Как выбрать конденсатор?
Во время работы над разделом о конденсаторах я подумал, что было бы полезно объяснить, почему один тип конденсаторов может быть заменен другим. Это важный вопрос, так как существует множество факторов (температурные характеристики, тип корпуса и так далее), которые делают тот или иной тип конденсаторов (электролитический, керамический и пр.) наиболее предпочтительным для вашего проекта.
В статье будут рассмотрены популярные типы конденсаторов, их достоинства и особенности, а также области применения. В каждом разделе помещены ссылки на результаты поисковых запросов для некоторых серий наиболее популярных конденсаторов из каталога компании Терраэлектроника.
Например, результат поиска для DIP конденсаторов c рабочим напряжением 450 В серии HP3 производства компании Hitachi с емкостью 56…680 мкФ приведен на Рис.1.
Рис. 1. Результат поискового запроса для имеющихся на складе конденсаторов серии HP3 с рабочим напряжением 450 В от Hitachi с емкостью в диапазоне 56…560 мкФ
Конденсаторы (Рис. 2) представляют собой двухвыводные компоненты, используемые для фильтрации, хранения энергии, подавления импульсов напряжения и других задач. В самом простом случае они состоят из двух параллельных пластин, разделенных изоляционным материалом, называемым диэлектриком.
Рис. 2. Конденсаторы различных типов
Конденсаторы хранят электрический заряд. Единицей емкости является Фарад (Ф). Это название было дано в честь Майкла Фарадея, который в свое время стал пионером в области практического использования конденсаторов.
Конденсаторы могут быть полярными и неполярными. К полярным относятся почти все электролитические и танталовые конденсаторы. Они должны подключаться с учетом полярности напряжения. Если перепутать выводы «-» и «+», то это приведет к короткому замыканию. К неполярным относятся керамические, слюдяные и пленочные конденсаторы. Они могут работать при любой полярности приложенного напряжения, что делает их подходящими для применения в цепях переменного тока.
Несмотря на широкое распространение конденсаторов, выбор конкретной модели бывает достаточно сложным. Вы можете знать емкость и рабочее напряжение, которые требуются в вашем проекте, но у конденсаторов есть и множество других характеристик, таких как полярность, температурный коэффициент, стабильность, последовательное эквивалентное сопротивление (ESR) и так далее. Это делает каждый конкретный тип конденсаторов пригодным для конкретного приложения. Ниже перечислены наиболее популярные типы конденсаторов с кратким описанием их достоинств и особенностей.
Типы конденсаторов
Существует несколько типов конденсаторов, которые отличаются электрическими характеристиками и стоимостью. Ниже приведено описание наиболее популярных типов конденсаторов: алюминиевых электролитических, керамических, танталовых, пленочных, слюдяных и полимерных (твердотельных). Кроме того, для каждого типа представлены наиболее подходящие приложения, а также информация о корпусных исполнениях и примеры конкретных серий.
Рис. 3. Алюминиевый электролитический конденсатор
Описание: алюминиевые электролитические конденсаторы (Рис. 3) являются полярными, поэтому их нельзя использовать в цепях переменного напряжения. Они могут иметь высокую номинальную емкость, но отклонение от номинала обычно составляет до 20%.
Приложения: алюминиевые электролитические конденсаторы оптимальны для приложений, которые не требуют высокой точности и работы с переменными напряжениями. Чаще всего они применяются в качестве развязывающих конденсаторов в источниках питания, то есть для уменьшения пульсаций напряжения. Они также широко используются в импульсных DC/DC-преобразователях напряжения.
Корпусное исполнение: как для монтажа в отверстия, так и для поверхностного монтажа.
Примеры:
Для монтажа в отверстия:
- 25 В серия TKR производства Jamicon с диапазоном доступных емкостей 10…5000 мкФ.
- 50 В серия ECA-1HM от Panasonic с диапазоном доступных емкостей 4. 7…3300 мкФ.
- 450 В серия HP32 от Hitachi AIC с диапазоном доступных емкостей 56…1000 мкФ.
Для поверхностного монтажа:
- 16 В серия EEE-FK от Panasonic с диапазоном доступных емкостей 10…4700 мкФ.
- 50 В серия CA050 от Yageo с диапазоном доступных емкостей 0,22…220 мкФ.
Рис.4. Керамические конденсаторы
Описание: существует два основных типа керамических конденсаторов (Рис. 4): многослойные чип-конденсаторы (MLCC) и керамические дисковые. MLCC пользуются большой популярностью и широко применяются в электронных устройствах, поскольку обладают высокой стабильностью и малым уровнем потерь. Они отличаются низким последовательным сопротивлением (ESR) и минимальной погрешностью номинала по сравнению с электролитическими или танталовыми конденсаторами. Вместе с тем их максимальная емкость невелика и достигает всего нескольких десятков мкФ. Из-за высокой удельной емкости MLCC имеют очень малые габариты и отлично подходят для размещения на печатных платах.
Приложения: поскольку керамические конденсаторы являются неполярными, то их можно применять в цепях переменного тока. Они широко используются в качестве «универсальных» конденсаторов, например, для высокочастотной развязки, фильтрации, подстройки резонаторов и подавления электромагнитных помех. Как MLCC, так и керамические дисковые конденсаторы подразделяются на два класса:
Керамические конденсаторы I класса – точные (+/- 5%) и стабильные конденсаторы с минимальной зависимостью емкости от температуры. Конденсаторы NP0/C0G отличаются минимальным температурным коэффициентом 30 ppm/K. К сожалению, их максимальная емкость ограничена несколькими нанофарадами (нФ). Поскольку они очень стабильны и точны, то их чаще всего используют в системах с частотным регулированием, например, в резонансных схемах для радиочастотных приложений.
Керамические конденсаторы II класса менее точны, но обеспечивают более высокую удельную емкость (номинальные значения — до десятков мкФ) и, следовательно, подходят для фильтрации и развязки. Среди их недостатков можно отметить большой коэффициент напряжения. Например, даже при приложении напряжения, равного половине рабочего, обычно наблюдается снижение емкости на 50%.
- X5R может работать в диапазоне — 55…85°C с изменением емкости +/- 15%;
- X7R может работать в диапазоне — 55…125°C с изменением емкости +/- 15%;
- Y5V — в диапазоне от — 30…+ 85°C с изменением емкости -20/ +80%.
Корпусные исполнения: наиболее распространены корпуса для поверхностного монтажа 0201, 0402, 0603, 0805, 1206 и 1812. Цифры обозначают габаритные размеры в дюймовой системе. Например, 0402 составляет 0,04х0,02″, 0603 — 0,06х0,03″ и так далее.
Примеры:
Тип NP0/C0G:
- 0402 — серия CC0402JRNPO9 производства компании Yageo с диапазоном доступных емкостей 0,01…1 нФ;
- 0603 — серия CC0603JRNPO9 от Yageo с диапазоном доступных емкостей 0,008…2,7 нФ.
Тип X7R:
- 0402 — серия CC0402KRX7R9BB от Yageo с диапазоном доступных емкостей 0,1…10 нФ;
- 0603 — серия CC0603KRX7R7BB от Yageo с диапазоном доступных емкостей 0,1…1 мкФ;
- 1206 — серия GRM31 от Murata с диапазоном доступных емкостей 470 пф…22 мкФ;
- 0805 — серия CL21 от Samsung с диапазоном доступных емкостей 150 пф…10 мкФ.
Для монтажа в отверстия:
- Серия C315C производства компании Kemet с диапазоном доступных емкостей 1 пФ …1 мкФ.
Рис. 5. Танталовые конденсаторы
Описание: танталовые конденсаторы (Рис. 5) – это подтип электролитических конденсаторов с высоким уровнем поляризации. При их использовании необходимо проявлять осторожность, поскольку они имеют склонность к катастрофическим отказам даже при воздействии импульсов напряжения с амплитудой, лишь немного превышающей номинальное рабочее напряжение. Танталовые конденсаторы могут иметь высокую номинальную емкость и отличаются высокой временной стабильностью. Они меньше по размеру, чем алюминиевые электролитические конденсаторы той же емкости. Но алюминиевые электролиты могут выдерживать более высокие максимальные напряжения.
Приложения: из-за малого тока утечки, стабильности и высокой емкости танталовые конденсаторы часто используются в схемах выборки-хранения, в которых требуется обеспечивать минимальный ток утечки для продолжительного хранения заряда. Также, благодаря малым размерам и долговременной стабильности, они применяются для фильтрации по цепям питания.
Корпусные исполнения: танталовые конденсаторы выпускаются как для монтажа в отверстия, так и для поверхностного монтажа (SMD). Тем не менее, чаще всего используются именно SMD-компоненты. В дюймовой системе типоразмер А соответствует размеру 1206 (0,12х0,06″), типоразмер В соответствует размеру 1210, типоразмер C соответствует размеру 2312, типоразмер D — размеру 2917.
Примеры:
- Типоразмер A: серия TAJA от AVX с диапазоном доступных емкостей 1…10 мкФ;
- Типоразмер B: серия TAJB от AVX с диапазоном доступных емкостей 10…47 мкФ;
- Типоразмер C: серия TAJC от AVX с диапазоном доступных емкостей 47…220 мкФ;
- Типоразмер D: серия TAJD от AVX с диапазоном доступных емкостей 220…680 мкФ;
- Типоразмер A-E: серия 293D компании Vishay с диапазоном доступных емкостей 0,1…1000 мкФ;
- Типоразмер A-X: серии T491 компании Vishay с диапазоном доступных емкостей 0,1…1000 мкФ.
Рис. 6. Пленочные конденсаторы
Описание: пленочные конденсаторы (Рис. 6) являются неполярными, что позволяет использовать их в цепях переменного напряжения. Они отличаются малыми значениями эквивалентного сопротивления (ESR) и последовательной индуктивности (ESL).
Приложения: пленочные конденсаторы часто применяются в схемах с аналого-цифровыми преобразователями. Кроме того, они способны работать с высоким пиковым током и, таким образом, могут применяться в снабберных цепочках для фильтрации индуктивных выбросов напряжения в DC/DC-преобразователях.
Примеры:
- серия B32021 производства компании EPCOS с диапазоном доступных емкостей 1 нФ…10 нФ и рабочим напряжением 300В AC.
- серия ECHU от Panasonic c диапазоном доступных емкостей 0,1 нФ…220 нФ и рабочим напряжением 16 В и 50 В DC.
Рис. 7. Слюдяной конденсатор
Описание: слюдяные конденсаторы (Рис. 7) являются неполярными, отличаются малой величиной потерь, высокой стабильностью и обладают отличными характеристиками на высоких частотах.
Приложения: эффективны при работе в составе радиочастотных схем. Они могут стоить несколько долларов за штуку, поэтому в маломощных приложениях чаще используют керамические конденсаторы. Однако слюдяные конденсаторы благодаря высокому напряжению пробоя остаются практически незаменимыми для таких приложений, как радиопередатчики высокой мощности.
Примеры:
- серия CD производства CDE с диапазоном доступных емкостей 0,001…47 нФ (монтаж в отверстия) рабочим напряжением до 500 В .
Рис. 8. Полимерные (твердотельные) конденсаторы
Описание: твердотельные конденсаторы являются полярными, так же как и другие электролитические конденсаторы, но имеют ряд преимуществ, например, меньшие потери благодаря низкому последовательному сопротивлению ESR и длительный срок службы. Для обычных алюминиевых электролитов существует риск высыхания электролита при низких температурах, но твердотельные конденсаторы благодаря применению твердого полимерного диэлектрика обладают высокой надежностью даже при очень низких температурах.
Приложения: используются вместо электролитов в высококачественных материнских платах и DC/DC-преобразователях.
Примеры:
- серия OS-CON производства Panasonic с диапазоном доступных емкостей 3,3…2700 мкФ.
- серия SP-Cap производства Panasonic с диапазоном доступных емкостей 10…560 мкФ в SMD исполнении.
- серия ECAS производства компании Murata с диапазоном доступных емкостей 10…150 мкФ.
Описание: конденсаторная сборка (capacitor array) — это группа конденсаторов, конструктивно объединенных в одном корпусе, причем любой из конденсаторов может быть отдельно от остальных подключен к внешней цепи. Существует много различных типов сборок, которые отличаются количеством конденсаторов, типом диэлектрика, величиной отклонения емкости конденсатора от номинального значения, максимальным рабочим напряжением, типом корпуса и др.
Приложения: конденсаторные сборки широко применяются в мобильной и носимой аппаратуре, в материнских платах компьютеров и цифровых приставках, в радиочастотных модемах и усилителях, в автомобильных и медицинских приложениях и т. д.
Корпусные исполнения: конденсаторные сборки выпускаются как в DIP корпусах, так и в SMD исполнении. Наиболее популярные типоразмеры сборок для поверхностного монтажа 0508, 0612, 0805 представлены в нашем каталоге.
Примеры:
- Серия CA конденсаторных сборок общего назначения от компании Yageo типоразмера 0612 с диапазоном доступных емкостей от 22 пФ до 100 нФ.
Подобрать необходимый конденсатор в каталоге Терраэлектроники можно двумя способами:
- использовать параметрический поиск в соответствующем разделе каталога, для чего необходимо зайти в раздел конденсаторов, выбрать соответствующий задаче тип конденсатора, а далее заполнить ряд фильтров с параметрами. Фрагмент скриншота поиска MLCC конденсатора с параметрами: номиналом 1 нФ, точностью 10 %, диэлектриком X7R, напряжением 250 В и корпусом 0805 представлен на Рис. 9.
- воспользоваться интеллектуальным поиском конденсатора по параметрам. Для этого достаточно скопировать строку из спецификации “Конденсатор 1 нФ, X7R, 10%, 250 В, 0805″ или ввести «1n X7R 10% 250V 0805» в строку поиска и получить тот же самый список подходящих по указанным параметрам компонентов.
Рис. 9. Фрагмент скриншота сервиса поиска конденсатора
Заключение
В данном руководстве были рассмотрены некоторые наиболее популярные типы конденсаторов. Кроме них существуют суперконденсаторы, кремниевые конденсаторы, оксид-ниобиевые и подстрочные конденсаторы, которые обладают уникальными преимуществами по величине емкости, уровню надежности или возможности подстройки. Однако в большинстве электронных схем вы чаще всего увидите один из шести рассмотренных выше типов конденсаторов.
Автор: Санкет Гупта Перевод: Вячеслав Гавриков (г. Смоленск)
Разделы: Конденсаторы керамические, Пленочные конденсаторы
Опубликовано: 15.03.2018
Керамические конденсаторы большой емкости
Керамические конденсаторы являются естественным элементом практически любой электронной схемы. Они применяются там, где необходимы способность работать с сигналами меняющейся полярности, хорошие частотные характеристики, малые потери, незначительные токи утечки, небольшие габаритные размеры и низкая стоимость.
Там же, где подобные требования пересекаются, керамические конденсаторы практически незаменимы. Но проблемы, связанные с технологией их производства, отводили этому типу конденсаторов, в основном, нишу устройств малой емкости.
Действительно, керамический конденсатор на 10 мкФ еще недавно воспринимался как удивительная экзотика, и стоило такое чудо как горсть алюминиевых электролитических тех же емкости и напряжения, либо как несколько аналогичных танталовых.
Однако, развитие технологий позволило сразу нескольким фирмам к настоящему времени сразу нескольким фирмам заявить о достижении их керамическими конденсаторами емкости в 100 мкФ и анонсировать начало производства еще больших значений еще до конца этого года. А сопровождающее этот процесс непрерывное падение цен на все изделия данной группы заставляет внимательнее присмотреться ко вчерашней экзотике, чтоб не отстать от технического прогресса и сохранить конкурентоспособность.
Несколько слов о технологиях. Говоря о керамических конденсаторах, мы будем рассматривать многослойные керамические конденсаторы. На рис.1 представлена структура такого конденсатора, а на рис.2 фотография сильно увеличенного среза изделия одного из мировых лидеров их производства — японской фирмы Murata
Их емкость определяется формулой:
, (1)
где
ε0 — константа диэлектрической проницаемости вакуума,
ε — константа диэлектрической проницаемости используемой в качестве диэлектрика керамики,
S0 – активная площадь одного электрода,
n – число слоев диэлектрика,
d – толщина слоя диэлектрика.
Таким образом, увеличения емкости конденсатора можно добиться уменьшением толщины слоев диэлектрика, увеличением числа электродов, их активной площади, увеличением диэлектрической проницаемости диэлектрика.
Уменьшение толщины диэлектрика и связанная с этим возможность увеличения количества электродов – основной способ увеличения емкости керамических конденсаторов.
Но снижение толщины диэлектрика приводит с снижению напряжения пробоя. Потому конденсаторы большой емкости трудно найти на высокое рабочее напряжение.Увеличение числа слоев – процесс технологически связанный с уменьшением толщины единичного слоя. Рис.3 отображает технологические тенденции последних лет в этой области, представленные фирмой Murata.
Увеличение активной площади одного электрода – это увеличение габаритных размеров конденсатора — крайне неприятное явление, приводящее к резкому росту стоимости изделия.
Увеличение диэлектрической проницаемости при заметном увеличении емкости приводит к существенному ухудшению температурной стабильности и сильной зависимости емкости от приложенного напряжения.
Теперь рассмотрим возможности и особенности применения керамических конденсаторов большой емкости. Перед началом обсуждения стоит обратить внимание на уже имеющиеся предложения и ближайшие планы лидеров отрасли фирм Murata и Samsung Electro-Mechanics, представленные ниже.
Естественной областью применения подобного спектра керамических конденсаторов большой емкости может быть замена ими танталовых и алюминиевых конденсаторов для поверхностного монтажа в схемах подавления пульсаций, разделения постоянной и переменной составляющих электрического сигнала, интегрирующих цепочках.
Однако, при этом необходимо учитывать принципиальные различия между этими группами деталей, делающие, в большинстве случаев, бессмысленными замены типа: электролитический конденсатор номинал xнапряжения на аналогичные номиналxнапряжение керамического конденсатора.
Рассмотрим коротко основные причины этого:
Частотные свойства конденсаторов определяет зависимость их импеданса и эквивалентного последовательного сопротивления (ESR)от частоты. Типичные зависимости такого рода для керамических, танталовых и алюминиевых конденсаторов приведены на рис. 4 и рис.5.
Существенная разница в импедансе на частотах выше 1кГц с алюминиевыми электролитическими и свыше 10 кГц с танталовыми конденсаторами позволяет в некоторых случаях использовать для сглаживания пульсаций напряжения номиналы меньшей емкости для получения аналогичного эффекта.
Разница в величине сглаживания паразитных синусоидальных пульсаций различных частот конденсаторами разного типа, но одинаковой емкости — 10 мкФ, дана в следующей таблице:
Частота пульсации | Входная амплитуда пульсации | Выходная амплитуда пульсации, мВ | ||
Алюминиевые эл-кие конденсаторы | Танталовые эл-кие конденсаторы | Керамические конденсаторы | ||
10 кГц | 2 В | 534 | 204 | 196 |
100 кГц | 336 | 64 | 16 | |
500 кГц | 346 | 38 | 12 | |
1 МГЦ | 332 | 30 | 3 |
Таким образом, для обеспечения одинакового с танталовым конденсатором в 10 мкФ уровня подавления пульсаций частотой 1 МГц можно использовать керамический конденсатор емкостью 1,0-2,2 мкФ. Экономия места на плате и денег очевидна.
Низкое эквивалентное последовательное сопротивление и связанные с ним малые потери позволяют значительно сильнее нагружать керамические конденсаторы, нежели электролитические, несмотря на их значительно более скромные габаритные размеры, не вызывая при этом критического для детали разогрева. Сравнительные кривые разогрева конденсаторов токами пульсации различной частоты приведены на рис.6.
Еще одним и немалым плюсом керамических конденсаторов является их способность кратковременно держать высокие напряжения перегрузки, многократно превышающие номинальные.
Тот, кто выбирал сглаживающие конденсаторы для импульсных источников питания, знает как это важно! Ибо там в моменты запуска и выключения могут генерироваться импульсы до нескольких значений выходного напряжения, заставляя использовать электролитические конденсаторы с большим запасом по напряжению.
Сравнительную характеристику напряжения пробоя для различных типов конденсаторов по результатам тестов, проведенных фирмой Murata, приведены на рис. 7
Теперь несколько слов о грустном.
При всех своих достоинствах, керамические конденсаторы большой емкости производятся с использованием диэлектриков типа X7R/X5R и Y5V.
Их отличительной особенностью является сильная зависимость диэлектрической проницаемости, а с ней, согласно (1), и емкости от температуры и приложенного напряжения.
Типичные зависимости такого рода для конденсаторов разных типов показаны на рисунках 8 и 9.
Из них видим, что при достаточно жестких требованиях к стабильности номинала, например во времязадающих цепях, или при развязке постоянной и переменной составляющих, на замену электролитическим конденсаторам можно рекомендовать только керамические с диэлектриками X5R/X7R, последний из которых может оказаться еще более интересным, если принять во внимание его допустимый диапазон рабочих температур: -55°С +125°С, позволяющий ему найти применение как в аппаратуре, рассчитанной на работу на улице в условиях севера, так и в автомобильной технике, с ее жесткими требованиями к сохранению работоспособности при высоких температурах.
Однако, для сглаживающего конденсатора стабильность номинала не является критическим параметром. Потому можно рассчитывать на высокую востребованность и емкостей на основе менее стабильной керамики Y5V, из которой можно получить детали меньшего габарита и стоимости.
Валерий Степуков
Испытательная лаборатория
услуги в области контроля качества ЭКБ отчественного и иностранного производства.
Задать вопрос
Контактная информация:
тел: (812) 387-55- 06, 387-65-64, 387-86-94
тел/факс: (812) 327-96-60
e- mail: ,
<< Предыдущая Следующая >>
Основы конденсаторов [Урок 5] Применение керамических конденсаторов
В этой технической колонке описаны основные сведения о конденсаторах.
В этом уроке описываются различные типы керамических конденсаторов.
Урок 5: Применение керамических конденсаторов
Керамические конденсаторы используются для всех типов цепей в ряде приложений.
Существует четыре основных применения конденсаторов, которые подробно описаны ниже: связь, развязка, сглаживание и фильтрация.
Конденсаторы, используемые в соединении, используют характеристики конденсаторов для передачи только компонентов переменного тока, а не для передачи компонентов постоянного тока, и используются для извлечения компонентов переменного тока из компонентов постоянного и переменного тока.
Поскольку условия работы транзисторов, ИС и других активных элементов в цепях меняются, необходимо извлекать только требуемый сигнал переменного тока после установки оптимальных условий работы для каждой цепи.
Соединение относится к соединению цепей вместе, и, как следует из их названия, конденсаторы связи действуют как посредники для соединения цепей вместе.
Силовые линии в цепях имеют емкостные и индуктивные компоненты. Если эти компоненты вызывают увеличение колебаний напряжения в линиях электропередач, работа схемы становится нестабильной. В экстремальных случаях колебания источника питания могут накладываться на сигнальную линию, вызывая передачу неправильных сигналов.
Развязывающие конденсаторы используются для передачи шума, поступающего от источника питания, на клемму заземления, в то же время непрерывно подавая стабилизированный ток для борьбы с внезапными изменениями тока нагрузки в ИС и других схемах.
Как показано на рис. 2, даже если шум накладывается на линию, нежелательный шум может передаваться на клемму заземления через развязывающие конденсаторы.
Сглаживающие конденсаторы подавляют пульсации, возникающие даже после выпрямления силовой цепью, чтобы сгладить сигналы, чтобы они приблизились к постоянным токам.
При установке сглаживающих конденсаторов после выпрямления избыточное напряжение накапливается в конденсаторе в периоды высокого напряжения и высвобождается в периоды низкого напряжения, тем самым устраняя колебания напряжения.
Конденсаторы в сочетании с резисторами и катушками индуктивности создают фильтры, передающие только сигналы определенной частоты.
В зависимости от частот, которые вы хотите передать, можно использовать различные фильтры, в том числе фильтры нижних частот, которые отфильтровывают низкочастотные компоненты, и фильтры высоких частот, которые отфильтровывают высокочастотные компоненты.
Murata Manufacturing Co., Ltd. Подразделение компонентов Отдел продаж, NW
Сопутствующие товары
Конденсатор
Керамический конденсатор
Связанные статьи
- Сопротивление конденсаторов электростатическому разряду
- Основы полимерных конденсаторов (часть 2): что такое полимерный конденсатор?
- Основные сведения о полимерных конденсаторах (часть 1): что такое полимерные конденсаторы?
Будь в курсе!
Получайте электронные письма от Murata с последними обновлениями на этом сайте.
Информационный бюллетень Murata (электронный информационный бюллетень) запуск
— состав, типы, свойства и применение
Керамический конденсатор является наиболее широко используемым конденсатором и доступен в различных составах и типах, подходящих для различных применений и свойств. Вы можете увидеть это почти в каждой печатной плате. Они также известны как дисковые конденсаторы.
Состав керамического конденсатора
Как следует из названия, в этом конденсаторе в качестве диэлектрического материала используется керамика. Они изготавливаются с использованием керамического или фарфорового диска, покрытого с обеих сторон тонким слоем серебра. Керамика является одним из первых материалов, используемых для изготовления конденсаторов.
Расположение и свойства керамического материала характеризуют функциональные аспекты этих конденсаторов.
Типы керамических конденсаторов
В целом его можно разделить на три основных класса. Чем ниже класс, тем выше его производительность. К этим трем классам относятся:
Керамический конденсатор класса I
Этот класс керамических конденсаторов обеспечивает большую стабильность значения емкости по отношению к изменение температуры, напряжения и частоты. Их точность достаточно высока.
Керамический конденсатор класса II
Этот тип керамического конденсатора обеспечивает большую эффективность с точки зрения размера. Они имеют высокую емкость на единицу объема. Они лучше всего подходят для использования в качестве развязывающего конденсатора или в качестве буфера.
Керамический конденсатор класса III
Они почти такие же, как керамические конденсаторы класса II. Однако им не хватает точности и они не стабильны, как класс II, с точки зрения изменения температуры.
Свойства керамических конденсаторов
Керамические конденсаторы имеют следующие свойства:
Диэлектрическая проницаемость (K) керамических конденсаторов
Они обладают высокой диэлектрической проницаемостью (K). Это свойство позволяет им обеспечивать высокое значение емкости даже при небольших размерах.
Влияние на емкость при изменении температуры
Емкость этих конденсаторов изменяется нелинейно при изменении температуры. По этой причине они лучше всего подходят для использования в качестве развязывающего конденсатора или шунтирующего конденсатора.
Неполяризованные керамические конденсаторы
Неполяризованные. Это означает, что с этим типом конденсаторов нет проблем с полярностью. Их можно подключать к цепи с любой стороны.
Низкая стоимость
Их производственные затраты очень низкие.
Различные размеры
Доступны небольшие размеры. Поэтому место для этого в цепи не вызывает беспокойства.
Надежность
Они очень надежны и обладают высокой устойчивостью. Вероятность повреждения также меньше.
Диапазон емкости керамического конденсатора
Доступны модели с различной емкостью от нескольких пФ до 1/2 мкФ.