьи — Справочник
Основные эксплуатационные характеристики, по которым рекомендуется выбирать стабилизатор напряжения:
- диапазон входных напряжений;
- количество фаз;
- мощность стабилизатора;
- точность и скорость стабилизации напряжения;
- дополнительные функциональные возможности;
- габариты, масса.
Первоначально необходимо выяснить тип Вашей электросети – однофазная или трехфазная и исходя из этого подобрать необходимый вид прибора. Также стоит уточнить основные проблемы электропитания – постоянно пониженное или постоянно повышенное напряжение в сети либо частые скачки.
Многие модели стабилизаторов не рассчитаны на широкий диапазон входного напряжения и могут качественно отрабатывать только один вид отклонений – понижение либо скачки.
Также для выбора и подключения стабилизатора необходимо рассчитать примерную потребляемую суммарную мощность всех подключаемых к стабилизатору электроприборов. Основное условие выбора мощности стабилизатора напряжения – суммарная мощность подключаемой к нему нагрузки не должна превышать мощности самого стабилизатора (в противном случае автоматика современных стабилизаторов будет их просто отключать).
Ориентировочные значения мощности для различных приборов приведены в таблице. Точные значения можно узнать по паспортным данным.
Таблица: Ориентировочная потребляемая мощность наиболее распространённых бытовых электроприборов.
потребитель | мощность, Вт | потребитель | мощность, Вт |
БЫТОВЫЕ ПРИБОРЫ | ЭЛЕКТРОИНСТРУМЕНТ | ||
Фен для волос | 450-2000 | Электродрель | 400-800 |
Утюг | 500-2000 | Перфоратор | 600-1400 |
Электроплита | 1100-6000 | Электроточило | 300-1100 |
Тостер | 600-1500 | Дисковая пила | 750-1600 |
Кофеварка | 800-1500 | Электрорубанок | 400-1000 |
Электрообогреватель | 1000-2400 | Электролобзик | 250-700 |
Электрогриль | 1200-2000 | Шлифовальная машина | 650-2200 |
Пылесос | 400-2000 | ЭЛЕКТРОПРИБОРЫ | |
Радио | 50-250 | Компрессор | 750-2800 |
Телевизор | 100-400 | Водяной насос | 500-900 |
Холодильник | 150-600 | Циркулярная пила | 1800-2100 |
Электродуховка | 1000-2000 | Кондиционер | 1000-3000 |
СВЧ печь | 1500-2000 | Электроника (плата и управления) и электронасосы газового котла | 200-900 |
Компьютер | 400-750 | Электромоторы | 550-3000 |
Электрочайник | 1000-2000 | Вентиляторы | 750-1700 |
Электролампа | 20-250 | Газонокосилка | 750-2500 |
Бойлер | 1200-1500 | Насос высокого давления | 2000-2900 |
Также необходимо учитывать высокие пусковые токи, сопровождающие работу многих приборов оснащенных электродвигателями. Данная величина зависит от типа и конструкции электродвигателя, наличия или отсутствия устройства плавного запуска. Любой электродвигатель в момент включения потребляет энергии в несколько раз больше, чем в штатном режиме. В случае, когда в состав нагрузки входит электродвигатель, который является основным потребителем в данном устройстве (например, погружной насос, холодильник), но его пусковой ток неизвестен, то паспортную потребляемую мощность двигателя необходимо умножить минимум на 3, во избежание перегрузки стабилизатора напряжения в момент включения устройства. Большие пусковые токи могут наблюдаться и у других устройств.
Рекомендуется выбирать модель стабилизатора напряжения как минимум с 30% запасом от потребляемой мощности нагрузки. Во-первых, Вы обеспечите «щадящий» режим работы стабилизатора, тем самым увеличив его срок службы, во-вторых, создадите себе резерв мощности для подключения нового оборудования.
Настоятельно рекомендуется устанавливать стабилизатор в специально отведенном для этого месте, недоступном для детей. Стабилизатор нельзя устанавливать на чердаках, в шкафах, в закрытых нишах стен, в сырых (с повышенной влажностью воздуха) помещениях. Так же нельзя располагать стабилизатор в помещении с горючими, легковоспламеняющимися, химически активными материалами и жидкостями. При установке стабилизатора необходимо применять кабели, имеющие соответствующее сечение и изоляцию а так же обеспечить надёжное заземление его корпуса.
Мощность стабилизаторов «Эра» изначальна указана в Вт, чтобы упростить Вам выбор необходимой мощности стабилизатора. Кроме того, стабилизатор «Эра» снабжен индикатором нагрузки, который позволяет наглядно увидеть мощность подключенных к стабилизатору приборов и ее изменения – в частности — пуск электродвигателя, и тем самым предупредить нежелательные перегрузки стабилизатора.
Как выбрать стабилизатор напряжения для квартиры — Стабилизатор напряжения 220В для дома
Как выбрать стабилизатор напряжения для квартиры.
Наши интернет-магазин качественного сетевого электрооборудования предлагает выбрать и купить специальные однофазные устройства для дальнейшего круглосуточного применения в жилых помещениях. Целью этих стабилизирующих устройств российского производителя «ЭТК Энергия» является обеспечение полной защиты всей бытовой аппаратуры от внезапных сбоев в потребительской сети 220В. Новые и проверенные временем электротехнические приборы нашего каталога предусмотрены для непрерывной работы в удобном автоматическом режиме, что не требует от вас постоянного контроля за выполняемыми задачами отечественных моделей Энергия и Voltron. Чтобы всегда быть в курсе всех возможных изменений в вашей однофазной электросети 220 Вольт, рекомендуемые к продаже марки снабжены цифровым дисплеем. Благодаря использованию лучших на сегодня технологий производства наше оборудование успешно работает в энергосберегающем режиме и располагает высокой скоростью реакции на появление неожиданных аварийных ситуаций. Заказать и выбрать стабилизатор напряжения для квартиры можно у нас на официальном сайте. Доставка в городе Москва, Санкт-Петербурге и области.
Как выбрать стабилизатор напряжения для квартиры — этапы выбора.
Как выбрать стабилизатор напряжения для квартиры — этим вопросом задаются многие наши покупатели в Москве и Санкт-Петербурге (СПБ), поэтому для удобства мы решили раскрыть несколько важных последовательных этапов, которым следует придерживаться при подборе электростабилизатора для городской квартиры.
- На всякий случай, нужно перестраховаться и уточнить, какая сеть (однофазная или трёхфазная) подведена к вашему дому, если вы этого не знаете. По сути, тут серьезных проблем не должно возникнуть, так как к большинству городских многоквартирных домов (в 98% случаев), опираясь на статистику и наш опыт работы, используется 1-фазная сеть, а это значит, что нужно подбирать именно однофазный стабилизатор напряжения для квартиры.
- Второе, на что необходимо обратить внимание это скачки и просадки напряжения. Среди наших российских сертифицированных электроприборов есть марки, которые успешно выравнивают напряжение от 65В, 100В, 120В и 140В. Соответственно чем шире диапазон работы, тем дороже модель. Если, к примеру, вы пользуетесь обычной бытовой техникой, и у вас иногда возникают несильные перепады, тогда простого стабилизирующего аппарата релейного типа регулировки, к примеру, Энергия АСН или Voltron РСН будет вполне достаточно, и нет никакого смысла переплачивать.
- При выборе стабилизатора для квартиры также необходимо рассчитать общую потребляемую мощность бытовой электротехники, которая возможно будет работать одновременно и к этой мощности прибавить небольшой запас на 20%, а лучше 30%. Запас требуется делать, основываясь на том, что в любом доме или квартире имеются различные потребители с высокими пусковыми токами. Также возможно вы приобретёте в дальнейшем новую технику, которой часто и активно будете пользоваться. Рассмотрим пример: вы выяснили, что одновременно может быть включён телевизор (200Вт), компьютер (500Вт), домашняя акустическая система (300Вт), холодильник (1500Вт), стиральная машинка (2000Вт), кондиционер (3000Вт). Путём сложения вычисляем, что общая предельная мощность всех функционирующих приборов равна 7500. Следовательно, учитывая запас, лучшим выбором будет покупка стабилизатора напряжения на 10 кВт (10000 ВА). Данная мощность является самой популярной.
Как выбрать стабилизатор напряжения для квартиры — лучшие стабилизаторы.
Многие покупатели желают приобрести подобное автоматическое оборудование для защиты и поддержания оптимального режима работоспособности электротехники в бытовых условиях применения с дополнительными возможностями и удобствами. Вы часто спрашиваете, какой стабилизатор напряжения лучше? — отвечаем: к лучшим сетевым электроприборам для квартиры относятся модели премиум класса — малошумные гибридные стабилизаторы напряжения и бесшумные тиристорные стабилизаторы напряжения. Почему? Они располагают широким диапазоном, плавной регулировкой, высокой точностью и скоростью реагирования, имеют настенный и напольный способ установки, стойкие к кратковременным перегрузкам, поддерживают чистую синусоидальную форму сигнала, во время их эксплуатации отсутствует неприятное мерцание лампочек. Купить и выбрать стабилизатор напряжения 220В для квартиры вы можете у нас по доступной цене. Доставка в Москве, СПБ, а также Ленинградской и Московской области. При заказе сетевого электрооборудования на нашем сайте или по контактному телефону вы получаете официальную гарантию на модели Энергия АСН, Гибрид, Вольтрон РСН — 1 год, а на новые полностью электронные (тирсторные) аппараты Classic и Ultra расширенную гарантию сроком на 3 года. Если у вас возникнут дополнительные вопросы по выбору квартирного стабилизатора, тогда звоните нам, мы с радостью вам поможем.
Как выбрать стабилизатор напряжения для квартиры — Москва, СПБ.
Как выбрать стабилизатор напряжения для частного дома или квартиры
Стабилизатор напряжения — прибор совершенно необходимый в каждом доме. На производстве он также нужен, но здесь речь пойдет именно о бытовых стабилизаторах, призванных защитить бытовые приборы и оборудование от скачков напряжения и силы тока в сети. Обычно в магистрали напряжение равно 220 или 380 В при частоте 50Гц. Но в силу различных факторов — подключения потребителей высокой мощности, пиковых нагрузок в вечерние или утренние часы, аварий на линиях электропередач, ток может отклоняться от заданных параметров по напряжению процентов на 25 – 40 в обе стороны.
Слишком низкое, как и слишком высокое напряжение в сети одинаково опасно и нежелательно для бытовых приборов. Резкие скачки — опасны вдвойне. Холодильники, телевизоры, бытовые насосы и котлы, компьютеры попросту могут перестать работать. Могут перегореть входные контуры, сложная электроника блоков настроек, возникнуть другие повреждения, устранить которые стоит довольно дорого.
Как работает стабилизатор напряжения
Чтобы определить, какой стабилизатор напряжения для дома лучше выбрать, необходимо знать основные принципы их работы, какими бывают стабилизаторы и какие параметры важные, а на что можно не обращать внимания.
По свое сути — стабилизатор представляет собой регулируемый трансформатор с обратной связью. Переменный ток из магистрали поступает на первичную обмотку и возбуждает примерно такой же ток в обмотке вторичной, к которой и подсоединены потребители. Если количество витков на первичной катушке изменить, то соответственно изменится и ток во вторичной, в которой число рабочих витков осталось прежним. На изменении соотношения количества витков и построена работа регулируемых трансформаторов.
Индуктивная связь очень надежна и не предусматривает прямого контакта обмоток — только посредством металлического сердечника. Такие трансформаторы позволяют практически мгновенно изменять параметры выходного тока, необходимо только настроить управление токосъемным устройством в зависимости от напряжения в подающей сети, чтобы при падении тока в магистрали во вторичной обмотке он увеличивался, а при превышении напряжения — уменьшался.
Управляемый трансформатор — основа всех бытовых стабилизаторов. Отличия в них касаются только схем управления.
Виды стабилизаторов напряжения
На рынке преобладают два вида стабилизаторов — электромеханические и электронные.
Электромеханические стабилизаторы напряжения
В электромеханических стабилизаторах ток в катушке регулируется контактным ползунком, который передвигается по поверхности, изменяя число рабочих витков. Кто помнит школьный курс физики, тот может представить себе реостат из опытов на уроках. Примерно так же работает электромеханический регулятор напряжения, только ползунок перемещается не рукой, а посредством электродвигателя.
Электромеханические стабилизаторы очень надежны и позволяют плавно изменять напряжение во вторичной катушке. Но при своей простоте они имеют и ряд недостатков:
- как и большинство механических устройств обладают ощутимой инерцией — задержка при срабатывании заметна невооруженным глазом;
- угольные контакты со временем изнашиваются и требуют замены;
- шум при работе едва слышный, но все же есть.
Перед тем, как выбрать стабилизатор напряжения электромеханического типа, необходимо сравнить скорость срабатывания, указанную в паспорте изделия в единицах В/с. Чем этот показатель лучше, тем стабилизатор лучше для чувствительных приборов.
Электронные стабилизаторы напряжения
Электронные стабилизаторы работают несколько по другому. Обратная связь и переключение осуществляется при помощи тиристорной, семисторной или релейной схем, которые изменяют число обмоток, подключенных к сети. Работают такие стабилизаторы абсолютно бесшумно, не греются и отличаются очень высокой скоростью срабатывания. Но и здесь не обошлось без недостатков — электронные стабилизаторы регулируют выходное напряжение ступенчато. Хотя перепады не слишком большие, но могут внести диссонанс в работу электроники или двигателей.
Ферромагнитные стабилизаторы напряжения
Ферромагнитные стабилизаторы — устройства, которые для бытовых целей практически не производятся, хотя еще можно встретить ранние модели, очень популярные десятилетия назад. Работа их базируется на изменении положения ферромагнитного сердечника относительно катушек. Система очень надежная, но громоздкая и шумная.
Главные недостатки — работа только под нагрузкой и возможные искажения синусоидальных характеристик. Для современной электроники и бытовой техники они непригодны, но для мощных электродвигателей, ручных инструментов и сварочных аппаратов применение их вполне допустимо.
Как выбирать стабилизатор напряжения по параметрам
По-настоящему важных параметров, характеризующих работоспособность стабилизатора и удобство его использования всего несколько. Это:
- количество фаз;
- мощность;
- диапазон регулировок;
- скорость срабатывания;
- наличие защиты от перегрузок;
- способ подключения.
Какой стабилизатор напряжения выбрать для частного дома можно решить, только правильно очертив круг задач, которые он будет выполнять, рассмотрев основные характеристики в комплексе.
