Закрыть

Кпд светодиодов: КПД светодиодов. КПД LED светильников и источников питания

Содержание

КПД светодиодов. КПД LED светильников и источников питания

При использовании светодиодов в качестве основного источника света возникает вопрос — какая мощность светильников для этого необходима. Чтобы на него ответить, нужно знать от чего зависит КПД светодиодов.

КПД светодиодного элемента

В идеальном светодиоде с КПД 100% каждый поступивший электрон излучает фотон света. Такая эффективность недостижима. В реальных устройствах она оценивается по соотношению светового потока к подведённой (потребляемой) мощности.

На этот показатель влияет несколько факторов:

  • Эффективность излучения. Это количество фотонов, излучаемых на p-n переходе. Падение напряжения на нём составляет 1,5-3В. При дальнейшем повышении напряжения питания, оно не растёт, а увеличивается ток через прибор и яркость света. В отличие от лампы накаливания, она имеет линейную зависимость от протекающего тока только до определённой величины. При дальнейшем повышении тока дополнительная электрическая мощность расходуется только на нагрев, что ведёт к падению КПД.
  • Оптический выход. Все выделенные фотоны должны излучаться в окружающее пространство. Именно это является главным сдерживающим фактором для увеличения КПД светодиодов.
  • Некоторые светодиоды для лучшей передачи цвета покрываются слоем люминофора. В этом случае на КПД устройства дополнительно влияет эффективность преобразования света.
График зависимости светового потока от тока, проходящего через светодиод

В начале XXI века нормой считался КПД 4%, а сейчас поставлен рекорд в 60%, что в 10 раз больше, чем у лампы накаливания.

«Средний по больнице» КПД для топовых производителей типа Philips или Cree колеблется 35-45%. Точные параметры можно увидеть в даташите конкретной модели. КПД для бюджетных китайских светодиодов — это всегда рулетка с разбросом 10-45%.

Но это теоретические показатели, на которые мы повлиять не можем. На практике ключевую роль играют ток, подаваемый на диод и температурный режим. Прекрасную работу проделал пользователь ютуба под ником berimor76, показав на практике зависимость светового потока от подаваемого тока и температуры. Смотрим видео.

КПД источника питания

Кроме КПД самих светодиодов, на энергоэффективность светодиодных ламп и светильников оказывает влияние источник питания. Они есть двух типов:

  • Блок питания. Подаёт на светодиоды постоянное, заранее заданное напряжение, независимо от потребляемого тока.
  • Драйвер. Обеспечивает постоянное значение тока. Напряжение при этом значения не имеет.

Блок питания

Блок питания подаёт на светодиод напряжение, превышающее необходимое для открытия p-n перехода. Но сопротивление открытого диода очень мало. Поэтому для ограничения тока последовательно с источником света устанавливается резистор. Мощность, выделяющаяся на нём, полностью превращается в тепло, что понижает КПД светодиодного светильника. Например, в led-ленте потери составляют около 25%.

Более совершенным и экономичным устройством является электронный драйвер.

Драйвер

Драйвер для питания светодиодов обеспечивает их током постоянной величины. Диоды подключаются к устройству последовательно в количестве, которое зависит от рабочего напряжения светодиодов и максимального напряжения устройства.

Схема подключения светодиодов с током 300мА к драйверу

В светодиодных лампах вместо драйвера используется токоограничивающий конденсатор. При прохождении через него электрического тока выделяется так называемая реактивная мощность. Она не превращается в тепло, но электросчётчик её всё равно учитывает. КПД такого «драйвера» зависит от количества диодов, включённых последовательно с ним.

Схема светодиодной лампы с драйвером

Электронный драйвер устанавливается в светильниках большой мощности или в переносных устройствах, где экономия электроэнергии или ёмкости батарей важнее цены за устройство.

КПД светильника

При организации освещения, в том числе светодиодного, имеет значение КПД форм-фактора светильника. Это соотношение всего света, выходящего из светильника к световому потоку, излучаемому самой лампой.

Любая конструкция светильника, даже сделанная из зеркал или прозрачного стекла, поглощает свет. Идеальный вариант без потерь — это патрон с лампочкой, подвешенный на проводах.

Но это редкий случай, когда идеальный не значит лучший. Световой поток от лампочки на проводе направлен во все стороны, а не только в нужную. Конечно, свет, попавший на потолок или стены отражается от них, но далеко не весь, особенно под открытым небом или в комнате с тёмными обоями.

Эффективность светильников разной формы

Этим же недостатком обладает светодиодная лампа с разносторонним расположением элементов («кукуруза») или с матовым рассеиванием. В последнем случае рассеиватель дополнительно поглощает свет.

В отличие от таких светильников, led-лампа с односторонним расположением диодов направляет свет в одну сторону. КПД светильника с такой лампой близка к 100%. Освещённость, создаваемая ею выше, чем у другой, с таким же световым потоком, но направленным в разные стороны.

Направление светового потока светодиодов

Это связано с конструктивными особенностями светодиодов — в отличие от ламп накаливания и люминесцентных (энергосберегающих), имеющих круговую направленность излучения, они излучают свет в диапазоне 90-120 градусов. Теми же свойствами обладают светодиодные ленты и прожектора, излучающие свет только в одном направлении.

Таким образом, максимальный световой поток на ватт мощности излучают светодиоды в прожекторах со встроенным электронным драйвером.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Технические характеристики и параметры SMD 3528, 5050, 5630, 5730

Что такое smd светодиоды? Surface Mounted Device – радиоэлементы, не имеющие дополнительных монтажных отводок. Они крепятся непосредственно на поверхность монтажной платы.

Этот тип сверхъярких светодиодов широко используется в осветительных конструкциях. Благодаря отсутствию корпуса увеличивается плотность монтажа и существенно снижается вес конечной конструкции.

Расшифровка маркировки светодиодов

Рассмотри маркировку на примере SMD 3528 матрицы теплого белого света.

LED-WW-SMD3528

  • LED – светодиод;
  • WW – warm white – тёплый белый;
  • SMD – диод для поверхностного монтажа;
  • 3528 – размеры матрицы.

Многие производители пытаются уникализировать свой товар различными уловками. Так появляются серии 5636, 5736. Характеристики их полностью идентичны базовым моделям, а последняя цифра говорит лишь о незначительных изменениях типоразмера.

Технические характеристики SMD 3528 (datasheet)

SMD 3528 – однокристальная матрица с малым потреблением тока и относительно небольшой яркостью. Но именно благодаря этому можно конструировать любую подсветку не заботясь о дополнительном теплоотводе. Эта сборка применяется в лентах ночного освещения, в системах подсветки рекламных лайтбоксов, светящихся указателей.

В варианте (RGB) в матрице используется три кристалла.

Размеры SMD 3528

Типоразмеры 3528

Оригинальный datasheet SMD 3528 можете скачать по ссылке.

Технические характеристики SMD 5050 (datasheet)

SMD 5050 – трехкристальная матрица. Мощность светодиода 5050 пропорциональна трём матрицам 3528, помещенных в один корпус. 5050 применяется в системах поверхностного монтажа, где требуется повышенная яркость подсветки при ограниченной площади светоизлучателя.

Размеры SMD 5050

Размеры 5050

Оригинальный datasheet SMD 5050 можете скачать по ссылке.

Технические характеристики SMD 5630 и 5730 (datasheet)

Сравнительные таблицы параметров

Общая таблица технических характеристик 3528, 5050, 5630, 5730:

Сравнительная таблица технических характеристик 3528, 5050, 5630, 5730

Тип светодиода различают по строению кристалла и цветности:

Правила подключения

Используется классическая связка токоограничитель-светодиод. По такой схеме подключаются абсолютно все монокристальные конструкции. Разница лишь в номинальных характеристиках токоограничивающего элемента (подробнее про расчет резистора для светодиода).

Исключение представляет светодиоды с тремя кристаллами на светодиодной матрице.

Трехкристальная SMD матрица, например, в серии 5050, имеет три анода и три катода. Подключается она как три самостоятельных элемента. Для RGB модели 5050 характеристики в datasheet прописаны для каждого диода, так как у них различные параметры энергопотребления.

Светодиоды 5050 — схема включения

Такие требования к подключению вызваны тем, что даже у абсолютно одинаковых кристаллов будут различия в токе питания и подключение без токоограничителя попросту выведет один из них из строя.

ЗАПОМНИТЕ!

  1. Не рекомендуется подключать любые модели светодиодов к источнику питания без резистора. При использовании одного резистора допустимо только последовательное подключение одного типа светодиодов.
  2. В случае использования трехкристальный диодов, каждый канал подключается через отдельный резистор и соединяется с таким же диодом в следующем модуле.
  3. Не подключайте светодиоды с разными нагрузочными характеристиками. Простыми словами не подключайте вместе 3528 и 5050.
  4. Категорически противопоказано использовать резисторы с сопротивлением меньше номинального. Это увеличит нагрузочный ток светодиода и сократит срок его службы.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

КПД и эффективность светодиодов — как измерить и увеличить своими руками. Как повысить срок службы и время работы.

Насколько на самом деле эффективны светодиоды и как продлить их срок службы?

Каким образом измерить в домашних условиях их КПД и повысить эффективность, а также увеличить долговечность светодиодных светильников?

Чтобы ответить на все эти вопросы, достаточно провести несколько наглядных экспериментов, причем без использования каких-то сложных лабораторных приборов.
Светодиод – это один из самых эффективных и простых в использовании источников света. Однако при этом, большую часть потребляемой энергии он все равно расходует впустую, преобразуя ее не в свет, а в тепло.

