Закрыть

Катушка индуктивности что это такое: Катушка индуктивности — это… Что такое Катушка индуктивности?

Содержание

Катушка индуктивности — это… Что такое Катушка индуктивности?

Обозначение на электрических принципиальных схемах

Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Конструкция

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса.

Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса

[1].

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где :  — ток в катушке,

 — начальный ток катушки,
 — текущее время,
 — постоянная времени.

Постоянная времени выражается формулой:

,

где :  — сопротивление резистора,

 — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

.

При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

↔ , где
↔ ↔  ; ↔  ; ↔

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

где  — магнитная постоянная
 — относительная магнитная проницаемость материала сердечника (зависит от частоты)
 — площадь сечения сердечника
 — длина средней линии сердечника
 — число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

При параллельном соединении катушек общая индуктивность равна:

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
  • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Паразитная емкость и собственный резонанс

Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике
Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
Катушки связи, или трансформаторы связи
Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
Вариометры
Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
Дроссели
Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
Сдвоенный дроссель
Сдвоенные дроссели
Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. [2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

Применение катушек индуктивности

Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
  • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
  • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
  • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
  • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
  • Для накопления энергии.

См. также

Примечания

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

Катушка индуктивности — это… Что такое Катушка индуктивности?

Обозначение на электрических принципиальных схемах

Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Конструкция

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где :  — ток в катушке,

 — начальный ток катушки,
 — текущее время,
 — постоянная времени.

Постоянная времени выражается формулой:

,

где :  — сопротивление резистора,

 — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

.

При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

↔ , где
↔ ↔  ; ↔  ; ↔

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

где  — магнитная постоянная
 — относительная магнитная проницаемость материала сердечника (зависит от частоты)
 — площадь сечения сердечника
 — длина средней линии сердечника
 — число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

При параллельном соединении катушек общая индуктивность равна:

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
  • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Паразитная емкость и собственный резонанс

Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике
Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
Катушки связи, или трансформаторы связи
Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
Вариометры
Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
Дроссели
Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
Сдвоенный дроссель
Сдвоенные дроссели
Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. [2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

Применение катушек индуктивности

Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
  • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
  • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
  • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
  • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
  • Для накопления энергии.

См. также

Примечания

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

Катушка индуктивности — это… Что такое Катушка индуктивности?

Обозначение на электрических принципиальных схемах

Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Конструкция

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где :  — ток в катушке,

 — начальный ток катушки,
 — текущее время,
 — постоянная времени.

Постоянная времени выражается формулой:

,

где :  — сопротивление резистора,

 — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

.

При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

↔ , где
↔ ↔  ; ↔  ; ↔

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

где  — магнитная постоянная
 — относительная магнитная проницаемость материала сердечника (зависит от частоты)
 — площадь сечения сердечника
 — длина средней линии сердечника
 — число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

При параллельном соединении катушек общая индуктивность равна:

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
  • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Паразитная емкость и собственный резонанс

Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике
Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
Катушки связи, или трансформаторы связи
Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
Вариометры
Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
Дроссели
Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
Сдвоенный дроссель
Сдвоенные дроссели
Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. [2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

Применение катушек индуктивности

Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
  • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
  • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
  • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
  • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
  • Для накопления энергии.

См. также

Примечания

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

Катушка индуктивности — это… Что такое Катушка индуктивности?

Обозначение на электрических принципиальных схемах

Катушка индуктивности (жарг. индуктивность) — пассивный двухполюсный компонент электрических и электронных устройств и систем. Основной параметр катушки индуктивности — величина её индуктивности, зависящая только от геометрических размеров и материалов и не зависящая от режима работы (тока и напряжения).

Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющую механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Конструкция

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто на тороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности часто имеют замкнутый или разомкнутый ферромагнитный сердечник, помехоподавляющие дроссели высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники используют для изменения индуктивности катушек в небольших пределах изменением положения сердечника относительно обмотки, как правило, ферромагнитного сердечника. На СВЧ, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличиваются потери, для этой цели применяются металлические (латунные) сердечники.

На печатных платах электронных устройств применяют плоские «катушки» индуктивности — геометрия печатного проводника выполнена в виде круглой или прямоугольной спирали, волнистой, или в виде меандра, линии. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своем магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для постоянного тока имеет только собственное омическое сопротивление, но имеет реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением модуль которого: , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Величина этой энергии равна:

Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям.

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где :  — ток в катушке,

 — начальный ток катушки,
 — текущее время,
 — постоянная времени.

Постоянная времени выражается формулой:

,

где :  — сопротивление резистора,

 — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени : катушки:

.

При стремлении к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

↔ , где
↔ ↔  ; ↔  ; ↔

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к величине протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

где  — магнитная постоянная
 — относительная магнитная проницаемость материала сердечника (зависит от частоты)
 — площадь сечения сердечника
 — длина средней линии сердечника
 — число витков

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

При параллельном соединении катушек общая индуктивность равна:

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).
  • Потери обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика гистерезис.

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Паразитная емкость и собственный резонанс

Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка представляет эквивалентно собой идеальную индуктивность с параллельно присоединенным ей конденсатором паразитной емкости. В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостной. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике
Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.
Катушки связи, или трансформаторы связи
Взаимодействующие магнитными полями пара и более катушек, обычно включаются параллельно конденсаторам для организации колебательных контуров: Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току, например, цепи базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).
Вариометры
Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.
Дроссели
Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца) нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.
Сдвоенный дроссель
Сдвоенные дроссели
Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. [2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали). Для фильтрации высокочастотных помех — ферритовый сердечник.

Применение катушек индуктивности

Балластный дроссель. Ранее применявшаяся в качестве реактивного сопротивления для люминесцентных ламп катушка индуктивности
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
  • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
  • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
  • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
  • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
  • Для накопления энергии.

См. также

Примечания

Ссылки

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

Что такое катушка индуктивности и для чего она нужна? | ASUTPP

Я получил письма от многих из вас с просьбой рассказать простыми словами о катушке индуктивности.

Это действительно хорошая просьба и желание). Потому что катушка индуктивности — это довольно странный компонент. Её невероятно легко сделать. Но немного сложнее понять как она работает.

Катушка индуктивности

Катушка индуктивности (иногда называют ее индуктором или дросселем) — это просто катушка проволоки, которая намотана вокруг какого-нибудь сердечника. Ядро сердечника может быть просто воздухом или магнитом.

Когда вы подаете ток через катушку, вокруг неё создается магнитное поле.

При использовании магнитного сердечника магнитное поле будет намного сильнее.

Как работает катушка индуктивности?

Ток через любой провод создаст магнитное поле. Катушка индуктивности имеет проволочную форму, поэтому магнитное поле будет намного сильнее.

Причина, по которой индуктор работает так, как он работает, заключается в этом магнитном поле. Отсюда вытекают и следующие свойства катушки.

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для переменного тока имеет не только собственное омическое (активное) сопротивление, но и реактивное сопротивление переменному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Более детально о принципе работы катушек индуктивности вы можете почитать на сайте.

Для чего вы можете использовать их?

Я почти никогда не использую катушки индуктивности. Главным образом потому, что я работаю в основном с цифровыми схемами. Но я использовал их иногда для создания фильтров, генераторов и блоков питания.

Вы часто найдете катушки индуктивности в аналоговой электронике переменного тока, такой как радиооборудование.

Катушки индуктивности, как их применять

Катушка индуктивности (иногда дроссель) — винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока наблюдается её значительная инерционность.

Если хорошо подумать, то всевозможных применений для такой простой на первый взгляд вещи как катушка индуктивности просто не счесть. В рамках одной статьи мы вспомним лишь некоторые из них. А между тем, человеческие изобретательность и талант не устают творчески проявлять себя, придумывая и разрабатывая все новые и новые устройства и механизмы на базе катушки индуктивности.

Казалось бы, что тут можно соорудить? Бесхитростный моток проволоки, может быть сердечник определенной формы, и ток, проходящий по проводу в постоянной, переменной или импульсной форме. А между тем, без катушек индуктивности вся современная электротехника просто не могла бы существовать. Давайте внимательно приглядимся.

Грузоподъемный электромагнит

Грузоподъемники в форме шайб-элекромагнитов применяют по всему миру на протяжении многих лет для погрузки ферромагнитных отходов. Подав в рабочую обмотку электрическую мощность в 18кВт, можно удержать и погрузить за раз более 2 тонн железа, тогда как развиваемое при данной мощности отрывное усилие превышает 25 тонн.

Электромагнит диаметром примерно 1,5 метра просто цепляется крюком подъемного крана, запитывается, как правило, трехфазным переменным напряжением, и можно оперативно вести погрузку ферромагнитных материалов или каких-нибудь железных изделий. Секционированные обмотки нескольких катушек индуктивности получают ток, намагничивая сердечник из специального сплава, а он в свою очередь притягивает, допустим, металлолом, который требуется погрузить в вагоны.

Электромагнитное реле

Что если вам понадобилось периодически включать и выключать питание какой-нибудь электрической цепи, как-будто вы нажимаете на кнопку механического выключателя, при этом ставить полупроводниковый ключ не целесообразно, а механический выключатель или тумблер — не удобно и не эстетично?

Допустим, вам необходимо просто прикоснуться пальцем к сенсору, а результатом должен стать процесс подключения к (или отключения от) сети мощной нагрузки, например лампы или двигателя. На помощь приходят электромагнитные реле. Благодаря реле вы можете отказаться от огромных кнопок выключателей, вместо этого теперь можно просто дотрагиваться до микрокнопок, на которые будет реагировать электронная схема, функция которой — подавать питание на обмотку реле или снимать с нее питание. Обмотка реле — это обмотка электромагнита (опять же катушка индуктивности), который притягивает подпружиненный контакт, выполняющий роль механического выключателя.

Трансформатор

Для преобразования переменного напряжения и тока одной величины в переменное напряжение и ток другой величины, используют трансформаторы. Первичная и вторичная обмотки трансформатора, установленные на ферромагнитном сердечнике, — это катушки индуктивности.

Первичная обмотка при прохождении по ее проводу переменного тока, создает в объеме сердечника переменный магнитный поток, который пронизывает витки вторичной обмотки, и наводит в ней ЭДС, создает напряжение вторичной обмотки. Трансформаторы повышают напряжение электростанций и подают их на ЛЭП, а затем понижают напряжение от ЛЭП, и подают его в наши дома.

Не было бы трансформаторов (катушек индуктивности в роли первичной и вторичной обмоток) — не было бы ни передачи, ни распределения электроэнергии. Не говоря уже о лабораторных автотрансформаторах, сварочных трансформаторах, трансформаторах на феррите в импульсных блоках питания, и конечно ни о каких катушках зажигания в автомобилях речи бы не шло, а ведь катушки зажигания — это тоже особые, но трансформаторы, то есть снова катушки индуктивности.

Дроссель

Для преобразования электроэнергии в импульсных источниках питания используются специальные катушки индуктивности — дроссели. Функция такой катушки — сначала накопить энергию в форме магнитного поля в сердечнике, запасти ее там, потом — отдать нагрузке. Если трансформатор в одно и то же время преобразует электроэнергию, то дроссель — сначала энергию принимает, потом — отдает.

Процесс преобразования электроэнергии у дросселя разделен во времени. Тем не менее, вот вам снова применение катушки индуктивности, главного ее свойства. Импульс тока подается на обмотку дросселя, дроссель запасает энергию в магнитном поле. Затем импульс тока уже не действует, но к дросселю подключена нагрузка, и ток дросселя устремляется через нагрузку, но уже при другом напряжении, зависящем от временных характеристик схемы управления преобразователем. Так катушка индуктивности сплошь и рядом, например в энергосберегающих лампах, работает совместно с полупроводниковыми ключами.

Индукционные печи и индукционные плиты

Катушка индуктивности — это катушка с сердечником. А что если в качестве сердечника внутрь катушки, в ее поле действия, ввести какую-нибудь заготовку из ферромагнитного материала, который требуется нагреть вихревыми токами? Именно так работают индукционные печи и индукционные плиты. Катушка индукционного нагревателя выступает для ферромагнитной заготовки индуктором, наводя в ней вихревые токи высокой частоты, приводящие к разогреву заготовки вплоть до плавления.

Похожим образом действует и индукционная плита. Дно посуды разогревается вихревым током, словно сердечник катушки индуктивности, обмотка которой скрыта внутри панели индукционной плиты. Кстати, в схемах питания индукционных плит тоже используются катушки индуктивности — в роли импульсных трансформаторов и дросселей.

Фильтр ВЧ-помех

Катушка индуктивности обладает свойством препятствовать изменению тока, она проявляет своего рода электромагнитную инерционность, заставляя ток как-бы просачиваться сквозь себя, потому что пока ток нарастает через катушку, создаваемое им магнитное поле не может изменяться мгновенно, изменение требует времени, катушка индуктивности словно тормозит своим магнитным полем изменение тока в собственном проводе.

Данное свойство — препятствовать изменению тока — используется в индуктивных фильтрах ВЧ-помех. Для постоянного тока катушка не является сопротивлением, разве что сопротивление ее провода выступает активным сопротивлением, а вот для тока переменного, да высокочастотного (коим являются например коммутационные помехи) — катушка станет препятствием. Так фильтры на базе катушек индуктивности защищают сети и схемы от помех.

В составе колебательного контура

Колебательный контур — это катушка, в частности — катушка индуктивности (с сердечником), соединенная с конденсатором. Колебательный контур как таковой служит обычно осциллирующей системой. Он имеет собственную резонансную частоту, и может поэтому выступать задающим звеном для получения или приема колебаний определенной частоты, например в радиосвязи.

Кстати, индукционные нагреватели зачастую имеют индуктор, соединенный параллельно с конденсатором, в таких условиях катушка индуктора тоже является составной частью колебательного контура. Кроме того, сам резонансный контур может выступать в качестве фильтра — пропускать и усиливать токи частот близких к собственной резонансной частоте, и подавлять частоты далекие от нее. В радиоприемниках антенны на феррите — тоже являются частью перестраиваемого колебательного контура.

Роторы и статоры двигателей и генераторов

В двигателях и генераторах статор и ротор — это модифицированные катушки индуктивности. Ротор автомобильного генератора с обмоткой возбуждения и полюсными наконечниками — чем не катушка индуктивности?

Статор этого же генератора имеет трехфазную обмотку — это своего рода модификация катушки индуктивности. Даже асинхронный двигатель — и тот имеет обмотку статора, которую можно тоже назвать катушкой индуктивности. Мало того, индуктивности этих статорных катушек учитываются как таковые при подборе рабочих конденсаторов, например когда трехфазный двигатель необходимо адаптировать к питанию от однофазной цепи.

Датчики перемещения и положения

Индуктивные датчики перемещения и положения — это катушки индуктивности с модифицированными сердечниками. Часть сердечника катушки в форме пластины, перемещаясь изменяет индуктивность катушки, и частотные параметры схемы изменяются из-за изменения индуктивности. Так фиксируется наличие объекта в поле действия датчика. Или цилиндрический сердечник в форме штока может смещаться по мере движения связанного с ним объекта, и по частотным параметрам, связанным с изменяемой индуктивностью катушки, сердечник которой двигается, считывается информация о положении объекта.

Направление луча в ЭЛТ

В некоторых мониторах с электронно-лучевыми трубками поток заряженных частиц фокусируется и отклоняется специальными катушками отклоняющей системы. Катушки индуктивности отклоняющей системы установлены на ферритовом сердечнике особой формы, в который вставляется электронно-лучевая трубка. Регулируя ток в обмотках, схема изменяет параметры суммарного магнитного поля всех катушек системы, в результате лучу создается определенный путь для попадания в точно рассчитанное место на экране.

Электроклапан, электрозамок, втягивающее реле

Подобно магниту, который притягивает железные предметы, катушка способна втянуть в себя ферромагнитный сердечник той или иной формы. Приблизительно по такому принципу работают некоторые электрические замки, электромагнитные клапана и, как пример, втягивающее реле автомобильного стартера, перемещающее бендикс, и удерживающее его некоторое время в рабочем положении, пока двигатель не будет пущен. Мощная катушка сначала втягивает якорь, затем удерживает его. По выключении тока, бендикс возвращается на место пружиной.

Катушки магнитного удержания плазмы

Токамаки — установки термоядерного синтеза, в которых удержание плазмы осуществляется путем создания вокруг нее магнитного поля, чтобы плазма двигалась бы только вдоль силовых линий, но не могла бы вырваться поперек них и нарушить процесс. Внутри определенной конфигурации сверхпроводящих катушек, в самом простом случае — нанизанных по кругу на тор, плазма могла бы гипотетически кружить практически вечно. Как видно, катушки индуктивности нашли себя и в токамаках — тороидальных камерах с магнитными катушками. Название установки говорит само за себя.

Катушка Тесла

Говоря о катушках индуктивности, нельзя не вспомнить о легендарной катушке (или резонансном трансформаторе) Тесла. В данном случае катушка индуктивности работает одновременно и как трансформатор, и как колебательный контур, и как приемная антенна с открытой емкостью. Здесь нет конденсатора параллельно резонирующей катушке, как в индукционном нагревателе, но есть уединенная емкость в виде тороида.

Каждая катушка кроме параметра «индуктивность», обладает еще и емкостью, и собственным волновым сопротивлением. Все эти параметры учитываются при настройке трансформатора Тесла. Казалось бы, просто заземленная катушка индуктивности с тороидом наверху, введенная в собственный резонанс. Но как эффектно смотрится!