Сетевой или магистральный стабилизатор
По способу подключения стабилизаторы подразделяются на магистральные и сетевые. Первые устанавливаются на входе электросети в дом и регулируют напряжение, подаваемое на все без исключения потребители — освещение, отопление, сигнализацию, бытовую технику. Как правило, современный дом — энергонасыщенная система с высоким уровнем потребления тока. Поэтому мощность магистральных стабилизаторов начинается от 3 кВт.
Сетевые регуляторы предназначены для защиты одного, реже двух однотипных устройств. Они включаются в обычную розетку и являются промежуточным звеном между магистралью и потребителем. Мощность сетевых стабилизаторов относительно небольшая, но в доме их может быть несколько.
Это сравнительно недорогие приборы, позволяющие защитить сложное и дорогостоящее оборудование в случае, если магистрального стабилизатора нет, или нагрузки на него очень большие. Сетевые стабилизаторы устанавливаются как в жилых домах, так и в офисах, больницах, пунктах связи, где работает много высокоточной электронной техники, чувствительной к перепадам напряжения.
Количество фаз стабилизатора
Один из основных определяющих параметров при решении вопроса, какой стабилизатор напряжения лучше выбрать для дома. Для однофазной сети необходим стабилизатор с рекомендуемым подключением на 220 В. Существует три возможности решения задачи стабилизации трехфазного тока — купить три однофазных стабилизатора, для регулировки каждой фазы, установить стабилизатор только на одну фазу, к которой подключены самые чувствительные потребители, и установить мощный трехфазный прибор, контролирующий напряжение во всем доме.
Следует знать, что большинство бытовых стабилизаторов малой и средней мощности — это три синхронизированных однофазных в общем корпусе. Для высоких мощностей используются обычно три трансформатора, собранные на одном сердечнике. Они более надежные и проще в регулировке.
Мощность
Чтобы понять, как выбрать стабилизатор напряжения для частного дома, необходимо точно знать, сколько электроэнергии потребляется в доме теоретически и практически. Первая цифра определяется очень просто — арифметически складываются мощности всех потребителей, от лампочки до скважинного насоса и сварочного аппарата в гараже. Эта цифра показывает, какая мощность понадобиться при всех включенных устройствах одновременно.
Но этот показатель не является верхним пределом — многие инструменты и устройства бытовой техники оснащены электродвигателями, которые при запуске потребляют намного больше тока, чем при работе даже на максимальной нагрузке. Эта, так называемая, реактивная мощность, приводит к тому, что суммарное потребление ощутимо увеличивается.
Следующий шаг — умножить мощность каждого устройства с электромотором, взятую в кВА (указано в паспорте) на 2 и прибавить к существующей цифре. Затем полученный результат увеличить еще на 25%, на случай непредвиденных обстоятельств. После столь сложных на первый взгляд подсчетов, вы получите реальную мощность стабилизатора, который должен быть установлен в доме.
Потребляемая мощность (Вт.) популярного промышленного и строительного оборудования:
Кондиционер.
1000 — 3000 Вт.
Циркулярный станок.
1800 — 2100 Вт.
Насос высокого давления.
2000 — 2900 Вт.
Электролобзик.
250 — 700 Вт.
Компрессор.
750 — 2800 Вт.
Электродвигатель.
550 — 3000 Вт.
Дрель.
400 — 800 Вт.
Электрорубанок.
400 — 1000 Вт.
Дисковая пила.
750 — 1600 Вт.
Водяной насос.
500 — 900 Вт.
Перфоратор.
900 — 1400 Вт.
Шлифмашинка.
650 — 2200 Вт.
Потребляемая мощность (Вт.) бытовых электроприборов:
Телевизор.
100 — 400 Вт.
Тостер.
700 — 1500 Вт.
Холодильник.
150 — 600 Вт.
Электрочайник.
1000 — 2000 Вт.
Проточный водонагреватель.
5000 — 6000 Вт.
Стиральная машина.
1800 — 3000 Вт.
Кофеварка.
700 — 1500 Вт.
Духовка.
1000 — 2000 Вт.
Компьютер.
400 — 750 Вт.
Накопительный водонагреватель.
1200 — 1500 Вт.
Утюг.
500 — 2000 Вт.
Пылесос.
400 — 2000 Вт.
Микроволновка.
1000 — 2000 Вт.
Обогреватель.
1000 — 2400 Вт.
Электролампа.
20 — 250 Вт.
Усредненная мощность трехфазного стабилизатора одноэтажного дома с гаражом и полным набором бытовой техники едва превышает 10 кВт. Это не так много и не слишком дорого. Для двух-трехкомнатной квартиры достаточно 5 кВт, а для двухэтажного особняка необходим стабилизатор на 15 – 25 кВт.
Но при выборе стабилизатора по мощности необходимо еще и обратить внимание на диапазон регулировок тока по напряжению. Он должен находиться в пределах 150 – 250 В. Только в этой части линейки возможных отклонений мощность стабилизатора максимально соответствует заявленной в паспорте. Если производитель указал более широкий диапазон, например 140 – 280 В — еще лучше, ваш дом будет защищен надежнее. Но при этом стоимость устройства несколько возрастает.
Но цена — фактор не основной. Покупать стабилизатор с минимальным диапазоном регулировок, например 280 – 240 В не рекомендуется, разве что в качестве сетевого, если в доме есть общий магистральный. Такие приборы не слишком дорогие, но и выровнять напряжение смогут только в узких пределах.
Для особых случаев, когда отклонения в питающей сети могут составлять более 120 В (в нижнюю сторону) применяются сложные и дорогие стабилизаторы, способные работать в этом диапазоне. Обычно они представляют собой комбинированные установки с электромеханической и электронной регулировкой, работающими параллельно. Но такая техника требуется редко, поэтому обычный покупатель ею практически не интересуется.
По мощности в линейке каждого производителя есть однофазные стабилизаторы до 10 кВА и трехфазные 5 — 30 кВА. Выбрать их, ориентируясь на приведенную методику расчета, может любой человек, не обязательно профессиональный электрик. Покупать стабилизаторы мощностью 35 – 100 кВА для дома или дачи не стоит. Они предназначены для установки в офисных и торговых центрах, мастерских и прочих объектах с большим потреблением тока. Кроме того, они массивные и дорогие, а платить за избыточную мощность, которая никогда не будет использована, нецелесообразно.
Точность выходных параметров
Ни один стабилизатор не выдает точно 220 В. Всегда есть разброс в показателях. Государственные стандарты допускают отклонения до 10% в обе стороны. Как правило, даже очень чувствительная техника, включая инверторы, компьютеры и устройства связи при таких искажениях параметров работают вполне надежно. Бытовые потребители изначально рассчитаны на такие отклонения и в эксплуатации тоже не создают проблем.
По точности выходного напряжения электромеханические стабилизаторы реально выдают 220 ± 3% В, а электронные — 220± 1% В, но зато время реакции их на порядок, а то и два ниже. Если электронный регулятор способен изменить выходное напряжение на протяжении сотых долей секунды, то электромеханический затратит на это от 0,5 до 1-2 секунд.
Системы защиты стабилизатора
Как и трансформаторы, системы защиты на всех видах стабилизаторов присутствуют обязательно. Их принципиальная схема и задачи приблизительно одинаковы, они срабатывают при выходе тока питания за пределы допустимых нагрузок и отключают потребителя от сети. Когда ток питания приходит в норму, подача восстанавливается автоматически.
Есть своя эффективная система защиты и у стабилизатора — он представляет собой довольно сложное устройство с массой электроники, чувствительной к перегрузкам по напряжению и току. При коротком замыкании в сети может возникнуть резкий скачок силы тока, способный буквально сжечь схемы.
Система автозащиты отключит первичную обмотку и систему регулировки от тока питания до восстановления его нормальных параметров. Включение стабилизатора в работу обычно тоже производится в автоматическом режиме, но есть и модели с ручным включением после аварийной остановки.
Дополнительные функции и опции
Рассматривая вопрос, выбора стабилизатора напряжения для квартиры или дома, нельзя упустить из виду и ряд дополнительных функций, которые упрощают эксплуатацию, делают ее более безопасной и расширяют функционал установки. Часто из двух стабилизаторов одинаковой фазности, мощности и диапазона регулировок, стоит выбрать тот, у которого предусмотрено больше функций, пусть и стоит он несколько дороже.
Вольтметр и амперметр
Бытовые стабилизаторы оснащаются измерительными приборами — вольтметрами обязательно, амперметрами — в виде опции. Приборы показывают выходное напряжение после стабилизации и силу тока по каждой фазе. Если понадобится узнать напряжение в питающей сети, то в некоторых стабилизаторах предусмотрена и такая возможность — достаточно нажать специальную кнопку и вольтметр переключается на измерение параметров входной сети. Большинство бытовых стабилизаторов комплектуются аналоговыми (стрелочными) вольтметрами и амперметрами достаточно высокой точности.
Но в последнее время много производителей стабилизаторов перешли на цифровые приборы — это значительно улучшает дизайн и, естественно, позволяет увеличить стоимость установки. Хотя на точность измерения большого влияния не оказывает — при контроле за работой бытового стабилизатора десятые и сотые доли единиц измерения особой роли не играют.
Многие стабилизаторы оснащены светодиодной сигнализацией, которая может извещать о нормальной работе устройства, выходе из режима, критических перегрузках и прочих состояниях как сети, так и самого прибора. Каждый из производителей использует то количество светодиодов и их цвета, которое кажется ему наиболее удобным. Перед началом эксплуатации стабилизатора необходимо ознакомиться со значением каждой лампочки и режимом ее работы — свечение, мигание, периодичность вспышек.
Работают стабилизаторы в автоматическом режиме и возможности ручной регулировки не предусмотрено. Но контрольные приборы выполняют достаточно важную функцию — всегда можно определить диапазон отклонения напряжения и силы тока по каждой из фаз и отключить потребитель, который не может работать в данных условиях. Также можно визуально контролировать общую мощность тока в домашней сети, воспользовавшись данными контрольных приборов и формулой P=UI.
Возможность переключения задержки появления напряжения на выходе
Еще одной удобной опцией является кнопка задержки выходного напряжения. Это необходимо, чтобы все схемы стабилизатора после запуска вышли на рабочий режим и подавали в сеть ток требуемых характеристик. Обычно для этого стабилизатору бытового уровня требуется 5 – 7 секунд. Но при высоком уровне потребления мощности в домашней сети, этого времени может быть недостаточно, кнопка позволяет продлить его до нескольких минут и исключить возможные ложные запуски.
Режим «Байпас»
Очень удобно, если в нем предусмотрена функция «байпас», то есть условия для прямого прохождения тока, минуя все схемы регулировки и трансформаторное оборудование. Это очень удобно, когда напряжение питающего тока намного ниже, чем допустимый диапазон работы или нужно подключить устройство, превышающее по мощности критический уровень стабилизатора. В таком случае переключатель позволяет электротоку идти прямо к потребителю, а стабилизатор находится в режиме ожидания.
Вентилятор принудительного охлаждения
Приблизительно до мощности 10 кВА стабилизаторы охлаждаются конвекционными потокам, циркулирующими свободно сквозь вентиляционные отверстия корпуса. Установки большей мощности комплектуются вентиляторами принудительного действия.
Особенности установки и подключения
Как правило, подключение стабилизаторов не вызывает сложности, особенно сетевых и магистральных однофазных. Сетевые регуляторы подключаются к обычной розетке домашней сети. На их корпус выведены такие же розетки (одна, две или больше, в зависимости от мощности), к которым можно подключить любое устройство бытового уровня.
Магистральные стабилизаторы подключаются при помощи клеммной колодки на 5 выводов. Два — для проводов питающей сети, два — для ввода домашней сети и один для заземления (обязательно). При установке стабилизатора вблизи точки ввода кабельной линии в дом, подключить его можно самостоятельно. Но при этом следует отключить основной автоматический выключатель (рубильник). Под напряжением производить подключение крайне опасно и недопустимо по всем правилам техники безопасности.
Ставиться стабилизатор любой мощности после электросчетчика. Трехфазный стабилизатор оборудован колодкой с девятью выводами. Подключать его должен профессиональный электрик, при помощи специальных инструментов. Устанавливаются стабилизаторы на стене или на полу, в зависимости от мощности и варианта исполнения.
Как правило, их эксплуатация разрешается только при положительных температурах и нормальной влажности. При Т ≥ +40 0С может сработать тепловая защита устройства, поэтому устанавливать стабилизатор следует вдали от отопительных приборов в местах, закрытых от попадания прямых солнечных лучей.
Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Какой стабилизатор напряжения выбрать. Лучшие стабилизаторы напряжения для дома
Стабилизаторы бывают однофазными и трехфазными, а также цифровыми и электромеханическими (латерными).
В зависимости от типа питающей сети стабилизаторы подразделяются по значению выходного напряжения на однофазные (220 В) и трёхфазные (380 В). Выбор зависит от того, как напряжение подведено в дом. Если подведено однофазное напряжение, подойдет только однофазный стабилизатор. Если к вашему дому подведено трехфазное напряжение, есть 2 варианта: купить один трехфазный стабилизатор или три однофазных.
Цифровые или электронные стабилизаторы, в свою очередь, делятся по способу коммутации на релейные и тиристорные.
Релейные стабилизаторы – самые популярные, т.к. имеют ряд преимуществ:
— надежны
— выдерживают перегрузки
— долговечны
— быстро реагируют на перепады
— принимают входное напряжение в любом диапазоне
— не вносят радиопомех, поэтому подходят для использования с самыми разными электроприборами
— компактны – могут быть установлены в квартирах
Тиристорные модели используют для работы с оборудованием, требующим высокой точности выходного напряжения, например, медицинским. Но они менее надежны и не так удобны в эксплуатации. Еще один минус – цена самого стабилизатора и ремонта в случае поломки. Для работы телевизора, холодильника и другой бытовой техники чрезмерная точность не нужна – все эти приборы нормально работают при напряжении 220 В ± 10%.
Электромеханические стабилизаторы латерного типа отличаются высокой точностью (2-3 %) и плавной регулировкой напряжения, но гораздо медленнее срабатывают при изменениях в электросети. Такие модели не приспособлены к перегрузкам и не отличаются надёжностью, требуют регулярного техобслуживания, имеют сравнительно большие размеры. Доступная цена – вот главное преимущество электромеханических стабилизаторов.