Сравнивать светодиоды с обычной лампочкой конечно же не нужно, тут они убежали далеко вперед. Но как вы думаете, насколько высок у них реальный КПД?

Как измерить КПД светодиода

Давайте это проверим в живую, не по надписям на упаковках и данным таблиц в интернете, а колориметрическим методом в домашних условиях.

Если опустить светодиод в воду и замерить разницу температур до его включения и спустя некоторое время после, то можно выяснить, сколько энергии от него перейдет именно в тепло.

Зная общее количество затраченной энергии и энергии ушедшей в тепло, можно реально узнать сколько пользы от данного источника света перешло именно в свет.

Емкость в которой будут производиться измерения, должна быть изолирована от колебаний температуры снаружи и внутри. Для этого подойдет обычная колба от термоса.

При определенной доработке, у вас получится вполне годный самодельный колориметр.

Чтобы изолировать и предотвратить утечки тока, все провода и выводы на светодиоде следует покрыть толстым слоем электроизоляционного лака.

Перед экспериментом заливаете во внутрь колбы 250мл дистиллированной воды.

Далее фиксируете начальную температуру жидкости.

Опускаете светодиод в воду, так чтобы она полностью его покрывала. При этом свет должен беспрепятственно выходить наружу.

Включаете питание и начинаете отсчет времени.

Через 10 минут выключаете напряжение и опять замеряете температуру воды.

При этом не забудьте хорошенько ее перемешать.

Теперь нужно повторить эксперимент, но на этот раз, плотно заклейте матрицу каким-нибудь непрозрачным материалом. Это необходимо, дабы энергия не могла покинуть систему в виде света.

Опыт с заклеенным экземпляром повторяется опять в той же последовательности:

  • 250мл дистиллированной воды
  • замер начальной температуры
  • 10 минут ”свечения”
  • замер конечной температуры

После всех измерений и экспериментов, можно переходить к расчетам.

Расчет эффективности

Допустим, для данной модели среднее потребление источника света равняется 47,8Вт. Время работы – 10минут.

Если подставить эти данные в формулу, то получим, что за время в 600 секунд, на свечение светодиода было затрачено 28 320 Дж.

В случае с заклеенной моделью, вода нагрелась с 27 до 50 градусов. Теплоемкость воды 4200Дж, а масса – 0,25кг.

Еще 130 Дж на каждый градус, ушло на нагрев колбы, плюс нужно прибавить энергию на нагрев самого светодиода. Он весит 27 грамм и в основном состоит из меди. В итоге получается цифра в 27377 Дж.

Отношение выделившейся энергии и затраченной будет равняться 96,7%. То есть, не хватает более 3%. Это как раз таки и есть тепловые потери.

В случае с открытым светодиодом, вода нагрелась с 28 до 45 градусов. Все остальные переменные остались прежними. Расчет здесь будет выглядеть следующим образом:

Какой же итог можно сделать из всех этих опытов и вычислений?

Как видно из этого небольшого эксперимента, непосредственно в виде света, систему покинуло около 28% энергии.

А если учесть 3% тепловых потерь, то и вовсе остается всего 25%.

Как видите, до идеальных источников света, как их представляют многие продавцы, светодиодам еще очень далеко.

Хуже того, на рынке зачастую встречаются модели, крайне низкого качества с еще меньшим КПД.

Яркость и мощность

Давайте теперь сравним яркость разных моделей и посмотрим от чего она зависит и можем ли мы как то на это влиять. Чтобы провести достоверное сравнение, воспользуйтесь обычным куском трубы и люксометром.

Допустим, испытанный ранее качественный образец, обеспечивает освещенность 1100 люкс. И это при потребляемой мощности в 50 Вт.

А если взять более дешевую модель? Данные могут получиться в два раза ниже – менее 5500 Лк.

И это при одинаковой мощности! Получается, что заплатите вы за свет столько же как и в первом случае, а получите его на 50% меньше.

А можно ли получить в 3 раза больше света, затрачивая как можно меньше энергии?

Можно, но для этого понадобится светодиод работающий в немного другом режиме. Чтобы понять как это сделать, нужно провести еще немного измерений.

В первую очередь, вас должен интересовать момент зависимости яркости от потребляемой мощности. Постепенно повышайте мощность и следите за показаниями люксометра.

В итоге вы выйдите на такую вот нелинейную зависимость.

Если бы она была линейной, вы бы получили что-то вроде этого.

Получится еще интересней, если посчитать относительную эффективность светодиода, за 100% взяв значение мощности в 50Вт.

Видите, как прослеживается ухудшение его эффективности. Такое ухудшение с повышением мощности, присуще всем светодиодам. И причин этому несколько.

Почему ухудшается эффективность светодиодов

Одна из них, конечно же нагрев. С повышением температуры, снижается вероятность образования фотонов в p-n переходе.

К тому же уменьшается и энергия этих фотонов. Даже при хорошем охлаждении корпуса, температура p-n перехода может быть на десятки градусов выше, так как он отделен от металла подложкой из сапфира.

А она не очень хорошо проводит тепло. Разницу температур можно посчитать, зная размеры кристалла и выделяемую на нем теплоту.

При выделяющейся теплоте в 1Вт, учитывая толщину и площадь подложки, температура перехода будет на 11,5 градусов выше.

В случае с дешевым светодиодом все намного хуже. Здесь результат – более 25 градусов.

Высокая температура перехода приводит к быстрой деградации кристалла, сокращая его срок службы. Отсюда и возникают моргания, мигания и т.п.

Интересно, производители не знают про эту разницу в температуре или намеренно создают обреченные устройства?

Нередко компоненты, казалось бы в нормальных, дорогих светильниках, работают в предельных режимах, на максимальных температурах без какого-либо запаса прочности.

Вторая причина ухудшения эффективности светодиода при увеличении мощности – это паразитное внутреннее сопротивление.

Пока ток небольшой, оно не заметно. Но из-за квадратичной зависимости, с увеличением тока все большая часть энергии превращается в бесполезное тепло.

Посмотрев на эту схему, сразу хочется избавиться от паразитного сопротивления. Ну или хотя бы уменьшить его, так как это делают с конденсаторами.

Как увеличить эффективность

То есть, подключить параллельно еще один светодиод, тем самым в два раза уменьшив потери на сопротивление. И этот метод, конечно работает.

Подключив в светильник параллельно два светодиода вместо одного, вы получите больше света с меньшими затратами энергии и соответственно меньше нагрева.

Безусловно, это продлевает и срок службы светодиода.

Можно не останавливаться и подключить 3,4 диода вместо одного, хуже не будет.

А если места для нескольких светодиодов недостаточно, то можно поставить светодиод изначально рассчитанный на большую мощность. Например 100 ваттный, в 50 ваттный светильник.

Именно таким образом можно поднять эффективность светильника в несколько раз, при тех же затратах энергии, что и на первоначальном источнике, но меньшей мощности, и работающего на пределе своих возможностей.

Более того, используя не больше трети мощности от максимальной, вы навсегда забудете, что такое замена сгоревших светодиодов.

При этом эффективность их работы и КПД заметно возрастут.

Поэтому при покупке светодиодов, всегда интересуйтесь размером кристаллов. Ведь от этого зависит их охлаждение и внутреннее сопротивление.

Здесь действует правило – чем больше, тем лучше.

Световая отдача ламп все что нужно знать

Большинство из вас слышали о таком параметре как световая отдача. Что он означает и как его правильно понимать?

В первую очередь он показывает, насколько эффективно электроэнергия в светильнике, преобразуется в видимый поток света. Не на тепло или другие потери, а именно на реальное освещение.

В чем измеряется световой поток

Грубо говоря, это своеобразный КПД. Единица измерения светоотдачи – Люмен/Ватт.

Простые лампочки накаливания, люминесцентные, ДРЛ, НЛ и светодиодные одной и той же мощности, имеют различную световую отдачу.

Больше всего этот параметр у светодиодных элементов. А у простой 100 ваттной лампочки самый низкий КПД. У нее всего 2% из всей затрачиваемой энергии идет на освещение.

Однако здесь многое зависит и от самого светильника, его формы, конструкции, производителя и т.д.

Если большинство параметров у различных светильников одинаковые, то главный фактор выбора того или иного источника света – это его световая отдача.

Многие из вас наверняка задумывались, а что лучше и экономичнее – повесить в комнате просто лампочку или лампочку в светильнике? Как раз на помощь здесь и приходит такой параметр, как светоотдача.

Чтобы его узнать, необходимо световой поток источника света разделить на мощность светильника. В итоге и получим данные, измеряемые в Лм/Вт.

От чего зависит

Теоретически считается, что эти данные должны затрагивать только сам источник света и никоим образом не касаться всего светильника.

Однако практика показывает, что огромный вклад в конечный итог величины светоотдачи оказывают:

  • разные отражатели
  • форма рассеивателей
  • температурный режим СИД
  • даже условия измерения

Поэтому более корректно будет называть данный термин именно ”световая отдача светильника”. При покупке всегда спрашивайте именно этот параметр, т.е. какова отдача светильника в сборе, а не его светодиодов внутри.

Максимальная светоотдача

Какова может быть максимально возможная светоотдача в идеальных условиях? В теории она достигает 683 Люмен/ватт.

Но это возможно только при длине волны 555нм (зеленый цвет).

В нашей сетчатке находится около семи миллионов рецепторов – красных, синих и зеленых. Более половины из них, именно зеленые. Поэтому зеленый цвет мы воспринимаем как самый яркий.

Многие заблуждаются, считая, что достаточно пропустить через кристалл светодиода max ток, и тем самым будет достигнуто максимальное значение светоотдачи. Это не так.

Для этого достаточно тока, в пределах от тридцати до шестидесяти процентов от его максимальных значений.

Поэтому светодиоды в идеале должны быть именно недогружены.

При реальных замерах дешевых светодиодов с мелкими кристаллами хорошо видно, что использовать их больше 30% не рационально.

В итоге, при меньшей загрузке вы получаете:

  • больший срок их службы
  • меньшую температуру нагрева
  • наибольшую светоотдачу

Правда есть один негативный момент – понадобится их большее количество. А это увеличит стоимость изделия.

Выбор качественного светильника

Поэтому большинство производителей в конкурентной борьбе выбирают экономию. Монтируют меньше светодиодов, и в итоге мы имеем в светильнике максимально от 80 до 90 Лм/Вт.

Показатели от 100 Лм/Вт и выше являются очень хорошими данными и свидетельствуют о качественном светильнике.

Как показывает практика, в конечном итоге дешевле применять дорогие светодиоды, как бы это абсурдно и не звучало.

Величина «денежной отдачи»: Люмен (световой поток )/ рубль (цена светодиода) это хорошо подтверждает.

Чем заканчивается экономия на количестве светодиодов? Ничем хорошим:
  • очень сильный нагрев
  • из-за нагрева нужно увеличивать площадь радиаторов охлаждения
  • ну и само собой – меньший световой поток

И это все при одинаковой мощности у качественного и дешевого изделия.

Не все производители указывают данные светоотдачи в параметрах своих светильников. Чтобы сделать расчет самостоятельно, просто возьмите из паспорта или посмотрите на упаковке 2 величины:

  • световой поток (в люменах)
  • мощность (в ваттах)

и разделите эти параметры.

После чего достаточно сравнить ту или иную покупку и делать соответствующий выбор.

Сравнение ламп

Вот данные световой отдачи разных источников освещения:

  • лампочка накаливания – от 10 до 12 Люмен/Ватт
  • люминесцентные лампы (но только у качественных производителей) – от 50 до 80 Люмен/Ватт
  • НЛ натриевая газоразрядная лампа, имеет очень хороший показатель – около 200Люмен/Вт
  • светодиоды – рекордсмены эффективности – до 300 Люмен/Ватт

Правда 300Лм/Вт это всего лишь пока лабораторное достижение, а не массовый продукт.

Световая отдача в энергосбережении является самым существенным параметром. И вся эволюция развития светильников — это по факту достижение его предельных теоретических значений в 683 Лм/Вт.

Хотя если быть реалистом, даже значения в 500 Лм/Вт на сегодняшний день просто физически не достижимы.

Освещение растений белыми светодиодами — о КПД и экономической эффективности

После написания предыдущей статьи у меня самого остался не до конца решенным вопрос — а что же конкретно выгоднее купить и на сколько можно выиграть в дальней и ближней перспективе. Плюс остались некоторые неопределенности по эффективности светодиодов. А вопрос побуждает к поиску ответа на него, поэтому я продолжил разрабатывать это направление. Не скажу что получился материал на полноценную статью, но в качестве дополнения к предыдущей информация содержит существенно важные данные будет полезна.

Для начала разберемся с тем, какой точно КПД у рассмотренных в прошлой части светодиодов. Ранее я взял данные в основном из статьи iva2000, не проверяя, т.к. там рассматривался больше вопрос эффективности фотосинтеза при освещении светом разного спектра. Теперь же я решил разобраться и в общей эффективности.

Рассматривать будем светодиоды фирмы CREE, т.к. они, с одной стороны, на сегодняшний день наиболее продвинуты по технологиям и, соответственно, светоотдаче на единицу мощности, а с другой, все их показатели стабильны и хорошо задокументированы (в отличии от ноунейм производителей). Здесь указанная фирма должна бы мне заплатить за рекламу, но увы, я пишу не с их подачи, а просто потому что так проще и доступнее.

Итак, какие будем исследовать светодиоды? Не буду выкладывать сюда весь процесс изучения и отбора конкретных серий, дабы не затоплять материал «водой». Вкратце скажу, что вбирал наиболее мощные и одновременно наиболее эффективные чипы, при условии свободной доступности и выгодной цены. По этим критериям подходят два типа: белые будут из серии XM-L.

— это 10-ваттные чипы с эффективностью 158 lm/W (но не на максимальной мощности, а всего при 1 Вт). Холодно белые (6000-6500К), нейтрально белые (4000-4500К) и тепло-белые (3000-3500К).
И красные из серии XP-E, High Efficiency Photo Red 650-670nM.
Ссылки на документацию по светодиодам в конце статьи.

Разберемся с белыми. В прошлый раз разница в КПД светодиодов белого свечения не была учтена и эффективность оценивалась только по отношению к кривой фотосинтетической активности McCree.

В этот раз я решил более досконально уточнить этот вопрос. К сожалению в документации к светодиодам никогда не приводят кпд, а пишут люмены на ватт, поэтому пришлось делать обратный расчет. По спектру светодиода и фотопической кривой рассчитывается сколько люмен было бы у светодиода, если бы его кпд был равен 100%, а затем на это число делится число реальных люмен, взятое из документации на светодиод. И вот что у нас получилось для трех типов белых светодиодов:


Слева направо: холодно-белый, нейтрально белый и тепло-белый.

Обращает на себя внимание, что не смотря на рост люменов при переходе от холодно-белому к тепло-белому спектру (при одинаковой мощности излучения), табличные значения lm/W и общий кпд светодиода падает и очень существенно — с 40 до 23%. Все дело в том, что люминофор, которого в светодиоде тепло-белого свечения гораздо больше, сам имеет не 100% КПД, да еще и, по всей видимости, при его большом количестве оказывает затеняющий эффект (лучи излученные нижними слоями поглощаются выше лежащими и пропадают). При этом показатель люмен на ватт используется при токе 2А (из максимально трех) — видно что он при этом падает со 140 при 350мА до 108 (для холодно-белого). В документе Cree такой таблицы нет — там даны абсолютные люмены при заданном токе, а мощность надо рассчитывать, пользуясь данными из графика вольт-амперной характеристики. Вот соответствующие данные из даташита:


Теперь разберемся с красными.

С ними все немного проще, т.к. световой поток указан не в люминах а в милливаттах. Достаточно разделить милливатты излучения на ватты потребления и получаем КПД с высокой точностью! На все бы светодиоды приводили эти данные — 2/3 работы можно было не делать!



И тут мы сразу делаем удивительное открытие — что КПД этих светодиодов равняется 50%, причем (еще один график, здесь не привожу), в отличие от синих/белых кристаллов, световой поток растет линейно с током и кпд чипа не падает! Зато при перегреве чипа падение значительно более существенно, чем у синих чипов. Для сравнения у чисто синих кпд при тех же условиях 48% (сравните с этим показателем у белых — выше). А вот у «просто красных» всё гораздо хуже. Их КПД получился где-то в районе 19%, а с ростом температуры световой поток падает еще быстрее чем у «Photo red».

Вот уже вырисовываются интересные варианты использования отдельных светодиодов и их комбинаций. Теперь пересчитаем таблицу эффективности с учетом вновь полученных данных.

Видно что красные Photo-red с большим отрывом впереди всех. Но освещать чисто красным нельзя, поэтому нужно комбинировать и тут идут варианты с белым и синим. Сразу отметем (я-то считал всё, но выбросил то, что получилось не перспективно) комбинации тепло-белых с красным. Низкая эффективность тепло-белых светодиодов сводит на нет все преимущества красных. А вот холодно-белые очень хороши в таком сочетании! Сами имеют неплохой кпд, еще усиленный красными светодиодами, а недостаток красного спектра так же покрывается ими. Так же хорошо смотрится сочетание красных с синими. Затем идут просто холодно-белые и ДНаТ 1000, а остальные по сути не тянут. Ну что ж посмотрим как это будет смотреться в полном комплекте — с драйверами.

Далее логика расчетов шла в предположении, что мы хотим получить за те же деньги больше фотосинтетически активного излучения, поэтому все цифры, в том числе цены на светодиоды и драйвера приведены к общей величине фитоактивной радиации светильника 100мкмоль/с.

Цветовая маркировка как в предыдущей таблице — чтобы проще было понять где какие светодиоды и не занимать место повторяющимися заголовками.

Но это только цена на старте — сколько нужно вложить денег, чтобы получить лампочку на 100мкмоль/с. Этого мало — нужно посмотреть во сколько она обойдется при эксплуатации. И вот если посчитать к этому еще и затраты электроэнергии во времени — вот тогда получится полная картина, которую я и представляю на всеобщее обозрение!

Оставлено для истории, обновленные данные ниже

Благодаря пристальному вниманию комментаторов выяснилось, что далеко не всё светодиоды, которые продают на алиэкспрессе с названием CREE на самом деле ими являются. Самые дешевые из них, порядка полутора долларов за 10-ваттный диод или менее вероятнее всего являются подделкой с чипами производства китайской компании LatticeBright, которые стоят в разы дешевле оригинальных и, к сожалению, имеют примерно в 2 раза худшие показатели. В связи с этим, я провел поиск цен соответствующих светодиодов в компании Компэл, являющейся официальным дистрибутором компании cree в РФ. Цены там значительно выше чем в китае, но мелким оптом достаточно выгодно, в том числе по сравнению с зарубежными поставщиками.
И по ходу дела исправил два момента — добавил для кривой ДНаТ замену ламп раз в год. И исправил ошибку (мой недосмотр), из-за которой цена всех ламп считалась на одинаковую их мощность (100Вт), тогда как исходная идея была в расчете на единицу фотоактивной радиации. В новом графике данные цены за светильник излучающий 100мкмоль/с, а не 100Вт. приношу извинения за оплошность.

Как разобраться в этой вязанке прутьев?

Слева — цена светильника на старте. Напоминаю что при этом все они будут выдавать одинаковое количество фитоактивной радиации, но иметь разный спектр. Чем ниже начинается полоска, тем дешевле набор. По оси Х у нас месяцы. Предполагается что светильник работает 12 часов в сутки 7 дней в неделю, всего 36 месяцев, т.е. 3 года. Это всего лишь чуть более 13 тыс. часов, а для светодиодов заявлено 50 тыс. И если все сделано правильно с охлаждением, а так же на светодиоды подается ток 0.7 от максимального (так больше КПД на целую треть), то проработают они и того больше, т. е. более 10 лет практически без деградации.

Чем более горизонтально идет линия — тем больше КПД у светильника. Видим что многие линии начинаются выше (дороже чипы), но со временем оказываются дешевле чем более дешевые аналоги. В этом показательна линия для светодиодов photo red — она имеет наименьший наклон.

Самое удивительное что самыми дешевыми теперь оказались… Самые дорогие photo red светодиоды! Это потому что они имеют самый высокий КПД и самый «легкоусваиваемый» спектр — их нужно меньше всего в начале и они тратят меньше всего электричества и в будущем! Большой интерес представляют комбинации «Холодно-белый+красный photo red». На данном графике приведена кривая при соотношении белый: красный как 2:1 по мощности. И просто «холодно-белый». Эти три линии расходятся веером, где крайние — белый и красный светодиоды, а средняя — их комбинация. Для выращивание растений необходимы все составляющие спектра, но в разных комбинациях. Выходит что все варианты сочетаний спектров наиболее эффективно покрываются всего одной комбинацией — холодно-белых и красных светодиодов (но в разном численном соотношении).
Стоит отметить, что комбинация синий+красный хоть и имеет меньший наклон чем белый+красный, но дает существенно худший показатель цена/световой поток, поэтому не догоняет сочетание белый+красный даже за 3 года. В 10-летней перспективе может быть предпочтительнее, но это исключительный случай.
Фитолампа оказывается не такая уж и дешевая. Если учесть её КПД она дороже даже холодно-белых светодиодов, а уж в перспективе… Деньги за электричество на ветер…
ДНаТ и в начале не очень дешев (я удивился сколько стоят ЭПРА для них, а ЭмПРА брать не стоит — они имеют низкий КПД, лампа из-за мерцания — тоже, еще они гудят и греются как печка) и со временем не нагоняют — особенно с учетом замены ламп — которую придется делать не реже раза в год, что отображается как ступеньки на графике. Так что в сад.

Вот спектр сочетания белых с красными светодиодов, наложенный на кривую MkCree (4:1 по мощности, на 2:1 не стал переделывать):

Конечно неправильно судить о таких вещах основываясь на красивости графиков, но учитывая цифры, которые говорят то же самое — по моему график практически идеален в отношении покрытия спектра фотосинтетически активного диапазна.

Вывод остается прежним — покупайте холодно-белые светодиоды и красные CREE Photo red и будет вам куча света для ваших растений и экономия для кошелька!
Так же возможно освещение чисто красными светодиодами, о таком опыте писал один из комментаторов. Это будет наиболее целесообразно в случае, если растения частично освещаются естественным светом (огород на подоконнике, балконе, лоджии, когда прямой солнечный свет не попадает вовсе или на пару часов в день — тогда растения получают в основном синие лучи от неба, а красных им катастрофически не хватает, как и общей интенсивности света. Тут красные светодиоды заполнят имеющийся пробел как нельзя лучше. Только это должны быть высокоэффективные светодиоды с длиной волны излучения 660нМ и лучше если это будут CREE Photo red. Ну всё, я пошел заказывать диоды!

Использованные материалы

Освещение растений белыми светодиодами — о КПД и экономической эффективности

После написания предыдущей статьи у меня самого остался не до конца решенным вопрос — а что же конкретно выгоднее купить и на сколько можно выиграть в дальней и ближней перспективе. Плюс остались некоторые неопределенности по эффективности светодиодов. А вопрос побуждает к поиску ответа на него, поэтому я продолжил разрабатывать это направление. Не скажу что получился материал на полноценную статью, но в качестве дополнения к предыдущей информация содержит существенно важные данные будет полезна.

Для начала разберемся с тем, какой точно КПД у рассмотренных в прошлой части светодиодов. Ранее я взял данные в основном из статьи iva2000, не проверяя, т.к. там рассматривался больше вопрос эффективности фотосинтеза при освещении светом разного спектра. Теперь же я решил разобраться и в общей эффективности.

Рассматривать будем светодиоды фирмы CREE, т.к. они, с одной стороны, на сегодняшний день наиболее продвинуты по технологиям и, соответственно, светоотдаче на единицу мощности, а с другой, все их показатели стабильны и хорошо задокументированы (в отличии от ноунейм производителей). Здесь указанная фирма должна бы мне заплатить за рекламу, но увы, я пишу не с их подачи, а просто потому что так проще и доступнее.

Итак, какие будем исследовать светодиоды? Не буду выкладывать сюда весь процесс изучения и отбора конкретных серий, дабы не затоплять материал «водой». Вкратце скажу, что вбирал наиболее мощные и одновременно наиболее эффективные чипы, при условии свободной доступности и выгодной цены. По этим критериям подходят два типа: белые будут из серии XM-L.

— это 10-ваттные чипы с эффективностью 158 lm/W (но не на максимальной мощности, а всего при 1 Вт). Холодно белые (6000-6500К), нейтрально белые (4000-4500К) и тепло-белые (3000-3500К).
И красные из серии XP-E, High Efficiency Photo Red 650-670nM.
Ссылки на документацию по светодиодам в конце статьи.

Разберемся с белыми. В прошлый раз разница в КПД светодиодов белого свечения не была учтена и эффективность оценивалась только по отношению к кривой фотосинтетической активности McCree.

В этот раз я решил более досконально уточнить этот вопрос. К сожалению в документации к светодиодам никогда не приводят кпд, а пишут люмены на ватт, поэтому пришлось делать обратный расчет. По спектру светодиода и фотопической кривой рассчитывается сколько люмен было бы у светодиода, если бы его кпд был равен 100%, а затем на это число делится число реальных люмен, взятое из документации на светодиод. И вот что у нас получилось для трех типов белых светодиодов:


Слева направо: холодно-белый, нейтрально белый и тепло-белый.

Обращает на себя внимание, что не смотря на рост люменов при переходе от холодно-белому к тепло-белому спектру (при одинаковой мощности излучения), табличные значения lm/W и общий кпд светодиода падает и очень существенно — с 40 до 23%. Все дело в том, что люминофор, которого в светодиоде тепло-белого свечения гораздо больше, сам имеет не 100% КПД, да еще и, по всей видимости, при его большом количестве оказывает затеняющий эффект (лучи излученные нижними слоями поглощаются выше лежащими и пропадают). При этом показатель люмен на ватт используется при токе 2А (из максимально трех) — видно что он при этом падает со 140 при 350мА до 108 (для холодно-белого). В документе Cree такой таблицы нет — там даны абсолютные люмены при заданном токе, а мощность надо рассчитывать, пользуясь данными из графика вольт-амперной характеристики. Вот соответствующие данные из даташита:


Теперь разберемся с красными.

С ними все немного проще, т.к. световой поток указан не в люминах а в милливаттах. Достаточно разделить милливатты излучения на ватты потребления и получаем КПД с высокой точностью! На все бы светодиоды приводили эти данные — 2/3 работы можно было не делать!



И тут мы сразу делаем удивительное открытие — что КПД этих светодиодов равняется 50%, причем (еще один график, здесь не привожу), в отличие от синих/белых кристаллов, световой поток растет линейно с током и кпд чипа не падает! Зато при перегреве чипа падение значительно более существенно, чем у синих чипов. Для сравнения у чисто синих кпд при тех же условиях 48% (сравните с этим показателем у белых — выше). А вот у «просто красных» всё гораздо хуже. Их КПД получился где-то в районе 19%, а с ростом температуры световой поток падает еще быстрее чем у «Photo red».

Вот уже вырисовываются интересные варианты использования отдельных светодиодов и их комбинаций. Теперь пересчитаем таблицу эффективности с учетом вновь полученных данных.

Видно что красные Photo-red с большим отрывом впереди всех. Но освещать чисто красным нельзя, поэтому нужно комбинировать и тут идут варианты с белым и синим. Сразу отметем (я-то считал всё, но выбросил то, что получилось не перспективно) комбинации тепло-белых с красным. Низкая эффективность тепло-белых светодиодов сводит на нет все преимущества красных. А вот холодно-белые очень хороши в таком сочетании! Сами имеют неплохой кпд, еще усиленный красными светодиодами, а недостаток красного спектра так же покрывается ими. Так же хорошо смотрится сочетание красных с синими. Затем идут просто холодно-белые и ДНаТ 1000, а остальные по сути не тянут. Ну что ж посмотрим как это будет смотреться в полном комплекте — с драйверами.

Далее логика расчетов шла в предположении, что мы хотим получить за те же деньги больше фотосинтетически активного излучения, поэтому все цифры, в том числе цены на светодиоды и драйвера приведены к общей величине фитоактивной радиации светильника 100мкмоль/с.

Цветовая маркировка как в предыдущей таблице — чтобы проще было понять где какие светодиоды и не занимать место повторяющимися заголовками.

Но это только цена на старте — сколько нужно вложить денег, чтобы получить лампочку на 100мкмоль/с. Этого мало — нужно посмотреть во сколько она обойдется при эксплуатации. И вот если посчитать к этому еще и затраты электроэнергии во времени — вот тогда получится полная картина, которую я и представляю на всеобщее обозрение!

Оставлено для истории, обновленные данные ниже

Благодаря пристальному вниманию комментаторов выяснилось, что далеко не всё светодиоды, которые продают на алиэкспрессе с названием CREE на самом деле ими являются. Самые дешевые из них, порядка полутора долларов за 10-ваттный диод или менее вероятнее всего являются подделкой с чипами производства китайской компании LatticeBright, которые стоят в разы дешевле оригинальных и, к сожалению, имеют примерно в 2 раза худшие показатели. В связи с этим, я провел поиск цен соответствующих светодиодов в компании Компэл, являющейся официальным дистрибутором компании cree в РФ. Цены там значительно выше чем в китае, но мелким оптом достаточно выгодно, в том числе по сравнению с зарубежными поставщиками.
И по ходу дела исправил два момента — добавил для кривой ДНаТ замену ламп раз в год. И исправил ошибку (мой недосмотр), из-за которой цена всех ламп считалась на одинаковую их мощность (100Вт), тогда как исходная идея была в расчете на единицу фотоактивной радиации. В новом графике данные цены за светильник излучающий 100мкмоль/с, а не 100Вт. приношу извинения за оплошность.

Как разобраться в этой вязанке прутьев?

Слева — цена светильника на старте. Напоминаю что при этом все они будут выдавать одинаковое количество фитоактивной радиации, но иметь разный спектр. Чем ниже начинается полоска, тем дешевле набор. По оси Х у нас месяцы. Предполагается что светильник работает 12 часов в сутки 7 дней в неделю, всего 36 месяцев, т.е. 3 года. Это всего лишь чуть более 13 тыс. часов, а для светодиодов заявлено 50 тыс. И если все сделано правильно с охлаждением, а так же на светодиоды подается ток 0.7 от максимального (так больше КПД на целую треть), то проработают они и того больше, т.е. более 10 лет практически без деградации.

Чем более горизонтально идет линия — тем больше КПД у светильника. Видим что многие линии начинаются выше (дороже чипы), но со временем оказываются дешевле чем более дешевые аналоги. В этом показательна линия для светодиодов photo red — она имеет наименьший наклон.

Самое удивительное что самыми дешевыми теперь оказались… Самые дорогие photo red светодиоды! Это потому что они имеют самый высокий КПД и самый «легкоусваиваемый» спектр — их нужно меньше всего в начале и они тратят меньше всего электричества и в будущем! Большой интерес представляют комбинации «Холодно-белый+красный photo red». На данном графике приведена кривая при соотношении белый: красный как 2:1 по мощности. И просто «холодно-белый». Эти три линии расходятся веером, где крайние — белый и красный светодиоды, а средняя — их комбинация. Для выращивание растений необходимы все составляющие спектра, но в разных комбинациях. Выходит что все варианты сочетаний спектров наиболее эффективно покрываются всего одной комбинацией — холодно-белых и красных светодиодов (но в разном численном соотношении).
Стоит отметить, что комбинация синий+красный хоть и имеет меньший наклон чем белый+красный, но дает существенно худший показатель цена/световой поток, поэтому не догоняет сочетание белый+красный даже за 3 года. В 10-летней перспективе может быть предпочтительнее, но это исключительный случай.
Фитолампа оказывается не такая уж и дешевая. Если учесть её КПД она дороже даже холодно-белых светодиодов, а уж в перспективе… Деньги за электричество на ветер…
ДНаТ и в начале не очень дешев (я удивился сколько стоят ЭПРА для них, а ЭмПРА брать не стоит — они имеют низкий КПД, лампа из-за мерцания — тоже, еще они гудят и греются как печка) и со временем не нагоняют — особенно с учетом замены ламп — которую придется делать не реже раза в год, что отображается как ступеньки на графике. Так что в сад.

Вот спектр сочетания белых с красными светодиодов, наложенный на кривую MkCree (4:1 по мощности, на 2:1 не стал переделывать):

Конечно неправильно судить о таких вещах основываясь на красивости графиков, но учитывая цифры, которые говорят то же самое — по моему график практически идеален в отношении покрытия спектра фотосинтетически активного диапазна.

Вывод остается прежним — покупайте холодно-белые светодиоды и красные CREE Photo red и будет вам куча света для ваших растений и экономия для кошелька!
Так же возможно освещение чисто красными светодиодами, о таком опыте писал один из комментаторов. Это будет наиболее целесообразно в случае, если растения частично освещаются естественным светом (огород на подоконнике, балконе, лоджии, когда прямой солнечный свет не попадает вовсе или на пару часов в день — тогда растения получают в основном синие лучи от неба, а красных им катастрофически не хватает, как и общей интенсивности света. Тут красные светодиоды заполнят имеющийся пробел как нельзя лучше. Только это должны быть высокоэффективные светодиоды с длиной волны излучения 660нМ и лучше если это будут CREE Photo red. Ну всё, я пошел заказывать диоды!

Использованные материалы

Все об энергоэффективности и эффективности современного светодиодного освещения

Что означают эффективность, эффективность и световая отдача светодиодных ламп? Здесь вы можете узнать точное значение отдельных терминов. Вы также можете узнать, какого тока КПД уже достигают светодиодные лампы. Сравнение со старыми источниками света показывает, насколько лучше работают светодиодные лампы.

LED Efficiency and Efficacy

Эффективность и эффективность светодиодных ламп часто смешивают.Это, безусловно, связано с тем, что между этими двумя терминами существует прямая связь. Перед дальнейшим рассмотрением вам следует ознакомиться с точным определением.

КПД

КПД светодиода показывает соотношение между потребляемой электрической мощностью и световым потоком, излучаемым в люменах.

Эффективность

Эффективность светодиода — это световая отдача. Выражается в люменах на ватт (лм / Вт).

Эффективность — это соотношение между двумя упомянутыми величинами и поэтому дается как процентное значение .Чтобы определить эффективность светодиодного источника света, необходимо измерить потребляемую мощность и излучаемый световой поток. Но какой максимальный световой поток будет возможен и будет означать эффективность 100%?

Для этого вам нужно заглянуть в мир физики. В соответствии с этим теоретический максимум световой отдачи составляет прибл. 350 лм / Вт для светодиодов холодного белого цвета. Светодиодная лампа с потребляемой мощностью 1 Вт и световым потоком 350 люмен будет иметь КПД 100%.Однако на практике такие светодиодные лампы — это мечта 🙂

Реальный КПД современных светодиодных источников света составляет от 30% до 40%. Кроме того, 100% эффективность на практике в любом случае невозможна, поскольку в светодиодной лампе есть множество компонентов, в которых возникают потери.

Какая возможна эффективность?

Для достижения максимально возможной эффективности светодиодного светильника или осветительного прибора необходимо установить эффективные светодиоды. Например, мощный светодиод LED319A от Nichia обеспечивает удивительную светоотдачу 164 лм / Вт.Это дает ему КПД чуть менее 47%. Это текущий рекорд серийного производства.

Но это только КПД светодиода. Светодиодная лампа также содержит драйвер светодиода и оптические компоненты. У них также есть КПД, так что общий КПД снова ниже. Современные светодиодные лампы имеют КПД от 30% до 40%. Оставшаяся используемая энергия излучается в виде тепла.

Общая эффективность важна

Общая эффективность светодиодной лампы включает все компоненты, которые она содержит.Это часто называют эффективностью розетки .

Температура светодиода имеет еще одно часто недооцененное влияние на эффективность. Чем ниже рабочая температура светодиода, тем выше его эффективность, а значит, и эффективность. Хорошее управление температурой внутри источника света для отвода отработанного тепла от светодиода в окружающую среду было бы преимуществом.

Где возникают убытки?

Светодиодная лампа содержит различные компоненты, в которых могут возникать потери.В большинстве случаев это следующие компоненты:

  • Электроника драйвера
  • Светоизлучающий диод
  • Оптика

Электроника драйвера или блок питания преобразует сетевое напряжение 110 В в рабочее напряжение, необходимое для светодиода. Эти электронные схемы имеют разную конструкцию в зависимости от производителя и имеют КПД от 70 до 90%.

Светодиоды, установленные в источнике света, имеют наибольшее влияние на общую эффективность.Решающим фактором здесь является то, сколько света может быть отвлечено от полупроводника в окружающую среду. Имеющиеся в продаже светодиодные светильники теплого белого цвета обычно оснащены светодиодами с КПД от 25 до 35%.

Оптика (линзы, цветные фильтры и т.д.) в светодиодном источнике света также влияет на общую эффективность. Например, используются специальные рассеивающие линзы для достижения определенного угла луча лампы. Однако эффективность оптики очень высока по сравнению с самими светодиодами.

Расчет КПД светодиода

Общий КПД светодиодной лампы вычисляется путем умножения КПД всех компонентов, которые она содержит.

Пример: расчет общего КПД

Драйвер светодиода (90%) · светодиод (35%) · оптика (95%) = КПД 30%

Расчет: 0,9 · 0,35 · 0,95 = 0,3 → 30%

Хотите рассчитать эффективность светодиодной лампы в магазине? Установите светоотдачу (люмен на ватт) по отношению к физически возможному максимуму (350 лм / Вт) для светодиодов холодного белого цвета.

Пример: Расчет эффективности светодиодной лампы

Светодиодный осветительный прибор обеспечивает 1500 люмен при потребляемой мощности 13 Вт

1500 люмен: 13 Вт = 115,4 → Световая отдача 115,4 лм / Вт

Физический максимум (эффективность 100%): 350 лм / Вт

115,4 лм / Вт: 350 лм / Вт = 0,33 → 33% КПД

Сравнение эффективности и светоотдачи

Светодиодные лампы и светильники производятся На сегодняшний день это самые эффективные источники света.Однако требуется некоторое время, прежде чем все старые технологии освещения будут полностью преобразованы в светодиодные. Если вы собираетесь преобразовать старые источники света в светодиодные, вам поможет следующее сравнение эффективности различных технологий освещения. В принципе, эффективность всегда немного выше при более высоких мощностях.

КПД лампы накаливания

КПД известных ламп накаливания составляет всего 5% от используемой электроэнергии. Остальные 95% выделяются в окружающую среду в виде тепла.Вот почему даже лампы накаливания с малой мощностью и низкой яркостью сильно нагреваются во время работы. Световая отдача лампы накаливания составляет от 10 лм / Вт до 15 лм / Вт, в зависимости от класса мощности.

КПД галогенной лампы

КПД галогенных ламп составляет около 10%. Остальные 90% излучаются в окружающую среду в виде тепла. Световая отдача галогенной лампы составляет от 15 лм / Вт до 20 лм / Вт, в зависимости от класса мощности. Таким образом, КПД лишь немного лучше, чем у лампы накаливания.

КПД энергосберегающей лампы

В конце концов, КПД энергосберегающей лампы достигает 25%. Здесь только 75% электроэнергии преобразуется в тепло. Световая отдача составляет от 40 лм / Вт до 60 лм / Вт. КПД по сравнению с лампой накаливания составляет не менее четырех-пяти раз.

Таблица сравнения эффективности

лм / Вт
Сравнение эффективности и предельной эффективности различных источников света
Источник света КПД Световая отдача
Светодиодная лампа 150 25-403
Энергосберегающая лампа 15–25% 40–60 лм / Вт
Галогенная лампа 8–12% 15–20 лм / Вт
Лампа накаливания лампа 3-5% 10-15 лм / Вт

Заключение

Светодиодные лампы с КПД от 30% до 40% относятся к наиболее эффективным источникам света в современном мире.Теперь вы знаете, как рассчитать эффективность светодиодной лампы перед ее покупкой. Таким образом, вы можете быть уверены, что покупаете эффективную светодиодную лампу с высокой светоотдачей и не поймаете лавочника низкой эффективностью.

Эффективность светодиодов: самая высокая световая отдача белого светодиода. — DIAL

Помимо светодиодов с разной цветовой температурой, есть несколько примеров температурного излучения и газового разряда. Эффективность системы и световой поток лампы или модуля продуктов в этой таблице были измерены в собственной аккредитованной фотометрической лаборатории DIAL.Отсюда и световая отдача системы.

На основе кривой относительной светочувствительности для фотопического зрения V (λ) была рассчитана теоретическая максимальная световая отдача для каждого спектра.

Из таблицы видно, что в типичном спектре теплого белого светодиода достигается теоретическая модульная световая отдача прибл. 320 лм / Вт. Однако, поскольку предполагается, что существует преобразование физической излучаемой мощности без потерь в длины волн спектра, то фактическая достижимая световая отдача модуля намного меньше.В будущем, возможно, удастся достичь световой отдачи системы в диапазоне 200–250 лм / Вт.

Кроме того, обзор показывает эффективность преобразования энергии исследуемых ламп. Эффективность преобразования энергии описывает, какая часть мощности преобразуется в видимый свет. В этом отношении эффективные светодиоды значительно опережают обычные лампы. В то время как эффективность преобразования энергии ламп накаливания, например, составляет от 10% до 20%, очень эффективные светодиоды в настоящее время достигают значений от 40% до 50%.Тем не менее, это все еще «только» 40–50%, поэтому от 50% до 60% мощности «теряется» в виде тепла.

Однако эти цифры не должны скрывать тот факт, что в настоящее время на рынке имеется много светодиодов, которые имеют гораздо более низкую световую отдачу системы. Соответственно, здесь и эффективность преобразования энергии плохая.

Прощай, идея огромного прогресса в светоотдаче

В ближайшие годы вряд ли будет увеличение достижимой световой отдачи, сравнимое с тем, что произошло в первые годы после того, как белые светодиоды пошли в серийное производство.Кривая максимальной световой отдачи новых продуктов постепенно выравнивается.

Средняя световая отдача светодиодных светильников, несомненно, будет продолжать улучшаться, поскольку на рынке есть светильники со светоотдачей 50–70 лм / Вт, которую еще можно оптимизировать. Этот факт четко показан в измерениях, которые компания DIAL провела в своей аккредитованной лаборатории за последние несколько лет.

Сравнение энергоэффективных лампочек с традиционными лампами накаливания

Вы здесь

Заменив пять наиболее часто используемых осветительных приборов или лампочек в своем доме на модели, получившие оценку ENERGY STAR, вы можете ежегодно экономить 75 долларов.

По сравнению с традиционными лампами накаливания, энергоэффективные лампы накаливания, такие как галогенные лампы накаливания, компактные люминесцентные лампы (КЛЛ) и светоизлучающие диоды (светодиоды), имеют следующие преимущества:

  • Обычно потребляют примерно на 25% -80% меньше энергии, чем традиционные лампы накаливания, экономящие ваши деньги
  • Может прослужить в 3-25 раз дольше.

Сегодняшние энергоэффективные лампы доступны в широком диапазоне цветов и уровней освещенности, которые вы ожидаете. Хотя начальная цена на энергоэффективные лампы обычно выше, чем на традиционные лампы накаливания, новые лампы дешевле в эксплуатации, что позволяет сэкономить деньги в течение всего срока службы лампы.Многие из новых ламп служат значительно дольше, чем традиционные, поэтому вам не придется их так часто менять.

В приведенной ниже таблице сравниваются традиционные лампы накаливания мощностью 60 Вт (Вт) с энергоэффективными лампами, обеспечивающими аналогичный уровень освещенности.

Годовой Стоимость энергии *

часов 25 000 часов

Сравнение традиционных ламп накаливания, галогенных ламп накаливания, компактных люминесцентных ламп и светодиодов

60 Вт

60Вт

0 9307

15 Вт CFL

12 Вт LED

60 Вт традиционный 43 Вт галоген 60 Вт традиционный 60 Вт традиционный %)

~ 25%

~ 75%

~ 65%

~ 75% -80%

~ 72000

$ 4.80

3,50 долл. США

1,20 долл. США

1,00 долл. США

Срок службы лампы

1000 часов

1000 часов

* Из расчета 2 часа использования в день, тариф на электроэнергию составляет 11 центов за киловатт-час, выраженный в долларах США.

Сравнение энергоэффективных лампочек с традиционными лампами накаливания

LED vs.Лампы CFL: что более энергоэффективно?

Не знаете, как выбрать между лампами КЛЛ и светодиодными? С 2014 года правительственные постановления побуждают потребителей заменять привычные лампы накаливания на более энергоэффективные компактные люминесцентные лампы (КЛЛ) и светодиодные лампы.

Достижения в области технологий КЛЛ и светодиодов расширили выбор потребителей, но при этом немного усложнили оценку ваших возможностей. Знание того, как разные типы лампочек сочетаются друг с другом, поможет вам не только получить правильное освещение для любого помещения, но и сэкономить энергию.

Что такое энергоэффективные лампочки

Если рассматривать КЛЛ вместо светодиодной лампы для замены лампы накаливания, это помогает понять основные различия в трех основных технологиях лампочек, представленных сегодня на рынке:

  • Лампы накаливания — это знакомые грушевидные или круглые ввинчиваемые лампы, которые были проданы с тех пор, как Томас Эдисон усовершенствовал лампу накаливания с углеродной нитью в 1879 году.
  • Лампы CFL (компактные люминесцентные лампы) обычно изготавливаются в виде спиральной трубки, соединенной с ввинчиваемым балластом или цоколем.Новейшие технологии заменяют фигурную лампочку лампочкой, которая выглядит как традиционная лампа накаливания. Они также теперь имеют круглую форму и форму пламени.
  • Светодиодные (светодиодные) лампы — более новая технология. Когда-то доступные только в виде удлиненной трубки, теперь луковицы бывают практически любой формы и размера, включая гибкие веревки для украшения.

Сравнение CFL и светодиодных ламп

В битве между КЛЛ и светодиодами за энергоэффективность, срок службы и стоимость победителем становится светодиодная лампа.

Мы прошли долгий путь в области технологий энергосберегающих ламп. Хотя лампы накаливания пока остаются на рынке, преимущества новых технологий заставляют перейти на светодиодные лампы. Чтобы понять преимущества светодиодных ламп по сравнению с КЛЛ или даже лампами накаливания, полезно немного узнать, как они работают.

В лампе накаливания электричество проходит через нить накаливания, которая становится настолько горячей, что дает свет. Около 95% энергии тратится в виде тепла, и только 5% идет на свет.

В лампах CFL электрический ток протекает между двумя электродами на концах газонаполненной трубки, покрытой люминофором. Когда энергия попадает на это покрытие, оно превращается в свет. Реакция начинается от трех до 30 секунд, поэтому при первом включении лампы CFL возникает задержка.

Светодиодные лампы

излучают свет, когда энергия проходит через полупроводник таким образом, что через электролюминесценцию образуется видимый свет.

Что более энергоэффективно: КЛЛ vs.СВЕТОДИОД?

Светодиодные лампы

намного более энергоэффективны, чем КЛЛ и лампы накаливания. Это лучшая умная лампочка для вашей системы умного дома. При первом коммерциализации КЛЛ рекламировались как экономия энергии на 25-35% по сравнению с традиционными лампами.

Однако эффективность светодиода

повысила ставку. Сравнивая CFL и светодиодные лампы, светодиоды с рейтингом ENERGY STAR® сокращают потребление энергии на 75%. Обе технологии используются в энергоэффективных диммерных лампах.

Знаете ли вы? По данным Energy, к 2027 году широкое использование светодиодов может сэкономить около 348 ТВт-ч электроэнергии.губ. Это годовая выработка электроэнергии 44 электростанциями мощностью 1 000 мегаватт, что дает экономию более 30 миллиардов долларов при нынешних ценах на электроэнергию.

Сколько тепла излучают КЛЛ и светодиодные лампы?

Эффективность светодиодов

является наилучшей, потому что лампы расходуют очень мало энергии на тепло, концентрируя электричество на производстве света. Лампы накаливания тратят больше всего энергии. КЛЛ не намного лучше, выделяя 80% тепла.

LED или CFL: Какие лампы служат дольше?

Светодиодные лампы

служат дольше, чем лампы КЛЛ.При сроке службы 25 000 и более часов светодиод легко превосходит лампы КЛЛ и лампы накаливания в среднем 8000 часов и 1200 часов соответственно. Сравнивая КЛЛ и светодиодные лампы, светодиоды служат намного дольше.

Знаете ли вы? Светодиодные праздничные огни, которые вы покупаете сегодня, по-прежнему будут украшать сезон через 40 лет, согласно Energy.gov.

Какой свет излучают лампы LED и CFL?

Свет от светодиодных ламп по своей природе является направленным, что делает его идеальным для рабочего освещения.Светодиоды можно направлять как точечные светильники на кухнях, в офисах и ванных комнатах. Поскольку они не нагреваются, светодиоды безопаснее использовать в ограниченном пространстве, например в шкафах, и более энергоэффективны в холодильниках и других приборах.

Знаете ли вы? В домах в США используется не менее 500 миллионов встраиваемых светильников, из которых ежегодно продается более 20 миллионов. По оценкам Министерства энергетики, переход на КЛЛ и светодиодные лампы в этих светильниках может снизить потребление мощности даунлайта на 75% и более.

Разница между люменами и ваттами

Понимание разницы между люменами и ваттами может помочь при оценке вашего выбора. Выбор лампочки на основе используемой энергии, измеряемой в ваттах, — это привычный способ делать покупки.

Однако при использовании современных светодиодных и CFL-ламп количество потребляемой энергии не так важно, как количество света (люмены). Производители маркируют лампы, чтобы упростить сравнение светодиодных и КЛЛ-ламп и выбрать лампу, которая дает необходимое количество света.

Эта таблица поможет упростить переход с ватт на люмен. Мы сравниваем знакомую вам мощность с наиболее полезным показателем в люменах. Больше люмен — больше яркости. При замене ламп накаливания вот краткое описание того, как мощность переводится в люмены:

  • Замените лампу накаливания 100 Вт на лампу 1600 люмен
  • Заменить лампу накаливания 75 Вт на лампу 1100 люмен
  • Замените лампу накаливания мощностью 60 Вт на лампу 800 люмен.
  • Замените лампу накаливания мощностью 40 Вт на лампу 450 люмен.
Выбор правильной температуры света

Последнее, что нужно учитывать, — это температура света, излучаемого различными типами лампочек. Световая температура, которую часто называют цветом, измеряется по шкале Кельвина (K).

Чем ниже температура Кельвина, тем краснее свет. Чем выше температура по Кельвину, тем более голубым выглядит свет. Свечи находятся в красном конце спектра при температуре около 1900 К.Лампы накаливания составляют в среднем 2800 К. Дневное солнце составляет около 4800 К. В светодиодных лампах и лампах с КЛЛ используются фильтры, предлагающие широкий диапазон цветов света, чтобы соответствовать желаемому ощущению комнаты или соответствовать назначению комнаты.

Теплые лампочки имеют диапазон температур от 2700 К до 3000 К и подходят для большинства жилых помещений. Холодные, яркие лампы имеют диапазон от 3500 K до 4100 K и подходят для осветления рабочих пространств, таких как кухни и прачечные.

Лампы естественного дневного света имеют температуру от 5 000 К до 6 500 К и слишком суровы для домашних светильников.Их часто используют в коммерческих помещениях и больницах.

Переход к энергоэффективным лампочкам в вашем доме

Когда дело доходит до освещения дома, у вас больше возможностей, чем когда-либо. И многие из лучших вариантов также являются энергоэффективными. Наряду с сокращением энергопотребления они обеспечивают долговечность и яркость, формы, размеры и цвета для любого применения. Если вы еще не отказались от ламп накаливания, сейчас самое время. Правила направлены на то, чтобы заставить вас измениться; лучший выбор освещения заставит вас захотеть.

Простая схема высокоэффективного светодиодного фонарика

Здесь описана простая схема светодиодного фонарика, которая зажигает 3 белых светодиода от источника питания 6 В и продлевает срок службы батареи вечно.
Сюда включена схема удвоителя полезного напряжения для создания высокоэффективной схемы с использованием всего лишь нескольких компонентов.

Введение

Узнайте больше, как это построить. Белые светодиоды широко известны тем, что излучают ослепительный свет при очень малых токах.
Но, если они не настроены грамотно, на самом деле может быть довольно плохим в вышеуказанном отношении.Изучите простой трюк по оптимизации и созданию высокоэффективного светодиодного фонарика в домашних условиях.

Зажигание 6 светодиодов от источника 3 В

Вы можете обнаружить, что невозможно полностью осветить 3 белых светодиода при 6 В / 20 мА без использования сложных узлов индуктора.

Такой светодиодный фонарик может быть действительно удобным, поскольку световой поток, производимый им, достаточно высок, а аккумулятор работает почти вечно.

Более того, нет ничего лучше, чем построить эту красивую трассу прямо у себя дома.Мы знаем, что последовательно включенные светодиоды всегда дают лучшие результаты.

Просто потому, что, просто увеличивая требуемое напряжение соответствующим образом, мы можем управлять всей серией, используя то же количество тока, которое требуется для одного светодиода.

Например, если мы рассмотрим один белый светодиод, для его яркого свечения требуется около 20 мА тока при 3,8 В, поэтому, если мы подключим 3 таких светодиода параллельно, потребляемый ток составит 60 мА — это огромно, и разрядит небольшую батарею довольно быстро, за считанные минуты.

Однако, если мы соединим вышеуказанные светодиоды последовательно и увеличим напряжение примерно до 10 вольт, станет возможным зажечь их, используя ток всего 20 мА, что сделает всю схему очень эффективной.

Использование схемы IC4049 в качестве генератора

Используя универсальную микросхему IC 4049, которая содержит шесть вентилей инвертора или НЕ вентилей в одном корпусе, можно подключить очень простой шаговый двигатель по напряжению.

Настроив два его логических элемента как осциллятор, мы обнаружили, что 4 его логических элемента могут быть связаны параллельно для обеспечения необходимой буферизации на выходе генератора и пошагового изменения этого буферизованного выхода для управления одной серией из 3 светодиодов.

Чтобы добавить больше таких серий, вам нужно просто увеличить количество вентилей (ИС) и использовать их в качестве буферов для соответствующих серий светодиодов.

Одного генератора будет достаточно, и он может обычно использоваться для управления всеми этими добавленными буферами и серией светодиодов.

Разберем принцип работы предложенной схемы.

Как это работает

На следующем рисунке (щелкните, чтобы увеличить) мы видим, как просто одна микросхема IC 4049 и несколько других пассивных компонентов используются для управления тремя белыми светодиодами от источника 6 В при токе всего 20 мА.

Текущая конфигурация обеспечивает почти 100% эффективность и, следовательно, хорошее время автономной работы.

Вентили N1 и N2 вместе с R1 и C1 подключены как генератор с частотой, определяемой значениями R1 и C1.

Остальные вентили N3, N4, N5 и N6 все соединены параллельно в качестве буферов, то есть их входы связаны вместе и подключены к источнику частоты от генератора.

Их выходы также объединены в одну общую розетку и подключены к следующей схеме усилителя напряжения.

Схема умножителя напряжения

Стандартная конфигурация, в которой используются два диода и такое же количество электролитических конденсаторов, используется для создания схемы умножителя напряжения.

Вышеупомянутая конфигурация будет работать только для переменного напряжения и удвоит полученный вход.

Приложенная частота колебаний от буферов успешно почти дважды получается вышеупомянутой схемой умножителя.

Три последовательно соединенных высокоэффективных белых светодиода интегрированы на выходе схемы умножителя напряжения для завершения устройства.

Светодиоды получают от цепи подходящее напряжение и светятся довольно ярко.

Список деталей

R1 = 68K, C1 = 680pF,

C2, C3 = 100 мкФ / 25V,

D1, D2 = 1N4148,

N1, N2, N3, N4 = IC 40492,

Светодиоды Белые = 3 шт.

Печатная плата общего назначения = по размеру,

Ni-Cd элементов = 5 шт. 1,2 В каждый (перезаряжаемый)

Подходящий корпус = небольшой пластиковый ящик для цепи, батарей и светодиодов.

Как собрать

Построить электрическую схему этого светодиодного фонаря довольно просто, достаточно достать все компоненты и спаять их вместе с помощью данной схемы.

Тогда остается просто подключить аккумулятор к цепи и проверить его подсветку.

Если возможно, проверьте потребляемый ток в цепи миллиамперметром, он не должен превышать 15-20 мА.

Поместите все устройство в подходящую пластиковую коробку; убедитесь, что светодиоды надлежащим образом выступают из передней поверхности коробки.

Вы можете использовать подходящие отражатели для увеличения светоотдачи. Полностью заряженный аккумулятор должен работать очень долго, почти более пяти лет, даже при частом использовании.

Схема печатной платы

Насколько эффективны солнечные панели? (2021)

Какие факторы определяют эффективность солнечных панелей?

Панели солнечных батарей обычно способны преобразовывать от 15% до 22% солнечной энергии в полезную энергию, в зависимости от факторов , таких как размещение, ориентация, погодные условия и т. Д.Количество солнечного света, которое системы солнечных панелей могут преобразовать в фактическое электричество, называется , производительность , и результат определяет эффективность солнечных панелей.

Для определения эффективности солнечных панелей , панели испытываются в стандартных условиях испытаний (STC). STC указывает температуру 25 ° C и энергетическую освещенность 1000 Вт / м 2 . Это эквивалентно солнечному дню, когда падающий свет падает на обращенную к солнцу поверхность под углом 37 °. В этих условиях испытаний эффективность солнечной панели составляет 15%. с площадью поверхности 1 м 2 будет производить 150 Вт.

Помимо стандартных условий испытаний, солнечные панели проходят всесторонние испытания на работоспособность в экстремальных условиях .

Обширные испытания солнечных панелей в экстремальных условиях

Расширенные испытания солнечных панелей в экстремальных условиях

Ни один заказчик не хочет получать солнечные панели, которые технически не годятся. У солнечной энергии есть основные преимущества, но важно, чтобы в вашем доме была установлена ​​солнечная панель правильного типа.Чтобы гарантировать качество солнечной панели, она тщательно тестируется в экстремальных условиях.

Ветер

Ветер — одна из наиболее прогнозируемых причин повреждения солнечных элементов. Производители солнечных панелей проводят обширные испытания в аэродинамической трубе, чтобы уменьшить потенциальные повреждения.

град

Испытание града состоит из искусственного града со скоростью от 20 до 30 м / с . Солнечные элементы остаются неповрежденными на этих скоростях.

Снег

Толстый слой снега может быть слишком тяжелым для солнечной панели.Солнечные элементы перестают работать, когда на солнечной панели накапливается более 5 см снега, что снижает эффективность солнечной панели на 100%.

Лед

Лед накапливается на поверхности солнечных элементов, если не нанесено силиконовое покрытие . Нарастание льда может потенциально снизить эффективность солнечных панелей от 25 до 100% .

Химический остаток

Для растворения химического остатка необходимо, чтобы на поверхность солнечных элементов выпало не менее 20 мм осадков.Исследования показали снижение эффективности солнечных панелей на на 0,2% , когда они покрыты слоем химических отложений.

УФ-деградация

Структура солнечного элемента может отслаиваться из-за деградации, вызванной УФ-излучением . Еще одним следствием может быть изменение цвета отдельных солнечных элементов.

Испытание на влажное тепло

Испытание на влажное тепло проводится для проверки долговечности солнечных панелей в условиях высокой влажности . Влажность может привести к коррозии и нарушению подключения модуля, а также к общему снижению эффективности солнечной панели.

Сопротивление изоляции

Сопротивление изоляции определяется прочностью материала. В слабых материалах утечка тока может произойти по краям солнечной панели.

Термоциклирование

Температурный цикл может вызвать отказ компонентов солнечной панели. Эти компоненты включают солнечные элементы, межсоединения, паяные соединения и соединения модулей.

При установке важно учесть все факторы, которые могут повлиять на эффективность солнечной панели . Более того, очень важно, чтобы максимально увеличила производительность с самого начала.

Зачем проводить всесторонние испытания эффективности солнечных панелей в экстремальных условиях?

Тестирование эффективности солнечных панелей проводится для предотвращения продажи на рынке низкокачественных солнечных панелей. Производитель должен доказать, что солнечные элементы имеют долговечность и долговечность .Солнечные панели, доступные на рынке Великобритании, сертифицированы путем предварительного прохождения всестороннего тестирования.

Обычно солнечные элементы тестируются на современных, полностью автоматизированных испытательных установках. Этот высокий стандарт при тестировании позволяет классифицировать эффективности солнечных панелей в группах с аналогичной выходной мощностью .

Какие типы солнечных панелей наиболее эффективны?

Существует множество типов солнечных панелей. Наиболее распространенные типы солнечных панелей:

Важно понимать, что эффективность отдельного солнечного элемента не равна эффективности солнечных панелей (модулей) как системы.Хотя эффективность солнечных батарей обычно составляет около 15-20%, в некоторых случаях эффективность солнечных батарей может достигать 42%.

Однако, если не указано иное, производительность солнечных элементов измеряется в лабораторных условиях. Таким образом, хотя 42% — это впечатляющая производительность, лабораторные условия отличаются от реальных, и это неприменимо к бытовым пользователям.

Монокристаллические солнечные панели

Монокристаллические солнечные панели, также называемые монокристаллическими элементами , производятся из чистейшего кремния.Кристалл кремния этого типа выращивается в сложном процессе для получения длинного стержня. Затем стержень разрезают на пластины, из которых будут образовываться солнечные элементы. Известно, что монокристаллические солнечные панели обеспечивают наивысшую эффективность в стандартных условиях испытаний по сравнению с двумя другими типами солнечных элементов. Текущая эффективность монокристаллических солнечных панелей составляет 22-27%. Монокристаллическую панель можно узнать по закругленным краям и темному цвету.

Поликристаллические солнечные панели

Солнечные панели, изготовленные из поликристаллических солнечных батарей , также называемые мультикристаллическими элементами , немного менее эффективны, чем панели, состоящие из монокристаллических солнечных элементов.Это связано с характером производства. Кремний выращивают не как отдельную ячейку, а как блок кристаллов. Эти блоки затем разрезаются на пластины для производства индивидуальных солнечных элементов. Текущий КПД поликристаллических солнечных панелей составляет 15-22%. Поликристаллические солнечные панели можно распознать по квадратному сечению и синим крапинкам.

Тонкопленочные солнечные панели

Тонкопленочные солнечные панели изготавливаются путем покрытия стеклянной, пластиковой или металлической подложки одним или несколькими тонкими слоями фотоэлектрического материала.Тонкопленочные солнечные панели обычно гибкие и имеют небольшой вес. Известно, что тонкопленочные солнечные панели разрушаются несколько быстрее, чем моно- и поликристаллические солнечные панели. Производство таких панелей менее сложно, поэтому их выход на 5% меньше КПД монокристаллических солнечных панелей. Обычно тонкопленочные элементы обеспечивают КПД солнечных панелей от 15 до 22%.

Технология тонкопленочных солнечных панелей сокращает разрыв в эффективности с более дорогими типами солнечных панелей, поэтому тонкопленочные солнечные панели устанавливаются на крупномасштабных проектах и ​​на солнечных электростанциях, побивающих рекорды.

4 ключевых атрибута при выборе солнечных батарей

  • Стоимость установки солнечных панелей за квадратный метр.

  • КПД солнечной панели всего модуля солнечной панели.

  • Срок службы индивидуальных солнечных элементов.

  • Эстетика и стиль вашей солнечной панели.

Чтобы помочь вам найти лучшие солнечные панели для вашего конкретного дома, вы можете следовать нашему видео-руководству из 6 шагов:

Солнечные панели Trends

На рынке солнечной энергии наблюдается огромных конкурентов .Новые гиганты, такие как Китай и Индия, являются крупнейшими загрязнителями, а также мировыми лидерами в развитии солнечных электростанций. Эта явная конкурентоспособность приведет к снижению цен на солнечные панели и более эффективные решения для хранения.

Все эти разработки в конечном итоге выйдут на рынок солнечных панелей для жилых домов . Это изменение приведет к появлению менее дорогих и на более эффективных модулей солнечной энергии , которые можно легко установить для ваших домов.

Мы понимаем, что поиск подходящего поставщика солнечных батарей требует вашего драгоценного времени.Мы делаем процесс выбора наиболее эффективной солнечной панели менее трудоемким и простым, предоставляя вам бесплатных и необязательных предложений от разных поставщиков. Как? Просто заполните контактную форму вверху страницы, указав свои потребности и предпочтения, и мы свяжемся с вами с самыми точными цитатами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *