принцип работы, устройство, преимущества и недостатки
Сегодня сложно представить жизнь людей без электрической лампы. Этот довольно простой прибор используется для освещения различных помещений и улиц. Существует большое количество видов лампочек, отличающихся мощностью свечения и принципом работы. В последнее время все чаще пользователи обращают внимание на энергосберегающие устройства, но и обычная лампа накаливания не спешит сдавать позиции.
- Принцип действия
- Особенности конструкции
- Колба и газовая среда
- Излучающий проводник
- Цоколь лампы
- Преимущества и недостатки
- Положительные качества
- Негативные свойства
Принцип действия
Принцип работы лампы накаливания довольно прост, как и конструкция этого устройства. Электроток проходит через тугоплавкий проводник и разогревает его до высокой температуры. Следует заметить, что температура нагрева зависит от подведенного к устройству напряжения. В соответствии с законом Планка, разогретый проводник способен генерировать электромагнитные волны.
Чем выше температура, тем короче длина волны испускаемого излучения. Волны видимого спектра появляются при нагреве проводника до нескольких тысяч градусов по шкале Кельвина. Если спираль электрической лампочки нагреть до 5000 К, то она будет светиться нейтральным светом (аналогично тому, что излучает Солнце). По мере снижения температуры цвет свечения начнет меняться сначала на желтый, а затем на красный.
В лампах преобладающая часть энергии трансформируется в тепловую и лишь незначительное ее количество преобразуется в световой поток. Также следует помнить, что органы зрения человека способны воспринимать только определенный диапазон световых волн. Чтобы увеличить освещенность помещения, приходится повышать температуру спирали. Однако это возможно лишь до определенного показателя, который ограничен свойствами материала проводника.
Таким образом, максимальная температура лампочки составляет 3410 градусов по шкале Цельсия. Дальнейший нагрев вольфрама приведет к деформации и расплавлению материала. Однако даже такая температура может быть достигнута только при определенных условиях окружающей среды. Если вольфрам контактирует с кислородом, то он превращается в оксид. Когда из колбы выкачивается воздух, появится возможность создать лампу мощностью максимум в 25 Вт. Более мощные устройства содержат в колбе инертные газы.
Особенности конструкции
Хотя лампы и отличаются конструкцией, они имеют три общих элемента — выводы, проводник и стеклянную колбу. У некоторых устройств специального назначения может отсутствовать цоколь, так как используются держатели другого типа. Также иногда в лампочки встраивается ферроникелевый предохранитель. Чаще всего он монтируется в ножке, поэтому после выхода из строя проводника колба не разрушается.
Когда нить накала обрывается, появляется электродуга, которая расплавляет остатки материала. Вещество в расплавленном состоянии падает на стеклянную емкость и может нарушить ее целостность. Предохранитель способен предотвратить процесс плавления спирали. Однако такая технология не получила широкого распространения по причине малой эффективности.
Если говорить о том, из чего состоит лампочка, то необходимо отметить основные элементы конструкции. К ним относятся:
- колба, изготовленная из стекла;
- излучающий проводник;
- электроды;
- цоколь;
- газовая среда;
- держатели излучающего проводника.
Колба и газовая среда
Благодаря стеклянной емкости нить накаливания защищена от процесса окисления, возникающего при взаимодействии материала излучающего проводника с кислородом. Первые электрические лампы накаливания производились с вакуумной колбой. Сейчас по такой технологии выпускаются только устройства малой мощности. Для производства более мощных устройств чаще всего используется азотно-аргонная смесь или один аргон. Также в колбах некоторых ламп может содержаться ксенон либо криптон. Показатель теплового излучения материала нити накаливания зависит от молярной массы газа.
Отдельной группой являются галогенные лампочки, в стеклянную емкость которых закачан газ группы галогенов. При нагреве материал излучающего проводника испаряется и вступает в реакцию с этими газами. Получившееся во время химического процесса вещество быстро расщепляется под воздействием высокой температуры и возвращается на нить накала. В результате не только повышается КПД устройства, но и увеличивается срок его эксплуатации.
Излучающий проводник
Форма нити накала может быть любой и зависит от специфики устройства. Чаще всего в обычной лампочке проводник имеет круглое сечение, но можно встретить и ленточное. Следует заметить, что в первых лампах использовался даже уголь, способный нагреться до температуры 3559 градусов по шкале Цельсия. Однако в современных приборах основным материалом нити накаливания является вольфрам.
Также этот элемент может быть изготовлен из сплава осмия с вольфрамом. Выбор вида спирали не является случайным, так как от этого зависят ее габариты. В современных лампах могут использоваться биспирали и даже триспирали. Они получаются благодаря повторному закручиванию. Это позволяет увеличить КПД устройства благодаря снижению показателя тепловыделения.
Цоколь лампы
Этот элемент стандартизован и имеет определенную форму и габариты. В результате можно легко заменить лампочку после ее выхода из строя . Сегодня чаще всего используются устройства с цоколем Е14, Е27, а также Е40. Расшифровка этой маркировки крайне проста — цифры после литеры Е указывают на наружный диаметр элемента.
Так как сейчас существует большое количество видов ламп, то некоторые из них отличаются конструкцией цоколя. Например, есть приборы, которые удерживаются в патроне благодаря силе трения. Также следует заметить, что цоколь в устройстве лампы накаливания выполняет следующие функции:
- соединяет несколько элементов;
- представляет собой один из контактов;
- позволяет надежно крепить прибор в патроне.
Преимущества и недостатки
Все технические устройства имеют не только преимущества, но и недостатки. Лампочки накаливания не стали исключением.
Положительные качества
Одним из главных плюсов этих устройств является простота конструкции, что делает стоимость изделия невысокой. Сейчас без труда можно приобрести прибор желаемой мощности и габаритов. Не менее важным преимуществом классических электролампочек является спектр свечения их излучающего элемента. Так как он максимально близок к солнечному свету, то не может негативно влиять на органы зрения.
Разогретая нить накала обладает тепловой инерцией, поэтому испускаемый ею свет практически лишен пульсации. Это выгодно отличает обычные лампочки накаливания от изделий другого типа (например, люминесцентных ламп). При производстве этих устройств не используются вредные вещества, благодаря чему для их утилизации не требуются специальные технологии.
Негативные свойства
Одним из основных недостатков устройств можно считать зависимость от показателя питающего напряжения. Если он увеличивается и превышает допустимые пределы, то спираль быстро изнашивается. Когда напряжение падает, то уменьшается и световой поток, излучаемый устройством.
Кроме этого, следует помнить, что излучающий элемент предназначен для работы на протяжении продолжительного временного отрезка. Показатель сопротивления холодной спирали значительно ниже в сравнении с рабочим режимом.
Из-за этого в момент включения возникает сильный скачок силы тока, что приводит к испарению материала нити накала. Таким образом, срок службы устройства зависит от количества включений.
Однако с этим недостатком можно бороться, используя специальные устройства плавного пуска — диммеры. Также с их помощью можно регулировать и показатель светового потока в довольно широком диапазоне.
Наиболее серьезным недостатком ламп накаливания является низкий КПД. Основная часть электроэнергии преобразуется в тепло, которое рассеивается в окружающей среде. Сейчас все чаще используются светодиодные лампы, позволяющие экономить на электричестве.
Изобретение электрической лампочки | Великие открытия человечества
Изобретение электрической лампочки является одним из величайших открытий в истории человечества, имевшее огромное значение. Это привело к перевороту в области энергетики, крупнейшим сдвигам в промышленности, всеобщей электрификации. Сегодня трудно найти уголок в мире, где бы не было электричества, оно стало неотъемлемой, обязательной частью жизни любого цивилизованного человека. Однако, на вопрос о том, кто первым изобрел электрическую лампочку нельзя дать однозначный ответ. Петров, Деви, Фуко, Яблочков, Эдисон, Лодыгин, Сван и еще много изобретателей, которые приложили свой талант, ум и труд к данному изобретению.
Дуговая лампа
Процесс изобретения лампочки был довольно сложным. В XIX веке получили распространение пара типов электрических ламп, наиболее распространенные из них: дуговые и лампы накаливания. Дуговые лампы появились раньше, их работа основана на таком явлении, как вольтовая дуга. Если к сильному источнику света подключить две проволоки, соединить, а потом раздвинуть их на несколько миллиметров, то между концами проводников возникает яркий свет. Такое же свечение, но более яркое, будет наблюдаться, если вместо металлических проводов использовать два хорошо заостренных угольных стержня. В 1803 году российский ученый В. Петров первым открыл явление вольтовой дуги, в 1810 году английский ученый Деви сделал такое же открытие. Оба пришли к выводу, что вольтовую дугу можно использовать для освещения. Однако было и много неудобных моментов: стержни из древесного угля были непрактичны, из-за того, что сгорали практически за несколько минут, да и электроды нужно было постоянно продвигать навстречу друг к другу по мере их сгорания. Если не соблюдать минимально допустимое расстояние между ними, то свет тускнеет и гаснет. Необходим был механизм-регулятор, который бы поддерживал между электродами постоянное расстояние. Последовал ряд интересных предложений, однако их недостатком являлся тот факт, что нельзя было включить в одну цепь несколько ламп.
В 1856 году А. И. Шпаковский изобрел осветительную установку, включающую 11 дуговых ламп с оригинальными регуляторами. Она освещала Красную площадь при коронации Александра II. Другой русский ученый В. И. Чиколев снабдил дуговую лампу дифференциальным регулятором, который был использован и используется до сих пор в мощных морских прожекторах и прожекторных установках.
Электрический фонарь Яблочкова
В 1876 году русским электротехником П. Н. Яблочковым была изобретена надежная и простая по конструкции дуговая лампа. Свои работы он начал еще в России, однако из-за финансового краха предприятия Яблочков уехал в Париж, где продолжает свои работы в знаменитой мастерской академика Бреге. Конструкция созданной Яблочковым свечи была проста, состояла из двух угольных стержней, расположенных параллельно и разделенных изолирующим слоем каолина (глины), укрепленных на подставке, напоминающей подсвечник. Поджигала дугу тоненькая угольная перемычка, расположенная наверху между электродами, сгоравшая в момент включения. Электрод со знаком «плюс» сгорал быстрее, поэтому при использовании постоянного тока его делали толще. Гениальным решением проблемы явилось использование генератора переменного тока, который изготовил Грамм именно для Яблочкова. В 1876 году свечи Яблочкова были представлены на выставке в Лондоне и привлекли к себе внимание общественности и огромный интерес.
Дуговая лампа П. Н. Яблочкова
В 1877 году лампы Яблочкова освещали самые посещаемые места в Париже (Авеню-дель-Опера и магазин «Лувр»). Изобретение П. Н. Яблочкова сыграло основную главную роль в переходе от экспериментов и опытов к массовому освещению электричеством, началось триумфальное шествие «Русского света» по всему миру. Завоевав за два года Старый свет, свеча Яблочкова получила распространение и на Востоке. Однако, главным недостатком свечи Яблочкова была ее недолговечность, т. к. угли в ней сгорали очень быстро. Постепенно свечу Яблочкова начинает вытеснять более дешевая, надежная и долговечная лампа накаливания.
Томас Эдисон
В 1879 году американский изобретатель Эдисон занялся усовершенствованием электрической лампочки. Узнать интересные факты биографии великого изобретателя Томаса Эдисон можно на сайте о знаменитостях. Чтобы лампа имела ровный, яркий, немигающий свет и служила долго, Эдисон путем многочисленных экспериментов стремился найти подходящий материал для нити, а также научиться создавать сильно разреженное пространство внутри баллона. После многочисленных опытов он нашел наиболее подходящий материал — из обугленных бамбуковых волокон и в этом же году Эдисон в присутствии трех тысяч человек продемонстрировал первую электрическую лампочку с большим сроком службы. Так как изготовление бамбуковых нитей достаточно дорого, то Эдисон предложил изготавливать нити из специально обработанных волокон хлопка. Из лампочки с помощью ртутного насоса выкачивали воздух, запаивали, а затем для вкручивания в патрон насаживали на цоколь с контактами. Это была первая лампочка, ставшая пригодной для массового производства, срок службы которой составил 800-1000 часов. Такие лампочки изготавливались почти тридцать лет, однако будущее было за лампочками с металлической нитью, которые станут выпускать лишь в XX веке.
Лампы для внутреннего и наружного освещения на Ace Hardware
Лучшие категории
Выберите 2 или более продуктов для параллельного сравнения характеристик. сравнение. Сравнить
Выберите 2 или более продуктов для параллельного сравнения характеристик.0003
Выбрать 2 или более продуктов для бок о бок по сравнению с функциями сравнения.
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
Выберите продукты или более для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций. сравнение функций.Сравнить
Выберите 2 или более продукции для бок о бок по бок по сравнению с функциями. Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для одновременного сравнения сравнение функций.Сравнить
Выбрать 2 или более продуктов для бок о бок по сравнению с функциями.
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравните
2- 90 или более
6 Выберите продукты для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения функций. Сравните
Выберите 2 или более продуктов для параллельного сравнения сравнение функций.Сравнить
Выбрать 2 или более продуктов для бок о бок по сравнению с функциями сравнения. Выберите 2 или более продуктов для параллельного сравнения характеристик. Сравнить
Показаны 30 из 1467
Как работают лампочки | HowStuffWorks
До изобретения лампочки освещение мира после захода солнца было грязной, трудной и опасной задачей. Чтобы полностью осветить большую комнату, требовалась связка свечей или факелов, а масляные лампы, хотя и были довольно эффективными, имели тенденцию оставлять следы копоти на всем, что находилось поблизости.
Когда в середине 1800-х наука об электричестве действительно начала развиваться, изобретатели всего мира требовали разработать практичное и доступное электрическое устройство для домашнего освещения. Англичанин сэр Джозеф Свон и американец Томас Эдисон сделали это примерно в одно и то же время (в 1878 и 1879 годах соответственно), и в течение 25 лет миллионы людей во всем мире установили в своих домах электрическое освещение. Простая в использовании технология была таким улучшением по сравнению со старыми способами, что мир никогда не оглядывался назад.
Реклама
Самое удивительное в этом историческом повороте событий то, что сама лампочка вряд ли может быть проще. Современная лампочка, которая не сильно изменилась со времен модели Эдисона, состоит всего из нескольких частей. В этой статье мы увидим, как эти части объединяются, чтобы производить яркий свет в течение нескольких часов подряд.
Основы света
Свет — это форма энергии, которая может выделяться атомом. Он состоит из множества маленьких пакетов, похожих на частицы, которые обладают энергией и импульсом, но не имеют массы. Эти частицы, называемые светом фотона являются основными единицами света. (Для получения дополнительной информации см. Как работает свет.)
Атомы испускают световые фотоны, когда их электроны возбуждаются. Если вы читали «Как работают атомы», то знаете, что электроны — это отрицательно заряженные частицы, которые движутся вокруг ядра атома (которое имеет суммарный положительный заряд). Электроны атома имеют разные уровни энергии, зависящие от нескольких факторов, включая их скорость и расстояние от ядра. Электроны с разными энергетическими уровнями занимают разные орбитали. Вообще говоря, электроны с большей энергией движутся по орбиталям дальше от ядра.