Ранее ЭлектроВести писали, что группа ученых, работающих на ВМФ США, разработала сверхпроводник, который работает при комнатной температуре и изменит компьютерные системы будущего. Первый, который не нужно охлаждать или подвергать давлению. Впрочем, конкретных цифр в патентной заявке маловато.

По материалам: electrik.info.

Катушка индуктивности

Катушка индуктивности, как показано на рис. 4.11, представляет собой простомоток провода. Условное обозначение катушки индуктивности показано на рис. 4.12. В отличие от конденсатора, который препятствует изменению приложенного к нему напряжения, катушка индуктивности препятствует изменению протекающего через нее тока. Иными словами,

Рис. 4.12. Условное обозначение катушки индуктивности.                         Рис. 4.13           

если ток, подаваемый в схему, которая содержит катушку, резко увеличить, то ток в схеме будет нарастать плавно до достижения своего мак­симального значения.

Способность катушки индуктивности препятствовать изменению силы тока, протекающего через нее, носит название индуктивности этой катушки. Индуктивность обозначается буквой L, единицей ее измерения является генри (Гн).

Постоянная времени -цепи

На рис. 4.13 последовательная цепочка из конденсатора и резистора соединяется через ключ с источником питания. Когда ключ находится в положении 1, конденсатор постепенно заряжается через сопротивление, пока напряжение на нем не достигнет уровня Е т. е. ЭДС или напряжения источника питания.

Процесс заряда конденсатора показан на рис. 4.14(а) экспоненциальной кривой. Время, за которое напряжение на конденсаторе достигает значения 0,63 от максимума, т. е. в данном случае 0,63Е, называется постоянной времени контура или цепи.

 

Вернемся к рис. 4.13. Если ключ установить в положение 2, конденсатор будет сохранять запасенную энергию. При переведении ключа в положение3 конденсатор начинает разряжаться на землю через резистор R, и напряжение на нем постепенно падает до нуля. Процесс разряда конденсаторапоказан на рис. 4.14(б). В этом случае постоянной времени цепи называется время, за которое напряжение на конденсаторе уменьшается 0,63 от своего максимального значения.

 

Рис. 4.14. Кривые заряда (а) и разряда (б) конденсатора, где t — постоянная времени.

Как для случая заряда, так и для случая разряда конденсатора через резистор R постоянная времени цепи выражается формулой

где t — постоянная времени в секундах, С — емкость в фарадах, R — сопротивление, выраженное в омах.

Например, для случая С = 10мкФ и R= 10 кОм постоянная времени цепи равна

На рис. 4.15 изображены графики процессов заряда для цепей с малой и с большой постоянной времени.

 

Рис. 4.15. Процессы заряда для цепей с малой и с большой постоянной времени.

 

Постоянная времени RL-цепи

Рассмотрим схему, изображенную на рис. 4.16. Катушка индуктивности L соединена последовательно с резистором R, имеющим сопротивление 1 кОм. В момент замыкания ключа S ток в цепи равен нулю, хотя под действиемЭДС источника он, казалось бы, должен резко увеличиться. Однако катушка индуктивности, как известно, препятствует всякому изменению силы тока, протекающего через нее, поэтому ток в цепи будет возрастать по экспоненциальному закону, как показано на рис. 4.17. Ток будет возрастать до тех пор, пока не достигнет своего максимального значения. После этого увеличение тока прекратится, а падение напряжения на резисторе R станет равным приложенному напряжению Е. Установившееся значение тока равно

E/R = 20 В/1 кОм = 20 мА.

Скорость изменения тока в цепи зависит от конкретных значений R и L. Время, необходимое для того, чтобы сила тока достигла значения, равного 0,63 от его максимальной величины, носит название постоянной времени цепи. Постоянная времени вычисляется по формуле L/R где L выражается в генри, а R — в омах. В этом случае постоянная времени получается в секундах. Используя значения L и R, указанные на рисунке, получаем

Следует заметить, что, чем больше R, тем меньше L/R и тем быстрее изменяется ток в цепи.

Рис. 4.16.

 

Рис. 4.17. Экспоненциальное увеличение тока, протекающего через катушку индуктивности.

 

Сопротивление по постоянному току

Катушка индуктивности, включенная в цепь, не препятствует протеканию постоянного тока, если, конечно, но принимать во внимание очень малое сопротивление провода, из которого она сделана. Следовательно, катушка индуктивности имеет нулевое или очень малое сопротивление и может рассматриваться в цепи постоянного тока как цепь короткого замыкания. Конденсатор же в связи с наличием в нем изолирующего ди­электрика имеет бесконечное или очень большое сопротивление и может рассматриваться в цепи постоянного тока как разрыв.

 
Векторное представление

Сигнал синусоидальной формы может быть представлен в виде век­тора ОА, вращающегося против часовой стрелки с угловой скоростью ω= 2πf, где f – частота сигнала (рис. 4.18). По мере того как поворачивается вектор, ордината его конца характеризует показанный на рисунке синусоидальный сигнал. Один полный оборот вектора (360°, или 2π) со­ответствует одному полному периоду. Половина оборота (180°, или π) со­ответствует половине периода, и так далее. Таким образом, ось времени, как показано на рисунке, может использоваться для нанесения значений угла, на который повернулся вектор. Максимум сигнала достигается при 90° (1/4 периода), а минимум — при 270° (3/4 периода).

Теперь рассмотрим два синусоидальных сигнала, представленных на рис. 4.19(а) векторами ОА и ОВ соответственно. Если оба сигнала имеют одинаковые частоты, то векторы ОА и ОВ будут вращаться с одинаковой угловой скоростью ω= 2πf. Это означает, что угол между этими векторами

 

Рис. 4.18. Векторное представление синусоидального сигнала.

Рис. 4.19. Разность фаз. Вектор ОА опережает вектор ОВ

 (или вектор ОВ отстает от вектора ОА) на угол θ.

изменяться не будет. Говорят, что вектор ОА опережает вектор ОВ на угол θ, а вектор ОВ отстает от вектора ОА на угол в. На рис. 4.19(б) эти сигналы развернуты во времени.

Если оба этих синусоидальных сигнала сложить, то в результате получим другой синусоидальный сигнал, имеющий ту же частоту f, но другую амплитуду. Результирующий сигнал может быть представлен вектором ОТ, который, как показано на рис. 4.19(в), является векторной суммой векторов ОА и ОВ. Вектор ОТ опережает вектор ОВ на угол α и отстает от вектора ОА на угол γ. Дальше вы увидите, что векторное представление является весьма удобным приемом при анализе и расчете цепей переменного тока.

В этом видео рассказывается о катушке индуктивности:

 

Добавить комментарий

Что такое индуктор? — ES Components

Индуктор , также называемый катушкой , дросселем или реактором , представляет собой пассивный двухконтактный электрический компонент, который накапливает энергию в магнитном поле при прохождении через него электрического тока. Индуктор обычно состоит из изолированного провода, намотанного в катушку вокруг сердечника.

Когда ток, протекающий через индуктор, изменяется, изменяющееся во времени магнитное поле индуцирует электродвижущую силу ( e.м.ф. ) (напряжение) в проводнике, описываемое законом индукции Фарадея. Согласно закону Ленца, индуцированное напряжение имеет полярность (направление), которая противодействует изменению тока, создавшего его. В результате катушки индуктивности препятствуют любым изменениям тока через них.

Катушка индуктивности характеризуется своей индуктивностью, которая представляет собой отношение напряжения к скорости изменения тока. В Международной системе единиц (СИ) единицей индуктивности является генри (Н), названный в честь американского ученого 19 века Джозефа Генри.При измерении магнитных цепей он эквивалентен Веберу / Амперу. Индукторы имеют значения, которые обычно находятся в диапазоне от 1 мкГн (10-6 Гн) до 20 Гн. Многие индукторы имеют магнитный сердечник из железа или феррита внутри катушки, который служит для увеличения магнитного поля и, следовательно, индуктивности. Наряду с конденсаторами и резисторами, индукторы являются одним из трех пассивных элементов линейной цепи, составляющих электронные схемы. Индукторы широко используются в электронном оборудовании переменного тока (AC), особенно в радиооборудовании.Они используются для блокировки переменного тока, позволяя проходить постоянному току; дроссели, предназначенные для этой цели, называются дросселями. Они также используются в электронных фильтрах для разделения сигналов разных частот и в сочетании с конденсаторами для создания настроенных схем, используемых для настройки радио- и ТВ-приемников.

Катушки индуктивности широко используются в аналоговых схемах и обработке сигналов. Применения варьируются от использования больших катушек индуктивности в источниках питания, которые в сочетании с фильтрующими конденсаторами устраняют пульсации, кратные частоте сети (или частоте переключения для импульсных источников питания) на выходе постоянного тока, до небольшой индуктивности. ферритовой бусины или торца, установленных вокруг кабеля, чтобы предотвратить передачу радиочастотных помех по проводу. Индукторы используются в качестве накопителя энергии во многих импульсных источниках питания для выработки постоянного тока. Катушка индуктивности подает энергию в схему для поддержания протекания тока в периоды выключения и позволяет создавать топографии, в которых выходное напряжение выше входного.

Источник: Википедия

Что такое индуктор? | Койлкрафт

Катушки индуктивности и дроссели

Катушка индуктивности — это пассивный электрический компонент, который противодействует резким изменениям тока.Индукторы также известны как катушки или дроссели. Электрический символ индуктора — L.

Для чего используется индуктор?

Катушки индуктивности замедляют скачки или скачки тока, временно сохраняя энергию в электромагнитном поле, а затем возвращая ее обратно в цепь.

Индуктор с воздушным или керамическим сердечником Индуктор с ферритовым или железным сердечником

Как индукторы прикреплены к печатным платам?

Катушки индуктивности

для поверхностного монтажа (SM) помещаются на верхнюю часть печатной платы (PCB) на контактные площадки с паяльной пастой, а затем паяются оплавлением. Индукторы со сквозными отверстиями (TH) устанавливаются на верхнюю часть печатной платы с выводами, проходящими через отверстия в плате, а затем припаяны волной на задней стороне.

В каких приложениях используются индукторы?

Катушки индуктивности в основном используются в электрических и электронных устройствах для следующих основных целей:

  1. Подавление, блокировка, ослабление или фильтрация / сглаживание высокочастотного шума в электрических цепях
  2. Накопление и передача энергии в преобразователях мощности (dc-dc или ac-dc)
  3. Создание настроенных генераторов или LC (индуктор / конденсатор) «резервуарных» цепей
  4. Согласование импеданса

Что такое дроссель?

Катушка индуктивности, размещенная последовательно (последовательно) с проводником, например, проводом или дорожкой печатной платы, блокирует или препятствует изменениям тока и действует как фильтр нижних частот.Поскольку катушки индуктивности ограничивают или блокируют изменения тока, их также называют «дросселями». Например, широкополосный (широкополосный) дроссель смещения в соответствии со смещением постоянного тока усилителя блокирует широкий диапазон высоких частот, позволяя при этом пропускать постоянный ток. Таким образом, дроссель смещения изолирует смещение постоянного тока от радиочастотного сигнала к усилителю.

Федеральная комиссия по связи (FCC) разработала стандарты и сертифицирует электронные устройства, продаваемые или производимые в США, на соответствие требованиям к электромагнитным помехам (EMI).Всемирные организации по стандартизации электромагнитной совместимости (EMC) включают CISPR, IEC, ISO и EN. Нормы FCC являются обязательными и применяются к таким устройствам, как компьютеры, импульсные источники питания, телевизионные приемники, передатчики, а также промышленные, научные и медицинские (ISM) устройства, излучающие радиочастотное излучение. Катушки индуктивности используются в электрических цепях для уменьшения электромагнитных помех за счет ослабления высокочастотного шума, чтобы соответствовать требованиям к электромагнитной совместимости и помехоустойчивости.

Время нарастания тока с индуктором 1 мкГн при 10 В постоянного тока
и 10 Ом нагрузка менее 10 мкс Время нарастания тока с индуктором 10 мкГн на 10 В постоянного тока
и 10 Ом нагрузка больше 40 мкс Рисунок 1

Как я могу улучшить эффективность фильтрации в цепи?

Обычно высокие значения индуктивности необходимы для фильтрации низкочастотного шума, и наоборот: более низкие значения индуктивности используются для фильтрации высокочастотного шума.Высокие значения индуктивности эффективно замедляют время нарастания тока переходных процессов, таких как замыкание переключателя. Графики на рис. 1 демонстрируют, как индуктор 10 мкГн «сглаживает» время нарастания больше, чем индуктор 1 мкГн.

Катушки индуктивности также можно комбинировать с конденсаторами для создания еще более эффективных LC-фильтров. Существует несколько возможных вариантов настройки LC-фильтра, каждая из которых предполагает компромисс между равномерностью затухания и частотной характеристикой и резкостью спада фильтра.

В этом эталонном проектном документе Coilcraft представлены эталонные конструкции фильтров Баттерворта 3-го порядка и эллиптических ЖК-фильтров 7-го порядка, в которых используются стандартные индукторы для достижения частот среза в диапазоне от 0,3 до 3000 МГц.

Хотя использование высоких значений индуктивности или создание LC-фильтров улучшает фильтрацию, для этого требуется больше места на плате. Поскольку для фильтрации более высоких частот можно использовать более низкие значения индуктивности, переключение на работу на более высокой частоте может позволить использовать катушки индуктивности меньшего размера.

Как индукторы используются в преобразователях мощности?

В импульсных источниках питания индукторы используются для хранения энергии и передачи энергии выходной нагрузке или конденсатору. Индукторы в преобразователях мощности служат для фильтрации «пульсаций» тока на выходе. Высокие значения индуктивности приводят к более низкому току пульсаций, что повышает эффективность и снижает электромагнитные помехи. См. Рисунок 2.

Как индукторы используются в настроенных схемах?

Настроенные схемы используются для передачи или приема сигналов радио- или СВЧ-диапазона.Индукторы можно комбинировать с конденсаторами для создания настроенных LC-контуров, таких как генераторы.

Преобразователь постоянного тока с низким пульсациями тока с индуктором 7,5 мкГн Преобразователь постоянного тока с низким уровнем пульсаций с индуктором 75 мкГн Рисунок 2

Как Q-фактор влияет на полосу пропускания LC-контуров?

Q-фактор (Q) — это мера диссипативной характеристики катушки индуктивности. Индукторы с высокой добротностью имеют низкое рассеивание и используются для создания точно настроенных узкополосных схем. Катушки индуктивности с низкой добротностью имеют более высокое рассеивание, что обеспечивает широкополосную работу.

Что такое собственная резонансная частота индуктора?

Настоящие катушки индуктивности имеют межвитковую емкость обмотки, которая действует как элемент параллельной цепи. Саморезонансная частота (SRF) катушки индуктивности — это частота, на которой индуктивное реактивное сопротивление равно по величине емкостному реактивному сопротивлению обмоток. В SRF индуктивный и емкостной фазовые углы компенсируются, и полное сопротивление фактически является чисто резистивным. Величина импеданса увеличивается с увеличением частоты до собственной резонансной частоты (SRF), где импеданс катушки индуктивности достигает максимального значения.На частотах выше SRF сопротивление уменьшается с увеличением частоты.

Импеданс (Z) — это характеристика электрических компонентов, которая включает комбинацию вектора сопротивления и фазы. Сопротивление имеет свойство рассеивания: энергия используется, а не восстанавливается. Фаза — это задержка между приложенным напряжением на компоненте и током, протекающим через него, чаще всего выражается как угол в градусах (°) или радианах. И сопротивление переменному току, и фаза катушек индуктивности меняются в зависимости от частоты.

Как используются индукторы для согласования импеданса?

Согласование импеданса обычно включает в себя согласование импеданса источника питания с импедансом электрической нагрузки. Максимальная мощность передается от источника к нагрузке, когда полное сопротивление нагрузки согласуется с сопротивлением источника, что повышает эффективность схемы. Если нагрузка является емкостной по сравнению с источником, можно использовать катушки индуктивности для противодействия емкости нагрузки и, таким образом, согласования полного сопротивления.

Какие типы индукторов производит компания Coilcraft?

Coilcraft разрабатывает и производит стандартные индукторы различных размеров и конструкций для удовлетворения разнообразных требований к фильтрации, настройке и согласованию импеданса.

Примечания к приложению

Что такое индуктор? — Определение с сайта WhatIs.com

От

Катушка индуктивности — это пассивный электронный компонент, который хранит энергию в виде магнитного поля.В простейшей форме индуктор состоит из проволочной петли или катушки. Индуктивность прямо пропорциональна количеству витков в катушке. Индуктивность также зависит от радиуса катушки и от типа материала, на который намотана катушка.

Для данного радиуса катушки и количества витков у воздушных сердечников наименьшая индуктивность. Такие материалы, как дерево, стекло и пластик, известные как диэлектрические материалы, по сути, такие же, как воздух для обмотки индуктора. Ферромагнитные вещества, такие как железо, слоистое железо и порошковое железо, увеличивают индуктивность, которую можно получить с помощью катушки с заданным числом витков.В некоторых случаях это увеличение составляет порядка тысячи раз. Форма сердечника также имеет значение. Тороидальные (кольцевые) сердечники обеспечивают большую индуктивность для данного материала сердечника и количества витков, чем соленоидные (стержневые) сердечники.

Стандартной единицей индуктивности является генри, сокращенно H. Это большая единица. Более распространенными единицами являются микрогенри, сокращенно мкГн (1 мкГн = 10 -6 гн) и миллигенри, сокращенно мГн (1 мГн = 10 -3 гн). Иногда используется наногенри (нГн) (1 нГн = 10 -9 Гн).

Трудно изготовить индукторы на микросхемах (ИС). К счастью, резисторы можно заменить индукторами в большинстве микросхем. В некоторых случаях индуктивность можно смоделировать с помощью простых электронных схем с использованием транзисторов, резисторов и конденсаторов, изготовленных на микросхемах.

Катушки индуктивности используются с конденсаторами в различных приложениях беспроводной связи. Катушка индуктивности, подключенная последовательно или параллельно конденсатору, может обеспечить распознавание нежелательных сигналов.Большие индукторы используются в источниках питания электронного оборудования всех типов, включая компьютеры и их периферийные устройства. В этих системах индукторы помогают сглаживать выпрямленный переменный ток в электросети, обеспечивая чистый постоянный ток, подобный батарее.

Последний раз обновлялся в сентябре 2005 г.

5 применений индукторов, которые вы должны знать

Как один из основных пассивных компонентов, индукторы играют важную роль в электронике, от запуска двигателей до подачи энергии в ваш дом.Индукторы накапливают энергию в магнитном поле, когда через него протекает ток. В типичном индукторе используется изолированный провод, намотанный в катушку вокруг центрального сердечника.

Какими бы полезными ни были индукторы, самая большая проблема — это их физический размер. Индукторы часто затмевают другие электронные компоненты в цепи и также добавляют вес. Некоторые методы имитируют большую катушку индуктивности в цепи. Однако дополнительная сложность и дополнительные компоненты ограничивают использование этих методов.

демарко-медиа / Getty Images

Фильтры

Индукторы широко используются с конденсаторами и резисторами для создания фильтров для аналоговых схем и при обработке сигналов.Сама по себе катушка индуктивности функционирует как фильтр нижних частот, поскольку сопротивление катушки индуктивности увеличивается с увеличением частоты сигнала.

В сочетании с конденсатором, сопротивление которого уменьшается с увеличением частоты сигнала, получается режекторный фильтр, который пропускает только определенный частотный диапазон.

Комбинируя конденсаторы, катушки индуктивности и резисторы, улучшенные топологии фильтров поддерживают множество приложений. Фильтры используются в большинстве электронных устройств, хотя по возможности часто используются конденсаторы, а не катушки индуктивности, поскольку они меньше и дешевле.

Датчики

Бесконтактные датчики ценятся за их надежность и простоту эксплуатации. Индукторы обнаруживают магнитные поля или присутствие магнитопроницаемого материала на расстоянии.

Индуктивные датчики занимают центральное место почти на каждом перекрестке со светофором, который определяет интенсивность движения и соответствующим образом регулирует сигнал. Эти датчики идеально подходят для легковых и грузовых автомобилей. Некоторые мотоциклы и другие транспортные средства не обладают достаточной сигнатурой для обнаружения датчиками без наддува путем добавления магнита h4 к нижней части транспортного средства.

Индуктивные датчики имеют два основных ограничения. Либо обнаруживаемый объект должен быть магнитным и индуцировать ток в датчике, либо датчик должен иметь питание, чтобы обнаруживать присутствие материалов, которые взаимодействуют с магнитным полем. Эти параметры ограничивают область применения индуктивных датчиков и влияют на конструкции, в которых они используются.

Трансформаторы

Объединение катушек индуктивности, имеющих общий магнитный путь, образует трансформатор. Трансформатор является основным компонентом национальных электрических сетей.Трансформаторы используются во многих источниках питания для повышения или понижения напряжения до желаемого уровня.

Серые канистры, которые часто можно найти на опорах электроснабжения, содержат трансформаторы.

Поскольку магнитные поля создаются изменением тока, чем быстрее изменяется ток (увеличивается частота), тем эффективнее работает трансформатор. По мере увеличения входной частоты импеданс катушки индуктивности ограничивает эффективность трансформатора. На практике трансформаторы на основе индуктивности ограничены десятками кГц, обычно ниже.Преимущество более высокой рабочей частоты — это меньший по размеру и легкий трансформатор, который обеспечивает такую ​​же нагрузку.

Архив Harley-Davidson

Моторы

Индукторы обычно находятся в фиксированном положении и не могут перемещаться для выравнивания с каким-либо близлежащим магнитным полем. Индуктивные двигатели используют магнитную силу, приложенную к индукторам, для превращения электрической энергии в механическую.

Индуктивные двигатели сконструированы таким образом, что вращающееся магнитное поле создается синхронно с входом переменного тока.Поскольку скорость вращения контролируется входной частотой, асинхронные двигатели часто используются в приложениях с фиксированной скоростью, которые могут получать питание непосредственно от сети 50/60 Гц. Самым большим преимуществом асинхронных двигателей перед другими конструкциями является отсутствие электрического контакта между ротором и двигателем, что делает асинхронные двигатели прочными и надежными.

Многие простые электродвигатели, которые вы встретите, например, в вентиляторах, являются индуктивными.

Накопитель энергии

Как и конденсаторы, индукторы накапливают энергию.В отличие от конденсаторов, индукторы ограничены в том, как долго они могут хранить энергию, потому что энергия накапливается в магнитном поле, которое разрушается при отключении питания.

В основном индукторы используются в качестве накопителей энергии в импульсных источниках питания, таких как блоки питания в ПК. В более простых неизолированных импульсных источниках питания вместо трансформатора и элемента накопления энергии используется один индуктор. В этих схемах отношение времени, в течение которого катушка индуктивности запитана, ко времени отсутствия питания определяет соотношение входного и выходного напряжения.

Спасибо, что сообщили нам об этом!

Расскажите, почему!

Другой Недостаточно подробностей Сложно понять

Что такое индуктор? — Основы схемотехники

Катушка индуктивности — это пассивный двухконтактный электрический компонент, состоящий из катушки с проводом. Он сконструирован как резистор, который состоит из проволоки простой длины, свернутой в спираль. Он хранит энергию в магнитном поле, когда через него протекает электрический ток. Индуктор обычно состоит из изолированного провода, намотанного в катушку вокруг сердечника, предназначенного для использования магнетизма и электричества.Катушка индуктивности меняется каждый раз, когда через нее протекает ток.

Изменяющееся во времени магнитное поле индуцирует в проводнике электродвижущую силу, описываемую законом индукции Фарадея. Однако закон Ленца гласит, что индуцированное напряжение имеет полярность, которая противодействует изменению тока, который его создал. Следовательно, индукторы препятствуют любым изменениям тока через них.

Катушка индуктивности способна накапливать энергию в виде магнитных полей. Поскольку электричество течет в катушку слева направо, оно создает магнитное поле по часовой стрелке.

Общие области применения индукторов

Использование индукторов зависит от требований к передаче электроэнергии. Его можно использовать в следующем:

Когда переменный ток протекает через катушки индуктивности, он создает ток в противоположном направлении. Затем индуктор перекрывает поток переменного тока и пропускает постоянный ток. Он используется в источнике питания, где переменный ток преобразуется в постоянный.

С помощью индукторов схемы настройки могут выбирать желаемую частоту. Электронные устройства, такие как схемы радионастройки и телевидение, используют конденсаторные типы вместе с катушкой индуктивности.Он изменяет частоту и помогает выбирать из нескольких каналов частоты.

  • Для хранения энергии в устройстве

Катушки индуктивности могут накапливать энергию. Энергия сохраняется в виде магнитного поля и исчезает при отключении источника питания. Вы можете увидеть это в компьютерных схемах, где можно переключать блоки питания.

Индуктивные датчики приближения очень надежны в эксплуатации и являются бесконтактными. Основным принципом этого является индуктивность, которая представляет собой магнитное поле в катушке, препятствующее прохождению электрического тока.Механизм датчиков приближения используется в светофорах для определения плотности движения.

Реле действует как электрический выключатель. Использование катушки индуктивности в переключателе, который контактирует с потоком переменного тока, создает магнитное поле.

Индукторы регулируют скорость двигателя. Вал в двигателе будет вращаться из-за магнитного поля, создаваемого переменным током. Вы можете зафиксировать скорость двигателя в зависимости от частоты источника питания.

Вы можете спроектировать трансформатор, используя комбинацию индукторов с общим магнитным полем. Системы передачи энергии иллюстрируют одно из основных применений трансформаторов. Они используются для уменьшения или увеличения мощности передачи в качестве понижающих или повышающих трансформаторов.

В качестве фильтров можно использовать комбинацию катушек индуктивности и конденсаторов. Частота входного сигнала при входе в схему ограничивается с помощью этих фильтров. По мере увеличения частоты питания увеличивается и сопротивление катушки индуктивности.

Закон индукции Фарадея

Как обсуждалось в предыдущей статье об электромагнетизме, Майкл Фарадей экспериментировал с током, протекающим через катушку с проволокой, чтобы создать магнитное поле. Он наблюдал, будет ли магнитное поле индуцировать ток во второй катушке провода, но, к сожалению, магнитное поле не возникло. Позже он понял, что изменяющееся магнитное поле вызывает электрический ток в проволочной петле. Эту идею мы сейчас называем законом индукции Фарадея.