Мощность
Чтобы сделать правильный выбор, нужно еще учитывать мощность стабилизатора. Для бесперебойной работы стандартного набора «чайник-холодильник-телевизор-плита» мощности 10-15 кВт более, чем достаточно. Для точного расчета следует сложить мощность всей домашней техники, которую вы собираетесь подключать к стабилизатору. Учитывайте пусковые токи некоторых приборов, например, кондиционера, холодильника, микроволновки. Мощность этих приборов при запуске превышает номинальную в несколько раз. Если не учесть данного факта, при включении техники с высоким пусковым током остальные приборы могут отключиться – сработает защита стабилизатора от перегрузки.
Стабилизаторы напряжения: как выбрать, на что обратить внимание
Стабилизаторы напряжения поддерживают стабильное напряжение в 220 В на выходе и помогают спасти от поломок бытовую технику, котлы, освещение и пр. от скачков напряжения.
Где пригодится использование стабилизаторов напряжения:
- дома для защиты компьютера и компьютерной периферии, холодильника, стиральной машины и другой бытовой техники
- На этапе стадии ремонта или переезду в новую квартиру/дом для обеспечения устойчивого и постоянного напряжения
- на даче и в загородном доме
- для исправной работы установленного котла
- для противопожарной безопасности и систем сигнализации:
в период прыжков напряжения могут взрываться и гореть даже зарядные устройства для ваших мобильных телефонов.
А если прыжок напряжения выведет из строя еще и сигнализацию, то безопасность вашего дома будет под серьезной угрозой.
По правилам использования электроприборов ток должен идти с частотой 50 Гц и напряжением 220 В ±10%. Но не секрет, что напряжение в электросети в старых городских домах, в дачных массивах/кооперативах, в деревнях и селах скачет от 140 до 260 вольт. О стабильном показателе в 220 вольт можно даже не мечтать.
От этого портится всё:
— от бытовой техники до энергосберегающих ламп, жизнь которых сокращается в несколько раз от таких прыжков напряжения.
— такое случается и в хорошей городской среде: периоды аварийных ситуаций, в момент перегрузки энергосети в морозы, когда люди включают обогреватели, или при «веерных отключениях» скачки могут быть небезопасны для любого электрооборудования.
Выход только один — купить стабилизатор напряжения.
Что делают стабилизаторы (простым языком)
★ Если у вас упало напряжение, стабилизатор за доли секунды вернет его к 220 В
★ Если наоборот стало выше порогового значения в 240-260 В, то снизит напряжение, чтобы ваша техника не сгорела
★ Стабилизаторы работают в рамках допустимых пределов: большинство в пределах колебаний напряжения140-260 В (некоторые мощные стабилизаторы выводят напряжение с 90 В до 220)
★ Если напряжение слишком низкое или слишком высокое, то стабилизатор обязательно отключится
ВАЖНО ПОНИМАТЬ:
точность работы, т.е. сделать напряжение в 220 В работает в допустимом диапазоне ±3-8 % (в зависимости от модели стабилизатора). Это, кстати, соответствует ГОСТУ, где разрешенная величина ±10%.
Поэтому тестируя купленный стабилизатор вольтметром — не удивляйтесь, что он показывает, 220 В, хотя по вольтметру на выходе — 202 или 237 В. Всё в порядке — это в пределах допустимой точности стабилизации напряжения.
Виды стабилизаторов напряжения:
- однофазные и трехфазные
- однофазные — это стандартные, которые используются в большинстве квартир, на дачах и пр.
- трехфазные — могут использоваться в тех домах, где подведено 3-х фазное напряжение. Чаще это дома, в которых по-умолчанию стоят электроплиты). И в принципе употребляется для более требовательных по мощности приборов.
По своей сути чаще всего трехфазные — это просто три однофазных стабилизатора в одном корпусе. Такие стабилизаторы используются уже специалистами-электриками.
Можете использовать их и вы, если знакомы с такими понятиями, как «перекос фазы», «обрыв нуля», «защита от пропадания фазы», «схема «Звезда»»
- тип установки: настенные и напольные
- рассчитанные под определенную мощность
- от 500 до 5000 Вт — для нескольких электроприборов
- выше 5 кВт — для мощных электроприборов или большого их количества (на целое жилое помещение)
- скорость срабатывания и точность срабатывания
как только произошел скачок напряжения его нужно успеть отработать стабилизатору. Это значит переключиться на нужное число обмоток трансформатора. Это и есть скорость срабатывания. И от вида стабилизатора (электронный, электронно-механический и пр.) и зависит эта скорость — средний показатель — это 5-7 мс, что обычно вполне достаточно для большинства приборов.
А вот точность срабатывания бывает от 3 до 8%, что вполне укладывается в ГОСТ 13109-97, по которому этот допуск может быть ±10%.
Как выбрать мощность стабилизатора напряжения?
самый простой способ:
- взять мощности всех электроприборов, которые запланированы для подключения к стабилизатору
- прибавить 20% (так положено по паспорту + на случай подключения какого-то непредвиденного дополнительного прибора)
Но на деле не всё так гладко:
- есть понятие «пиковой мощности при пуске».
И оно сильно превышает заявленную мощность электроприборов. Например, холодильник на 600 Вт часто имеет пиковую нагрузку ок 2000 Вт. Т.е. номинальная мощность при пуске выше в 2-3 раза заявленной.Аналогичная ситуация и с кондиционером, и со стиральной машиной. Поэтому для гарантированной работоспособности рекомендуется умножать на 2 запланированную мощность и прибавлять 20% «на всякий случай» на незапланированные приборы.
- Второй момент, который также следует учитывать — это то, что производители стабилизаторов часто завышают свои показатели мощности. Поэтому можно смело вычитать 20% из их показателей, чтобы получить реальную цифру.
Например, вы подключаете через стабилизатор:
- стиральную машину — 1700 Вт
- телевизор — 100 Вт
- компьютер — 500 Вт
- 3 источника света по 60 Вт
- микроволновка — 800 Вт
ИТОГО: 1700 + 100 + 500 + 3*60 + 800 = 3280 Вт
Пример такой одновременной работы приборов вполне возможен вечером, когда вы забросили вещи в стирку, кто-то из семьи смотрит телевизор, кто-то сидит за компьютером, а кто-то решил разогреть ужин в микроволновке.
- Теперь по первому правилу прибавим 20% и получим минимально необходимую мощность стабилизатора в 4 кВт.
- Но, если учтем возможную пиковую нагрузку при включении (стиральной машины и микроволновки, а они 3500 и 1600 соответственно) + 20% сверху, то выходит, что нужен стабилизатор не менее, чем 7 кВт. И, ориентируясь на совет о том, что нужно искать стабилизатор полагаясь на то, что производитель завышает показатели, нужен стабилизатор с мощностью от 9 кВт.
На деле, разумеется, не часто бывает, чтобы одновременно включались все эти приборы в сеть. Поэтому для таких домашних нужд вполне может хватить и стабилизатора на 5 кВт, но в данном случае лучше брать «с запасом».
Выводы:
1. Для точечной защиты электроники
(компьютера/телевизора/принтера) — часто вполне достаточно стабилизатора с мощностью от 500 Вт до 1,5 кВт
2. Для стиральной машинки/холодильника
подойдет стабилизатор от 2 кВт до 5 кВт
3. На небольшое жилое помещение
обычно хватает стабилизатора мощностью от 5 до 10 кВт
4. В случае, если диапазон входных напряжений («напряжение скачет») от 90 до 260 В, то рекомендуется обратить внимание на стабилизаторы для этого случая.
Как выбрать стабилизатор напряжения
Стабилизатор напряжения — прибор, который позволяет поддерживать стабильное и качественное напряжение в домашней и промышленной электросети.
Пример: если напряжение в сети 180В, то стабилизатор поддерживает (стабильно) 220В.
Как выбрать стабилизатор напряжения:
1. Определяем необходимый тип стабилизатора.
Электромеханический стабилизатор:
применяется в случаях, когда необходима высокая точность стабилизации и отсутствуют резкие скачки напряжения (например, при постоянном пониженном напряжении в сети).
Релейный стабилизатор:
обладает высокой скоростью стабилизации, подходит для случаев с постоянными скачками напряжения.
Более подробная информация — Таблица 2. Типы стабилизаторов.
2. Определяем тип питающей сети необходимого стабилизатора.
Однофазные стабилизаторы:
предназначены для однофазных сетей с напряжением 220В. Они используются для защиты бытовой техники (например, холодильник, компьютер, телевизор и тд.) от перепадов напряжения. К слову, большинство квартир в наше время имеют однофазные сети.
Трёхфазные стабилизаторы:
предназначены для трёхфазных сетей, напряжение которых 380В. Такие стабилизаторы выдерживают большие нагрузки и применяются для защиты мощного оборудования офисов, загородных домов и промышленных объектов. Определить трехфазную сеть можно по вводному кабелю – число жил в нем составляет три (без учета нуля).
3. Определяем тип подключения необходимого стабилизатора.
Подключение к розетке (то есть сразу после счётчика) — стационарные стабилизаторы.
Они стабилизируют напряжение во всей домашней электросети. Для приборов, мощностью свыше 3кВт/кВа.
Подключение к розетке (а техника, которую нужно защитить от перепадов напряжения, подключается уже к самому стабилизатору) — локальные стабилизаторы.
Для приборов, мощностью до 3 кВт/кВа.
Совет: необходимо четко понимать, нужна защита всех домашних электроприборов или одного наиболее ценного.
4. Определяем необходимую мощность стабилизатора.
— рассчитываем суммарную мощность, потребляемую электроприборами.
Мощность, потребляемую конкретным электроприбором, можно узнать из паспорта или инструкции по эксплуатации.
Можно воспользоваться таблицей — Таблица 1. Приблизительная мощность электроприборов и их пусковой ток (коэффициент мощности) — cos (φ).
— при расчете мощности приборов с двигателями необходимо учитывать пусковой ток, для этого мощность прибора нужно разделить на 0,7 или умножить на 1,5.
— после подсчета общей мощности рекомендуется прибавить еще 20% в качестве резерва для обеспечения нормального режима работы, возможности подключения нового оборудования и продления срока службы стабилизатора.
— после подсчета мощности необходимо выбрать соответствующую модель с учетом просадки напряжения в сети.
5. Определяем необходимый диапазон работы: стандартный или расширенный.
Стандартный диапазон — если перепады напряжения колеблются в пределах 140-270В.
Расширенный диапазон — если перепады напряжения колеблются в пределах 90-270В.
Определить диапазон поможет измерение напряжения в сети в моменты пиковых нагрузок (утром и вечером) в течение нескольких дней с помощью мультиметра или подобных устройств.
Советы по выбору стабилизатора:
1. Бесшумность.
Лучше устанавливать горизонтально или вертикально, удаленно от зон отдыха (спальня, гостиная).
2. Компактность приборов.
3. Цена.
Не стоит экономить на такой покупке.
4. Мощность.
Если потеря мощности составляет 50%, то следует приобретать стабилизатор с мощностью в два раза больше.
5. Установка.
Установку лучше доверить сертифицированному электрику. Подключение стабилизатора стоит производить при помощи кабеля с достаточным диаметром.
6. Гарантия.
Необходимо внимательно изучить гарантийные обязательства продавца.
Приблизительная мощность электроприборов и их пусковой ток (коэффициент мощности) — cos (φ).
Бытовые электроприборы | Мощность, Вт | cos (φ) |
Электроплита | 1200 — 6000 | 1 |
Обогреватель | 500 — 2000 | 1 |
Пылесос | 500 — 2000 | 0.9 |
Утюг | 1000 — 2000 | 1 |
Фен | 600 — 2000 | 1 |
Телевизор | 100 — 400 | 1 |
Холодильник | 150 — 600 | 0. 95 |
СВЧ-печь | 700 — 2000 | 1 |
Электрочайник | 1500 — 2000 | 1 |
Лампы накаливания | 60 — 250 | 1 |
Люминисцентные лампы | 20 — 400 | 0.95 |
Бойлер | 1500 — 2000 | 1 |
Компьютер | 350 — 700 | 0.95 |
Кофеварка | 650 — 1500 | 1 |
Стиральная машина | 1500 — 2500 | 0.9 |
Электроинструмент | Мощность, Вт | cos (φ) |
Электродрель | 400 — 1000 | 0.85 |
Болгарка | 600 — 3000 | 0.8 |
Перфоратор | 500 — 1200 | 0.85 |
Компрессор | 700 — 2500 | 0. 7 |
Электромоторы | 250 — 3000 | 0.7 — 0.8 |
Вакуумный насос | 1000 — 2500 | 0.85 |
Электросварка (дуговая) | 1800 — 2500 | 0.3 — 0.6 |
Типы стабилизаторов:
Типы стабилизаторов напряжения | Применение | Плюсы | Минусы |
Ступенчатые (релейные) стабилизаторы | Могут применяться для защиты и стабилизации напряжения питания бытовой (видеотехника, компьютеры и тд.) и промышленной техники (медицинское и торговое оборудование, аппаратура связи и тд.). Используется для комплексной защиты квартир, офисов, коттеджей и пр. Подходят для работы в реальных условиях. |
— Универсальность. — Быстрое переключение обмоток (до 200мс.). — Высокая надежность. — Простота обслуживания. — Широкий диапазон напряжения на входе (100-290 В). — Невысокая цена. — Компактные размеры. |
— Возможность больших погрешностей на выходе. — Механический износ и вероятность отгорания контактной группы реле. |
Сервомоторные (электромеханические) стабилизаторы |
Могут применяться на объектах с редкими скачками напряжения, которые имеют явно выраженный односторонний характер; при подключении бытовой и измерительной техники. Нельзя использовать при работах с электросварочным оборудованием (в связи с невозможностью быстрого реагирования на скачкообразное сетевое напряжение). |
— Высокая точность поддержания напряжения на выходе (2-3%). — Плавная регулировка напряжения. — Низкая цена. — Компактные размеры. |
— При резком скачке напряжения может кратковременно отключить нагрузку. — Низкая скорость регулирования из-за инерционности электродвигателя. — Повышенный уровень шума. |
Симисторные (тиристорные) стабилизаторы напряжения | Могут применяться для защиты и стабилизации напряжения питания бытовых приборов и промышленного оборудования. |
— Универсальность. — Бесшумность. — Высокий КПД. — Обеспечение полной защиты от колебаний напряжения в электросети и плавного регулирования напряжения. — Компактные размеры. |
— Слабый теплообмен. — Высокая цена. |
Стабилизаторы двойного преобразования | Могут применяться для защиты наиболее чувствительных приборов с мощностью 1-30 кВт. |
— Бесшумность работы. — Сверхбыстрое переключение. — Широкий диапазон напряжения на входе. — Полное снятие помех внешней электросети. — Небольшие габариты. |
— Высокая цена. |
Стабилизаторы напряжения с широтно-импульсной модуляцией | Могут применяться для защиты и стабилизации напряжения питания бытовых приборов и промышленного оборудования. Подходит для всех типов потребителей и для любых электрических сетей. |
— Универсальность. — Бесшумность. — Надежность. — Высокое быстродействие. — Высокая точность корректировки. — Малый вес и небольшие габариты. |
— Низкий порог верхнего напряжения на входе. — Небольшой модельный ряд. — Высокая цена. |
Как правильно выбрать регулятор (ы) напряжения для вашей конструкции
В этой статье показано, как выбрать лучший тип стабилизатора напряжения для вашего конкретного электронного продукта.
Опубликовано Джон Тил
Вероятно, более 90% продукции требуют регулятора напряжения того или иного типа, что делает их одними из наиболее часто используемых электрических компонентов.
Если у вас нет возможности работать напрямую от напряжения батареи или внешнего адаптера постоянного / переменного тока, требуется стабилизатор напряжения.Скорее всего, потребуется несколько регуляторов напряжения.
Эта статья — ваше руководство по выбору регулятора (ов) напряжения для вашей конструкции. Мы расскажем обо всем, от определения того, какой тип регулятора напряжения вам нужен, до выбора того, который соответствует вашим конкретным требованиям.
Выбор необходимого регулятора
Первым шагом в выборе правильного регулятора напряжения является определение входного напряжения, выходного напряжения и максимального тока нагрузки.
Несмотря на то, что существует множество других спецификаций, эти три помогут вам начать работу и помогут сузить круг необходимого вам регулятора.
Регуляторы напряженияможно разделить на две широкие классификации:
- Понижающий : Выходное напряжение ниже входного
- Повышающий : Выходное напряжение больше входного
Знание входного и выходного напряжения поможет вам легко решить, к какой группе относится ваш регулятор.
Регуляторы напряжения, которым требуется выходное напряжение меньше входного, являются наиболее распространенным типом регуляторов напряжения. Например, вы вводите 5 В и выдает 3,3 В, или вы вводите 12 В и выдает 5 В.
Вам необходимо рассмотреть два типа регуляторов:
- Линейные регуляторы : простые, дешевые и бесшумные, но могут иметь низкую энергоэффективность. Линейные регуляторы способны только понижать напряжение.
- Импульсные регуляторы : Высокая энергоэффективность, но более сложная и дорогая, с большим шумом на выходе.Импульсные регуляторы могут использоваться как для понижения, так и для повышения напряжения.
Если вам требуется выходное напряжение ниже входного, начните с линейного регулятора, а не импульсного регулятора.
Рисунок 1. В линейном стабилизаторе используется транзистор и контур управления с обратной связью для регулирования выходного напряжения. Линейный регулятор может производить только выходное напряжение ниже входного.
Линейные регуляторынамного дешевле и проще в использовании, чем импульсные регуляторы, поэтому они, как правило, должны быть вашим первым выбором.
Единственный случай, когда вы не хотите использовать линейный стабилизатор, — это если рассеиваемая мощность слишком велика или вам нужно повысить напряжение.
Определите рассеиваемую мощность
Хотя линейные регуляторы дешевы и просты в использовании, основным недостатком является то, что они могут тратить много энергии. Это может вызвать чрезмерный разряд батареи, перегрев или повреждение продукта.
Если у вас есть аккумулятор, мощность которого расходуется на тепло, аккумулятор разряжается быстрее.Если это не аккумулятор, но он по-прежнему выделяет значительное количество тепла, это может вызвать другие проблемы с вашей конструкцией.
Фактически, при определенных условиях линейный регулятор может выделять столько тепла, что фактически разрушает себя. Очевидно, вы этого не хотите.
При использовании линейного регулятора начните с определения того, сколько мощности будет рассеиваться регулятором.
Для линейных регуляторов используйте уравнение:
Мощность = (Входное напряжение — Выходное напряжение) x Ток (Уравнение 1)
Можно предположить, что выходной ток (также называемый током нагрузки) примерно такой же, как входной ток для линейных регуляторов.
На самом деле, входной ток равен выходному току плюс ток покоя, который потребляет линейный регулятор для выполнения функции регулирования.
Однако для большинства регуляторов ток покоя чрезвычайно мал по сравнению с током нагрузки, поэтому достаточно предположить, что выходной ток равен входному.
Как видно из уравнения 1, если у вас большой перепад напряжения (Vin — Vout) на регуляторе и / или большой ток нагрузки, то ваш регулятор будет рассеивать большое количество энергии.
Например, если на входе 12 В, а на выходе 3,3 В, разность напряжений будет рассчитана как 12 В — 3,3 В = 8,7 В.
Если ток нагрузки составляет 1 ампер, это означает, что регулятор должен рассеивать 8,7 Вт мощности. Это огромная потеря мощности, с которой не справится любой линейный регулятор.
Если, с другой стороны, у вас есть высокий перепад напряжения, но вы используете ток нагрузки всего в несколько миллиампер, тогда мощность будет небольшой.
Например, в приведенном выше случае, если вы теперь используете ток нагрузки только 100 мА, рассеиваемая мощность упадет до 0,87 Вт, что гораздо более приемлемо для большинства линейных регуляторов.
При выборе линейного регулятора недостаточно просто убедиться, что входное напряжение, выходное напряжение и ток нагрузки соответствуют спецификациям регулятора.
Например, у вас есть линейный регулятор, рассчитанный на 15 В и ток 1 А. Вы думаете: «Хорошо, если это так, я могу подать на вход 12 В, взять 3. 3 В на выходе и запустить его при 1 А, не так ли? »
Неправильно! Вы должны убедиться, что линейный регулятор может выдерживать даже такое количество мощности. Способ сделать это — определить, насколько сильно нагреется регулятор, в зависимости от мощности, которую он должен рассеять.
Для этого сначала рассчитайте, сколько мощности будет рассеивать линейный регулятор, используя уравнение 1 выше.
Во-вторых, посмотрите в таблице данных регулятора в разделе «тепловые характеристики» параметр под названием «Theta-JA», выраженный в единицах ° C / Вт (° C на ватт).
Theta-JA указывает на количество градусов, на которое микросхема будет нагреваться выше температуры окружающего воздуха, на каждый ватт мощности, которую он должен рассеять.
Просто умножьте расчетную рассеиваемую мощность на Theta-JA, и вы узнаете, насколько сильно линейный регулятор будет нагреваться при такой мощности:
Мощность x Theta-JA = Температура выше окружающей (Уравнение 2)
Допустим, ваш регулятор соответствует спецификации Theta-JA 50 ° C на ватт.Это означает, что если ваш продукт рассеивает:
- 1 ватт, он нагреется до 50 ° C.
- 2 Вт нагреется до 100 ° С.
- ½ Вт нагревается до 25 ° C.
Важно отметить, что рассчитанная выше температура представляет собой разницу температур выше температуры окружающего воздуха.
Допустим, вы подсчитали, что при ваших условиях питания регулятор будет рассеивать 2 Вт мощности. Вы умножаете это на Theta-JA, и вы определяете, что он нагреется до 100 ° C.
Здесь важно не забыть добавить температуру окружающего воздуха. Комнатная температура обычно составляет 25 ° C. Следовательно, вы должны добавить 25 ° C к 100 ° C. Теперь у вас температура 125 ° C.
125 ° C — это максимальная температура, на которую рассчитано большинство электронных компонентов, поэтому вы никогда не захотите намеренно превышать 125 ° C.
Обычно вы не повредите свой продукт, пока не достигнете температуры примерно от 170 ° C до 200 ° C. К счастью, у большинства регуляторов также есть тепловое отключение, которое срабатывает при температуре около 150 ° C, поэтому они отключатся до того, как вызовут какие-либо повреждения.
Однако некоторые регуляторы не имеют теплового отключения, поэтому вы можете повредить их, если они рассеивают слишком много энергии.
В любом случае, вы не хотите, чтобы ваш продукт постоянно перегревался и ему приходилось отключаться, чтобы остыть.
Также следует учитывать, что температура воздуха не всегда может быть 25 ° C.
Допустим, ваш регулятор все еще нагревается до 100 ° C при нагрузке, но теперь температура окружающей среды составляет 50 ° C (например, в закрытой машине в жаркий летний день).
Теперь у вас 50 ° C плюс 100 ° C и температура до 150 ° C при загрузке. Вы превысили указанную максимальную температуру и находитесь на грани срабатывания теплового отключения.
Очевидно, этого следует избегать. Эксплуатация регулятора таким образом, чтобы он регулярно превышал заданную температуру 125 ° C, может не вызвать немедленного повреждения, но может сократить срок службы компонента.
Регуляторы с малым падением напряжения (LDO)
В некоторых случаях линейные регуляторы могут быть чрезвычайно эффективными, потребляя очень мало энергии.Это происходит, когда они работают с очень низким входным напряжением к выходному напряжению.
Например, если Vin — Vout составляет всего 300 мВ, то даже при токе нагрузки 3 А рассеиваемая мощность составляет всего 0,9 Вт, что является достаточно низкой мощностью, чтобы выдерживать нагрузку большинством регуляторов.
Минимальный дифференциал Vin-Vout, с которым может работать линейный регулятор, называется падением напряжения. Если разница между Vin и Vout падает ниже напряжения отключения, то регулятор находится в режиме отключения.
Регулятор в режиме отпускания просто выглядит как небольшой резистор от входа к выходу. Это означает, что выход, по сути, просто соответствует входному питанию, и на самом деле никакое регулирование не выполняется.
В большинстве случаев вы не хотите использовать линейный регулятор в режиме отключения. Это ни в коем случае не повредит чему-либо, но вы потеряете многие преимущества регулятора.
Например, если у вас много шума на входе, он обычно будет отфильтрован линейным регулятором.Однако эта фильтрация не будет происходить в режиме отключения, поэтому весь шум входного источника питания передается прямо на выходное напряжение.
Причина, по которой стабилизаторы с малым падением напряжения так полезны, заключается в том, что они позволяют управлять регулятором с очень малой рассеиваемой мощностью. Это связано с тем, что линейный регулятор наиболее эффективен, когда разница между Vin и Vout небольшая.
Многие старые линейные регуляторы имели очень высокое падение напряжения. Например, популярные регуляторы серии 7800 имеют паспортное напряжение 2 В.Это означает, что входное напряжение должно быть как минимум на 2 В выше выходного напряжения.
Рисунок 2 — Старые трехконтактные линейные регуляторы требуют большего перепада напряжения Vin-Vout и, следовательно, расходуют больше энергии, чем более новые регуляторы LDO.
Хотя 2 В — это не так уж и много, если вы пропускаете через этот регулятор ток в 1 ампер и у вас есть разница в 2 В, то это 2 Вт энергии, теряемой зря.
Регуляторы LDO нового поколения могут иметь очень низкое падение напряжения менее 200 мВ при полной нагрузке.
LDO, работающий только с перепадом напряжения 200 мВ, может пропускать в 10 раз больше тока при той же рассеиваемой мощности, что и линейный стабилизатор, работающий с перепадом напряжения 2 В. Таким образом, 1 ампер тока с дифференциалом Vin-Vout 200 мВ соответствует лишь 0,2 Вт рассеиваемой мощности.
Краткое описание линейных регуляторов
Линейные регуляторы полезны, если:
- Небольшой перепад напряжения между входом и выходом
- У вас низкий ток нагрузки
- Требуется исключительно чистое выходное напряжение
- Вам нужно сделать дизайн максимально простым и дешевым
Как мы обсудим дальше, импульсные регуляторы создают на выходе много шума и могут создавать нечеткое выходное напряжение.
Это может быть приемлемо для некоторых приложений, но во многих случаях требуется очень чистое напряжение питания. Например, при генерации напряжения питания для аналого-цифрового преобразователя или какой-либо звуковой схемы.
Таким образом, линейные регуляторы не только проще в использовании, но и обеспечивают гораздо более чистое выходное напряжение по сравнению с импульсными регуляторами, без пульсаций, всплесков или шума любого типа.
Таким образом, если рассеиваемая мощность не слишком велика или вам не требуется повышающий регулятор, линейный регулятор будет вашим лучшим вариантом.
Регуляторы переключения
Импульсные регуляторы намного сложнее для понимания, чем линейные регуляторы. Линейный регулятор основан на силовом транзисторе, который регулирует величину тока, разрешенного для подачи на выход.
ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .
Если система управления линейного регулятора определяет, что выходное напряжение ниже, чем должно быть, то от входа к выходу может проходить больший ток.И наоборот, если обнаруживается, что выходное напряжение выше, чем должно быть, регулятор позволит меньшему току течь от входа к выходу, действуя таким образом, чтобы снизить выходное напряжение.
С другой стороны, импульсные регуляторы используют катушки индуктивности и конденсаторы для временного хранения энергии перед передачей ее на выход.
В этом уроке я проектирую печатную плату с использованием простого линейного регулятора, а в этом более глубоком курсе я проектирую индивидуальную плату с использованием более сложного импульсного регулятора.
Существует два основных типа импульсных регуляторов: повышающий и понижающий.
Понижающий импульсный стабилизатор также называется понижающим стабилизатором и, как линейный регулятор, вырабатывает выходное напряжение ниже входного.
Рис. 3. Понижающий импульсный стабилизатор использует катушку индуктивности в качестве временного накопителя энергии для эффективного создания выходного напряжения ниже входного.
Если вы начали планировать использование линейного регулятора (понижающего), но определили, что рассеиваемая мощность слишком велика, тогда вам следует использовать понижающий импульсный стабилизатор.
В то время как повышающий импульсный стабилизатор создает выходное напряжение, превышающее входное, и называется повышающим регулятором.
Импульсные регуляторы очень эффективны, даже при очень больших разностях между входом и выходом.
КПД равен выходной мощности, деленной на входную. Это соотношение того, какая часть мощности от входа поступает на выход.
КПД = Pout / Pin = (Vout x Iout) / (Vin x Iin) (Уравнение 3)
Уравнение эффективности то же самое для линейного регулятора.Однако, поскольку выходной ток равен входному току для линейного регулятора, уравнение 3 упрощается до простого:
КПД (линейный регулятор) = Vout / Vin (уравнение 4)
Например, предположим, что у вас на входе 24 В, а на выходе необходимо 3 В при токе нагрузки 1 А. Если бы это был линейный регулятор, он работал бы с чрезвычайно низким КПД, и почти вся мощность рассеивалась бы в виде тепла.
КПД линейного регулятора будет только 3 В / 24 В = 12.5%. Это означает, что только 12,5% мощности от входа поступает на выход. Остальные 87,5% передаваемой мощности теряются в виде тепла!
С другой стороны, импульсные регуляторы обычно имеют КПД 90% или больше независимо от разницы между входным и выходным напряжениями. Для импульсного регулятора около 90% мощности передается на выход и только 10% тратится впустую.
Только когда Vin и Vout близки друг к другу, линейный регулятор может сравниться по эффективности с импульсным регулятором.
Например, если у вас входное напряжение 3,6 В (напряжение литий-полимерной батареи), а на выходе выдается 3,3 В, то линейный регулятор будет иметь КПД 3,3 В / 3,6 В = 91,7%.
Повышающие регуляторы напряжения
В большинстве случаев выходное напряжение будет ниже входного. В этом случае следует использовать линейный регулятор или понижающий импульсный стабилизатор, как обсуждалось.
Однако есть и другие случаи, когда вам может потребоваться выходное напряжение выше входного.Например, если у вас аккумулятор 3,6 В и вам нужно питание 5 В.
Рис. 4. В повышающем импульсном стабилизаторе катушка индуктивности используется в качестве временного накопительного элемента для эффективного создания выходного напряжения, превышающего входное.
Многие новички в электронике удивляются, узнав, что можно генерировать более высокое напряжение из более низкого напряжения. Для выполнения этой функции необходим импульсный регулятор, называемый повышающим регулятором.
В отличие от линейных регуляторов выходной ток импульсного регулятора не равен входному току. Вместо этого вы должны смотреть на входную мощность, выходную мощность и эффективность.
Рассчитаем входной ток для повышающего регулятора. Предположим, что входное напряжение — 3 В, выходное напряжение — 5 В, выходной ток — 1 А, а энергоэффективность — 90% (как указано в таблице данных).
Чтобы выяснить это, нам нужно использовать небольшую базовую алгебру для уравнения 3, чтобы найти входную мощность:
Pin = Pout / КПД (Уравнение 5)
Мы знаем, что эффективность составляет 90% (или 0.90), и мы знаем, что выходная мощность составляет 5 В x 1 А = 5 Вт. Мы можем рассчитать, что входная мощность составляет 5 Вт / 0,9 = 5,56 Вт.
Поскольку входная мощность составляет 5,56 Вт, а выходная мощность 5 Вт, это означает, что регулятор рассеивает только 0,56 Вт.
Далее, поскольку мы знаем, что мощность равна напряжению, умноженному на ток, это означает, что входной ток равен:
Входной ток = 5,56 Вт / Vin = 5,56 Вт / 3 В = 1,85 A (Уравнение 6)
Для повышающего регулятора входной ток всегда будет выше, чем выходной ток. С другой стороны, входной ток понижающего регулятора всегда будет меньше выходного тока.
Понижающие регуляторы
Допустим, вы получаете питание от двух последовательно соединенных батареек AA. При полной зарядке две батареи AA могут выдавать около 3,2 В, но когда они почти полностью разряжены, они выдают только 2,4 В.
В этом случае напряжение вашего источника питания может находиться в диапазоне от 2,4 В до 3,2 В.
Теперь предположим, что вам нужно выходное напряжение ровно 3 В независимо от состояния батарей.Когда батареи полностью заряжены (выходное напряжение 3,2 В), вам необходимо понизить напряжение батареи с 3,2 В до 3 В.
Однако, когда батареи близки к разряду (выходное напряжение 2,4 В), вам необходимо увеличить напряжение батареи с 2,4 В до 3 В.
В этом сценарии вы должны использовать так называемый повышающий-понижающий импульсный стабилизатор, который представляет собой просто комбинацию повышающего и понижающего регуляторов.
Для решения этой проблемы потенциально можно использовать отдельный понижающий регулятор, за которым следует повышающий регулятор (или наоборот).Но обычно лучше использовать одинарный понижающе-повышающий регулятор.
Импульсный регулятор + линейные регуляторы
Помните о трех преимуществах линейных регуляторов: дешевизна, простота и чистое выходное напряжение.
Может быть много случаев, когда вы хотите использовать линейный стабилизатор, потому что вам нужно чистое выходное напряжение, но вы не можете, потому что они тратят слишком много энергии.
В этой ситуации вы можете использовать импульсный регулятор, за которым следует линейный регулятор.
Допустим, у вас есть входное напряжение от литий-полимерной батареи, равное 3.6 В, но вам понадобится источник clean 5 В.
Для этого вы должны использовать повышающий регулятор, чтобы поднять напряжение до значения чуть выше целевого выходного напряжения. Например, вы можете использовать повышающий регулятор для повышения напряжения с 3,6 В до 5,5 В.
Затем вы следуете этому с помощью линейного регулятора, который берет 5,5 В и понижает его до 5 В, а также очищает шум и пульсации для получения чистого сигнала.
Это очень распространенный метод получения КПД импульсного регулятора и бесшумного выходного напряжения линейного регулятора.
Если вы выбрали эту опцию и специально пытаетесь отфильтровать коммутируемый шум, обязательно обратите внимание на коэффициент подавления подачи питания (PSRR) линейного регулятора.
PSSR данного линейного регулятора изменяется в зависимости от частоты. Следовательно, PSSR обычно представляется в виде графика, который показывает, как линейный регулятор подавляет любые пульсации на входном питании на различных частотах.
Рисунок 5 — Коэффициент подавления помех от источника питания (PSRR) в зависимости от частоты для TPS799 от Texas Instruments.
Чтобы использовать этот график, посмотрите на частоту переключения вашего импульсного стабилизатора (или любых других источников шума в вашей цепи). Затем посмотрите на PSSR линейного регулятора на этой конкретной частоте.
Затем вы можете рассчитать, какая часть шума импульсного регулятора будет удалена линейным регулятором.
Сводка
Чтобы выбрать регулятор напряжения для вашей системы, начните с предположения, что линейный регулятор может использоваться, если входное напряжение выше, чем выходное.
Только если при этом расходуется слишком много энергии, используйте понижающий импульсный стабилизатор.
Если вам нужно выходное напряжение выше, чем входное, используйте импульсный импульсный стабилизатор.
Если у вас есть ситуация, когда входное напряжение может быть выше или ниже выходного напряжения, вам нужен импульсный импульсный стабилизатор.
Наконец, если вам нужен чистый выход, но нужна энергоэффективность импульсного регулятора, используйте импульсный регулятор, а затем линейный регулятор для очистки напряжения питания.
Наконец, не забудьте загрузить бесплатно PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.Другой контент, который может вам понравиться:
Как выбрать лучший стабилизатор напряжения для моей схемы?
Конференция APEC по энергетике является одновременно образовательной конференцией и выставкой поставщиков. Путешествие по выставочному залу 19 марта -го дало большую уверенность в первенстве, еще больше подчеркнув, что конференция APEC является главным событием в области силовой электроники.
Мой пресс-паспорт позволил мне проникнуть на шоу пораньше, чтобы я мог сделать несколько снимков стенда EPC, прежде чем он будет занят. (Рис. 1 и 2) .
1. На стенде EPC на APEC 2019 было несколько замечательных демонстраций и эталонных проектов.
2. Преобразователь 3 кВт, 48–12 В с использованием транзисторов EPC GaN.
EPC — компания, основанная бывшим президентом International Rectifier Алексом Лидоу (рис.3). Он намеревался создать коммерческий, практичный высокоскоростной транзистор на основе GaN (нитрида галлия) для силовых приложений.
3. Алекс Лидоу, основатель EPC, объясняет преимущества своих высокоскоростных транзисторов на основе GaN на кремнии.
Для этого Лидоу использовал кремниевую подложку для слоев GaN. Это означает, что пластины могут изготавливаться на обычном оборудовании для обработки кремния. Вдобавок Лидоу считал крайне важным сделать транзисторы GaN улучшенного типа, то есть нормально выключенными.Некоторые компании производят устройства с режимом истощения, но Лидоу считает, что они незнакомы большинству энергетиков. Наконец, Лидоу решил заставить свои устройства на основе GaN работать при умеренных напряжениях, от 15 до 200 В. Это не пытается конкурировать с высоковольтными возможностями SiC (карбид кремния) транзисторов или очень дешевыми низковольтными полевыми МОП-транзисторами.
4. Крис Джованниелло демонстрирует свое силовое реле MEMS.
Полупроводники — это здорово, но иногда физические переключатели — лучший способ справиться с питанием.Именно поэтому Menlo Micro разработала линейку реле MEMS (микроэлектромеханических систем). МЭМС десятилетиями использовались в радиочастотном переключении. Они имеют низкое сопротивление и очень контролируемый импеданс, что очень важно для ВЧ сигналов. Микросхемы силовых реле MEMS, которые производит Menlo Micro, отличаются номинальным током 8 А и напряжением 120 В. Чип меньше ногтя. Крис Джованниелло, соучредитель, старший вице-президент по разработке продуктов (рис. 4), по праву гордится этим достижением.Одно из приложений — замена твердотельных реле в силовых установках (рис. 5) .
5. Реле MEMS от Menlo Micro могут заменить механические и твердотельные реле (SSR).
Компании всех размеров
В то время как все крупные компании, производящие силовые полупроводники, приезжают в АТЭС, вы также можете увидеть несколько небольших компаний с интересными технологиями. Захид Рахим, вице-президент по маркетингу Silanna Semiconductor, демонстрировал свой эталонный дизайн с фиксированным обратным ходом (рис.6) . У них на выставке был дизайн, подключенный к сетевому напряжению. Там они могли провести измерения эффективности, которые показали улучшение на 2% при типичных нагрузках. Это действительно большое дело, выжать даже 0,5% улучшения из запаса обратного хода — большое достижение. Снижение потерь мощности, вероятно, означает меньшие EMI (электромагнитные помехи), более легкие требования к охлаждению и более низкие счета за электроэнергию для потребителей. Улучшение на 2% при 90% -ной эффективности поставок означает, что потери увеличиваются с 10% до 8%, поэтому думайте об этом как об улучшении на 20% того, что имеет значение.
6. Захид Рахим из Силанны держит на ладони свой референсный дизайн активного зажима с обратным ходом.
Я восхищаюсь Кри, отличной компанией из Северной Каролины. Они всегда лидировали в материалах с широкой запрещенной зоной. Хотя эта компания больше всего известна своими потребительскими светодиодными лампами, она также пользуется уважением в производстве ВЧ-транзисторов и других силовых устройств. Теперь новый генеральный директор Грег Лоу продает осветительный бизнес и делает упор на полупроводниковую часть компании.По иронии судьбы, Кри создал бренд Wolfspeed, когда предыдущий генеральный директор хотел продать бизнес по производству транзисторов. Эта сделка была отклонена правительством, что, вероятно, было благословением для Кри. Гай Мокси (рис. 7) объяснил большой потенциал карбидокремниевых (SiC) транзисторов Wolfspeed в быстрорастущих электромобилях, солнечной энергии, ветре и в промышленности.
7. Гай Мокси из подразделения Wolfspeed компании Cree рядом с эталонным проектом SiC на 60 кВт.
Появление практичных электромобилей дальнего действия, а также мягких гибридных электромобилей (mHEV) создает потребность в практических системах для моделирования и разработки систем электропривода. На стенде dSPACE Торстен Опперманн (Рис. 8) , менеджер по работе с клиентами, продемонстрировал как программное обеспечение, так и оборудование, которое dSPACE предлагает в помощь производителям транспортных средств и подсистем (Рис. 9) .
8. Торстен Опперманн из dSPACE рассказал о своих автомобильных системах моделирования и тестирования.
9. Эта высоковольтная электронная нагрузка от dSPACE может имитировать двигатель и аккумулятор в электромобиле.
Магнитные материалы — фундаментальный строительный блок силовых электрических систем. Standex Electronics — известный производитель силовых магнетиков, датчиков, реле и герконов. Крис Риккарделла, инженер по эксплуатации в области магнетизма, работал в кабине Standex (рис. 10) .
10.Крис Риккарделла из Standex Magnetics рассказал о широком ассортименте продукции компании.
Helix Semiconductors производит микросхемы с накачкой заряда на переключаемых конденсаторах. Эти высоковольтные зарядные насосы могут создавать интегральные передаточные отношения выпрямленного сетевого напряжения. Джефф Соренсен, старший главный инженер по приложениям (рис.11), продемонстрировал микросхемы Helix, которые также могут обеспечивать питание оптопар с обратной связью вторичной стороны, а также изоляцию высоковольтных линий за счет использования конденсаторов с номиналом X или Y. .
11. Джефф Соренсен из Helix Semiconductor присутствовал с демонстрацией своей линейки высоковольтных ИС с накачкой заряда.
У Microchip был отличный стенд на APEC (рис. 12) . Несколько станций на стенде показывают, сколько силовых приложений можно использовать с продуктами Microchip.
12. Стенд Microchip на APEC 2019 был переполнен весь день.
Некоторыми интересными приложениями были системы управления двигателями (рис.13) , стабилизатор напряжения LDO (малое падение) (рис. 14) с блокировкой пульсаций и демонстрация PFC (коррекция коэффициента мощности) мощностью 30 кВт с использованием SiC-транзисторов от Microchip (рис. 15) . Я был удивлен, что компания, известная своими микроконтроллерами PIC, имела устройства питания. Затем специалист по маркетингу Microchip Надин Кастильо напомнила мне, что они купили Microsemi несколько лет назад.
13. Патрик Хит рассказал о некоторых из обширных аппаратных средств и прошивок Microchip для управления двигателями.
14. LDO с блокировкой пульсаций Microchip может очищать выходной сигнал линейных и импульсных регуляторов.
15. Джейсон Чианг из Microchip демонстрирует эталонную схему 3-фазной коррекции коэффициента мощности (PFC) мощностью 30 кВт.
Выставочная площадка APEC 2019 — это не просто стенды. Был театр, где целый день проходили интересные презентации. ROHM’s Mitch Van Ochten (рис. 16) . представил один по пригодным для автомобильной промышленности SiC-транзисторам, организованный хорошими людьми из Mouser Electronics.
16. Митч Ван Охтен из ROHM выступил с прекрасной презентацией SiC-транзисторов в демонстрационном зале Mouser.
Ametherm — еще одна компания, которая производит строительные блоки для силовой электроники. На стенде компании был Мехди Самии, вице-президент по проектированию (рис. 17) , демонстрирующий лишь некоторые из своих многочисленных продуктов (рис. 18) .
17. Mehdi Samii от Ametherm представлял линейку ограничителей пускового тока с отрицательным температурным коэффициентом (NTC).
18. Ограничители броска тока Ametherm — это простой и надежный способ защиты силовых цепей.
Renesas — это крупное имя в сфере силовой электроники, у которого на выставке APEC 2019 (Рис.19) у него был оживленный стенд. Компания продемонстрировала систему управления двигателем для пылесоса, в котором используется бесщеточный двигатель постоянного тока (BLDC) для достижения значительного повышения эффективности. Помимо управления двигателем, Renesas предлагает микросхемы и устройства для радиационно-стойких (радиационно-жестких) спутниковых устройств на основе GaN и наземное приложение для управления питанием в промышленных, серверных и двунаправленных аккумуляторных системах.Renesas приобрела Intersil, которая только увеличила его мощность и расширила возможности для операционных усилителей.
19. Стенд Renesas был забит людьми, проверявшими его силовые и моторные компоненты.
Стенд Tamura привлек внимание своим чистым дизайном и логичной компоновкой. (Рис. 20) . Tamura производит силовые, коммутационные и импульсные трансформаторы. Он также производит трансформаторы для измерения тока, дроссели, реакторы и сборки панелей.
20.Стенд Tamura был чистым и привлекательным.
Я закончил свой рабочий день на стенде Silicon Labs (Рис. 21) . Брайан Миркин объяснил их изолированный модулятор дельта-сигма, который может передавать аналоговый сигнал через границы высокого напряжения. Он также представил преобразователь LLC (индуктор-индуктор-конденсатор) мощностью 20 кВт, разработанный совместно с дистрибьютором Arrow Electronics (рис. 22) . Arrow десятилетиями отстаивал эталонные проекты, и приятно видеть, что Silicon Labs вносит свой вклад в эти разработки.
21. Брайан Миркин из Silicon Labs с их эталонным дизайном изолированного дельта-сигма-модулятора.
22. Дистрибьютор Arrow Electronics работал с Silicon Labs над созданием эталонного проекта блока питания LLC на 20 кВт.
На выходе из выставочного зала APEC 2019 я наткнулся на трогательную сцену, где папа со своим сыном (рис. 23) . Было здорово увидеть человека, который знал, как важно не отставать от силовой электроники и поддерживать интерес и образование своих детей.Не ждите, что я скучаю по поводу «молодых людей сегодня». Пока есть такие папы, молодые люди будут жить прекрасно, превзойдя все достижения нас, старых динозавров.
23. Папа со своим маленьким сыном хорошо проводят время на APEC 2019.
Назад к основам: выбор идеального регулятора
Регулятор напряжения выполняет две функции: изменение входного напряжения на другой уровень на выходе и регулирование (поддержание постоянного выходного напряжения, несмотря на изменение условий нагрузки). Регуляторы постоянного / постоянного тока являются ключевым компонентом любой энергосистемы, поэтому выбор правильного регулятора имеет решающее значение для разработки оптимального решения.
Хотя инженеры понимают функции регулятора, менее опытным инженерам часто бывает трудно выбрать лучший регулятор для своего применения. В этом сообщении в блоге определены критерии, которые может использовать любой, кто не является опытным разработчиком электроэнергии, чтобы выбрать идеальный регулятор.
Понижающий, повышающий или понижающий-повышающий регулятор?
Есть три основные категории:
- Buck — регуляторы с выходным напряжением ниже, чем на входе
- Boost — регуляторы с выходным напряжением выше, чем на входе
- Понижающий-повышающий — регуляторы, которые могут обеспечивать выходное напряжение, которое выше, ниже или такое же, как входное
В большинстве приложений напряжение понижается от шины к нагрузке, поэтому обычно используются понижающие стабилизаторы.Другие приложения требуют увеличения напряжения с помощью повышающего регулятора: например, если мощность постоянного тока должна передаваться по длинному кабелю, потери I 2 R можно уменьшить, повысив напряжение перед передачей, а затем снова понизив его на Загрузка. В аккумуляторных батареях пониженно-повышающие регуляторы часто используются для обеспечения постоянного стабильного напряжения, преодолевая изменение выходного напряжения, которое проявляется как зарядка и разрядка аккумуляторов.
Номинальные входы и выходы
Многие системы предъявляют четкие требования к входному и выходному напряжению — например, вам может потребоваться понизить линию 12 В до 3.3В. Для многих приложений в наличии будет подходящий регулятор, отвечающий требованиям к напряжению.
Очевидно, что регулятор должен обеспечивать мощность, требуемую нагрузкой. Мощность регулятора обычно определяется максимальным выходным током.
Диапазоны ввода и вывода
Хотя приложениям часто требуется определенное напряжение, для других требуется регулируемый выход. Это может быть связано с изменением нагрузки — например, в части испытательного оборудования — или может быть, что нагрузка питается по длинному кабелю, и напряжение необходимо подрезать немного выше, чем требуется нагрузке, чтобы компенсировать падение напряжения на кабеле.
Диапазоны входного напряжения особенно важны для таких приложений, как системы с батарейным питанием. В автомобильном применении аккумулятор с номинальным напряжением 12 В может выдавать 12,5 В при полной зарядке и падать до 10 В или меньше по мере разряда аккумулятора. Регулятор с узким входным диапазоном может больше не работать при падении напряжения батареи, а это означает, что полная емкость батареи не может быть использована. Поэтому обеспечение достаточно широкого диапазона входных сигналов является важным критерием при выборе регулятора.
Выбор регуляторов с широким входом также имеет еще одно преимущество: они также могут снизить затраты на складские запасы, поскольку один регулятор может использоваться в различных ситуациях.
КПД
КПД — один из критериев для большинства проектируемых сегодня энергосистем. Выбор регулятора с высокими потерями мощности может сделать почти невозможным достижение целей эффективности. Также важно помнить, что эффективность регулятора не является постоянной: обычно эффективность регулятора резко падает по мере увеличения коэффициента понижения или повышения и уменьшения тока, потребляемого на выходе.
Современные регуляторы, например, на основе топологии переключения при нулевом напряжении (ZVS) Vicor, по своей сути обладают высокой эффективностью и более стабильны во всем рабочем диапазоне.
Шум
Импульсные регуляторы обеспечивают высокий КПД, но схема переключения генерирует шум. В некоторых системах, особенно с чувствительными аналоговыми компонентами, шум источника питания может ограничивать общую производительность. Излишний электронный шум также может затруднить получение сертификата ЭМС.
Как и в случае с эффективностью, топология регулятора является ключом к достижению низкого уровня шума: гораздо проще использовать компонент, который не генерирует шум, чем пытаться отфильтровать этот шум. ZVS, например, представляет собой топологию с мягким переключением, которая по своей сути является малошумной, что упрощает разработку высокопроизводительных систем.
Размер и упаковка
Сегодня электронные системы часто имеют ограниченное пространство. Даже если цель не состоит в том, чтобы сделать систему настолько маленькой, насколько это возможно, например, продукты, размещенные в стандартизированных 19-дюймовых стойках, уменьшение размера системы питания позволяет использовать сэкономленное пространство для добавления дополнительных функций.
При любом расчете размера следует также учитывать периферийные компоненты, необходимые для регулятора. За счет более высокого уровня интеграции и высокой частоты переключения размер и количество периферийных компонентов могут быть уменьшены, что потенциально может обеспечить большую экономию места, чем простой выбор регулятора в меньшем корпусе.
Доступные типы пакетов не только определяют необходимое пространство: часто пакеты меньшего размера могут быть расположены ближе к нагрузке, что обеспечивает более точное регулирование нагрузки и более быструю реакцию на переходные процессы.
Помимо размера, важным фактором может быть вес, особенно в тех случаях, когда оборудование может перемещаться. Примеры таких систем варьируются от переносного портативного оборудования до автомобильной электроники и дронов.
Рабочая температура и тепловые характеристики
Регуляторыне могут быть эффективными на 100%, поэтому они всегда будут рассеивать тепло, которое необходимо отводить. Если требуется радиатор, это может значительно увеличить как размер, так и вес системы питания.Неспособность рассеять тепло также может повлиять на производительность системы и другими способами: например, в системах освещения или отображения, если регулятор вызывает повышение температуры светодиодов, это снизит интенсивность и изменит длину волны и, следовательно, оттенок светодиода. генерируемый свет.
Регулятор должен надежно работать во всем диапазоне температур, которым он может подвергаться. В целом, более эффективные регуляторы смогут работать при более высоких температурах, поскольку им не нужно рассеивать столько тепла, но продукты от разных поставщиков могут сильно различаться, поэтому важно проверять технические характеристики.
Дополнительные возможности
В дополнение к критериям, описанным выше, вашему приложению может потребоваться определенная функциональность, которая может ограничить выбор. Примеры этих дополнительных функций:
- Возможность параллельного включения: если регуляторы могут быть подключены параллельно, то могут быть получены более высокие выходные токи. Не все регуляторы могут иметь параллельные выходы, поскольку во многих топологиях это вызовет нестабильность.
- Постоянный выходной ток: в аккумуляторных батареях для питания нагрузки требуется постоянное напряжение, но для зарядки требуется постоянный ток.Некоторые регуляторы предлагают выходы, которые можно настроить как на постоянный ток, так и на постоянное напряжение, что делает их идеальными для этих систем.
- Плавный запуск: возможность медленного увеличения напряжения помогает обеспечить стабильность системы питания, даже когда к выходу регулятора подключена большая емкость.
- Защита от перенапряжения: регуляторы, которые имеют защиту, гарантирующую, что они не могут выдавать напряжение, превышающее заданное выходное напряжение, гарантируют, что нагрузка не будет повреждена даже во время неисправности.Другая схема защиты может отключить регулятор, если входное напряжение выходит за пределы допустимого диапазона.
- Переходная реакция: некоторые нагрузки быстро изменяют требуемый им ток. Быстрый переходный отклик гарантирует, что регулятор может выдавать необходимую мощность без больших выходных конденсаторов для хранения энергии.
Заключение
Хотя регуляторы концептуально являются простыми компонентами — они принимают напряжение на входе и подают другое напряжение на выходе, — существует множество факторов, которые определяют лучший регулятор для вашего приложения. Тщательное рассмотрение критериев, изложенных выше, поможет выбрать идеальный регулятор для вашей системы.
Выбор конденсаторов для линейного регулятора напряжения
Я пытаюсь использовать линейный стабилизатор напряжения LM1117 для преобразования в 3,3 В (входное напряжение будет 9 или 5 вольт; еще не решено). В таблице данных предлагается использовать на входе и выходе танталовые конденсаторы емкостью 10 мкФ. Хотя я мог бы просто согласиться с предложением, я считаю, что большинство доступных танталовых конденсаторов значительно дороже, чем другие конденсаторы, и имеют форм-фактор SMT (я бы предпочел сквозное отверстие).Я подумываю использовать вместо них алюминиевые или керамические колпачки.
В этом отрывке из таблицы указаны допустимые диапазоны СОЭ:
8.2.2.1.3 Выходной конденсатор
Выходной конденсатор имеет решающее значение для поддержания стабильности регулятора и должен соответствовать требуемым условиям для обоих минимальная емкость и эквивалентное последовательное сопротивление (ESR). Минимальная выходная емкость для LM1117 требуется 10 мкФ, если используется танталовый конденсатор.Любое увеличение выходной емкости приведет к просто улучшите стабильность контура и переходную характеристику. ESR выходного конденсатора должно находиться в диапазоне от От 0,3 Ом до 22 Ом. В случае регулируемого регулятора, когда используется CADJ, большая выходная емкость (22 мкФ тантал).
Насколько я понимаю, у керамических колпачков очень низкое ESR. Могу я просто добавить резистор от 0,3 до 22 Ом последовательно с керамическим конденсатором? Я читал, что такое СОЭ, а что нет, и я ничего не понимаю, так что сейчас это просто диапазон чисел, который я пытаюсь сопоставить.Однако керамические колпачки, как правило, имеют меньшую емкость, поэтому получить керамические колпачки на 10 мкФ может быть не так просто.
Если я правильно помню, алюминиевые колпачки имеют гораздо более высокое ESR (хотя, что именно означает «выше», я не уверен). Кроме того, может быть сложно получить техническое описание конденсатора просто потому, что это такие распространенные компоненты (я нахожусь в Китае и покупаю онлайн, но не читаю по-китайски). Поэтому я не уверен, как убедиться, что я в пределах указанного диапазона ESR.
Наконец, я должен отметить, что у меня еще нет ни одного из этих компонентов, но я, вероятно, получу ассортимент конденсаторов, когда сделаю заказ.
Итак, мой вопрос: какие конденсаторы можно использовать в этой ситуации и с каким номиналом резисторы (если есть)? Обратите внимание, что меня интересует теория, а не только эта единственная ситуация, но я не имею опыта работы с конденсаторами, некоторые конкретные примеры могут быть полезны.
Связанные: ESR и CSR конденсатора
Как выбрать правильные ИС линейного стабилизатора напряжения для современных схемотехнических решений
Регуляторы напряженияявляются неотъемлемой частью любой электронной конструкции, вы можете не заметить, но более 90% проектов / продуктов в области электроники требуют наличия какого-либо регулятора напряжения для функциональной работы.Это делает их одними из наиболее часто используемых и легкодоступных электронных компонентов для различных приложений.
Но часто возникает ситуация, когда ваш лучший в своем классе регулятор напряжения не соответствует конкретным требованиям для конкретного приложения, и после небольшого поиска регулятора напряжения в mouser, element14 или Digikey вы попали в ситуацию, когда вы не можете решить. как выбрать стабилизатор напряжения IC для вашей электронной конструкции.
Итак, в этой статье мы узнаем о некоторых из самых дешевых и часто используемых стабилизаторов напряжения , доступных на рынке.Кроме того, я подробно покажу вам, какие параметры необходимо учитывать перед выбором регулятора напряжения для конкретного приложения. Наконец, я вручную выберу несколько крутых Top 10 Modern Linear Regulator IC , которые можно использовать как современную замену старым LM7805, LM317, AMS1117 и т. Д., А также будет краткое описание для каждого из них.
Выбор правильного типа регулятора для вашей схемотехникиПеред тем, как выбрать микросхему регулятора напряжения, вам необходимо сначала настроить самые основные параметры, хотя существуют и другие критические параметры, на данный момент мы собираемся сосредоточиться на трех основных: входное напряжение , выходное напряжение и . ток нагрузки .
Зная входное и выходное напряжение, вы можете определить входной и выходной ток. Зная все эти параметры, вы можете легко рассчитать входную и выходную рассеиваемую мощность и определить, какой тип регулятора напряжения вам нужен для вашего конкретного применения.
Говоря о типах регуляторов напряжения , как вы все знаете, существует только два основных типа регуляторов напряжения: это импульсные регуляторы и линейные регуляторы , и они также подразделяются на повышающие и понижающие . Регуляторы .Для лучшего понимания ниже представлена подробная блок-схема.
Если вы ищете выходное напряжение ниже входного, просто выберите линейный стабилизатор напряжения, потому что линейный стабилизатор напряжения дешевый и его легко найти на рынке, поскольку он часто используется во многих приложениях
Если вы смотрите на выходное напряжение, большее, чем входное, тогда просто используйте импульсный стабилизатор, по-видимому, если ваша рассеиваемая мощность очень высока, что означает, что ваш выходной ток находится в нескольких элементах, в этой ситуации вы можете выбрать импульсный стабилизатор вместо. Импульсные регуляторы напряжения более эффективны, чем линейные регуляторы.
Расчет мощности и тепловыделения для повышения эффективностиЛинейное напряжение дешевое, простое в использовании и легко доступное, но основным недостатком линейного регулятора является рассеиваемая мощность, если ее не учитывать внимательно, это может привести к быстрому расходу заряда батареи (для приложений с питанием от батареи) или к перегреву, что может привести к необратимому повреждению устройства. Чтобы лучше понять эту концепцию, давайте проясним ситуацию на нескольких примерах,
Предположим, у нас есть входное напряжение 12 В и выходное напряжение 3,3 В, разница напряжений составляет 12 В — 3,3 В = 8,7 В. Теперь предположим, что ток нагрузки составляет 500 мА, а в другом сценарии ток нагрузки составляет 100 мА.
В первом сценарии регулятор должен рассеивать 8,7 В * 0,5 А = 4,35 Вт мощности в виде тепла, а это очень много для любого регулятора на 3,3 В.
Во втором сценарии регулятор должен рассеивать 8.7 В * 0,05 А = 0,43 Вт, с чем легко справится любой хороший стабилизатор на 3,3 В.
Другой ключевой аспект, на который необходимо обратить внимание, известен как термическое сопротивление , он определяется как «-JA», а его единица измерения записывается как ° C / Вт. А теперь вы спрашиваете, что вообще это за параметр «Θ-JA»?
Он определяет, насколько будет нагреваться ИС (выше температуры окружающей среды), чтобы рассеять один ватт мощности. Умножение мощности на «Θ-JA» даст вам повышение температуры выше температуры окружающей среды.
Низкое падение напряжения (LDO) для низковольтных батарей
Чтобы преодолеть некоторые из основных проблем в линейном регуляторе, были введены LDO и импульсные регуляторы. Как следует из названия, LDO — это тип регулятора с очень низким падением напряжения. Вы можете узнать больше о стабилизаторах напряжения с низким падением напряжения, перейдя по ссылке на статью.
Но теперь остается вопрос: что вообще означает с низким падением напряжения ?
Чтобы понять концепцию падения напряжения, давайте возьмем на примере наиболее популярные регуляторы серии 78XX, такие как микросхемы регуляторов напряжения LM7805 или LM7809.Просто взглянув на таблицу 78-й серии, вы увидите, что у этой серии регуляторов есть падение напряжения 2 В. Это означает, что регулятор будет работать правильно только тогда, когда входное напряжение на 2 В выше выходного напряжения.
Если вы думаете, что 2 В — это не так много, вы снова ошибаетесь, если вы потребляете значительный ток с падением напряжения на 2 В. Допустим, вы потребляете ток 500 мА, затем вы тратите 1 Вт мощности на регулятор, а это большая потеря мощности для регулятора 7805.
Более новые наиболее эффективные LDO имеют очень низкое падение напряжения, которое может быть менее 200 мВ при полной нагрузке. Вот почему такие LDO могут обеспечивать в 10 раз больший выходной ток при 10 раз меньшей рассеиваемой мощности. Список таких LDO будет рассмотрен далее в статье.
Лучшие 10 современных ИС линейных стабилизаторов напряженияHT7333-A от Holtek Semiconductor
HT7333-A — это промышленный классический, очень дешевый однокристальный стабилизатор с малым падением напряжения с максимальным входным напряжением 12 В, и выходным напряжением , равным 3.3В . С допуском на выходное напряжение 3% эта микросхема может выдерживать максимальный выходной ток 250 мА .
Это очень часто используемый чип, который используется в различных продуктах и поставляется в корпусе TO-92, который представляет собой сквозную версию. Версия для поверхностного монтажа также доступна в пакете SOT-89. Последние две цифры номера детали представляют собой выходное напряжение. Итак, HT73 33 означает 3,3 В, также есть другие версии с фиксированным выходом, доступные для этого чипа, которые варьируются от 1.8В — 5В. Пожалуйста, обратитесь к таблице данных для получения дополнительной информации.
Приложения включают оборудование с батарейным питанием, регулятор напряжения для микроконтроллера и микропроцессора, оборудование для беспроводной связи и многое другое. Этот чип стоит 0,49 доллара за одну штуку, а выпадает всего за 0,016 доллара за за всю катушку из 3000.
Название детали: HT7333
Лист данных: HT7333 Лист данных
AP2112K, компания Diodes Incorporated
AP2112K — это немного современный, однокристальный, очень дешевый стабилизатор со сверхнизким падением напряжения, который имеет входное напряжение , равное 6.5 В и выходное напряжение 3,3 В и имеет точность выходного напряжения ± 1,5%. Этот чип может выдерживать максимальный выходной ток 600 мА при типичном падении напряжения 250 мВ. Он имеет встроенную защиту от короткого замыкания и специальный вывод для включения или отключения микросхемы извне.
Он имеет ток покоя 55 мкА и ток в режиме ожидания 0,01 мкА с диапазоном рабочих температур от -40 ° C до + 85 ° C. Его можно сконфигурировать как вторичный регулятор в системе регулирования, состоящей из двух частей.Эта ИС также имеет большой диапазон фиксированных выходных напряжений и поставляется в крошечном корпусе SOT23-5. Вы можете обратиться к техническому описанию этого чипа для ваших конкретных потребностей.
Приложениявключают в себя эффективные регуляторы напряжения, блоки питания для микроконтроллеров, блоки питания для ЖК-дисплеев и ноутбуков. Этот чип стоит 0,47 доллара за единицу и упадет до 0,098 доллара за всю катушку из 3000.
Название детали: AP2112K
Лист данных: AP2112K Лист данных
NX1117CE, компания NXP Semiconductors
NX1117CE также является отраслевым стандартом, очень дешевая, легко доступная однокристальная и, безусловно, наиболее часто используемый LDO (стабилизатор с малым падением напряжения), который имеет входное напряжение 20 В, макс при 6 мА и выходное напряжение из 3. 3 В (для версии 3,3 В) и с точностью выходного напряжения ± 1,5%. Этот чип может выдерживать максимальный выходной ток 1 А, при типичном падении напряжения 500 мВ.
Имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания. Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого чипа.
Применения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, высокоэффективные линейные регуляторы, зарядное устройство и многое другое. Этот чип стоит 0,37 доллара за единицу, а упадет с 0,067 доллара за за всю катушку из 3000.
Название детали: NX1117CE
Лист данных: NX1117CE Лист данных
LP2985 от Texas Instruments
LP2985 — это новый, очень недорогой, однокристальный стабилизатор со сверхнизким падением напряжения, который имеет входное напряжение не более 16 В, и выходное напряжение , равное 3.3 В (для версии 3,3 В) и с точностью выходного напряжения ± 1,5%. Этот чип может выдерживать максимальный выходной ток 150 мА при типичном падении напряжения 280 мВ.
Он имеет встроенную защиту от короткого замыкания и специальный вывод байпаса, в который можно добавить конденсатор емкостью 10 нФ для сверхмалошумной работы. Он имеет ток покоя 850 мкА и ток в режиме ожидания 0,01 мкА с диапазоном рабочих температур от -40 ° C до + 85 ° C. Он поставляется в крошечном корпусе SOT23-5, поэтому его можно использовать в некоторых из самых густонаселенных сверхмалых приложений, все эти функции делают его идеальным кандидатом в качестве вторичного регулятора после первичного импульсного регулятора.
Он также имеет большой диапазон постоянных выходных напряжений. Вы можете обратиться к техническому описанию этого чипа для ваших конкретных потребностей. Приложения включают портативные устройства, цифровые камеры и видеокамеры, проигрыватели компакт-дисков и многое другое. Этот чип стоит 0,51 доллара за единицу и падает до 0,298 доллара за всю катушку из 3000.
Название детали: LP2985
Лист данных: LP2985 Лист данных
MIC29302WU от Microchip
MIC29302WU также является отраслевым стандартом, очень дешевым, сильноточным LDO (Low Dropout Regulator) (Low Dropout Regulator), который имеет входное напряжение макс. 26 В и выходное напряжение 3.3 В (для версии 3,3 В) и с гарантированной точностью выходного напряжения 1%, этот чип может выдерживать максимальный выходной ток , равный 3 А, при типичном падении напряжения 500 мВ. В качестве дополнительной функции эта ИС предоставляет дополнительный логический уровень для включения и вывод состояния. Вывод EN предназначен для управления выходом регулятора, а вывод состояния — для состояния ИС.
Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. Функции защиты включают перегрузку по току, обратную полярность, перегрев, а также защиту от положительных и отрицательных скачков напряжения.С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого регулятора.
Приложения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, микропроцессорное питание, зарядное устройство, автомобильную электронику и многое другое. Этот чип стоит $ 2,14 за одну штуку и падает до $ 1,61 за всю катушку из 3000.
Название детали: MIC29302WU
Лист данных: MIC29302WU Лист данных
LM1084 от Texas Instruments
LM1084 также является отраслевым стандартом, очень дешевый, однокристальный, сильноточный LDO (стабилизатор с малым падением напряжения), который имеет переменное входное напряжение макс. 25-29 В, в зависимости от выходного напряжения он имеет три варианта один рассчитан на 3,3 В, второй — на 5 В, а также есть регулируемый вариант, в котором выходное напряжение может быть установлено с помощью комбинации резисторов обратной связи.Это чудовищный LDO с выходным током , мощностью 5А .
Имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания. Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. С различными вариантами корпусов эту ИС можно использовать в качестве первичного стабилизатора напряжения для множества приложений. Для получения информации о различных вариантах выходного напряжения и комплектации см. Техническое описание этого чипа.Этот LDO также производится китайской компанией под названием HGSEMI , но таблица данных на мандарине; Если вы зритель из Китая или умеете читать на мандарине, вы также можете проверить эту альтернативную часть. Цена этого регулятора значительно снижается с китайской версией.
Применения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, высокоэффективные линейные регуляторы, зарядное устройство и многое другое. Эта микросхема стоит 2,65 доллара за долларов за единицу, а ее стоимость составляет всего 1 доллар.13 для всего барабана 3000.
Название детали: LM1084
Лист данных: LM1084 Лист данных
AZ1084C, компания Diodes Incorporated
AZ1084C также является отраслевым стандартом, очень дешевый, сильноточный LDO (стабилизатор с малым падением напряжения), который имеет входное напряжение не более 13,2 В и выходное напряжение 3,3 В (для версии 3,3 В) , и с точностью выходного напряжения ±. 015%, этот чип может выдерживать максимальный выходной ток 5 А при типичном падении напряжения 1,35 В.
Имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания. Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого регулятора.
Приложениявключают пострегулятор для переключения преобразователя постоянного тока в постоянный, источник питания микропроцессора, зарядное устройство, настольные ПК, блоки питания RISC и встроенных процессоров и многое другое. Этот чип стоит 0,50 доллара за долларов за единицу и падает до 0,167 доллара за всю катушку из 3000 штук.
Я упомянул эту деталь, потому что она не производится ни компанией Biggy, как Texas Instruments, ни китайской компанией, которая предоставляет свои технические данные только на мандарине.Diodes Incorporated — известная компания, продукту которой мы можем доверять с закрытыми глазами, и в качестве бонуса он действительно дешевый.
Название детали: AZ1084C
Лист данных: AZ1084C Лист данных
LT1085 от Linear Technologies
LT1085 также является отраслевым стандартом, очень недорогой, сильноточный LDO (стабилизатор с малым падением напряжения), который имеет входное напряжение не более 30 В и доступен в версиях с регулируемым и фиксированным выходным напряжением с точностью выходного напряжения. из ±.015% этот чип может выдерживать максимальный выходной ток 7,5 А при типичном падении напряжения 1 В.
Он имеет ток покоя 10 мкА с диапазоном рабочих температур от -40 ° C до + 150 ° C в зависимости от размера корпуса. Функции защиты включают перегрузку по току, обратную полярность, перегрев, а также защиту от положительных и отрицательных скачков напряжения. С различными вариантами корпуса он может использоваться в качестве первичного стабилизатора напряжения для различных приложений.Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого регулятора.
Приложения включают пост-регулятор для переключения преобразователя постоянного тока в постоянный, высокоэффективные линейные регуляторы, зарядное устройство, регуляторы постоянного тока и многое другое. Этот чип стоит 0,50 доллара за долларов за единицу и падает до 0,167 доллара за всю катушку из 3000 штук.
Название детали: LT1085
Лист данных: LT1085 Лист данных
BA3258HFP от Rohom Semiconductors
BA3258HFP также является промышленным стандартом, недорогим, однокристальным, двойным выходом, сильноточным LDO (Low Dropout Regulator), который имеет входное напряжение макс. 14 В, эта ИС имеет двойной выходной каскад в показанной версии.Он может производить две шины питания с регулируемым выходом: одну 3,3 В и одну шину питания 1,5 В от одного входа. Это очень компактный LDO, который поставляется в корпусе HRP5.
Он имеет ток покоя 10 мА с диапазоном рабочих температур от -40 ° C до + 125 ° C. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого чипа. Приложения включают FPD, телевизоры, DSP и многое другое. Этот чип стоит 0,57 доллара за долларов за единицу и упадет до 0 долларов.38 для всего барабана 3000.
Название детали: BA3258HFP
Лист данных: BA3258HFP Лист данных
HMC1060LP3E от Analog Devices
HMC1060LP3E также является отраслевым стандартом, однокристальным, многовыводным, сильноточным LDO (стабилизатором с малым падением напряжения), который имеет входное напряжение 5,6 В и предлагает четыре выходных канала. Четыре канала выходного напряжения являются программируемыми и называются VR1 — VR4.VR1 можно запрограммировать на напряжение от 1,8 В до 5,2 В при 100 мА, VR2 и VR3 можно запрограммировать на напряжение от 1,8 В до 5,2 В при 50 мА, а VR4 можно запрограммировать на напряжение от 1,8 В до 5,2 В при 300 мА
Это, безусловно, самый дорогой чип во всем этом списке, он обладает удивительными характеристиками , такими как выходное напряжение, пропорциональное температуре (PTAT), и сверхнизкими шумовыми характеристиками. В таблице данных указано, что масштабирует напряжение питания в зависимости от температуры, чтобы максимизировать фазовый шум и характеристики выходной мощности .
Он имеет встроенную функцию ограничения выходного тока с тепловым отключением в случае перегрузки или короткого замыкания и работает при температуре от -40 ° C до + 125 ° C. Для получения информации о различных вариантах выходного напряжения и упаковке см. Техническое описание этого чипа. Приложения включают подачу ВЧ и смешанных сигналов, генерацию сверхмалых шумов (ФАПЧ, ГУН, ФАПЧ со встроенными ГУН) и многое другое. Этот чип стоит $ 9,435682 за единицу и упадёт до $ 7.388182 на всю катушку из 3000 штук.
Название детали: HMC1060LP3E
Лист данных: HMC1060LP3E Лист данных
Примечание: Обратите внимание на производителя, некоторые параметры устройства могут сильно отличаться в зависимости от производителя.
Надеюсь, вам понравилась эта статья и вы узнали из нее что-то новое. Если у вас есть сомнения, вы можете задать вопрос в комментариях ниже.
Важные параметры, которые следует учитывать при выборе регулятора напряжения для вашей конструкции
Регулятор напряжения — это простое и экономичное устройство, которое может изменять входное напряжение на выходе на другой уровень и поддерживать постоянное выходное напряжение даже при переменной нагрузке условия. Практически все электронные устройства, от зарядного устройства для сотового телефона до кондиционеров и сложных электромеханических устройств, используют регулятор напряжения для подачи различных напряжений постоянного тока на различные компоненты устройства.Кроме того, во всех схемах питания используются микросхемы регуляторов напряжения.
Например, в вашем смартфоне регулятор напряжения используется для повышения или понижения напряжения батареи для компонентов (таких как светодиод подсветки, микрофон, сим-карта и т. Д.), Которые требуют более высокого или более низкого напряжения, чем батарея. Выбор неправильного регулятора напряжения может привести к снижению надежности, более высокому энергопотреблению и даже поджариванию компонентов.
Итак, в этой статье мы обсудим некоторые важные параметры, которые следует учитывать при выборе регулятора напряжения для вашего проекта .
Важные факторы при выборе регулятора напряжения1. Входное и выходное напряжение
Первым шагом к выбору регулятора напряжения является знание входного и выходного напряжения, с которыми вы будете работать. Для линейных регуляторов напряжения требуется входное напряжение, превышающее номинальное выходное напряжение. Если входное напряжение меньше желаемого выходного напряжения, это приводит к состоянию недостаточного напряжения, которое приводит к отключению регулятора и выдаче нерегулируемого выходного сигнала.
Например, , если вы используете стабилизатор напряжения 5 В с падением напряжения 2 В, то входное напряжение должно быть как минимум равным 7 В для регулируемого выхода. Входное напряжение ниже 7 В приведет к нерегулируемому выходному напряжению.
Существуют разные типы регуляторов напряжения для разного диапазона входного и выходного напряжения. Например, вам понадобится стабилизатор напряжения 5 В для Arduino Uno и стабилизатор напряжения 3,3 В для ESP8266. Вы даже можете использовать регулируемый стабилизатор напряжения, который можно использовать для различных выходных приложений.
2. Падение напряжения
Падение напряжения — это разница между входным и выходным напряжениями регулятора напряжения. Например, мин. Входное напряжение для 7805 составляет 7 В, а выходное напряжение — 5 В, поэтому у него есть падение напряжения 2 В. Если входное напряжение упадет ниже, выходное напряжение (5 В) + падение напряжения (2 В) приведет к нерегулируемому выходу, который может повредить ваше устройство. Поэтому перед выбором регулятора напряжения проверьте падение напряжения.
Падение напряжения зависит от регулятора напряжения; Например, вы можете найти ряд регуляторов на 5 В с различным падением напряжения.Линейные регуляторы могут быть чрезвычайно эффективными, когда они работают с очень низким падением входного напряжения. Поэтому, если вы используете аккумулятор в качестве источника питания, вы можете использовать стабилизаторы LDO для повышения эффективности.
3. Рассеиваемая мощность
Линейные регуляторы напряжения рассеивают больше мощности, чем импульсные регуляторы напряжения. Чрезмерное рассеивание мощности может привести к разрядке аккумулятора, перегреву или повреждению продукта. Поэтому, если вы используете линейный регулятор напряжения, сначала рассчитайте рассеиваемую мощность.Для линейных регуляторов рассеиваемая мощность может быть рассчитана по:
Мощность = (Входное напряжение - Выходное напряжение) x Ток
Вы можете использовать импульсные регуляторы напряжения вместо линейных регуляторов напряжения, чтобы избежать проблемы рассеивания мощности.
4. КПД
КПД — это отношение выходной мощности к входной, которое пропорционально отношению выходного напряжения к входному. Таким образом, эффективность регуляторов напряжения напрямую ограничивается падением напряжения и током покоя, так как чем выше падение напряжения, тем ниже эффективность.
Для повышения эффективности необходимо минимизировать выпадающее напряжение и ток покоя, а также минимизировать разницу напряжений между входом и выходом.
5. Точность напряжения
Общая точность регулятора напряжения зависит от регулирования линии, регулирование нагрузки, опорного напряжения дрейфа, дрейф ошибки усилителя напряжения, а также температурный коэффициент. Типичные линейные регуляторы обычно имеют спецификацию выходного напряжения, которая гарантирует, что регулируемый выход будет в пределах 5% от номинального.Поэтому, если вы используете стабилизатор напряжения для питания цифровых микросхем, то отклонение в 5% не является большой проблемой.
6. Нормы нагрузки
Регулировка нагрузки определяется как способность схемы поддерживать заданное выходное напряжение при различных условиях нагрузки. Регулировка нагрузки выражается как:
Регулировка нагрузки = ∆Vout / ∆I out
7. Регулировка линии
Линейное регулирование определяется как способность схемы поддерживать заданное выходное напряжение при изменении входного напряжения.Линейное регулирование выражается как:
Регулировка нагрузки = ∆V на выходе / ∆V на
Таким образом, для выбора подходящего регулятора напряжения для любого приложения следует учитывать все вышеперечисленные факторы,
Как выбрать регулятор напряжения для вашей конструкции печатной платы — блог Upverter
Начните работу с Altium Upverter, зарегистрируйтесь сейчас.Если вы не работаете только с системой переменного тока, ваша печатная плата должна будет получать стабильное напряжение постоянного тока для правильной работы.Схема регулятора напряжения обеспечивает необходимое постоянное напряжение с фиксированной величиной, даже если входное напряжение (линия) или выходной ток (нагрузка) изменяются. Некоторые цепи более чувствительны к колебаниям напряжения, чем другие, а некоторые линии электропередач более шумные, чем другие. Любой дизайнер должен понимать, как правильно выбрать стабилизатор напряжения для своей платы. Давайте рассмотрим различные типы регуляторов постоянного тока и рассмотрим некоторые факторы, которые следует учитывать при выборе регулятора напряжения.
Типы регуляторов напряжения
Стабилизаторы напряженияобычно устанавливаются на выходе двухполупериодной схемы выпрямителя, чтобы удалить оставшуюся форму волны пульсаций.Существует несколько способов классификации регуляторов напряжения, но пока мы остановимся на линейных и импульсных регуляторах. Эти регуляторы можно относительно легко добавить в схему и обеспечить достаточно стабильное выходное напряжение для большинства приложений.
Линейные регуляторы
Линейные регуляторыиспользуют BJT или FET для стабилизации напряжения питания и управляются с помощью усилителя. Усилитель сравнивает выходное напряжение регулятора с прецизионным эталоном и меняет транзистор для поддержания постоянного выходного напряжения.Линейные регуляторы всегда понижают выходное напряжение (т. Е. Входное напряжение> выходное напряжение). Линейные регуляторы с низким падением напряжения называются регуляторами с малым падением напряжения (LDO). Линейные регуляторы обладают следующими преимуществами:
- Низкий уровень шума: Поскольку переключение не требуется, эти регуляторы генерируют низкий уровень шума и лучше всего подходят для питания чувствительных цепей. Напротив, импульсные стабилизаторы по своей природе являются шумными, поскольку они часто переключаются для поддержания выходного напряжения.
- Низкое энергопотребление: При правильной конструкции линейные регуляторы могут работать с довольно низким током покоя. Импульсные регуляторы используют сложные системы обратной связи и в конечном итоге используют более высокую мощность покоя. При работе в режиме LDO эти регуляторы могут иметь очень высокий КПД (~ 90%).
- Низкая стоимость: Линейные регуляторы дешевле, и их легко добавить в схему. Для них не требуется слишком много компонентов и фильтров. Обычно на выходе помещается конденсатор, который помогает регулировать выходное напряжение.
Пример схемы линейного регулятора
Импульсные регуляторы
Импульсный стабилизатор преобразует входное постоянное напряжение в более стабильное выходное постоянное с помощью силового MOSFET или BJT-переключателя. Выход импульсного регулятора обычно фильтруется и используется для уменьшения шума переключения выходного напряжения. Существует три типа импульсных регуляторов: понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий или понижающий). Импульсные регуляторы имеют следующие преимущества:
- Высокая эффективность: Поскольку импульсные регуляторы работают либо в выключенном, либо в включенном режиме, они, как правило, более эффективны.Они могут обеспечить КПД 90% или более, что очень сложно для большинства линейных регуляторов, если они не предназначены для использования в качестве LDO.
- Повышающая конфигурация: Линейные регуляторы могут только понижать входное напряжение, но повышающий импульсный стабилизатор может повышать напряжение. Это особенно полезно в случае, когда требуется большое напряжение в течение короткого периода времени (например, подсветка в камере).
- Тепловые характеристики: Линейные регуляторы менее эффективны, что означает, что они обычно рассеивают больше тепла и нуждаются в радиаторе.Большинству импульсных регуляторов не нужны радиаторы.
Понижающими и повышающими характеристиками можно управлять с помощью формы волны ШИМ, что делает этот регулятор идеальным для использования в приложениях, где требуются определенные уровни напряжения. Например, вы можете использовать выход ШИМ микроконтроллера для питания другой схемы с определенным уровнем напряжения. Существует множество различных способов создания ИС импульсного стабилизатора, и мы не можем показать все возможные схемы. Если вам интересно узнать больше о конкретных схемах схем для импульсных регуляторов, взгляните на таблицы данных в вашей библиотеке запчастей.
Важные параметры при выборе регуляторов
Один вопрос, который я часто вижу на форумах, — как выбрать стабилизатор напряжения для различных приложений. На этот вопрос нет однозначного ответа. При выборе регулятора напряжения следует учитывать следующие характеристики: обратите внимание, что эти аспекты относятся как к линейным, так и к импульсным регуляторам:
Выходное напряжение
Если вам нужен повышающий регулятор, то вам нужно будет использовать импульсный регулятор в повышающей конфигурации.Если вы используете несколько источников питания в системе, обычно для каждого источника используется один регулятор. Регуляторы обычно обеспечивают фиксированное выходное напряжение, хотя на рынке есть несколько регуляторов, которые можно использовать с некоторыми регулируемыми настройками.
Эффективность и шум
Импульсные регуляторы обеспечивают более высокий КПД, чем линейные регуляторы, но они производят больше шума. Излишний электронный шум может мешать работе других цепей, когда регулятор выдает большой ток.Если вы хотите, чтобы ваш продукт попал на рынок, получить сертификат EMC может быть сложнее. Если другие схемы на вашей плате чувствительны (например, чисто аналоговые компоненты), то лучше выбрать линейный регулятор.
Выбор регулятора с высокими потерями мощности может сделать почти невозможным достижение целей эффективности. Линейные регуляторы менее шумны, но очень неэффективны (за исключением LDO), что означает, что некоторая мощность преобразуется в тепло. Если ваш регулятор будет работать с большим током, вам следует установить на плате радиаторы.Если на плате нет места для радиатора или если проблема рассеивания мощности, то импульсный стабилизатор может быть лучшим вариантом.
Эти линейные регуляторы напряжения 7805 от Fairchild включают радиатор на задней стороне корпуса.
Переходная характеристика
При быстром изменении выходного тока на выходе появляется небольшой всплеск. Стабилизатору напряжения требуется некоторое время, прежде чем он снова переключится на то же напряжение.Это называется переходной реакцией. Переходная характеристика обычно является функцией выходной емкости и тока нагрузки. Быстрый переходный отклик гарантирует, что регулятор может выдавать требуемую мощность. Проверьте спецификации компонентов и найдите рекомендуемый байпасный конденсатор, который следует включить на выход регулятора.
Рекомендации по компоновке стабилизатора напряжения
После того, как вы выбрали правильный регулятор напряжения для вашей конструкции, вам нужно будет разместить его в нужном месте на плате.Как правило, вам понадобится один конденсатор между выходом и землей и один между входом и землей как можно ближе к контактам. Вы также должны тщательно спроектировать дорожки, чтобы они могли проводить необходимый ток без перегрева.
Если вы взглянете на некоторые проекты с открытым исходным кодом в библиотеке проектов Upverter ™, вы найдете несколько хороших примеров компоновки регуляторов, которые вы можете использовать в качестве справочника для своего следующего проекта.
Плата управления повышающим преобразователем от Джеймса Фотерби , созданная в Upverter.
Хороший инструмент компоновки позволяет легко разрабатывать схемы для вашей платы и фиксировать их в качестве начального макета. Upverter® предоставляет огромную библиотеку надежных компонентов, которые вы можете легко добавить в свою схему и компоновку, включая огромный выбор регуляторов напряжения и многое другое. Как облачный инструмент, Upverter позволяет пользователям легко делиться своей работой, контролировать изменения и получать доступ к своим данным из любого места.