принцип работы и нюансы подключения
Перепады напряжения – далеко не редкость в отечественных домах. Происходят они из-за изношенности электросетей, замыканий и неравномерности распределения нагрузки по отдельным фазам.
В результате бытовая техника либо недополучает электроэнергию, либо перегорает от ее переизбытка. Чтобы избежать перечисленных проблем, рекомендуется устанавливать реле контроля напряжения (РКН).
Предлагаем разобраться, какие преимущества дает применение такого устройства, каковы отличия РКН от стабилизатора, как выбрать подходящее реле и осуществить его подключения.
Содержание статьи:
Зачем нужно регулирующее напряжение реле
Грамотное название рассматриваемого устройства – «реле контроля напряжения». Но среднее слово в разговорах электриков между собой нередко выпадает из этого термина.
В принципе, это один и тот же электротехнический прибор защитной автоматики. Плюс данное оборудование часто называют еще и «защитой от обрыва нуля». Почему – станет понятно ниже.
Не стоит путать и РКН. Первые защищают линию от перегруза и короткого замыкания, а вторые от скачков напряжения. Это разные по функциональному предназначению приборы.
Главная задача РКН – это отключение электроприборов от сети при слишком высоких и слишком низких напряжениях в ней, чтобы подключенная к электропитанию техника не вышла из строя
Надпись «~220 В» привычна всем россиянам. На таком переменном вольтаже работает в доме бытовая техника, подключенная к розеткам. Однако по факту максимум напряжения в домашней электросети только колеблется вокруг этой отметки с разбросом +/-10%.
В отдельных случаях перепады достигают и больших величин. Вольтметр вполне может показывать падения до 70 и всплески до 380 Вт.
Для электротехники страшно излишне как низкое, так и высокое напряжение. Если компрессор холодильника “недополучит” электроэнергии, то он просто не запустится. В итоге техника неизбежно перегреется и сломается.
При низком вольтаже обыватель в большинстве случаев даже не в состоянии внешне определить, исправно или нет работает оборудование в такой ситуации. Визуально можно лишь увидеть тускло светящиеся лампочки накаливания, напряжение к которым подается меньшее, чем положено.
С высокими всплесками все гораздо проще. Если на вход питания телевизора, компьютера или микроволновки подать 300–350 Вт, то в лучшем случае в них перегорит предохранитель. А чаще всего они “сгорят” сами. И хорошо еще, если при этом не произойдет реального возгорания техники и возникновения пожара.
Многоквартирные дома обычно запитаны от трехфазной сети 380 В, а к квартире уже идет однофазная проводка на 220 В от электрощита на этаже
Основные проблемы с перепадами напряжения в многоэтажках возникают из-за обрыва рабочего нуля. Этот провод повреждают по неосторожности электрики во время ремонта либо он сам просто перегорает от старости.
Если в доме на подъездной линии стоит комплект необходимой защиты современного уровня, то в результате такого обрыва происходит срабатывание автоматики УЗО. Все заканчивается относительно нормально.
Однако в старом жилом фонде, где не стоят защитные автоматы, пропадание нуля приводит к перекосу фаз. И тогда в одних квартирах напряжение становится низким (50–100 В), а в других резко высоким (300–350 В).
У кого что в результате выйдет в розетке, зависит от подключенной в данный конкретный момент к электросети нагрузки. Заранее точно рассчитать и предугадать это невозможно.
В итоге у одних вся техника перестает работать, а у других сгорает от перенапряжения. Здесь-то и нужно реле контроля напряжения. При возникновении проблем оно отключит сеть, предупредив поломку телевизоров, холодильников и т.п.
В частном секторе проблема с перепадами напряжения несколько иная. Если коттедж расположен на большом удалении от уличного трансформатора, то при повышенном потреблении электроэнергии в домах до него в этой крайней точке вольтаж может упасть до критически низких отметок.
В результате из-за длительной нехватки «вольт» электродвигатели в бытовых электроприборах неизбежно начнут гореть и выходить из строя.
Разновидности устройства РКН
Все модели реле, выполняющих функции регулятора напряжения, подразделяются на однофазные и трехфазные.
Однофазное реле. Обычно устанавливают в коттеджах и квартирах – большего в домовых щитках не требуется.
В электрических щитах частных и многоквартирных домов обычно применяются однофазные реле в компактном исполнении на DIN-рейку (+)
Трехфазное реле. Такие РНК предназначены для промышленного применения. Их часто используют в схемах защиты трехфазных станков. Причем если на входе подобной сложной техники требуется такой трехфазник, то его зачастую выбирают в комбинированном исполнении с контролем не только по напряжению, но и по синхронизации фаз.
Главный недостаток и одновременно плюс трехфазного реле – полное отключение питания на выходе при скачке вольтажа даже в одной из фазных линий на входе. В промышленности это идет только на пользу. Но в быту часто колебания напряжения в одной фазе не являются критичными, а РКН берет и отключает защищаемую сеть.
В отдельных случаях такая сверхнадежная перестраховка нужна. Однако в подавляющем большинстве ситуаций она излишня.
По типу исполнения и габаритам
Весь модельный ряд реле напряжения делится на три вида:
- переходники «вилка-розетка»;
- удлинители с 1-6 розетками;
- компактные “пакетники” на DIN-рейку.
Первые два варианта используются для защиты одного конкретного электроприбора или какой-либо группы. Они включаются в обычную комнатную розетку.
Третий вариант предназначен для в составе защитной системы электросети квартиры или коттеджа.
Галерея изображений
Фото из
Регулятор с проводом-удлинителем
Трехфазное реле для линий с большой нагрузкой
Реле для установки в электрическом щитке
Реле-переходник для подключения через розетку
Переходники и удлинители рассматриваемых регуляторов имеют достаточно большие размеры. Производители стараются сделать их как можно меньше, чтобы они не портили своими видом интерьер.
Но у внутренних компонентов реле напряжения свои жесткие габариты, к тому же их еще надо скомпоновать в одном корпусе с розеткой и вилкой. В плане дизайна здесь не развернешься.
Реле на DIN-рейку для монтажа в распределительном щитке имеют более компактные размеры, в них нет ничего лишнего. Подключение их в сеть производится посредством .
По базе и дополнительным функциям
Внутренняя логика и работа реле для контроля напряжения выстраиваются на основе микропроцессора либо более простого компаратора. Первый вариант дороже, но предполагает более точную и плавную регулировку порогов срабатывания РКН. Большинство продаваемых защитных приборов сейчас выстроено на микропроцессорной базе.
Верхний (Umax) и нижний (Umin) пороги являются двумя основными регулируемыми параметрами РКН – если входное напряжение выходит за установленный диапазон, то реле отключает выходную линию от электротока (+)
Как минимум, на корпусе реле присутствует пара светодиодов, по которым можно определить наличие напряжения на входе и выходе. Более продвинутые приборы оснащаются дисплеями, показывающими выставленные допустимые пределы и имеющийся в линии вольтаж.
Регулировка пороговых значений производится потенциометром с градуированной шкалой либо кнопками с отображением параметров на табло.
Само отвечающее за коммутацию реле внутри РКН выполнено по бистабильной схеме. У этой катушки два устойчивых состояния. Энергия затрачивается только на переключение защелки. Для удержания контактов в сомкнутом или разомкнутом положении электричество не требуется.
С одной стороны это минимизирует энергопотребление, а с другой – гарантирует, что катушка не станет греться при работе регулятора.
При выборе реле напряжения в параметрах надо смотреть на:
- рабочий диапазон в Вольтах;
- возможности по установки верхнего и нижнего порогов срабатывания;
- наличие/отсутствие индикаторов уровня напряжения;
- время отключения при срабатывании РКН;
- время задержки возобновления подачи электричества;
- максимальную коммутируемую мощность в кВт или пропускаемый ток в Амперах.
По последнему параметру реле следует брать с запасом в 20–25%. Если подходящего под существующие в линии высокие нагрузки РКН нет, то берется маломощная модель, а на ее выходе подсоединяется магнитный пускатель.
С установкой порогов ситуация следующая. Если их задать слишком жестко, то частота срабатывания реле получится высокой. Здесь придется идти на компромисс.
Регулировку этих параметров надо выполнять так, чтобы они обеспечивали должный уровень защиты, но не допускали слишком частого переключения РКН. Постоянные включения и выключения не пойдут на пользу как подключенной к сети технике, так и самому регулятору напряжения.
При этом некоторые реле вообще не имеют возможности самостоятельно корректировать пороги. Они у них установлены “жестко”. Например, уставка по нижнему пределу заводом выполнена на 170 В, а во верхнему – на 265 В.
Такие РКН дешевле, но подбирать их надо более внимательно. Потом перенастроить эти приборы не получится, при ошибках в расчетах придется приобретать новые на замену неподошедшим.
Выбор временных параметров отключения и возобновления питания линии на выходе зависит от подключенной нагрузки и особенностей конкретной сети (+)
Если в электросети постоянно возникают кратковременные (на доли секунды) несильные падения напряжения, то время отключения по нижнему порогу лучше установить по максимуму. Так срабатываний выйдет меньше, а угроза запитанному оборудованию будет минимальной.
Задержку на включение следует подбирать в зависимости от типа включенных в розетку электроприборов. Если подключенная техника имеет компрессор или электромотор, то время подачи напряжения стоит увеличить до 1–2 минут.
Это позволит избежать резких скачков вольтажа и тока при возобновлении питания в сети, что убережет холодильники и кондиционеры от поломок.
А для компьютеров и телевизоров этот параметр можно снизить и до 10–20 секунд.
Что лучше: стабилизатор vs реле
Нередко вместо подключения в щитке реле контроля электрики рекомендуют устанавливать в доме . В отдельных случаях это бывает оправдано. Однако есть ряд нюансов, о которых надо помнить при выборе того или иного варианта защита электроприборов.
В плане функционала стабилизатор не только выравнивает напряжение, но и отключается при слишком высоких показателях последнего. А реле напряжения – это исключительно защитная автоматика. Вроде бы первый включает в себя функции второго.
Но по сравнению с РКН стабилизатор:
- дороже и шумит;
- более инертен при резких перепадах;
- не имеет возможностей для регулировки параметров;
- занимает гораздо больше места.
При уменьшении входного напряжения, чтобы на выходе стабилизатора были нужные показатели, он начинает “втягивать” в себя больше тока из сети. А это прямой путь к перегоранию проводки, если она изначально не рассчитана на подобное.
Второй основной минус стабилизатора в сравнении с реле контроля – это его неспособность перехватить резкий скачок напряжения при обрыве нуля.
Достаточно буквально полусекунды с 350–380 Вт в розетке, чтобы вся техника в доме погорела. А большинство стабилизаторов не способно подстроиться под такие изменения и пропускает высокий вольтаж, отключаясь только через 1–2 секунды после начала всплеска.
Помимо стабилизаторов и реле для защиты линии от перепадов вольтажа в сети также можно применять расцепители максимального и минимального напряжения. Но у них в сравнении с РКН большее время срабатывания. Плюс они не включают питание обратно в автоматическом режиме, по работе больше походят на УЗО.
После отключения электроэнергии эти расцепители придется переключать в исходное состояние вручную.
Схемы подключения РКН
В щитке реле напряжения всегда устанавливается после счетчика в разрыв фазного провода. Он должен контролировать и по необходимости отсекать именно «фазу». Никак по-другому его подключать нельзя.
Чаще всего для однофазных потребителей применяется стандартная схема с прямой нагрузкой через реле (+)
Основных схем подсоединения однофазных реле регулятора сетевого напряжения существует две:
- с прямой нагрузкой через РКН;
- с подсоединением нагрузки через контактор – с .
При монтаже электрощита в доме практически всегда применяется первый вариант. Разнообразных моделей РКН с необходимой мощностью в продаже предостаточно. Плюс при необходимости этих реле можно установить по параллельной схеме и несколько, подключив к каждому из них отдельную группу электроприборов.
С монтажом все предельно просто. На корпусе стандартного однофазного реле имеется три клеммы – «нуль» плюс фазные «вход» и «выход». Надо лишь не перепутать подсоединяемые провода.
Выводы и полезное видео по теме
Чтобы Вам проще было сориентироваться в схемах подключения и выборе подходящего реле регулятора напряжения, мы сделали подборку видеоматериалов с описанием всех нюансов работы этого прибора.
Как защитить оборудование от перепадов в электросети с помощью РКН:
Настройка реле напряжения:
Реле контроля сетевого напряжения – это отличная защита от «обрыва нуля» и резких перепадов вольтажа. Подключить его несложно. Надо лишь вставить соответствующие провода в клеммы и затянуть их. Практически во всех случаях применяется стандартная схема с прямой нагрузкой через РКН.
Поделитесь с читателями вашим опытом подключения и применения реле напряжения. Пожалуйста, оставляйте комментарии, задавайте вопросы по теме статьи и участвуйте в обсуждениях – форма для отзывов расположена ниже.
Реле напряжения применяется для защиты бытовой техники от скачков в сети. Использование устройства заметно снижает риск выхода из строя дорогостоящей аппаратуры. Пригодится РН и для правильного функционирования промышленных агрегатов.
Для чего нужно реле контроля напряжения
Бытовые электроприборы рассчитаны на напряжение 220-240 В. Периодически в электросети возникают нештатные ситуации. Напряжение в розетке прыгает в большую или меньшую сторону. Скачки способны нарушить работу бытовой техники или вовсе вывести ее из строя.
Перепады напряжения в сетиРаспространенный случай перепадов напряжения — это обрыв нуля. При этом на одной фазе напряжение падает ниже допустимого уровня. На другой, наоборот, происходит существенное превышение вольтажа вплоть до 380в.
Другая ситуация свойственна старым домам с плохой электропроводкой и разболтавшимися контактами. Из-за плохого состояния кабелей и их перегрузки напряжение в розетках способно упасть до 170 В и ниже. Это опасно для электрических двигателей стиральных машин и холодильников.
На защиту электроприборов встает реле контроля напряжения. Это небольшое устройство располагается в распределительном щитке квартиры. Оно имеет компактную конструкцию, удобно крепится на дин рейку и выполняет свою задачу полностью автономно.
к содержанию ↑Дополнительная информация. Нужно отличать реле контроля напряжения от всевозможных стабилизаторов и УЗМ. Все перечисленные устройства применяются для защиты бытовой техники. Стабилизатор — прибор активный. Он способен самостоятельно корректировать напряжение в квартире. РН выполняет более простую и пассивную функцию. Оно просто отключает потребителя при превышении допустимого порога и, само по себе, на вольтаж никак не влияет.
Назначение кнопок и выводов
На передней панели стандартного реле ограничения напряжения имеется 3 контакта. Они предназначены для подключения нулевого и фазных проводников. Если смотреть слева направо, то контакты имеют следующее назначение:
- Общий нулевой провод. Этот контакт бывает раздвоен на 2 точки.
- Вход питающего напряжения. К нему подключается фаза, идущая от счетчика.
- Выход на квартиру. Этот провод отключится при скачке или просадке напряжения.
Выводы 2 и 3 — это нормально разомкнутые силовые контакты. Если напряжение между 1 и 2 находится в пределах нормы, то 2 и 3 замкнуты, и фаза может свободно проходить в сеть квартиры.
к содержанию ↑Реле контроля напряжения имеет простой принцип работы. Внутренний контроллер непрерывно измеряет напряжение в сети. Если оно выходит за пределы нормы, то электромагнитное реле отключает квартиру. Устройство цифровое. Оно срабатывает как на чрезмерно высокий вольтаж, так и на заниженный.
Задержка времени включения
Для РН свойственна задержка включения. Если вольтаж провалился ниже допустимой нормы, то устройство выключится и разорвет контакты 2 и 3. Когда напряжение снова входит в норму, реле не включается. Оно выжидает некоторое время. Например, 15 секунд. Это необходимо, чтобы избежать ложных включений РН. Регулятор для настройки этого параметра предусмотрен на передней панели устройства.
На корпусе реле имеются кнопки с дисплеем. Они позволяют настроить диапазон рабочего напряжения и время задержки срабатывания. Подробная информация о настройке прибора содержится в руководстве по эксплуатации.
к содержанию ↑Технические параметры
К основным характеристикам РН относится рабочее напряжение, количество подключаемых фаз и максимальная пропускная мощность. Ниже рассмотрены параметры одного из популярных реле — RV-32.
Характеристика | Значение |
---|---|
Питающее напряжение | 220 В |
7 кВт | |
Предельный ток нагрузки | 32 А |
Погрешность измерений | +/-1 % |
Степень защиты от пыли и влаги | IP20 |
Количество рабочих циклов реле | 100 тыс. |
Рабочая температура | от -5 до+40°C |
Предельное сечение подключаемых проводов | 6 кв. мм |
Из характеристики следует, что реле питается от сетевого напряжения 220 В. Внутренние контакты способны длительно пропускать ток, равный 32 А, что соответствует потребителю мощностью 7 кВт. Класс IP 20 говорит, что устройство непригодно для работы во влажном помещении или на улице. Его допустимо устанавливать в специальный электрический щит. 100 тыс. рабочих циклов — это количество включений и отключений реле, которые оно способно перенести без разрушения.
Реле напряжения DigiTOP Vp-50A IP20 к содержанию ↑Виды РН
В защите от скачков вольтажа нуждаются различные типы приборов. Некоторые из них работают от бытового напряжения 220 В и потребляют минимальную мощность. К примерам таких устройств относятся зарядные устройства для смартфонов или led лампочки. Другие так же работают от 220 В, но потребляют уже тысячи ватт мощности, например, электрические чайники и утюги. Третьи устройства требуют трехфазного питания 380 В. Обычное однополюсное РН им не годится. Среди таких потребителей промышленные станки и мощные асинхронные двигатели. Поэтому все реле для контроля напряжения принято разделять по типу корпуса и виду нагрузки.
к содержанию ↑По типу корпуса
- розеточные;
- в виде удлинителя;
- с установкой на din рейку.
Первый тип наиболее прост с точки зрения использования. Данное реле защиты от перенапряжения подключается непосредственно в розетку. С одной стороны корпуса имеется соответствующий разъем в виде штепсельной вилки. На другой части прибора расположена стандартная розетка для подключения нагрузки. Подобный тип РН можно быстро снять и подключить в другое место.
Второй тип выполнен в виде удлинителя. На его поверхности имеется несколько розеток для нагрузки. В отличие от 1-го типа данное реле оснащено кабелем с вилкой. Прибор удобен для стационарного подключения офисной техники.
к содержанию ↑Третий тип наиболее профессиональный. РН устанавливается в щиток. Оно имеет расширенный список функций, высокую пропускную мощность, и одновременно защищает все электрические приборы в квартире.
По количеству фаз
Электрические потребители, работающие от переменного тока, подразделяются на 2 группы. Подобное деление имеет и реле контроля напряжения. А именно:
- однофазное РН;
- трехфазное.
Однофазная модификация пригодна для дома. Эти реле устанавливаются в квартирах, гаражах и дачах. Они пропускают через себя одну фазу и ноль. Поэтому их называют однофазными.
Рабочее напряжение для подобных РН составляет 220в. Их контакты рассчитаны на ток в 30-40 А, что соответствует максимальным значениям для квартирной проводки. Устройство имеет минимальный перечень настроек и, если почитать инструкцию, пригодно для пользования обычным человеком без профильного образования.
к содержанию ↑Второй вид реле сложнее. Он контролирует вольтаж одновременно на 3 фазах. Подобная модификация годится для агрегатов, потребляющих от сети 380 В. Реле имеет расширенный перечень регулировок и требует минимальный опыт в настройке систем автоматики.
Распространенные схемы подключения
Отличия существуют и в мощности потребителей, которые подключаются через РН. Одним достаточно для питания фазы и нуля. Другие требуют трехфазное питание. Для каждой категории мощности нагрузки необходима соответствующая схема подключения реле. Поэтому принято выделять 3 способа включения этих защитных устройств:
- однофазное РН;
- трехфазное;
- схема подключения через контактор.
Подключение однофазного РН
Схема применяется для подключения потребителей на 220 В. Она пригодна как для квартиры, так и для отдельного устройства.
Первоначально имеется однофазное РН, питающая и отходящая линии. Монтаж схемы производится по нижеизложенному плану:
- Подключается общий нулевой провод. Соответствующая клемма имеется на реле. Она обозначается буквой «N». В зависимости от модели прибора нулевых клемм может быть и две. В таком случае на один контакт подключается ноль от питающей линии, а на другой от отходящей.
- Затем подсоединяется фазный провод отходящей линии. На корпусе прибора эта клемма имеет маркировку «L2», «выход L» или «out L».
- Третий этап — подключение фазного провода питающей линии. Напряжение на нем присутствует всегда и независимо от того, сработало РН или нет. В стандартном электрощите этот проводник идет от выхода прибора учета или дифавтомата.
Схема для трехфазного реле контроля напряжения
Разные модели трехфазных реле контроля напряжения имеют отличающийся набор клемм для подключения проводов. В стандартной комплектации их 8. Клеммы напряжения сети (4 шт.) нужны для подачи в устройство трех контролируемых фаз и нуля. На корпусе прибора они обозначаются L1, L2, L3 и N. Выходные релейные клеммы (4 шт.) используются для подключения последующих устройств защиты и автоматики. Они имеют маркировку «NO» у нормально открытых контактов, и «NC» у нормально закрытых.
Схема подключения собирается в 2 этапа:
- К клеммам РН подключаются фазные и нулевые провода питающей линии. Здесь необходимо обратить внимание на максимальный допустимый ток контактов. Как правило, если потребитель трехфазный, то он потребляет большие мощности. Реле должно быть рассчитано на эти значения.
- К релейному выходу подключаются последующие устройства. Например, контактор, различные устройства сигнализации или индикаторные лампы «авария».
к содержанию ↑Обратите внимание! Дорогостоящие трехфазные РН способны контролировать не только напряжение, но и ряд других параметров сети. Например, критический перекос фаз и правильность их чередования. Эти функции важны для правильной работы асинхронных двигателей и тиристорных преобразователей.
Подключение нагрузок свыше 100 кВт с помощью контактора
Некоторые потребители электроэнергии берут от сети токи в сотни ампер. Никакое РН не способно справиться с такими мощностями. В этой ситуации используют отдельный контактор. Его необходимо соединить с выходным реле.
В этой схеме РН просто контролирует состояние сети и формирует слаботочный сигнал управления для контактора. Его втягивающая катушка подключается последовательно с выходом реле контроля напряжения. Основной ток нагрузки протекает непосредственно через контактор.
к содержанию ↑Важно! Не следует ставить РН рядом с мощными источниками радиопомех, например, трансформаторами или беспроводными телефонами. Испускаемые ими помехи способны повлиять на измерительную цепь реле и привести к ложным срабатываниям.
Рекомендации по выбору
Из вышесказанного вытекает, что существует множество видов реле контроля напряжения. Подбор осуществляется с учетом конкретной ситуации, в которой РН предстоит работать. Наиболее значимые критерии выбора реле контроля напряжения таковы:
- Однофазная или трехфазная сеть. Практикуется вариант, когда вместо одного трехфазного реле устанавливается 3 однофазных.
- Тип исполнения реле. Подключаемые к розетке, рассчитаны на 1-3 потребителя. Они выдерживают ток до 16 А. Модификации под DIN рейку мощнее. Через них возможно подключить всю квартиру. Пропускаемый ток составляет 40-80 А.
- Допустимый ток реле. Для обычной квартиры подойдет прибор, способный пропускать 30-40 А. Этот ток больше, чем позволит сечение бытовой проводки, но РН лучше брать с запасом по мощности в 1,5-2 раза. Так устройство прослужит заметно дольше.
- Если реле приобретается для подключения одиночного бытового прибора, то перед покупкой следует узнать какой у него потребляемый ток. В этой ситуации достаточно делать запас в 30-50%.
Дополнительная информация. Существуют реле контроля напряжения, оснащенные встроенным амперметром. Эти приборы позволяют отслеживать потребляемый квартирой ток. На них возможно организовать защиту от короткого замыкания или перегрузки сети.
к содержанию ↑Настройка порогов срабатывания РН
Настройка реле защиты от перенапряжения производится после анализа текущего состояния электросети и проводки. Необходимо обратить внимание на такие факторы, как:
- Напряжение в розетке. Оно составляет 220 В только на страницах учебников. Реальный вольтаж в сети способен находиться в пределах 190-240 В. Бессмысленно настраивать РН на отключение при снижении до 210 В, если в розетке вольтаж редко поднимается выше 200 В. Особенно актуально для сельской местности и в частном доме.
- Мощность бытовых приборов. Некоторые образцы техники в момент запуска потребляют большие токи, что резко понижает напряжения в сети. Этот провал необходимо учитывать, чтобы выбрать нижний порог срабатывания защиты.
- В ночное время суток происходит обратное. Люди спят. Большая часть электроприборов в доме выключена. Напряжение в сети способно зашкаливать до 230-240 В. Это явление учитывается при выборе верхнего номинала срабатывания.
Проверка РН с помощью мультиметра
Полноценные испытания удастся провести при помощи специального оборудования в электротехнической лаборатории. Однако точность показаний выходного вольтажа получится проверить и обычным мультиметром. Прибор необходимо переключить в режим измерения переменного напряжения до 700 В. На переключателе это обозначается как «ACV 700».
Затем мультиметром предстоит определить напряжение на выходе РН, и сравнить это значение с показаниями на дисплее защитного устройства. Нужно понимать, что оба прибора имеют некоторую погрешность измерения. Показания должны примерно совпадать. Разница в 2-3 В — это не повод для паники. Но если отличия более существенны, то в РН есть неисправность.
Применение РН защитит бытовые электроприборы от перепадов напряжения. Для этого потребуется правильно подобрать уставки его срабатывания. Ориентировочные значения можно посмотреть в паспорте на устройство.
Реле контроля напряжения выбирается с учетом количества питающих фаз и максимальной мощности потребителя. Желательно приобретать защитное устройство с запасом по току в 20-30 %. Если необходимо контролировать потребляемый ток, то лучше установить прибор со встроенным амперметром.
Реле напряжения: назначение, виды, устройство, технические характеристики и схемы подключения
Реле контроля напряжения (РКН) – устройство, позволяющее защитить бытовые приборы, электроинструмент и другое электрооборудование, запитанные от электрической сети. Оно служит для непрерывного контроля напряжения и отключения потребителей при выходе его значения за допустимые пределы, которые задаются в настройках. РКН чаще всего устанавливают в зданиях старого жилого фонда, сельской местности и других местах, для которых характерно нестабильное напряжение.
Назначение РКН
Выясним, для чего нужно реле контроля напряжения. При достижении критически высокого или критически низкого значения напряжения реле обесточит электросеть и защитит электрические аппараты от повреждений, требующих дорогостоящего ремонта, или полного выхода из строя. При восстановлении нормальных параметров тока РКН генерирует команду на включение приборов с определенной выдержкой по времени.
Возможные причины срабатывания РКН:
- Обрыв проводов линии воздушных передач. Перехлестывание фазного и нулевого проводов приводит к резкому росту напряжения в фазном проводе.
- Обрыв нулевого провода в трехфазной системе. Приводит к опасному явлению, которое называется перекосом фаз. При обрыве нулевого проводника на одной из фаз вольтаж может резко понизиться, а на другой – возрасти.
- Включение высокомощного потребителя. Становится причиной резкого падения напряжения и перекоса фаз.
Принцип работы реле напряжения
Прибор состоит из двух блоков – измерительного и исполнительного. Измерительный блок контролирует напряжение в электросети. При выходе его значения за обозначенные в настройках пределы измерительный блок формирует сигнал, в соответствии с которым исполнительный механизм немедленно отключает электропотребителей. После нормализации параметров электротока в сети измерительный блок формирует сигнал исполнительному механизму на включение потребителей. Временная выдержка может длиться от нескольких секунд до 15 минут.
Реле контроля напряжения работает на основе таких устройств, как компараторы или микропроцессоры. Первый вариант является более простым и дешевым, а второй способен обеспечить более точную настройку устройства. Большинство современных моделей РКН оснащены именно микропроцессорной базой.
Самые простые РКН имеют два светодиода, показывающие наличие напряжения на входе и выходе. Технически более совершенные устройства оснащены дисплеем, на котором отображаются: текущий вольтаж в электросети и заданные допустимые пределы напряжения.
Для регулирования пороговых вольтажей предназначены: потенциометр с градуированной шкалой или кнопки. В последнем случае выставляемые пороговые значения отображаются на экране.
Реле, обеспечивающее коммутацию электрических цепей, построено по бистабильной схеме. Оно имеет два стабильных состояния, для сохранения которых затраты электроэнергии не требуются. Энергия затрачивается только при переходе из одного стабильного состояния в другое.
Типы реле напряжения
Эти защитные устройства могут предназначаться для однофазной или трехфазной сетей. Однофазные модели обычно востребованы в квартирах, частных домах и на дачах. Трехфазные РКН устанавливаются в ремонтных мастерских, на производственных объектах для защиты станков с трехфазным питанием. Главная особенность трехфазных реле – полное отключение электропитания даже при скачке только на одной из фаз.
По способу установки приборы бывают стационарными и переносными.
Стационарные
Устройства стационарного монтажа делятся на две группы – встроенные в розетку (розеточные) и располагаемые на электрощитках.
Розеточные модели используются в случае, если прибор невозможно установить в электрощитке или в ситуациях, когда конкретный потребитель нуждается в индивидуальной защите. Розеточные устройства часто сочетают с основной защитой – реле напряжения, установленным в распределительном шкафу. Например, после нормализации параметров сети РКН, встроенное в щиток, включает нагрузки с выдержкой в 1 минуту. Компрессорные потребители (холодильники, кондиционеры) требуют более длительное время выдержки – не менее 300 сек. Для них устанавливают индивидуальное розеточное реле.
Приборы, предназначенные для установки на электрощитке, обеспечивают защиту всех электропотребителей объекта, что избавляет от необходимости индивидуально защищать каждую нагрузку. Обычно такие РКН имеют широкий диапазон настроек и возможность работать в нескольких независимых режимах: как устройства наибольшего или наименьшего напряжения, с задержкой времени на включение.
Переносные
Переносные РКН разделяют на два типа: вилка-розетка и удлинитель. Такие устройства удобны своей мобильностью, отсутствием необходимости монтажных работ, возможностью задавать индивидуальные настройки для конкретных потребителей (как и в случае стационарных розеточных моделей).
- Вилка-розетка вставляется непосредственно в розетку. Ее работа управляется микроконтроллером, который анализирует текущий вольтаж и отображает его на экране. Допустимые пределы устанавливаются кнопками.
- Удлинитель – устройство, по принципу действия аналогичное вилке-розетке. Но он может иметь две и более розеток и защищать сразу несколько потребителей.
Какие параметры учитывают при выборе реле контроля напряжения
Перед тем как выбрать реле контроля напряжения, необходимо определиться, какие технические характеристики РКН подходят для конкретных условий применения. Это:
- рабочий диапазон;
- допустимые верхний и нижний пороги срабатывания;
- наличие или отсутствие индикаторов, показывающих уровень напряжения;
- быстродействие – время, требуемое для обесточивания нагрузки при срабатывании РКН;
- время задержки после нормализации вольтажа в сети;
- наличие или отсутствие функции защиты устройства от перегрева;
- максимальную коммутируемую мощность или максимальный пропускаемый ток, по этим характеристикам необходим запас не менее 20 %.
При эксплуатации удобны модели с дисплеем, позволяющим визуально контролировать вольтаж электросети. Материал корпуса должен быть прочным, не поддерживающим горение.
Особенности настройки РКН
Реле напряжения имеют три основные настройки:
- Установка порогового срабатывания по максимальному значению – Umax.
- Установка минимального значения, при котором происходит срабатывание устройства – Umin.
- Установка времени задержки коммутации после нормализации параметров электрической сети.
При установке пороговых значений необходимо соблюдать «золотую середину». Если пороги заданы слишком широко, то потребители могут не получить эффективную защиту. Пороги, заданные слишком жестко, становятся причиной слишком частого срабатывания РКН. Частые включения и выключения негативно влияют на эксплуатационный период как самого реле контроля напряжения, так и подключаемых нагрузок.
Управление настройками реле контроля напряжения может быть электромеханическим или цифровым. В первом случае пороговые значения устанавливаются переменным резистором, расположенным на передней панели, во втором – кнопками с отображением значений на LED-экране.
Некоторые РКН не имеют возможности настройки пороговых значений. Обычно нижний предел равен 170 В, а верхний – 265 В. Пороги определяются в заводских условиях, и изменить их самостоятельно невозможно. Эти приборы стоят дешевле. Но перед покупкой необходимо удостовериться, что такой допустимый диапазон соответствует эксплуатационным условиям.
Общие рекомендации по установке реле контроля напряжения
РКН являются достаточно дорогими устройствами, поэтому при их монтаже необходимо соблюдать несколько условий, среди них:
- Установка перед РКН автоматического выключателя стандартного исполнения, токовая нагрузка которого ниже максимальной токовой нагрузки реле напряжения на 20 %. Эта мера обеспечивает защиту прибора от короткого замыкания.
- Использование в комплексе с реле дополнительных защитных устройств – УЗО и стабилизаторов.
- При стационарной установке – обеспечение доступа для осмотра, обслуживания и параметрирования прибора.
Схемы подключения однофазных реле контроля напряжения
В зависимости от производителя РКН могут иметь разные варианты подключения. Перед тем как подключить реле контроля напряжения необходимо ознакомиться со схемой, указанной в инструкции или на его корпусе.
Однофазные реле обычно подключают в электросеть напрямую, то есть через их контакты протекает рабочий ток электросети. РКН монтируют в разрыве между электрическим счетчиком и группой потребителей. Для защиты от сверхтоков перед ним устанавливают дифавтомат. До прибора учета устанавливают вводный автомат, поэтому проведение монтажных работ при выключенном вводном АВ совершенно безопасно.
Этапы работ:
- Обесточить электросеть с помощью вводного автоматического выключателя. Для контроля отсутствия напряжения используют индикаторную отвертку.
- Установить РКН на DIN-рейку, защелкнуть фиксатор, проверить надежность удерживания прибора.
- Зачистить концы разрыва проводов, идущих от счетчика к нагрузкам.
- Закрепить провода, идущие от прибора учета, на штатных местах в верхней части РКН. Это – «фаза» и «ноль».
- Провод «фаза», идущий к потребителям, закрепляется на штатное место внизу прибора.
- Включить вводный автоматический выключатель и убедиться с помощью индикаторной отвертки, что напряжение поступает на вход реле.
- Включить РКН и выставить пороговые значения и время задержки включения.
Схема подключения трехфазных РКН в электрическую цепь
Трехфазные реле контроля напряжения могут подключаться двумя способами:
- Напрямую. В этом случае потребители в нештатных ситуациях отключаются контактами самого реле.
- Опосредовано. Такая схема подключения предусматривает прохождение рабочего тока через контакты не реле, а управляемого им магнитного пускателя. После магнитного пускателя устанавливаются одно- и трехполюсные автоматы, с помощью которых нагрузки разделяют на группы. Опосредованная схема подключения применяется в случаях обслуживания высокомощных нагрузок.
Проверка работоспособности реле контроля напряжения
Простых домашних способов проверки РКН на исправность не существует. Для того чтобы проверить реле контроля напряжения на работоспособность, в лабораторных условиях создают схему с имитацией нагрузки способом регулирования подаваемого напряжения. Прибор должен срабатывать на установленных пороговых значениях.
Современные дом, квартира, офис наполнены большим количеством электрических приборов различного назначения. Ввиду большой загруженности электросетей конечный потребитель зачастую сталкивается с такими техническими проблемами, как перекос фаз, скачки напряжения. Для снижения риска вывода из строя бытовых приборов используют устройства для стабилизации параметров электросетей. Таким устройством является реле контроля напряжения, которое пришло вслед за ранее используемыми установками стабилизатора напряжения.
Назначение реле контроля напряжения (РКН)
Вся техника потребителя работает от номинального напряжения, заложенного в сетях, равного 220 В. На самом деле колебания напряжения постоянно присутствуют и на выходе в электрических сетях клиент получает постоянные скачки. Нормальным считают отклонения в 10%. Но не редки случаи, когда измерительные приборы фиксируют падения показаний до 70 В, всплески — до 370 В. Для электропотребителей опасно одинаково низкое и высокое напряжение. Работа такой системы без защитных приборов крайне нежелательна.
Общий вид реле контроля напряженияЗащитное отключение, возложенное на реле напряжения, обесточит электроприбор во время перепада напряжения, а функция автоматического отключения (включения) сохранит жизнь изделию или отдельным его электронным устройствам (предохранитель, системные платы, реле, др.). Не стоит путать РКН с устройствами для контроля обрыва нуля, нейтрали, короткого замыкания, др.
Защитное реле напряжения применяют:
- для защиты однофазных и трехфазных сетей;
- для защиты от слипания, обрыва, перекоса фаз, чрезмерных токов нагрузки;
- для защиты оборудования от неисправностей;
- в устройствах с применением высоконагруженных моторов;
- в общественных организациях с большим наборов приборов с высоким током нагрузки и мощностью нагрузки электросети.
Устройство и принцип работы
Реле контроля напряжения представляет собой малогабаритный корпус (чаще всего пластиковый) с вмонтированной в него контролирующей, отключающей частью. Электромагнитное реле состоит из двух составляющих:
- силовая часть;
- электронная схема.
Благодаря использованию реле со встроенным микропроцессором, устройство способно плавно устанавливать пороги срабатывания защитного устройства. Основное свойство оборудования – быстрое действие и срабатывание при изменении параметров сети. Современны реле способны отключать только те участки сети, которая подвержена перегрузкам или недогрузкам по напряжению. Параметры работы устанавливают при помощи встроенного потенциометра.
Технические характеристики
Рабочий интервал напряжений для работы устройства – 50-400 Вольт. Такой вариативный запас позволяет предупредить большое количество неисправностей, аварий. Уязвимым местом остается работа системы в грозовую погоду. Молния создает более высокие и резкие перепады напряжений и реле не способно организовать защиту в этих условиях.
Реле контроля рабочего напряжения электросети обладают большим набором других технических характеристик, в зависимости от которых потребитель выбирает устройство для конкретных технических условий применения:
- номинальное входное напряжение;
- контроль перенапряжения;
- задержка срабатывания защиты;
- контроль снижения напряжения;
- частота входного напряжения;
- степень защиты по корпусу, силовым контактам автомата;
- габаритные параметры, масса, диапазон рабочих температур, др.
Разновидности
Реле контроля напряжения – широко распространенное устройство, используемое как в быту, так и для защиты оборудования на промышленных объектах. Это обуславливает отличие устройств друг от друга по габаритам, допустимым пределам нагрузки, исполнению, способам подключения.
По типу исполнения (подключения)
Весь модельный ряд защитных устройств по типу подключения укрупненно разделяют на три категории:
- удлинители (фильтры) на 1-6 розеток;
- портативные переходники «розетка-вилка»;
- «пакетники» для монтажа в комплексе с DIN-рейкой.
Первый и второй типы реле работают по одному принципу и конструктивно схожи друг с другом. Единственное отличие – удлинители обычно имеют более одной точки подключения (розеток), что позволяет организовать защиту сразу на несколько отдельных потребителей. Принцип работы устройств следующий – реле втыкается в обычную розетку электросети помещения, а к нему выполняют подсоединение бытовых приборов. Встроенный микроконтроллер анализирует напряжение в сети и выполняет защиту потребителей.
Индикация напряжения, а также другие рабочие параметры могут быть выведены на цифровое табло устройства. Непосредственно за отключение отвечает электромагнитное реле. Допустимые верхние, нижние пороги напряжения регулируют специальными кнопками управления, выведенными на корпус РКН.
Устройства типа «пакетников» — многофункциональное оборудование, предназначенное для установки в распределительном шкафу на DIN-рейку. Благодаря комплектации, способу подключения, заданным параметрам, изделие способно вести мониторинг параметров электросети полностью объекта и снимать напряжение в аварийных случаях полностью с комплекса или его отдельных секторов.
По виду нагрузки
По виду нагрузки и области применения элементы защиты делят на следующие категории:
- однофазные реле;
- трехфазные реле.
Для защиты однофазных потребителей, сетей используют защитные РКН первого типа. Таким способом защищают моторы практически всех распространенных бытовых электроприборов: холодильник, кондиционер, компрессор, др.
Реле контроля напряжения трехфазноеТрехфазные потребители защищают посредством установки реле защиты второго типа. Работа таких устройств позволяет контролировать напряжение на каждой фазе и защищать технику при аварии на одной из фаз. У этой системы есть свой недостаток – это полное обесточивание даже при небольшом перекосе напряжения между фазами, что зачастую не является опасной ситуацией. Поэтому в таком случае часто прибегают к установке однофазных реле защиты на каждую фазу в отдельности. При этом стоит обратить внимание на один нюанс – пропускная способность устройства по силе тока в сети. Для нормальной работы РКН необходимо использовать устройства с максимальным током несколько выше номинальных токов сети питания.
Установка и схемы подключения РКН
При подключении РКН в электрическую сеть объекта следует помнить несколько основных условий. Защитное реле напряжения устанавливают после счетчика напряжения, разрывая провод соответствующей фазы. То есть, устройство должно контролировать именно фазу и при необходимости воздействовать на нее. Другие способы подключения работать не будут или будут некорректно выполнять свои функции.
На практике зачастую при монтаже однофазных реле используют стандартные схемы подключения через реле с прямой нагрузкой на нем. Само же защитное реле может быть подключено двумя способами:
- с прямой нагрузкой на РКН;
- через контактор.
Для схем, которые монтируют внутри помещения преимущественно применяют первый вариант подключения реле. Для организации системы приобретают необходимый по мощностным характеристикам устройство и монтируют его в распределительной коробке.
Пример схемы подключения РКН ZUBR D63 в однофазной сетиНепосредственно подключение не вызовет никаких трудностей. На корпусе однофазного РКН расположены три силовые клеммы (точки подключения проводников). Одна – «ноль», две другие – вход и выход фазы. Задача персонала состоит лишь в том, чтобы не перепутать метки. При подключении трехфазных устройств необходимо внимательно развести входы и выходы соответствующих фазных проводников, чтобы в будущем вся система работала корректно, безаварийно.
Для подключения реле защиты электромонтеру необходим следующий набор оборудования и приспособлений:
- само РКН;
- металлическая рейка для установки автомата;
- провод соответствующего сечения;
- ручной инструмент, контрольные приборы.
Перед началом работ необходимо обесточить электросеть объекта. Это делают посредством отключения входного питающего автомата. Реле контроля устанавливают возле входных защитных автоматов, поэтому в выбранном месте монтируют металлическую рейку для дальнейшего крепления «пакетника». Далее разрывают провод фазы. Один конец подключают к входной клемме, второй – к выходной. Следующий этап – отрезком ранее приготовленного провода подсоединяют «ноль» на входном защитном автомате к нулевому контакту на реле контроля напряжения. Монтаж на этом окончен, на объект подают напряжение и проверяют работоспособность системы.
Советы по выбору РКН
Чтобы правильно и рационально выбрать устройство для защиты приборов и техники, необходимо следовать следующим советам:
- оборудование целесообразно приобретать в специализированных торговых точках, где окажут консультационную помощь по подбору, монтажу, эксплуатации изделия и предоставят гарантию на проданный товар;
- чем сложнее и функциональней устройство, тем стоимость его будет выше. Цена РКН зависит от следующих факторов:
- тип устройства – розеточного типа будет наименее дорогим, реечное – наиболее дорогостоящее;
- производитель;
- дизайн, материал деталей реле;
- дополнительные функции изделия;
- правильный подбор устройства по мощности защищаемых бытовых приборов. Для нормальной работы системы целесообразно использование реле с мощностью на 25% выше номинальной по сумме всех включенных в электрический контур потребителей. То есть, при номинальной мощности используемого трансформатора 10 А необходимо установить защитное реле с порогом не ниже 13 А. Стоит отметить, что все трехфазные аппараты рассчитаны на 16 А;
- наличие цифрового индикатора (дисплея) для визуального контроля рабочих параметров сетей;
- материал корпуса желательно должен быть выполнен из материалов, не поддерживающих горение;
- наличие функции регулировки время защитного отключения для предотвращения частого срабатывания устройства;
- наличие паспорта с техническими характеристиками прибора, электрической схемой;
- наличие функции защиты прибора от перегрева, измерения мощности сети для отключения нагрузки.
Видео по теме
схема подключения и принципы устройства РКН
Реле контроля напряжения (РКН) – устройство, позволяющее защитить бытовые приборы, электроинструмент и другое электрооборудование, запитанные от электрической сети. Оно служит для непрерывного контроля напряжения и отключения потребителей при выходе его значения за допустимые пределы, которые задаются в настройках. РКН чаще всего устанавливают в зданиях старого жилого фонда, сельской местности и других местах, для которых характерно нестабильное напряжение.
Назначение РКН
Выясним, для чего нужно реле контроля напряжения. При достижении критически высокого или критически низкого значения напряжения реле обесточит электросеть и защитит электрические аппараты от повреждений, требующих дорогостоящего ремонта, или полного выхода из строя. При восстановлении нормальных параметров тока РКН генерирует команду на включение приборов с определенной выдержкой по времени.
Возможные причины срабатывания РКН:
- Обрыв проводов линии воздушных передач. Перехлестывание фазного и нулевого проводов приводит к резкому росту напряжения в фазном проводе.
- Обрыв нулевого провода в трехфазной системе. Приводит к опасному явлению, которое называется перекосом фаз. При обрыве нулевого проводника на одной из фаз вольтаж может резко понизиться, а на другой – возрасти.
- Включение высокомощного потребителя. Становится причиной резкого падения напряжения и перекоса фаз.
Принцип работы реле напряжения
Прибор состоит из двух блоков – измерительного и исполнительного. Измерительный блок контролирует напряжение в электросети. При выходе его значения за обозначенные в настройках пределы измерительный блок формирует сигнал, в соответствии с которым исполнительный механизм немедленно отключает электропотребителей. После нормализации параметров электротока в сети измерительный блок формирует сигнал исполнительному механизму на включение потребителей. Временная выдержка может длиться от нескольких секунд до 15 минут.
Реле контроля напряжения работает на основе таких устройств, как компараторы или микропроцессоры. Первый вариант является более простым и дешевым, а второй способен обеспечить более точную настройку устройства. Большинство современных моделей РКН оснащены именно микропроцессорной базой.
Самые простые РКН имеют два светодиода, показывающие наличие напряжения на входе и выходе. Технически более совершенные устройства оснащены дисплеем, на котором отображаются: текущий вольтаж в электросети и заданные допустимые пределы напряжения.
Для регулирования пороговых вольтажей предназначены: потенциометр с градуированной шкалой или кнопки. В последнем случае выставляемые пороговые значения отображаются на экране.
Реле, обеспечивающее коммутацию электрических цепей, построено по бистабильной схеме. Оно имеет два стабильных состояния, для сохранения которых затраты электроэнергии не требуются. Энергия затрачивается только при переходе из одного стабильного состояния в другое.
Типы реле напряжения
Эти защитные устройства могут предназначаться для однофазной или трехфазной сетей. Однофазные модели обычно востребованы в квартирах, частных домах и на дачах. Трехфазные РКН устанавливаются в ремонтных мастерских, на производственных объектах для защиты станков с трехфазным питанием. Главная особенность трехфазных реле – полное отключение электропитания даже при скачке только на одной из фаз.
По способу установки приборы бывают стационарными и переносными.
Стационарные
Устройства стационарного монтажа делятся на две группы – встроенные в розетку (розеточные) и располагаемые на электрощитках.
Розеточные модели используются в случае, если прибор невозможно установить в электрощитке или в ситуациях, когда конкретный потребитель нуждается в индивидуальной защите. Розеточные устройства часто сочетают с основной защитой – реле напряжения, установленным в распределительном шкафу. Например, после нормализации параметров сети РКН, встроенное в щиток, включает нагрузки с выдержкой в 1 минуту. Компрессорные потребители (холодильники, кондиционеры) требуют более длительное время выдержки – не менее 300 сек. Для них устанавливают индивидуальное розеточное реле.
Приборы, предназначенные для установки на электрощитке, обеспечивают защиту всех электропотребителей объекта, что избавляет от необходимости индивидуально защищать каждую нагрузку. Обычно такие РКН имеют широкий диапазон настроек и возможность работать в нескольких независимых режимах: как устройства наибольшего или наименьшего напряжения, с задержкой времени на включение.
Переносные
Переносные РКН разделяют на два типа: вилка-розетка и удлинитель. Такие устройства удобны своей мобильностью, отсутствием необходимости монтажных работ, возможностью задавать индивидуальные настройки для конкретных потребителей (как и в случае стационарных розеточных моделей).
- Вилка-розетка вставляется непосредственно в розетку. Ее работа управляется микроконтроллером, который анализирует текущий вольтаж и отображает его на экране. Допустимые пределы устанавливаются кнопками.
- Удлинитель – устройство, по принципу действия аналогичное вилке-розетке. Но он может иметь две и более розеток и защищать сразу несколько потребителей.
Какие параметры учитывают при выборе реле контроля напряжения
Перед тем как выбрать реле контроля напряжения, необходимо определиться, какие технические характеристики РКН подходят для конкретных условий применения. Это:
- рабочий диапазон;
- допустимые верхний и нижний пороги срабатывания;
- наличие или отсутствие индикаторов, показывающих уровень напряжения;
- быстродействие – время, требуемое для обесточивания нагрузки при срабатывании РКН;
- время задержки после нормализации вольтажа в сети;
- наличие или отсутствие функции защиты устройства от перегрева;
- максимальную коммутируемую мощность или максимальный пропускаемый ток, по этим характеристикам необходим запас не менее 20 %.
При эксплуатации удобны модели с дисплеем, позволяющим визуально контролировать вольтаж электросети. Материал корпуса должен быть прочным, не поддерживающим горение.
Особенности настройки РКН
Реле напряжения имеют три основные настройки:
- Установка порогового срабатывания по максимальному значению – Umax.
- Установка минимального значения, при котором происходит срабатывание устройства – Umin.
- Установка времени задержки коммутации после нормализации параметров электрической сети.
При установке пороговых значений необходимо соблюдать «золотую середину». Если пороги заданы слишком широко, то потребители могут не получить эффективную защиту. Пороги, заданные слишком жестко, становятся причиной слишком частого срабатывания РКН. Частые включения и выключения негативно влияют на эксплуатационный период как самого реле контроля напряжения, так и подключаемых нагрузок.
Управление настройками реле контроля напряжения может быть электромеханическим или цифровым. В первом случае пороговые значения устанавливаются переменным резистором, расположенным на передней панели, во втором – кнопками с отображением значений на LED-экране.
Некоторые РКН не имеют возможности настройки пороговых значений. Обычно нижний предел равен 170 В, а верхний – 265 В. Пороги определяются в заводских условиях, и изменить их самостоятельно невозможно. Эти приборы стоят дешевле. Но перед покупкой необходимо удостовериться, что такой допустимый диапазон соответствует эксплуатационным условиям.
Общие рекомендации по установке реле контроля напряжения
РКН являются достаточно дорогими устройствами, поэтому при их монтаже необходимо соблюдать несколько условий, среди них:
- Установка перед РКН автоматического выключателя стандартного исполнения, токовая нагрузка которого ниже максимальной токовой нагрузки реле напряжения на 20 %. Эта мера обеспечивает защиту прибора от короткого замыкания.
- Использование в комплексе с реле дополнительных защитных устройств – УЗО и стабилизаторов.
- При стационарной установке – обеспечение доступа для осмотра, обслуживания и параметрирования прибора.
Схемы подключения однофазных реле контроля напряжения
В зависимости от производителя РКН могут иметь разные варианты подключения. Перед тем как подключить реле контроля напряжения необходимо ознакомиться со схемой, указанной в инструкции или на его корпусе.
Однофазные реле обычно подключают в электросеть напрямую, то есть через их контакты протекает рабочий ток электросети. РКН монтируют в разрыве между электрическим счетчиком и группой потребителей. Для защиты от сверхтоков перед ним устанавливают дифавтомат. До прибора учета устанавливают вводный автомат, поэтому проведение монтажных работ при выключенном вводном АВ совершенно безопасно.
Этапы работ:
- Обесточить электросеть с помощью вводного автоматического выключателя. Для контроля отсутствия напряжения используют индикаторную отвертку.
- Установить РКН на DIN-рейку, защелкнуть фиксатор, проверить надежность удерживания прибора.
- Зачистить концы разрыва проводов, идущих от счетчика к нагрузкам.
- Закрепить провода, идущие от прибора учета, на штатных местах в верхней части РКН. Это – «фаза» и «ноль».
- Провод «фаза», идущий к потребителям, закрепляется на штатное место внизу прибора.
- Включить вводный автоматический выключатель и убедиться с помощью индикаторной отвертки, что напряжение поступает на вход реле.
- Включить РКН и выставить пороговые значения и время задержки включения.
Схема подключения трехфазных РКН в электрическую цепь
Трехфазные реле контроля напряжения могут подключаться двумя способами:
- Напрямую. В этом случае потребители в нештатных ситуациях отключаются контактами самого реле.
- Опосредовано. Такая схема подключения предусматривает прохождение рабочего тока через контакты не реле, а управляемого им магнитного пускателя. После магнитного пускателя устанавливаются одно- и трехполюсные автоматы, с помощью которых нагрузки разделяют на группы. Опосредованная схема подключения применяется в случаях обслуживания высокомощных нагрузок.
Проверка работоспособности реле контроля напряжения
Простых домашних способов проверки РКН на исправность не существует. Для того чтобы проверить реле контроля напряжения на работоспособность, в лабораторных условиях создают схему с имитацией нагрузки способом регулирования подаваемого напряжения. Прибор должен срабатывать на установленных пороговых значениях.
- Рейтинги
- Обзоры
- Смартфоны и планшеты
- Компьютеры и ноутбуки
- Комплектующие
- Периферия
- Фото и видео
- Аксессуары
- ТВ и аудио
- Техника для дома
- Программы и приложения
- Новости
- Советы
- Покупка
- Эксплуатация
- Ремонт
- Подборки
- Смартфоны и планшеты
- Компьютеры
- Аксессуары
- ТВ и аудио
- Фото и видео
- Программы и приложения
- Техника для дома
- Гейминг
- Игры
- Железо
Зачем устанавливать реле?
Некоторые обладатели техники считают, что сеть достаточно стабильна и проблемы их не коснутся, однако это не так, и перегрузки могут возникнуть из-за различных явлений. В этом случае реле контроля напряжения может спасти технику от сгорания, а ее владельцев — от больших трат.
- Если на воздушной линии случайно произойдет обрыв, это может привести к большому скачку напряжения, который будет значительно превышать обычные параметры. Чувствительная техника не выдержит таких перемен и сгорит без дополнительной защиты. Причиной обрыва легко может стать непогода, например, разбушевавшийся ветер. Из-за повреждения нейтрального провода может возникнуть схожая проблема с такими же итогами.
- На уровень напряжения может повлиять и расположение трансформатора. Если он находится далеко от здания, то при передаче тока уровень может упасть до слишком низких значений, что отрицательно скажется на технике при ее работе в этот момент.
- Если в сеть включается мощный прибор, потребляющий большое количество энергии, то на другой фазе в этот момент может упасть напряжение. Это негативно скажется на других приборах, которые находятся на пустой фазе, они могут повредиться и даже сгореть.
Все эти проблемы могут возникнуть в любое время, никто не застрахован от них, поэтому лучше заранее позаботиться о защите своей техники, установив реле контроля напряжения.
Принцип работы устройства и его конструкция
Механизм управляется специальной микросхемой, которая контролирует работу и отслеживает уровень напряжения в сети. Если оно приближается к опасным параметрам, оборудование включается и выравнивает уровень. Стоит помнить, что реле работает только в определенном диапазоне — от 100 до 400 Вт, поэтому не нужно надеяться на его помощь во время грозы. От попадания молнии это устройство не защитит, тут потребуется ограничитель напряжения, который устанавливается отдельно.
Как устроено реле контроля напряжения?
- У него есть две части, которые отвечают за работу — электронная и силовая. Первая отслеживает уровень напряжения и контролирует его, а вторая отвечает за регулирование нагрузки.
- Самой важной частью в этом устройстве является специальный микропроцессор, который контролирует всю деятельность. По-другому он называется компактор. Оборудование на основе таких процессоров считается лучшим вариантом, поскольку оно способно регулировать напряжение наиболее плавно, без лишних скачков.
- Главными свойствами для реле являются быстрое срабатывание и действие, чтобы устройство могло защитить технику. Уровень быстродействия зависит от установленных настроек.
- По своему действию реле отличается от стабилизаторов, оно не распределяет все напряжение по сети, а просто отключает аварийные участки, где напряжение отличается от нормы. Именно поэтому использование таких устройств считается более эффективным.
Где используется реле?
Сфера использования этого устройства достаточно широкая, поскольку оно применяется для защиты от перегрузки в электросети и обеспечении безопасности приборов. Поскольку техника и различное оборудование используется повсюду, то и реле может быть установлено в любом заведении и помещении, где имеются приборы, которые необходимо защитить.
- Реле справляется с защитой как однофазной, так и трехфазной сети, помимо этого, оберегая ее от обрывов, слипаний и перекосов.
- Может использоваться для защиты устройств, которые имеют значительную нагрузку на мотор во время работы, также помогает при взаимодействии с приборами, имеющими длительный переходный цикл.
- Некоторые установки требуют определенного качественного напряжения или полных фаз, в этом случае не обойтись без реле.
- Применяется также в обычных квартирах и домах, чтобы защитить бытовую технику и приборы, в общественных заведениях, где используется дорогостоящее и высокоточное оборудование, на производстве — чтобы не допустить сбоя в работе промышленной техники.
Преимущества устройства
Использование реле имеет немало плюсов. Это удобное и современное оборудование позволяет защитить технику и не беспокоиться о ее сохранности, а также обладает положительными качествами, которые обеспечивают широкие возможности для работы.
- Агрегат способен работать в условиях значительного температурного диапазона от -20 до +40 градусов по Цельсию, поэтому его можно использовать не только в помещении, но и на улице, если регион не отличается слишком холодными зимами.
- Производители выпускают довольно большое количество различных устройств со своими функциями и особенностями, поэтому не составит труда подобрать подходящий вариант, как по характеристикам, так и по бюджету.
- Использование реле экономит расходы на ремонт или покупку новой техники, защищая имеющиеся приборы.
- Прибор не требует сложной установки, поэтому можно провести монтаж самостоятельно, имея минимальные навыки обращения с подобными устройствами.
- Модели выглядят достаточно приятно, чтобы не выделяться на фоне обстановки и не нарушать гармоничность интерьера своим присутствием.
- Интенсивность света не меняется во время перемены напряжения в сети. Если произошел обрыв линии из-за каких-то погодных явлений, то устройство просто отключит аварийный участок во избежание проблем.
Основы, дизайн, принцип работы и типы
Большинство бытовых электронных устройств, таких как мобильные телефоны, ТВ, радио, MP3-плееры и т. Д., Представляют собой комбинацию цифровой и аналоговой электроники. Везде, где есть беспроводная передача / прием или аудиосигналы, участвующие в электронном проектировании, нам понадобятся периодические колебательные электронные сигналы, которые называются Осциллирующими сигналами и очень полезны для беспроводной передачи или для выполнения операций, связанных с синхронизацией.
Генератор в электронике обычно относится к схеме, которая способна генерировать сигналы. Эта форма волны может быть синусоидальной, треугольной или даже типа зубьев пилы. Некоторые из наиболее распространенных схем генератора — это схема LC, схема бака и т. Д. Генератор , управляемый напряжением, представляет собой генератор, который генерирует колебательные сигналы (сигналы) с переменной частотой. Частота этого сигнала варьируется в зависимости от величины входного напряжения.Сейчас вы можете представить себе генератор напряжения, управляемый напряжением (VCO), который представляет собой черный ящик, который принимает напряжение переменной величины и выдает выходной сигнал переменной частоты, а частота выходного сигнала прямо пропорциональна величине входного напряжения. , Мы узнаем больше об этом черном ящике и как использовать его в наших проектах в этом уроке.
Принцип работы VCO
Существует много типов схем ГУН ; очень простой можно построить, просто используя конденсатор, индуктор и резистор для создания цепи в баке.Также операционные усилители, мультивибраторы, транзисторы, 555 таймеров также могут быть использованы для построения колебательных контуров . Кроме того, существуют специальные IC-пакеты, такие как LM566, LM567 и т. Д., Которые могут выступать в качестве VCO. Чтобы понять основную идею VCO, давайте рассмотрим генератор RC.
В генераторе RC частота выходной волны зависит от значения конденсатора, используемого в цепи, так как частота задается формулами
Частота (f) = 1/ 2 πRC
Следовательно, в этом случае частота колебаний обратно пропорциональна величине емкости, используемой в цепи.Поэтому теперь, чтобы контролировать выходную частоту и заставить ее работать в качестве VCO, мы должны изменить емкость конденсатора в зависимости от значения входного напряжения. Этого можно добиться с помощью варакторных диодов. Эти диоды изменяют значение емкости на них в зависимости от приложенного напряжения. Пример выходного графика VCO показан ниже.
Предположим, что управляющее напряжение равно Vc, а выходная частота равна fo. Затем при нормальных условиях работы VCO подается номинальное напряжение, для которого VCO генерирует номинальную частоту.Когда входное напряжение (управляющее напряжение) увеличивается, выходная частота увеличивается, и наоборот, это также возможно.
Типы управляемых напряжением генераторов
Существует много типов цепей ГУН, используемых в различных приложениях, но их можно в целом классифицировать на два типа в зависимости от их выходного напряжения.
Гармонические осцилляторы: Если форма сигнала на выходе генератора синусоидальна, то она называется гармоническими осцилляторами.К этой категории относятся цепи RC, LC и Tank. Эти типы генераторов сложнее реализовать, но они лучше устойчивы, чем генератор релаксации. Гармонические осцилляторы также называют линейным генератором, управляемым напряжением.
Осциллятор релаксации: Если выходной сигнал генератора имеет пилообразную или треугольную форму, то генератор называется Осциллятором релаксации. Они сравнительно просты в реализации и, следовательно, наиболее широко используются.Осциллятор релаксации может быть далее классифицирован как
- Генератор с управлением по напряжению
- Заземленный конденсатор Управляемый напряжением генератор
- Кольцо с управляемым напряжением, управляемое напряжением, генератор
Генератор с управлением напряжением — Практическое применение
Как упоминалось ранее, VCO может быть просто сконструирован с использованием пары RC или LC, но в реальных приложениях никто этого не делает.Существует специальная микросхема, которая может генерировать колебания на основе входного напряжения. Одной из таких широко используемых микросхем является LM566 от National Semiconductor.
Эта микросхема способна генерировать как треугольную, так и прямоугольную волну , и номинальную частоту этой волны можно установить с помощью внешнего конденсатора и резистора. Позже эта частота также может изменяться в режиме реального времени в зависимости от входного напряжения, подаваемого на нее.
Схема контактов микросхемы LM566 показана ниже
Микросхема может работать от одного источника питания или от двойной шины питания с рабочим напряжением до 24 В.Контакты 3 и 4 являются выходными контактами, которые дают нам прямоугольную волну и треугольную волну соответственно. Номинальную частоту можно установить, подключив правильное значение конденсатора и резистора к контактам 7 и 6.
Формулы для расчета значений R и C на основе выходной частоты (Fo) задаются формулами
Fo = 2,4 (Vss - Vc) / Ro + Co + Vss
Где,
Vss — это напряжение питания (здесь 12 В), а Vc — управляющее напряжение, подаваемое на вывод 5, в зависимости от величины которого регулируется выходная частота.(Здесь мы сформировали делитель потенциала, используя резистор 1,5 кОм и резистор 10 кОм для подачи постоянного напряжения на вывод 5). Примерная принципиальная схема для LM566 показана ниже
В практических применениях резисторы 1,5 кОм и 10 кОм можно игнорировать, а управляющее напряжение можно напрямую подавать на вывод 5. Вы также можете изменять значения Ro и Co в зависимости от требуемого диапазона выходной частоты. Также см. Таблицу данных, чтобы проверить, насколько линейно изменяется выходная частота относительно входного управляющего напряжения.Значение выходной частоты регулируется с помощью управляющего напряжения (на выводе 5) в соотношении 10: 1, что помогает нам обеспечивать широкий диапазон управления.
Приложения VCO
- Переключение частоты
- Частотные идентификаторы
- Клавиатура Тоновые распознаватели
- Генераторы часов / сигналов / функций
- Используется для построения фазовых петель.
Генератор, управляемый напряжением, является основным функциональным блоком в системе фазовой автоподстройки частоты.Итак, давайте также разберемся с фазовой автоподстройкой частоты , почему это важно и что VCO делает внутри фазовой автоподстройки частоты.
Что такое фазовая автоподстройка частоты (ФАПЧ)?
Phase Locked Loop, также называемый PPL, представляет собой систему управления, в основном состоящую из трех важных блоков. Это фазовый детектор, фильтр нижних частот и генератор, управляемый напряжением. Вместе эти три формируют систему управления, которая постоянно регулирует частоту выходного сигнала в зависимости от частоты входного сигнала.Блок-схема ФАПЧ показана ниже
Система PLL используется в приложениях, где высокая стабильная частота (f OUT ) должна быть получена из нестабильного частотного сигнала (f IN ). Основная функция схемы ФАПЧ — производить выходной сигнал с той же частотой, что и входной сигнал. Это очень важно в беспроводных приложениях, таких как маршрутизаторы, радиочастотные системы передачи, мобильные сети и т. Д.
Фазовый детектор сравнивает входную частоту (f IN ) с выходной частотой (f OUT ), используя предоставленный путь обратной связи.Разница в этих двух сигналах сравнивается и дается в терминах значения напряжения и называется сигналом напряжения ошибки. Этот сигнал напряжения также будет иметь некоторый высокочастотный шум, связанный с ним, который может быть отфильтрован с помощью фильтра низких частот. Затем этот сигнал напряжения подается на ГУН, который, как мы уже знаем, изменяет выходную частоту на основе предоставленного сигнала напряжения (управляющего напряжения).
PLL — Практическое применение
Одной из наиболее часто используемых интегральных схем PLL является LM567 .Это ИС декодера тонов, то есть она слушает тональный сигнал определенного пользователем типа на контакте 3, и если этот тон получен, он соединяет выход (контакт 8) с землей. Таким образом, в основном, для прослушивания всего имеющегося на частоте звука и продолжает сравнивать частоту этих звуковых сигналов с заданной частотой, используя технику PLL. Когда частоты совпадают с выходным контактом, он становится низким. Ниже показан вывод микросхемы LM567, схема очень чувствительна к шуму, поэтому не удивляйтесь, если вы не сможете заставить эту микросхему работать на макете.
Как показано на выводе, ИС состоит из цепи детектора фазы I и Q внутри нее. Эти фазовые детекторы проверяют разницу между установленной частотой и частотой входящего сигнала. Внешние компоненты используются для установки значения этой установленной частоты. Микросхема также состоит из схемы фильтра, которая будет фильтровать шум случайного переключения, но для этого требуется внешний конденсатор, подключенный к выводу 1. 2 29083 и вывод используются для установки полосы пропускания ИС, чем выше емкость, тем меньше будет емкость. пропускная способность.Контакты 5 и 6 используются для установки значения установленной частоты. Это значение частоты можно рассчитать с помощью приведенных ниже формул
Основная схема для микросхемы LM567 показана ниже.
Входной сигнал, частоту которого необходимо сравнить, подается на вывод 3 через фильтрующий конденсатор со значением 0,01 мкФ. Эта частота сравнивается с установленной частотой. Частота устанавливается с помощью резистора 2,4 кОм (R1) и 0.0033 Конденсатор (C1), эти значения могут быть рассчитаны в соответствии с установленной вами частотой с использованием приведенных выше формул.
Когда входная частота соответствует установленной частоте, выходной контакт (контакт 8) будет заземлен. В противном случае этот штифт останется высоким. Здесь мы использовали резистор (R L ) в качестве нагрузки, но обычно это будет светодиод или зуммер, как того требует конструкция. Таким образом, LM567 использует способность VCO сравнивать частоты , что очень полезно в приложениях, связанных со звуком / беспроводным соединением.
Надеюсь, у вас есть хорошее представление о VCO, если у вас есть какие-либо сомнения, разместите их в разделе комментариев или используйте форумы.
Также проверьте:
,Генератор с управлением напряжением— Использование ГУН, работа и применение
Что такое Генератор с управлением напряжением?
Генератор, управляемый напряжением, — это генератор с выходным сигналом, выход которого может изменяться в диапазоне, который контролируется входным напряжением постоянного тока. Это генератор, выходная частота которого напрямую связана с напряжением на его входе. Частота колебаний варьируется от нескольких герц до сотен ГГц. Изменяя входное напряжение постоянного тока, выходная частота производимого сигнала регулируется.
2 типа генераторов с управляемым напряжением
- Гармонические генераторы: Выход представляет собой сигнал с синусоидальной формой волны. Примерами являются кварцевые генераторы и танковые генераторы.
- Релаксационные генераторы. Выходной сигнал представляет собой сигнал с пилообразной или треугольной формой волны и обеспечивает широкий диапазон рабочих частот. Выходная частота зависит от времени зарядки и разрядки конденсатора.
Базовый принцип работы генератора пилообразных сигналов VCO
Для генератора, управляемого напряжением, генерирующего пилообразный сигнал, основным компонентом является конденсатор, который заряжается и разряжается, решая вопрос о формировании выходного сигнала.Вход дан в форме напряжения, которым можно управлять. Это напряжение преобразуется в сигнал тока и подается на конденсатор. Когда ток проходит через конденсатор, он начинает заряжаться, и на него начинает накапливаться напряжение. Когда конденсатор заряжается и напряжение на нем постепенно увеличивается, напряжение сравнивается с опорным напряжением с использованием компаратора.
Когда напряжение на конденсаторе превышает опорное напряжение, то компаратор генерирует высокий логический вывод, который запускает транзистор, и конденсатор подключен к земле, и начинается разрядкой.Таким образом, сгенерированная форма выходного сигнала представляет собой зарядку и разрядку конденсатора, а частота контролируется входным напряжением постоянного тока.
Применение VCO
- Электронное оборудование для подавления помех.
- Функциональный генератор.
- Производство электронной музыки, для производства различных видов шума.
- Фазовая петля.
- Синтезаторы частот, используемые в цепях связи.
A Практический VCO — LM566
Практическим примером генератора, управляемого напряжением (VCO), является LM566.LM566 — это ГУН общего назначения, которая может использоваться для генерации прямоугольных и треугольных сигналов в качестве входного напряжения функции.
LM566 предназначен для работы в диапазоне температур от 0 ° C до 70 ° C. Частота которого является линейной функцией управляющего напряжения. Частота также контролируется внешним резистором и конденсатором, значения которых контролируют частоту свободного хода.
Контакт Описание:
- Контакт 1: Земля (GND)
- Контакт 2: Нет соединения (NC)
- Контакт 3: Прямоугольный выход
- Контакт 4: Выход треугольной волны
- Контакт 5: Вход модуляции
- Контакт 6: Временной резистор
- Контакт 7: Временной конденсатор
- Контакт 8: Vcc
Особенности:
- Максимальное рабочее напряжение от 10 В до 24 В
- Высокотемпературная стабильность
- Рабочая температура 0 ToC до 70˚C
- Частота может регулироваться с помощью тока, напряжения, резистора или конденсатора
- Рассеиваемая мощность 300 мВ
- Превосходное подавление питания
Применения:
- Функциональный генератор
- Генератор тонов
- FM модуляция
- Частотная манипуляция
- Тактовый генератор
Работа LM566:
На рисунке показано, что микросхема LM566 содержит Источники тока для зарядки и разрядки внешнего конденсатора со скоростью, установленной внешним резистором R1 и модулирующим входным напряжением постоянного тока V.
Конденсатор 0,001 мкФ подключен к контакту 5 и контакту 6. Цепь триггера Шмитта используется для переключения источников тока между зарядкой и разрядкой конденсатора, и треугольное напряжение, создаваемое на конденсаторе, и прямоугольная волна от триггера Шмитта являются предоставляются как выходы через буферные усилители. Обе выходные формы сигналов буферизуются, так что выходной импеданс каждого составляет 50 ф2. Типичная величина треугольной волны и прямоугольной волны составляет от 2.4Vpeak до пика и 5.4Выполнить к вершине. Частота автономной работы или центральная рабочая частота f0 равна
Применение ГУН — фазовая автоподстройка частоты
Что такое фазовая автоподстройка частоты?
Это электронная схема, которая используется для блокировки выходной частоты генератора, управляемого напряжением, на требуемую входную частоту путем постоянного сравнения фазы входной частоты с фазой выходной частоты ГУН. ФАПЧ используется для генерации сигнала, его модуляции или демодуляции.Они в основном используются в частотной модуляции и амплитудной модуляции. Выходная частота генератора, управляемого напряжением, постоянно регулируется до совпадения с входной частотой.
Как работает фазовая петля?
В приведенной выше блок-схеме, ПД или фазовый детектор сравнивает частоту выходного сигнала с помощью входного сигнала опорной частоты. В случае любого несоответствия фазовый детектор генерирует сигнал ошибки, который фильтруется с использованием фильтра нижних частот, чтобы удалить шум, и этот сигнал подается на генератор, управляемый напряжением, для соответствующей генерации выходной частоты.Эта выходная частота передается фазовому детектору через счетчик деления на N, который делит выходную частоту на определенное число N.
A Практическое применение тонального декодера PLL с использованием LM567
LM567 — это тональный декодер. Он предназначен для подведения насыщенного транзисторного переключателя на землю при наличии входного сигнала. Он состоит из генератора, управляемого напряжением (VCO) и фазового детектора. Управляемый напряжением генератор должен проверять центральную частоту декодера.Внешние компоненты используются для установки центральной частоты, полосы пропускания и задержки на выходе.
Фазовый детектор и ГУН образуют контур фазовой синхронизации (ФАПЧ), когда ФАПЧ блокируется, а амплитуда входного сигнала превышает предварительно установленное пороговое значение, на выходе активируется переключение на землю.
Особенности:
- Диапазон частот от 20 до 1 с внешним резистором
- Логически-совместимый выход с возможностью ослабления тока 100 мА
- Регулируемая ширина полосы
- Высокий уровень подавления внеполосных сигналов и шумов
- Невосприимчивость к ложным сигналам
- Высокая центральная частота (0.От 01 Гц до 500 кГц)
Тональный декодер LM567 PLL имеет множество применений; к ним относятся тональное декодирование, прецизионный генератор, мониторинг частоты и управление, широкополосная демодуляция FSK, ультразвуковые элементы управления, пульты дистанционного управления несущим током и декодеры пейджинговой связи.
Работа тонального декодера LM567 PLL:
LM567 работает при напряжениях питания от 2 В до 9 В и входных частотах от 1 Гц до 500 кГц. Синхронизирующий конденсатор Ct генератора должен быть разделен на два, чтобы удвоить частоту генератора относительно входной частоты, и фильтрующие конденсаторы C1 и C2 должны быть уменьшены, чтобы поддержать те же самые постоянные времени фильтра.Когда ФАПЧ заблокировано, выходной контакт 8 переключается на землю и активируется. Для активации переключателя не требуется дополнительный ток питания. И сопротивление включения переключателя обратно пропорционально питанию. Вход имеет достаточную амплитуду, чтобы вывод 1 упал ниже 2/3 Vs.
Я надеюсь, что у вас есть идея об управляемом напряжением генераторе из вышеприведенной статьи, поэтому, если у вас есть какие-либо вопросы по поводу этой концепции или электрических и электронных проектов, оставьте раздел комментариев ниже.
Напряжение энергосистемы может меняться в зависимости от изменения нагрузки. Напряжение обычно высокое при небольшой нагрузке и низкое при большой нагрузке. Для поддержания напряжения системы в определенных пределах требуется дополнительное оборудование, которое увеличивает напряжение системы, когда оно низкое, и уменьшает напряжение, когда оно слишком высокое. Ниже приведены методы, используемые в системе питания для управления напряжением.
- Трансформатор с переключением под нагрузкой
- Выключен — Трансформатор для изменения нагрузки нагрузки
- шунтирующих реакторов
- Синхронные фазовые модификаторы
- Шунтирующий конденсатор
- Статическая система VAR (SVS)
Управление напряжением системы с помощью индуктивного элемента шунта называется компенсацией шунта.Шунтирующая компенсация бывает двух типов: статическая шунтирующая компенсация и синхронная компенсация. В статической шунтирующей компенсации используются шунтирующий реактор, шунтирующий конденсатор и статическая система VAR, тогда как шунтирующая компенсация использует модификатор синхронной фазы. Методы, используемые для управления напряжением, подробно описаны ниже.
1. Отключение трансформатора отвода нагрузки — В этом методе напряжение контролируется путем изменения коэффициента поворота трансформатора.Перед заменой крана трансформатор отключается от источника питания. Замена отводов трансформатора в основном производится вручную.
2. Трансформатор с переключением отводов под нагрузкой — Эта схема используется для изменения коэффициента оборота трансформатора для регулирования напряжения системы, когда трансформатор подает нагрузку. Большая часть силового трансформатора снабжена устройством РПН.
3. Шунтирующий реактор — Шунтирующий реактор является элементом индуктивного тока, который подключен между линией и нейтралью.Шунтирующий реактор компенсирует индуктивный ток от линии электропередачи или подземных кабелей. В основном он используется в линиях передачи EHV и UHV на большие расстояния для контроля реактивной мощности.
Шунтирующие реакторы используются в подстанции передающего конца, подстанции принимающего конца и в промежуточной подстанции длинной линии EHV и UHV. В длинной линии электропередачи шунтирующий реактор соединен на расстоянии 300 км для ограничения напряжения в промежуточной точке.
4.Шунтирующие конденсаторы — Шунтирующие конденсаторы — это конденсаторы, подключенные параллельно линии. Он устанавливается на приемной конечной подстанции, распределительных подстанциях и на коммутационных подстанциях. Шунтирующий конденсатор вводил реактивный вольт-ампер в линию. Он размещен в трехфазном банке.
5. Модификатор синхронной фазы — Модификатор синхронной фазы — это синхронный двигатель, работающий без механической нагрузки. Это связано с нагрузкой на приемном конце линии.Модификатор синхронной фазы поглощает или генерирует реактивную мощность, изменяя возбуждение обмотки возбуждения. Он поддерживает постоянное напряжение при любых условиях нагрузки, а также улучшает коэффициент мощности.
6. Серия Var Systems (SVS) — Статический компенсатор VAR вводит или поглощает индуктивный VAR в систему, когда напряжение становится выше или ниже эталонного значения. В статическом компенсаторе VAR тиристор используется в качестве переключающего устройства вместо автоматических выключателей.В настоящее время тиристорное переключение используется в системе вместо механического переключения, потому что тиристорное переключение происходит быстрее и обеспечивает работу без переходных процессов путем управления переключением.
,Что такое VCA?
VCA — это процессор, который может изменять амплитуду сигнала, пропорциональную управляющему напряжению, подаваемому на его управляющий вход амплитудной модуляции. Проще говоря, это просто усилитель, выход которого вы можете контролировать с помощью управляющего сигнала.
Объясненные входы
Усилитель с регулируемым напряжением (VCA) имеет два вида входов:
Это вход, через который поступает биполярный сигнал.Впоследствии это основной сигнал, и все изменения вносятся в этот сигнал.
Модулятор (управляющий вход)
Обычно через этот вход поступает однополярный положительный сигнал, который вносит изменения в биполярный сигнал, поступающий с входного сигнала.
Как это работает?
VCA — это усилитель, который обычно принимает биполярный сигнал на своем несущем или входном сигнале и однополярный положительный сигнал на своем модуляторе или управляющем входе.Кроме того, выходной сигнал является мгновенным произведением обоих этих сигналов. Это умножение обеих амплитуд в каждый момент времени.
Многие VCA имеют регуляторы усиления, доступные для установки на разные значения. Несущий сигнал может проходить через VCA, только если обеспечивается положительное смещение или положительный сигнал поступает через управляющий вход. Таким образом, когда он смещен в 0 и сигнал модулятора не поступает, сигнал не будет присутствовать на выходе. Именно по этой причине обычно однополярный положительный сигнал подается на управляющий вход.Кроме того, если звук должен часто сворачиваться для определенных эффектов, биполярный сигнал также посылается.
Использование VCA
Tremolo — плавное и медленное повторяющееся изменение громкости. VCA очень хорош в достижении этого эффекта.
Например:
Пока VCA смещено к положительному значению, пропустите аудиосигнал через входной сигнал.Теперь пропустите низкочастотный биполярный сигнал, такой как синусоида, через управляющий вход. Результирующий сигнал будет иметь медленно повторяющиеся изменения громкости, и это будет вашим эффектом тремоло.
Когда мы нажимаем ноту на гитаре, происходит атака, а затем медленное затухание. Такой же эффект может быть достигнут на электронных инструментах, таких как синтезаторы, чтобы они звучали более реалистично и давали эмоции. Название этого процесса — формирование конверта.
Для этого нам нужен генератор огибающей и VCA.Генератор огибающей создает огибающую, которая меняется со временем. Обычно имеет 4 параметра; Атака, Разложение, Поддержание и Разложение.
В основном звуковой сигнал пропускается через входной сигнал VCA. В то же время управляющий вход получает сигнал от генератора огибающей. Полученный звук имеет огибающую громкости.
Если частота модулятора поддерживается на низком уровне, то он производит только периодические изменения громкости аудиосигнала.Это называется эффектом тремоло. Если частота модулятора переходит в слышимый диапазон, происходит странная вещь. Модуляция становится настолько быстрой, что изменяется форма исходного аудиосигнала, что приводит к совершенно другому звучанию с другим тоном. VCA довольно хорош в достижении амплитудной модуляции.
VCA может регулировать громкость всего, что создает управляющее напряжение. Вам просто нужно пропустить аудиосигнал через вход сигнала и подключить управляющий вход к педали, колесу мод и т. Д.Затем они могут контролировать громкость результирующего звука.
Дополнительные ресурсы и исходные тексты
Синтез и сэмплирование звука — Мартин Русс
.