Эксперимент Фарадея

Закон индукции Фарадея гласит, что изменяющееся магнитное поле вызывает электродвижущую силу (ЭДС) в проводе контура. Электродвижущая сила заставляет электроны двигаться и образовывать ток. Изменение площади проволочной петли и изменение угла между петлей и магнитным полем индуцирует ток. Это связано с тем, что непосредственно индуцирует ЭДС, известную как магнитный поток. Магнитный поток — это полное магнитное поле, которое проходит через проволочную петлю, и когда это поле изменяется, оно индуцирует электродвижущую силу.

Уравнение магнитного потока:

Различные типы индукторов

Существуют различные типы индукторов в зависимости от материала, из которого они изготовлены.

Индуктор с воздушным сердечником

Катушки индуктивности с керамическим сердечником также называют индукторами с воздушным сердечником. Керамика — наиболее часто используемый материал для сердечников индуктора. Его основная цель — придать форму катушке. Он имеет очень низкие потери в сердечнике и высокое качество, что делает его идеальным для высокочастотных приложений, где требуются низкие значения индуктивности.Кроме того, керамика имеет очень низкий коэффициент теплового расширения. Даже для диапазона рабочих температур стабильность индуктивности индуктора высока. Не будет увеличения значения проницаемости из-за материала сердечника, поскольку керамика не имеет магнитных свойств. При создании радиочастотных настроечных катушек, цепей фильтров и демпфирующих цепей используются индукторы с воздушным сердечником для обеспечения более низкой пиковой индуктивности и в высокочастотных приложениях, таких как теле- и радиоприемники.

Примеры характеристик:

  • Допуск: ± 2%
  • Индуктивность: 0.85 мГн
  • Сечение провода: 18 AWG
  • Сопротивление постоянному току: 0,44 Ом
  • Допустимая мощность: 30 Вт RMS

Индуктор с железным сердечником

Катушки индуктивности

с железным сердечником — лучший вариант, когда вам нужны небольшие индукторы. У них высокая мощность и высокое значение индуктивности. Однако их пропускная способность на высоких частотах ограничена. Он применим в звуковом оборудовании, но, в отличие от других индукторов с сердечником, имеет ограниченное применение.

Индуктор с ферритовым сердечником

Его еще называют ферромагнитным материалом.Он обладает магнитными свойствами и состоит из смешанного оксида металла, железа и других элементов для создания кристаллических структур.

Есть два типа ферритов — мягкие ферриты и твердые ферриты. Они классифицируются по магнитной коэрцитивности, которая представляет собой напряженность магнитного поля, необходимую для размагничивания ферромагнитного материала от состояния полного насыщения до нуля. Феррит состоит из XFe204, где X представляет собой переходные материалы. Чаще всего используются комбинации намагниченных материалов: марганец и цинк (MnZn) или цинк и никель (NiZn).Ферритовый сердечник имеет множество применений. Его можно использовать на высоких и средних частотах, в цепи переключения и Pi-фильтрах.

Примеры характеристик:

  • Запатентованные ферритовые материалы 5H и 10H и их эквиваленты
  • Подходит для диапазона ≥ 150 кГц
  • Диапазон рабочих температур от -25 ° C до + 120 ° C
  • UL 94 V – 0 огнестойкий класс для основы и бобины

Расчет напряжения на индукторе

При расчете напряжения на катушке индуктивности мы используем формулу:

Чтобы рассчитать напряжение на катушке индуктивности, нам нужно сначала найти L.L — это индуктивность, выраженная в Генри, и производная тока, проходящего через катушку индуктивности.

Пример: Если ток, протекающий через катушку индуктивности, составляет 60sin (2000t), а ее индуктивность составляет 70 мкГн, каково напряжение на катушке индуктивности?

Расчет тока через индуктор

При расчете напряжения на катушке индуктивности мы используем формулу:

Чтобы рассчитать ток через катушку индуктивности, нам нужно сначала найти L. L — это индуктивность, выраженная в Генри, и интеграл напряжения, проходящего через катушку индуктивности.

Примечание: I o — это начальный ток, проходящий через катушку индуктивности, если таковая имеется.

Пример: Если напряжение на катушке индуктивности составляет 6cos (3000t) В, а индуктивность катушки индуктивности составляет 6 мкГн, какой ток проходит через катушку индуктивности? (Начальные условия: I o = 0A)

Расчет индуктивности проволочной катушки

При расчете индуктивности катушки с проволокой мы используем формулу:

Магнитный поток вокруг катушки вызывает ее индуктивность.Чем сильнее магнитный поток для определенного значения тока, тем больше его индуктивность. Это означает, что у вас будет более высокая индуктивность при большем количестве витков катушки и более низкая индуктивность при меньшем количестве витков. Таким образом, приведенная выше формула показывает, что индуктивность пропорциональна квадрату числа витков.

Как построить катушку индуктивности из проволоки

Чтобы вычислить удельную индуктивность по Генри, мы можем использовать формулу:

Где:

  • L = индуктивность в Micro Henries [мкГн]
  • d = диаметр катушки от одного центра провода до другого центра провода.Его следует указывать в дюймах.
  • l = длина катушки, указанная в дюймах
  • n = количество витков

Но при этом помните следующее:

  • Длина катушки, используемой в индукторе, должна быть равна или 0,4 диаметра катушки.
  • Как показано в приведенной выше формуле, индуктивность индуктора с воздушным сердечником изменяется как квадрат числа витков. Таким образом, значение длины умножается в четыре раза, если количество витков удваивается.Значение длины умножается на два, если количество витков увеличивается до 40%.

Как намотать катушку

  1. Сначала катушка должна быть намотана на пластмассовый каркас соответствующего диаметра и должен быть равен необходимому диаметру сердечника.
  2. Обмотка должна быть плотной, а соседние витки должны располагаться как можно ближе.
  3. После завершения намотки медленно извлеките сердечник, не трогая катушку.
  4. Нанесите тонкий слой эпоксидной смолы на поверхность змеевика для механической поддержки.
  5. Наконец, удалите изоляцию с концов катушки.

Пример. Допустим, вам нужно сделать катушку индуктивности, обеспечивающую индуктивность 20 мкГн. Диаметр катушки составляет 2 дюйма, а длина катушки — 2,25 дюйма. Вам нужно найти количество витков катушки.

Подставляя значения в приведенную выше формулу, где:

  • L = 20 дюймов
  • d = 2 дюйма
  • l = 2,25 дюйма

Катушка провода Характеристики , влияющие на индуктивность

1.Количество витков или витков в катушке

Чем больше витков провода в катушке, тем большее количество генерируемого магнитного поля измеряется в ампер-витках. Это означает, что чем больше витков провода в катушке, тем больше индуктивность, а чем меньше витков, тем меньше индуктивность.

2. Площадь змеевика

Площадь катушки измеряется в продольном направлении через катушку в поперечном сечении сердечника. Большая площадь катушки дает меньшее сопротивление формированию потока магнитного поля при определенной силе поля.Это означает, что большая площадь катушки приводит к большей индуктивности, а меньшая площадь катушки приводит к меньшей индуктивности.

3. Длина рулона

Чем больше длина катушки, тем меньше индуктивность, и, наоборот, чем короче длина катушки, тем больше индуктивность. Катушка, расположенная на большом расстоянии, образует относительно длинную катушку. Этот тип катушки имеет меньше магнитных связей из-за большего расстояния между каждым витком. Следовательно, он имеет относительно низкую индуктивность. С другой стороны, катушка с близко расположенными витками образует относительно короткую катушку.Такое близкое расстояние увеличивает потокосцепление, увеличивая индуктивность катушки. Удвоение длины катушки при сохранении того же числа витков снижает индуктивность вдвое.

4. Основной материал

Чем больше магнитная проницаемость сердечника, тем больше индуктивность. Магнитный сердечник сердечника из мягкого железа — лучший путь для магнитных силовых линий, чем немагнитный сердечник. Высокая проницаемость магнитного сердечника из мягкого железа имеет меньшее сопротивление магнитному потоку, что приводит к большему количеству магнитных силовых линий.Это увеличение магнитных силовых линий увеличивает силовые линии, разрезая каждую петлю катушки. Затем он увеличивает индуктивность катушки.


Объяснение

индукторов — Инженерное мышление

Узнайте, как работают индукторы, где мы их используем, почему мы их используем, различные типы и почему они важны.

Прокрутите вниз, чтобы просмотреть руководство YouTube.

Помните, что электричество опасно и может быть смертельным, вы должны быть квалифицированными и компетентными для выполнения любых электромонтажных работ.

Что такое индуктор?

Катушка индуктивности — это компонент электрической цепи, который накапливает энергию в своем магнитном поле. Он может высвободить это почти мгновенно. Возможность накапливать и быстро выделять энергию — очень важная функция, поэтому мы используем их во всех видах цепей.

В нашей предыдущей статье мы рассмотрели, как работают конденсаторы, чтобы прочитать НАЖМИТЕ ЗДЕСЬ .

Как работает индуктор?

Во-первых, подумайте о воде, текущей по некоторым трубам.Эту воду нагнетает насос, который эквивалентен нашей батарее. Труба разделяется на две ветви, трубы эквивалентны нашим проводам. В одном ответвлении есть труба с переходником, из-за которого вода немного затрудняется протекать через нее, так что это эквивалентно сопротивлению в электрической цепи.

Электросхема индуктора.

Другая ветвь имеет встроенное водяное колесо. Водяное колесо может вращаться, и вода, протекающая через него, заставляет его вращаться. Колесо очень тяжелое, поэтому для того, чтобы набрать скорость, требуется некоторое время, а вода должна постоянно давить на него, чтобы заставить его двигаться.Это эквивалент нашей катушки индуктивности.

Аналогия с водяным колесом

Когда мы впервые запускаем насос, вода потечет, и она хочет вернуться в насос, так как это замкнутый цикл, точно так же, как когда электроны покидают батарею, они текут, чтобы попытаться вернуться в насос. другая сторона батареи.


Обратите внимание: в этих анимациях мы используем поток электронов, который изменяется от отрицательного к положительному, но вы, возможно, привыкли видеть обычный поток от положительного к отрицательному. Просто помните о двух и о том, какой из них мы используем.

через GIPHY

По мере того, как вода течет; он достигает ветвей и должен решить, какой путь выбрать. Вода толкает колесо, но колесу потребуется некоторое время, чтобы сдвинуться с места, и поэтому это добавляет большое сопротивление трубе, что затрудняет прохождение воды по этому пути, поэтому вода вместо этого пойдет по пути. редуктора, потому что он может протекать напрямую и намного легче возвращаться к насосу.

По мере того, как вода продолжает двигаться, колесо будет вращаться все быстрее и быстрее, пока не достигнет максимальной скорости.Теперь колесо не оказывает почти никакого сопротивления, поэтому вода может проходить по этому пути намного легче, чем по пути редуктора. Вода практически перестанет течь через редуктор и потечет через водяное колесо.

Когда мы выключаем насос, вода больше не поступает в систему, но водяное колесо движется так быстро, что не может просто остановиться, оно имеет инерцию. Продолжая вращаться, он теперь толкает воду и действует как насос. Вода будет течь по петле обратно сама по себе, пока сопротивление труб и редуктора не замедлит поток воды настолько, что колесо перестанет вращаться.

Таким образом, мы можем включать и выключать насос, и водяное колесо будет поддерживать движение воды в течение короткого времени во время перебоев.

Мы получаем очень похожий сценарий, когда мы подключаем индуктивность параллельно резистивной нагрузке, такой как лампа.

Основы индуктивности.

Когда мы запитываем схему, электроны сначала проходят через лампу и питают ее, через дроссель будет протекать очень небольшой ток, потому что его сопротивление сначала слишком велико. Сопротивление уменьшится и позволит протекать большему току.В конце концов, индуктор почти не оказывает сопротивления, поэтому электроны предпочтут вернуться по этому пути к источнику питания, и лампа выключится.

Снижение сопротивления.

Когда мы отключаем источник питания, индуктор будет продолжать толкать электроны по петле и через лампу, пока сопротивление не рассеет энергию.

Пример схемы при отключенном питании.

Что происходит с индуктором, чтобы он действовал таким образом?

Когда мы пропускаем электрический ток через провод, он создает вокруг себя магнитное поле.Мы можем убедиться в этом, разместив компасы вокруг провода. Когда мы пропускаем ток через провод, компасы будут двигаться и выравниваться по магнитному полю.

Пример компаса.

Когда мы меняем направление тока; магнитное поле меняет направление, и компасы также меняют направление, чтобы выровняться с ним. Чем больше тока мы пропускаем через провод, тем больше становится магнитное поле.

Циркуль на проволоке.

Когда мы скручиваем провод в катушку, каждый провод снова создает магнитное поле, но теперь все они сливаются вместе и образуют более мощное магнитное поле.

Магнитное поле вокруг катушки.

Мы можем увидеть магнитное поле магнита, просто рассыпав несколько железных опилок на магнит, который показывает линии магнитного потока.

Магнитное поле

через GIPHY

При отключении электричества; магнитного поля нет, но когда мы подключаем источник питания, через катушку начинает течь ток, поэтому магнитное поле начинает формироваться и увеличиваться в размере до максимального размера.

Магнитное поле накапливает энергию.Когда электричество отключается, магнитное поле начинает коллапсировать, и поэтому магнитное поле преобразуется в электрическую энергию, которая толкает электроны.

via GIPHY

На самом деле это произойдет невероятно быстро, мы просто замедлили анимацию, чтобы ее было легче увидеть и понять.

Почему это так?

Катушки индуктивности не любят изменения тока, они хотят, чтобы все оставалось прежним. Когда ток увеличивается, они пытаются остановить его с помощью противодействующей силы.Когда ток уменьшается, они пытаются остановить его, выталкивая электроны, чтобы попытаться сохранить его таким же, каким был.

Значит, когда цепь переходит из выключенного состояния во включенное, произойдет изменение тока, он увеличился. Индуктор будет пытаться остановить это, чтобы создать противодействующую силу, известную как обратная ЭДС или электродвижущая сила, которая противодействует силе, которая ее создала. В этом случае через индуктор от батареи течет ток. Некоторый ток все еще проходит, и при этом он создает магнитное поле, которое будет постепенно увеличиваться.По мере его увеличения через катушку индуктивности будет течь все больше и больше тока, и обратная ЭДС исчезнет. Магнитное поле достигнет максимума, и ток стабилизируется. Индуктор больше не сопротивляется току и действует как обычный кусок провода. Это создает очень простой путь для обратного потока электронов к батарее, гораздо более легкий, чем прохождение через лампу, поэтому электроны будут проходить через индуктор, и лампа больше не будет светить.

Когда мы отключаем питание, катушка индуктивности понимает, что произошло уменьшение тока.Ему это не нравится, и он пытается поддерживать его постоянным, поэтому он выталкивает электроны, чтобы попытаться стабилизировать его, это включит свет. Помните, что магнитное поле накопило энергию протекающих через него электронов и преобразует ее обратно в электрическую энергию, чтобы попытаться стабилизировать ток, но магнитное поле будет существовать только тогда, когда ток проходит через провод, и поэтому, когда ток уменьшается от Из-за сопротивления цепи магнитное поле схлопывается до тех пор, пока не перестанет обеспечивать мощность.

Индуктор против резистора

Если мы подключили резистор и катушку индуктивности к осциллографу в отдельных цепях, мы можем визуально увидеть эффекты. Когда ток не течет, линия постоянна и плоская на нуле. Но когда мы пропускаем ток через резистор, мы мгновенно получаем вертикальный график, а затем прямые линии и продолжаются до определенного значения. Однако, когда мы подключаем катушку индуктивности и пропускаем через нее ток, он не будет мгновенно подниматься вверх, он будет постепенно увеличиваться и образовывать изогнутый профиль, в конечном итоге продолжающийся с постоянной скоростью.

Когда мы останавливаем ток через резистор, он снова мгновенно падает, и мы получаем эту внезапную и вертикальную линию обратно к нулю. Но когда мы прекращаем прохождение тока через катушку индуктивности, ток продолжается, и мы получаем еще один изогнутый профиль до нуля. Это показывает нам, как индуктор сопротивляется начальному увеличению, а также пытается предотвратить уменьшение.

Кстати, мы подробно рассказали о текущих событиях в предыдущей статье, проверьте ЗДЕСЬ .

Как выглядят индукторы?

Катушки индуктивности на печатных платах будут выглядеть примерно так, как показано ниже.

Катушки индуктивности в печатных платах.

В основном, это просто медная проволока, намотанная на цилиндр или кольцо. У нас есть другие конструкции, у которых есть какой-то кожух, обычно это делается для экранирования его магнитного поля и предотвращения его взаимодействия с другими компонентами.

Мы увидим катушки индуктивности, представленные на технических чертежах с подобными символами.

Условные обозначения на технических чертежах.

Следует помнить, что все, что имеет витой провод, будет действовать как индуктор, включая двигатели, трансформаторы и реле.

Для чего мы используем индукторы?

  • Мы используем их в повышающих преобразователях для увеличения выходного напряжения постоянного тока при уменьшении тока.
  • Мы можем использовать их, чтобы перекрыть источник переменного тока и пропустить только постоянный ток.
  • Мы используем их для фильтрации и разделения разных частот.
  • Мы также используем их для трансформаторов, двигателей и реле.

Как измерить индуктивность

Мы измеряем индуктивность индуктора в единицах Генри, чем больше число; тем выше индуктивность.Чем выше индуктивность; Чем больше энергии мы можем сохранить и обеспечить, тем больше времени потребуется для создания магнитного поля и преодоления обратной ЭДС.

Конструкция индуктора

Вы не можете измерить индуктивность стандартным мультиметром, хотя вы можете получить некоторые модели со встроенной этой функцией, но это не даст наиболее точного результата, это может быть для вас нормально, зависит от того, что вы используете это для. Чтобы точно измерить индуктивность, нам нужно использовать измеритель RLC. Мы просто подключаем катушку индуктивности к устройству, и он запускает быстрый тест для измерения значений.


Магнитные поля и индуктивность | Катушки индуктивности

Всякий раз, когда электроны проходят через проводник, вокруг этого проводника возникает магнитное поле. Этот эффект называется электромагнетизм .

Магнитные поля влияют на выравнивание электронов в атоме и могут вызывать физическую силу, развивающуюся между атомами в пространстве, точно так же, как электрические поля, развивающие силу между электрически заряженными частицами. Подобно электрическим полям, магнитные поля могут занимать совершенно пустое пространство и воздействовать на материю на расстоянии.

Сила поля и поток поля

Поля имеют две меры: поле силы и поле потока . Сила поля — это величина «толчка», которую поле оказывает на определенном расстоянии. Поле , поток — это общая величина или эффект поля в пространстве. Сила и поток поля примерно аналогичны напряжению («толкать») и току (потоку) через проводник, соответственно, хотя поток поля может существовать в полностью пустом пространстве (без движения частиц, таких как электроны), тогда как ток может иметь место только где есть свободные электроны, чтобы двигаться.

Поток поля можно противодействовать в пространстве, так же как потоку электронов можно противодействовать сопротивлением. Величина потока поля, который будет развиваться в космосе, пропорциональна величине приложенной силы поля, деленной на величину сопротивления магнитному потоку. Подобно тому, как тип проводящего материала определяет удельное сопротивление этого проводника электрическому току, тип материала, занимающего пространство, через которое действует сила магнитного поля, диктует определенное сопротивление потоку магнитного поля.

В то время как поток электрического поля между двумя проводниками позволяет накопить свободный заряд электронов внутри этих проводников, поток магнитного поля позволяет накопить определенную «инерцию» в потоке электронов через проводник, создающий поле.

Более сильные магнитные поля с индукторами

Катушки индуктивности — это компоненты, предназначенные для использования этого явления путем придания длине проводящего провода формы катушки. Эта форма создает более сильное магнитное поле, чем то, что создается прямым проводом.Некоторые индукторы образованы проволокой, намотанной в самонесущей катушке.

Другие оборачивают провод вокруг твердого материала сердечника определенного типа. Иногда сердечник индуктора будет прямым, а в других случаях он будет соединен в петлю (квадратную, прямоугольную или круглую), чтобы полностью сдерживать магнитный поток. Все эти варианты конструкции влияют на производительность и характеристики катушек индуктивности.

Схематическое обозначение катушки индуктивности, как и конденсатора, довольно простое и представляет собой не более чем символ катушки, представляющий свернутый в спираль провод.Хотя простая форма катушки является общим обозначением любого индуктора, индукторы с сердечниками иногда отличаются добавлением параллельных линий к оси катушки. В новой версии символа индуктора не используется форма катушки в пользу нескольких «выступов» подряд:

Поскольку электрический ток создает концентрированное магнитное поле вокруг катушки, этот поток поля соответствует накоплению энергии, представляющей кинетическое движение электронов через катушку.Чем больше ток в катушке, тем сильнее будет магнитное поле и тем больше энергии будет накапливать индуктор.

Поскольку индукторы хранят кинетическую энергию движущихся электронов в виде магнитного поля, они ведут себя совершенно иначе, чем резисторы (которые просто рассеивают энергию в виде тепла) в цепи. Накопление энергии в катушке индуктивности зависит от величины проходящего через нее тока.

Способность катушки индуктивности накапливать энергию в зависимости от тока приводит к стремлению поддерживать ток на постоянном уровне.Другими словами, индукторы имеют тенденцию сопротивляться изменениям тока. Когда ток через катушку индуктивности увеличивается или уменьшается, катушка индуктивности «сопротивляется» изменению , создавая напряжение между своими выводами с противоположной полярностью по отношению к изменению .

Для сохранения большего количества энергии в катушке индуктивности необходимо увеличить ток через нее. Это означает, что его магнитное поле должно увеличиваться в силе, и это изменение напряженности поля создает соответствующее напряжение в соответствии с принципом электромагнитной самоиндукции.

И наоборот, чтобы высвободить энергию из индуктора, ток через него должен быть уменьшен. Это означает, что магнитное поле индуктора должно уменьшаться в силе, и это изменение напряженности поля вызывает падение напряжения как раз противоположной полярности.

Гипотетически, индуктор, оставленный замкнутым накоротко, будет поддерживать постоянную скорость тока через него без внешней помощи:

На практике, однако, способность индуктора к самоподдерживающемуся току реализуется только со сверхпроводящим проводом, поскольку сопротивления провода в любом нормальном индукторе достаточно, чтобы вызвать очень быстрое затухание тока без внешнего источника питания.

Когда ток через катушку индуктивности увеличивается, в ней падает напряжение, противоположное направлению тока, действуя как силовая нагрузка. В этом состоянии индуктор называется , заряжающим , потому что в его магнитном поле накапливается увеличивающееся количество энергии. Обратите внимание на полярность напряжения относительно направления тока:

И наоборот, когда ток через катушку индуктивности уменьшается, в ней падает напряжение, помогающее направлению тока, действуя как источник питания.В этом состоянии индуктор называется , разряжающим , потому что его запас энергии уменьшается по мере того, как он передает энергию из своего магнитного поля остальной части цепи. Обратите внимание на полярность напряжения относительно направления тока.

Если источник электроэнергии внезапно подается на ненамагниченную катушку индуктивности, индуктор сначала будет сопротивляться протеканию тока, понижая полное напряжение источника. Когда ток начинает увеличиваться, создается все более сильное магнитное поле, поглощающее энергию от источника.В конце концов ток достигает максимального уровня и перестает расти. В этот момент катушка индуктивности перестает поглощать энергию от источника и снижает минимальное напряжение на своих выводах, в то время как ток остается на максимальном уровне.

По мере того, как катушка индуктивности накапливает больше энергии, ее уровень тока увеличивается, а падение напряжения уменьшается. Обратите внимание, что это прямо противоположно поведению конденсатора, когда накопление энергии приводит к увеличению напряжения на компоненте! В то время как конденсаторы сохраняют свой энергетический заряд, поддерживая статическое напряжение, индукторы поддерживают свой энергетический «заряд», поддерживая постоянный ток через катушку.

Тип материала, на который наматывается провод, сильно влияет на силу потока магнитного поля (и, следовательно, на количество запасенной энергии), генерируемого для любого заданного количества тока через катушку. Сердечники катушек, сделанные из ферромагнитных материалов (таких как мягкое железо), будут способствовать развитию более сильных потоков поля с заданной силой поля, чем немагнитные вещества, такие как алюминий или воздух.

Что такое индуктивность?

Мера способности катушки индуктивности накапливать энергию для заданного количества протекающего тока называется индуктивностью .Неудивительно, что индуктивность также является мерой силы сопротивления изменениям тока (точно, сколько самоиндуцированного напряжения будет произведено при заданной скорости изменения тока). Индуктивность символически обозначается заглавной буквой «L» и измеряется в единицах Генри, сокращенно «H».

Дроссель Vs. Индуктор

Устаревшее название индуктора — choke , названное так из-за его обычного использования для блокировки («дросселирования») высокочастотных сигналов переменного тока в радиосхемах.Другое название индуктора, которое все еще используется в наше время, — это реактор , особенно когда он используется в приложениях большой мощности. Оба эти названия станут более понятными после того, как вы изучите теорию цепей переменного тока (AC), и особенно принцип, известный как индуктивное реактивное сопротивление .

ОБЗОР:

  • Катушки индуктивности реагируют на изменения тока, понижая напряжение с полярностью, необходимой для противодействия изменению.
  • Когда катушка индуктивности сталкивается с увеличивающимся током, она действует как нагрузка: создавая напряжение, поскольку она поглощает энергию (положительное на стороне входа тока и отрицательное на стороне выхода тока, как резистор).
  • Когда индуктор сталкивается с уменьшающимся током, он действует как источник: создавая напряжение, высвобождая накопленную энергию (отрицательный на стороне входа тока и положительный на стороне выхода тока, как батарея).
  • Способность индуктора накапливать энергию в виде магнитного поля (и, следовательно, противодействовать изменениям тока) называется индуктивностью .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *