Заземляющие проводники / ПУЭ 7 / Библиотека / Элек.ру
1.7.113. Сечения заземляющих проводников в электроустановках напряжением до 1 кВ должны соответствовать требованиям 1.7.126 к защитным проводникам.
Наименьшие сечения заземляющих проводников, проложенных в земле, должны соответствовать приведенным в табл. 1.7.4.
Прокладка в земле алюминиевых неизолированных проводников не допускается.
1.7.114. В электроустановках напряжением выше 1 кВ сечения заземляющих проводников должны быть выбраны такими, чтобы при протекании по ним наибольшего тока однофазного КЗ в электроустановках с эффективно заземленной нейтралью или тока двухфазного КЗ в электроустановках с изолированной нейтралью температура заземляющих проводников не превысила 400 °С (кратповременный нагрев, соответствующий полному времени действия защиты и отключения выключателя).
1.7.115. В электроустановках напряжением выше 1 кВ с изолированной нейтралью проводимость заземляющих проводников сечением до 25 мм2 по меди или равноценное ему из других материалов должна составлять не менее 1/3 проводимости фазных проводников. Как правило, не требуется применение медных проводников сечением более 25 мм2, алюминиевых — 35 мм2, стальных — 120 мм2.
1.7.116. Для выполнения измерений сопротивления заземляющего устройства в удобном месте должна быть предусмотрена возможность отсоединения заземляющего проводника. В электроустановках напряжением до 1 кВ таким местом, как правило, является главная заземляющая шина. Отсоединение заземляющего проводника должно быть возможно только при помощи инструмента.
1.7.117. Заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный — 10 мм2, алюминиевый — 16 мм2, стальной — 75 мм2.
1.7.118. У мест ввода заземляющих проводников в здания должен быть предусмотрен опознавательный знак
Длина и минимальное сечение заземляющего проводника ПУЭ
Установка заземляющих проводников должна проводиться на любых объектах, где работают электроприборы, начиная с промышленного оборудования и трансформаторов, заканчивая жилыми помещениями. Используя заземляющие проводники, удается свести к минимуму риск травмирования электротоком высокого напряжения от деталей из металла, используемых в оборудовании, работающем на электроустановках с напряжением от 220 В и выше.
Требования к заземляющим, защитным проводникам и проводникам системы
Технологические характеристики заземляющих проводников должны соответствовать месту их установки, способу соединения, материалов, из которых изготовлены провода. Кроме специальных требований, к такой продукции применяются еще и общие правила. Только тогда любой из них снизит значение электротока до 0.
Подключение защитных систем проводится к общей точке для любого электрооборудования – к глухо заземленной нейтрали по 5 основным схемам. Нулевой потенциал при подключении заземлителя создается с помощью нейтрального провода, который принято обозначать буквенным символом N. У защитного нулевого кабеля имеется собственное обозначение — РЕ.
После уравнивания потенциалов напряжение в проводке будет с таким же значением, как и при коротком замыкании. Поэтому для сечения заземляющих проводников подбирается такой же диаметр, как у кабеля фазы. Маркировка используемых проводов может выбираться с учетом значений, принятых ГОСТом из готовых таблиц, размещенных в приложениях ПЭУ. Все используемые кабели могут быть только качественного изготовления и с нужными технологическими характеристиками.
Для проведения отдельных расчетов сечения заземляющего проводника используется формула, в которой указаны показатели короткого замыкания, вид используемого провода и технология его укладки. При расчете параметров создаваемой системы защиты, следует учитывать, что идущее по ней сопротивление не может превышать 4 Ом. Более безопасное подключение создается при использовании винтового способа соединения. Нулевой кабель должен быть окрашен в синий цвет, а проводка заземления – в желтый.
Как правильно выбрать сечение кабеля заземления?
Перед тем как выбирать размер сечения проводки, нужно определиться с типом защитной системы.
Согласно ПЭУ, приняты к использованию следующие варианты:
- нейтральный кабель подключается к заземлителю при использовании переменного тока;
- объединение нулевого кабеля и «земли» вместе, нейтральная проводка подсоединяется отдельно;
- подсоединение электрооборудования напрямую к главной заземляющей шине;
- создание заземления на корпусе электрического устройства с помощью сопротивления или путем изоляции всех кабелей.
При выборе кабеля нужно ориентироваться на маркировку, в которой РЕ обозначает «заземление», а «земля» и «ноль» обозначаются маркировкой PEN при соединении в одном проводе.
При подборе размера сечения проводов необходимо учитывать тип самого заземления, которое может быть переносным или стационарным. В быту обычно используется стационарный тип защитного устройства. При такой схеме приборы к заземляющему проводнику могут подсоединяться многожильными и одножильными кабелями. Выбирая подходящие проводящие жилы при создании защитных систем нужно использовать рекомендованные размеры диаметра используемой проводки.
Таблица 1. Наименьшие сечения защитных и заземляющих проводников
Выбор сечения защитных проводников самого маленького диаметра обеспечит создание одинаковой проводимости. Проводку для них следует выбирать из такого же металла, что и провода фазы. Возможно отклонение в меньшую сторону от представленных нормативов, определяющих минимальное сечение, если применяется для вычислений формула S ≥ I √t / k, а время выхода из рабочего состояния защитной системы будет составлять менее 5 секунд.
Следует помнить, что сечение заземляющего проводника до 1 кв должно быть одинаковым с фазой, если проводка изготовлена из одного материала.
Таблица 2. Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле
Нормативное сечение заземляющего проводника, закопанного в почву, может увеличиться, если проводимость тока у почвогрунта будет более 100 Ом. Данные нормы можно повысить в 0,01·ρ раз, но не более чем десятикратно.
При соблюдении всех требований к сечению проводки можно создавать правильное заземление для электрооборудования любых видов и назначений.
Сечение фазных проводников, мм2
Фаза для защитной системы должна иметь диаметр провода, при котором при слишком большой силе тока проводка не будет нагреваться. В таблице приведены параметры для разных материалов, из которых делают такое электротехническое оборудование. Соблюдение соотношения размера сечения фазы и силы тока обеспечит безопасное использование мощного электрооборудования.
При соблюдении всех требований, установленных действующими правилам по безопасному подключению защитных систем к оборудованию, в месте соединения значение силы электрического тока будет равно нулю.
ПУЭ: Заземляющие проводники
Внимание!
Ссылка на главу, вышедшую в другом издании
Нумерация может измениться
Данный документ находится в библиотеке сайта ElectroShock
Перейдите по ссылке, чтобы посмотреть список доступных документов
Там же находится ПУЭ в формате справки windows
1.7.113. Сечения заземляющих проводников в электроустановках напряжением до 1 кВ должны соответствовать требованиям 1.7.126 к защитным проводникам. Наименьшие сечения заземляющих проводников, проложенных в земле, должны соответствовать приведенным в табл. 1.7.4.Прокладка в земле алюминиевых неизолированных проводников не допускается.
1.7.114. В электроустановках напряжением выше 1 кВ сечения заземляющих проводников должны быть выбраны такими, чтобы при протекании по ним наибольшего тока однофазного КЗ в электроустановках с эффективно заземленной нейтралью или тока двухфазного КЗ в электроустановках с изолированной нейтралью температура заземляющих проводников не превысила 400 ºС (кратковременный нагрев, соответствующий полному времени действия защиты и отключения выключателя).
1.7.115. В электроустановках напряжением выше 1 кВ с изолированной нейтралью проводимость заземляющих проводников сечением до 25 мм2 по меди или равноценное ему из других материалов должна составлять не менее 1/3 проводимости фазных проводников. Как правило, не требуется применение медных проводников сечением более 25 мм2, алюминиевых — 35 мм2, стальных — 120 мм2.
1.7.116. Для выполнения измерений сопротивления заземляющего устройства в удобном месте должна быть предусмотрена возможность отсоединения заземляющего проводника. В электроустановках напряжением до 1 кВ таким местом, как правило, является главная заземляющая шина. Отсоединение заземляющего проводника должно быть возможно только при помощи инструмента.
1.7.117. Заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный — 10 мм 2, алюминиевый — 16 мм2, стальной — 75 мм2.
1.7.118. У мест ввода заземляющих проводников в здания должен быть предусмотрен опознавательный знак .
Какого сечения должны быть заземляющие провода? Всё о защитных проводниках – по ПУЭ | ASUTPP
Заземление – это безопасность. Даже в многоэтажных домах прошлого века применяли хитрую систему зануления (про системы заземления более подробно описано в главе 1.7.3 ПУЭ), чтобы обезопасить жильцов квартир при, например, неожиданном пробое на корпус. Как правильно выполнять заземление, и, основной вопрос: какого сечения необходимо покупать защитный проводник? Далее в статье.
Рисунок 1: Провод заземленияРисунок 1: Провод заземления
Какой провод выбрать для линии заземления
Если электропроводка выполняется с нуля, то не следует для контура заземления проводить отдельный кабель – его можно включить в общий проводник, как дополнительная жила к уже имеющейся фазной и нулевой. Это означает, что любой кабель в квартире должен быть трёхжильным: «фаза», «ноль» и «земля».
Отдельный параграф в ПУЭ посвящён PE-проводникам или проводам заземления.
И пункт 1.7.121. ясно говорит, что:
- Провод «земли» может быть проложен вместе с фазным проводником.
- Допускается использовать как изолированный, так и неизолированный PE-проводник.
Третий подпункт 1.7.121. гласит, что заземляющий проводник допускается прокладывать стационарно, как сейчас делают многие электромонтажные компании, что вполне оправдано.
Расчёт сечения заземляющего проводника
Многие мастера-электрики сильно не вникают в суть вопроса и всегда приобретают кабель с жилами одинакового сечения. В итоге провод «земли» не отличается от фазного или рабочего «нуля». Но ПУЭ предусмотрены наименьшие размеры проводников заземления и занесены в виде формул в отдельную таблицу.
Рисунок 2: Провода заземления с уже готовой обжатой клеммойРисунок 2: Провода заземления с уже готовой обжатой клеммой
Основные формулы определения наименьшего сечения PE-проводника:
- При фазном сечении S ≤ 16 мм2, сечение PE-проводника: S.
- При фазном сечении 16 < S ≤ 35, сечение PE-проводника: 16.
- При фазном сечении S > 35, сечение PE-проводника: S/2.
Следует сразу уточнить, что такие расчёты выполняют только на серьёзных промышленных предприятиях, а во время прокладки электропроводки в ломах или квартирах ими очень часто пренебрегают.
Какое сечение должно быть у отдельно проложенного PE-проводника
Данный вопрос подробно расписан в пункте 1.7.127. ПУЭ, который гласит, что сечение отдельно проложенного провода заземления, если он имеет дополнительную механическую защиту, должно составлять не менее 2,5 мм2. Если такой защиты не предусмотрено, то сечение увеличивается до 4 мм2, в зависимости от предназначения кабеля. Лучше всего использовать в качестве заземления только медные жилы.
Также несколько слов о маркировке PE-проводников, которую регламентирует пункт 1.1.29 ПУЭ: провода заземления могут быть обозначены как продольными, так и поперечными полосами желто-зелёного цвета. ГОСТ Р 50462-92 запрещает использование данной индикации с каким-либо другим значением. Пунктом 1.7.118 также предусмотрен опознавательный знак, который сейчас можно приобрести практически в любом строительном магазине или магазине электротехнических изделий.
Рисунок 3: Знак заземления, установленный ПУЭРисунок 3: Знак заземления, установленный ПУЭ
Вышеприведённая информация актуальна только для сетей напряжением до 1000 В. Свыше 1 кВ параметры защитных проводников совсем другие.
Провод для заземления в частном доме: сечение, марка, цвет
Заземлением называется подключение нетоковедущих частей электрооборудования к заземлителю. Таким образом обеспечивается наличие потенциала земли на корпусах электроприборов. Это нужно для предотвращения поражения электрическим током в результате касания корпусов и других конструктивных частей поврежденного оборудования. Подключение к заземляющей шине осуществляется с помощью провода или кабеля. В этой статье мы расскажем, каким должен быть провод для заземления в частном доме и в квартире, чтобы вы могли правильно выбрать марку, сечение и другие параметры.
Кратко о терминах
Чтобы статья была понятной даже для тех, кто далёк от электротехники, мы привели пояснение к терминам, которые в ней будут использоваться.
Заземлителем называют основа системы заземления. Обычно оно представляет собой металлические штыри, вогнанные в землю на равном расстоянии друг от друга, формируя фигуру наподобие треугольника.
Заземляющей шиной или ГЗШ называют металлическую полосу, проложенную по периметру помещения или около защищаемых приборов, которая соединяет все заземляющие проводники электроприборов с заземлителем.
Заземляющим проводом или жилой называют тот проводник, который обеспечивает соединение заземлителя с ГЗШ.
Металлосвязь – это понятие, которое характеризует контакт между металлическими частями корпусов электрооборудования, в том числе двери электрических щитов или шкафов с их корпусами.
Сечение провода заземления
Для обеспечения надежной защиты от поражения током и работы защитных коммутационных приборов заземляющий провод подбирают в зависимости от сечения фазы. Это нужно для того, чтобы в случае аварии он выдержал высокие токи и не отгорел. Если это произойдет – то защита не сработает, а опасный потенциал окажется на корпусе электроприбора.
Сечение заземляющего провода должно быть:
- Если фаза используется сечением до 16 кв. мм – заземляющий проводник должен быть аналогичного размера.
- Если площадь поперечного сечения фазы от 16 до 35 кв. мм, то у «земли» оно должно быть 16 кв. мм.
- При сечении фазы больше 35 кв. мм – минимальное сечение провода заземления должно быть не менее чем половина сечения фазного.
Приведем два примера, чтобы ответить на вопрос какое сечение должно быть у заземления прибора:
- Вы подключаете электроплиту кабелем с сечением жил 4 кв. мм. Значит сечение защитного провода должно быть таким же.
- К электрическому шкафу подключен вводный кабель с жилами по 50 кв. мм. В этом случае сечение заземления должно быть не менее 25 кв. мм. Можно больше.
Марка и требования к проводникам
Жила заземляющего провода или кабеля может быть и одножильной и многожильной – это зависит только от того, где он будет применяться. Например, для заземления дверцы в электрощите нужно обеспечить её подвижность. Жесткая жила от постоянных открываний дверцы и её изгибаний при этом переломится. Поэтому у жилы должен быть соответствующий класс гибкости, не препятствующий открытию, например 3 и выше.
В то же время для подключения, например, корпуса электродвигателя насосной станции к ГЗШ не нужно обеспечивать подвижность, поскольку этот тип электрообрудования относится к стационарно монтируемому. Поэтому можно использовать жесткие жилы.
Жила заземления может быть:
- изолированной;
- неизолированной;
- находится в составе кабеля;
- быть отдельным одножильным проводом;
- алюминиевой;
- медной.
Отсюда следует вопрос: так какой провод использовать для подключения земли?
В магазинах продаётся кабельная продукция с разным количеством жил: 2, 3, 4, 5. Это нужно для сборки определенных схем включения устройств и подключения электрооборудования к сетям с разным количеством фаз.
Для подключения заземления в розетках и другом электрооборудовании однофазной сети удобно использовать трёхжильные кабели, например ВВГ 3х2,5. А для подключения трёхфазного оборудования к сети и заземления предназначены четырёхжильные кабели, например АВВГ 4х32. При этом в толстых кабелях заземляющий проводник обычно имеет сечение меньшее, чем у фазных жил. Приведем примеры.
Кабели:
- ВВГ – подходит для внутреннего применения. Для прокладки на улице его нужно помещать в гофре или трубах. Производится с различным количеством жил, есть более подробный обзор этого кабеля на сайте. Для использования в жарких помещениях лучше использовать ВВГнг-ls. Этот кабель жесткий и лучше подходит для стационарного монтажа.
- NYM – зарубежная марка по характеристикам похожа на ВВГ. Жесткий.
- ВБбШв – подходит для наружного применения и закапывания в траншею, часто используется для подключения частного дома к сети. Жесткий.
Провода:
- ПВС – неплохо подходит для подключения электроинструмента и удлинителей, потому что состоит из многопроволочных гибких жил. Производится в двух и в трёхжильном варианте.
- ШВВП – аналогично предыдущему, только он не круглый, а плоский.
- ESUY – одножильный мягкий медный провод.
Для подключения провода заземления к сантехнике и прочему в ванне можно использовать одножильные провода с маркировкой ПВ. Цифра после этих букв говорит о классе гибкости, где ПВ-1 жесткая жила, а ПВ-4 или ПВ-6 многопроволочная гибкая жила.
Цвет провода и особенности подключения
Какого цвета должна быть изоляция провода заземления? Заземляющие проводники и шины всегда имеют желто-зеленый полосатый окрас. Это позволяет безошибочно (если монтаж правильный) определять назначение проводов при ремонте проводки. Фазный проводник может иметь коричневый или другой цвет, а нулевой почти всегда синего цвета. В цепях постоянного тока часто маркируют красным плюс, а черным минус. Более подробно данный вопрос рассмотрен в статье: цветовая маркировка проводов.
Если вам достался кабель с цветовой маркировкой не соответствующей ГОСТам, вы можете обозначить землю, фазу и ноль с помощью изоленты или термоусадочной трубки. Кроме цветовой маркировки бывает и буквенная или цифровая:
- L – Line или фаза.
- N – Neutral или нейтраль, ноль.
- PEN или PE – защитный проводник или земля.
Для подключения во вводно-распределительном щитке (и других местах) часто используют земляную и нулевую шины. Это рейка с набором отверстий и винтовыми зажимами, куда подключаются провода. Для подключения провода земли с многопроволочной жилой нужно обязательно её облудить или обжать штыревым наконечником типа НШВИ и подобными. Это правило касается и подключения к клеммам автоматов и другим винтовым соединениям любых гибких проводников.
Для соединения провода с заземляющей шиной необходимо использовать круглые клеммы НКИ, НВИ или другие виды кабельных наконечников с клеммами в виде кольца.
Это может потребоваться при прокладке заземления от контура к щитку. Обычно они бывают двух типов:
- Обжимные. Для того, чтобы закрепить на кабеле их обжимают специальным инструментом. Пассатижами этого делать не стоит, потому что вы не добьетесь надежного обжима. Наилучшее сжатие обеспечивают пресс-клещи (другое название – кримпер) с гексагональными (шестигранными) зажимами.
- Со срывными винтами – для их затяжки просто затягивают винт до срыва его головки.
Вот и все, что мы хотели рассказать вам в данной статье. Теперь вы знаете, какого сечения и марки должен быть провод для заземления в частном доме либо же квартире. Напоследок рекомендуем просмотреть полезное видео по теме:
Как правильно выбрать сечение заземляющего проводника?
2020-08-28 11:50:45 3 861Как правильно выбрать сечение заземляющего проводника.
Заземляющий проводник — это металлическое соединение между заземлителем и электрическим оборудованием. Он может быть выполнен из следующих материалов:
- круглая проволока катанка;
- плоская полоса из нержавеющей, оцинкованной или омедненной стали;
- медный провод ПВ-1 и ПВ-3.
Цены на комплекты заземления от 3000 грн.
Важным этапом является выбор сечения этого компонента. Ориентироваться нужно на требования ПУЭ для сечения заземляющего проводника по мощности заземляемого оборудования. Таблицу соответствия для проводников из одинакового материала смотрите ниже.
Сумма сечения фазных проводников, мм2 | Наименьшее сечение защитных проводников, мм2 |
S <= 16 | S |
16 < S <= 35 | 16 |
S > 35 | S/2 |
Приведем ниже примеры:
Если на вводе в дом используется алюминиевый провод сечением до 10 мм. кв., то и проводник должен быть такого же сечения.
Если величина сечения находится в диапазоне от 16 до 35 мм.кв., то соединитель должен быть сечением 16 мм. кв.
При сечении ввода более 35 мм.кв., проводник составит половину от этого значения.
Пример можно привести следующий. При однофазном подключении дома алюминиевым проводом 16 мм. кв. и проводник должен быть 16 мм. кв. Но так как для этих целей этот материал не очень подходит, то применяют медь или сталь. При этом площадь медного проводника должна быть не менее 10 мм. кв., а стального 25 мм. кв. При трехфазном подключении, например тремя медными проводами по 10 мм.кв каждый, нужно суммировать площадь сечений, получаем показатель 30 мм. кв. Для него потребуется проводник: либо 16 мм.кв. из меди, либо 25 мм. кв. из алюминия и 35 мм. кв из стали.
Требования к сечению проводника прокладываемого под землей согласно ПУЭ:
Материал проводника | Минимальное сечение проводника, мм2 |
Сталь | 100 |
Оцинкованная сталь | 75 |
Медь | 50 |
Еще нужно учитывать требования ПУЭ относительно места расположения проводника.
- при монтаже его в стене или на стене, расчет производится согласно мощности.
- при монтаже его под землей, правила ПУЭ дополняются: сталь- 100 мм. кв.; медь- 50 мм. кв. оцинкованная сталь- 75 мм. кв.
Мы предоставляем полноценный расчет всех требующихся компонентов для заземления.
- По Киеву и Киевской области осуществляем монтаж с лицензией, гарантией и актами замеров.
- Имеем в наличие большой ассортимент комплектующих.
- Работаем по наличному и безналичному расчету.
- Проконсультироваться и приобрести все требуемые элементы заземления, можно связавшись с нашими менеджерами по телефонам указанным на сайте.
Стоимость работ на монтаж заземления в Украине:
№ | Вид услуги | Цена, грн |
1 | Заземление квартиры, частного дома, коттеджа, квартиры | 3900,00 |
2 | Заземление завода, офиса, цеха, АЗС и других объектов | 6200,00 |
3 | Заземление АТС и серверных | 7900,00 |
4 | Протокол измерения сопротивления контура заземления (по запросу) | 2500,00 |
5 | Транспортные расходы (зависят от расположения объекта) | — |
Провод для заземления какого сечения, качества и вида выбрать для квартиры и дома.
Содержание статьи
Никто не застрахован от случайных ударов током при выходе оборудования из строя, перепадах напряжения или по некоторым менее распространенным причинам. Эффективный и недорогой способ обезопасить от удара током себя и своих близких (работников и подчиненных, если мы говорим о рабочем оборудовании) — заземление. Но сначала кратко вспомним физику его действия и назначение.
Для чего используется заземление и как работает?
Любой электрик, даже первокурсник, расскажет Вам, что заземлением называют специально созданное соединение рабочего электрического оборудования (точки или узла сети) с некоторым заземляющим устройством.
Шина заземления.
Последним могут выступать как специально смонтированные конструкции и приборы, так и грунт. И то, и другое одинаково эффективно, но используется в различных случаях.
Заземляющее устройство и рабочие кабели выбираются в зависимости от назначения заземления. Основных видов всего пара:
- рабочее (или функциональное),
- защитное.
Функциональным называют процесс в том случае, когда он необходим непосредственно для правильной и исправной работы оборудования.
Защитным, в свою очередь, является заземление, приводящее к безопасной для человека работе приборов. Непосредственно используется этот вид не постоянно (в отличии от предыдущего), а только в ситуациях поломок, выхода из строя или при попадании в прибор молнии.
Заметим, что нередко защитное заземление используется для уменьшения количества электромагнитных помех.
В квартирах и домах проводится именно защитное заземление. Для бытовых целей обычно используется недорогой заземляющий проводник — одножильный кабель или часть многожильного. Основной составляющей провода всегда остается медь, а вот сечение варьируется. Основной вопрос, который волнует домашних мастеров и неопытных электриков — провод для заземления какого сечения должен быть? Попробуем ответить.
Подбираем кабель для заземления.
Прежде, чем выбирать провод заземления, необходимо определиться с несколькими другими основополагающими вопросами.
Проводить заземление самостоятельно приходится владельцам частных домов или загородных коттеджей, а также старых квартир, постройки ранее 1998 года. Современные дома уже обладают готовой системой заземления, в отличии от всех старых. Для правильного подбора сечения, необходимо выяснить, какая система существует в доме.
Основных, согласно Правилам Устройства Электроустановок (далее ПУЭ), всего четыре:
- TN-S — осуществлено заземление с помощью отдельного провода и нейтрали, в системе переменного тока;
- TN-C — кабели «ноль» и «земля» объединяются в один провод, нейтраль отдельно, наиболее распространено в домах прошлого века;
- TT — прямое защитное заземление, установленное на электрооборудование;
- IT — работа с корпусом устройства через сопротивление или полной изоляцией всех токопроводящих кабелей.
Непосредственно на схеме заземления Вы должны обнаружить одну из маркировок:
- PE — «заземление»,
- PEN — «ноль» и «земля» в одном кабеле.
Следующим немаловажным фактором выбора, который поможет определиться с правильным сечением проводника, является тип заземления. Стационарное или переносное — в зависимости от предназначения. Для обычного бытового заземления достаточного и стационарного типа, который в свою очередь, допускает как многопролочные, так и однопроволочные многожильные кабели.
Провод должен быть выполнен в желто-зелёном цвете изоляции, согласно ПУЭ.
Когда определились с типом, материалом кабеля и видом системы, переходим к основному шагу — подбору сечения кабеля.
Как правильно выбрать сечение кабеля заземления?
Для заземления могут использоваться как естественные заземлители, так и искусственные. Правила подбора сечения для них существенно отличаются.
Искусственные строго обязательны для сетей свыше 1 кВт, в остальных случаях разрешается использование естественных.
Искусственный элемент должен быть произведен из меди, стали или оцинкованных изделий. Сечение подбирается согласно таблице все в том же ПУЭ.
Материал | Профиль сечения | Диаметр, мм | Площадь поперечного сечения, мм | Толщина стенки, мм |
Черная сталь | Круглый для вертикальныхдля горизонтальныхПрямоугольныйУгловойТрубный | 16 10 — — 32 | — — 100 100 — | — — 4 4 3,5 |
Оцинкованная сталь | Круглый для вертикальных для горизонтальных Прямоугольный Трубный | 12 10 — 25 | — — 75 — | — — 3 2 |
Медь | Круглый Прямоугольный Трубный Канат многопроволочный | 12 — 20 1,8 | — 50 — 35 | — 2 2 — |
Для сечения проводников заземления есть простое правило и своя таблица. Проводник должен иметь сечение, равное сечению фазного провода, если проводник менее 16 кв. мм. Для остальных случаев сечение определяется таблицей.
Сечение фазных проводников, кв. мм | Наименьшее сечение защищенных проводников, кв. мм |
S≤16 | S |
16<S≤35 | 16 |
S>35 | S/2 |
Отметим еще один немаловажный факт. Для систем TN-C и TN-C-S минимальным принимается сечение в 10 кв. мм, если проводник медный, и не менее 16 кв. мм, если алюминиевый.
Наличие системы типа TN-C-S легко определить по пятижильному кабелю в щитке — это три «фазовых» провода, «ноль» и «земля». Подходит только для распределительных устройств.
В обычной квартире, оснащенной всем необходимым оборудованием, достаточно использовать заземление одножильным проводом ПуГВ с желто-зеленой изоляцией.
Теперь, когда Вы научились выбирать сечение провода для заземления, самое время поговорить о наиболее популярных кабелях и их характеристиках.
Основные марки проводов для заземления.
Кабель для заземления.
Кабель NYM
Жилы, а точнее их оболочка, окрашены в соответствии со стандартами ПУЭ, внутри медные жилы. Имеет дополнительную промежуточную оболочку, что повышает уровень безопасности даже при длительном использовании кабеля. Прост в обращении и установке, подходит для напряжения до 660 Вольт с частотой в 50 герц.
Кабель ВВг
Жилы с медной проволокой первого и второго класса скрутки имеют характерную окраску, при этом «ноль» — голубой, а «земля» — желто-зеленая. Изоляция и внешняя оболочка выполняются из поливинилхлорида, благодаря чему сам кабель препятствует горению.
Провод ПВ-6
Медный, многопроволочный в оболочке из прозрачного ПВХ. Токопроводящая жила отлично видна под такой оболочкой, благодаря чему следить за целостностью всей длины провода не составляет труда. Очень гибкий, без проблем может быть подвержен температурам в диапазоне от -40 до +55 градусов Цельсия.
Провод ESUY
Стандартное применение — при защите от короткого замыкания системы. Выдерживает огромные нагрузки, встречается в работе на железных дорогах, в распредблоках. Стойкий к температурам и сгибаниям, имеет защиту от физического и химического воздействия.
Провод ПВ-3
Множество тонких мягких нитей медной проволоки сплетены под единственным слоем поливиниллхлорида. Выпуск возможен в одиннадцати цветовых решениях, но для заземления традиционно используется желто-зеленый вариант.
Особенность оболочки — повышенная ломкость в условиях неправильного производства или хранения. Обратите внимание на свежий срез: не должно присутствовать никаких разрывов. В противном случае кабель использовать не рекомендуется.
Как все это использовать? Для заземления обычной среднестатистической квартиры одинаково подойдёт как многожильный ВВГ, так и однопроволочный NYM. Иногда, в целях экономии используется провод ППВ, без характерной окраски. Это чревато проблемами при ремонте или замене проводки в квартире. Нередко для квартир используются немецкие ESUY, гибкие одножильные провода.
Как видите, понять, какой провод нужен для заземления — задача достаточно сложная, но выполнимая. Достаточно внимательно разобраться в вопросе и ознакомиться с несколькими положениями из правил устройства электроустановок.
Заземление и соединение электрических систем Справка
Используйте поиск, чтобы быстро найти ответы на вопросы — откройте окно поиска (ctrl + f), затем введите ключевое слово из вопроса, чтобы перейти к этим терминам в материале курса
Цель.
Целью этого курса является ознакомление инженеров с проблемами заземления и соединения электрических систем, связанными с глухозаземленными системами под напряжением 600 В. Этот курс может служить введением в заземление и подключение для инженеров, не имеющих или почти не имеющих опыта профессионального проектирования электрооборудования.В курсе также представлена практическая, но не совсем известная информация по применению заземления и соединения, которая пригодится даже самому опытному профессионалу в области проектирования электрических систем.
Зачем тратить время на изучение заземления и подключения?
Многие специалисты в области электротехники придерживаются популярного и ошибочного убеждения, что заземление металлического объекта (путем прямого подключения к земле)
поможет снять опасное напряжение, вызванное замыканием линии на землю. Заземление объекта никак не снимает опасное напряжение или снижает напряжение прикосновения или шагового напряжения, которые являются причиной нескольких смертей каждый год.
Неправильное заземление и подключение — частая причина несчастных случаев, связанных с электрическим током.
Эффективное заземление играет важную роль в правильной работе чувствительного электронного оборудования.
«Более 80% всех отказов электронных систем, которые связаны с аномалиями питания, на самом деле являются результатом ошибок электропроводки или заземления или вызваны другими нагрузками на предприятии заказчика». EPRI (Исследовательский институт электроэнергетики)
«Из всех проблем с питанием и заземлением, влияющих на электронное оборудование, почти 90% вызваны электропитанием и условиями заземления внутри объекта, в котором используется оборудование… Что еще более важно, почти 75% проблем Проблемы с качеством электроэнергии внутри объекта связаны с заземлением, что делает его единственным наиболее важным фактором с точки зрения обеспечения надежной работы оборудования.”Уоррен Льюис, ECM Magazine
Издание 2005 г. Национального электротехнического кодекса (NEC) включало полный пересмотр и переименование статьи 250 (ранее называвшейся« Заземление »), которая, по словам редакторов Справочника NEC «Одно из самых значительных изменений, произошедших в новейшей истории Кодекса».
Основа и ресурсы.
Следующие ресурсы служат в качестве первичной основы информации, представленной в этом курсе
и будут использоваться в материалах курса:
Статья 250 Национального электрического кодекса (NEC) — издание 2005 г.
Стандарт IEEE 1100-1999 рекомендуется Практика питания и заземления чувствительного электронного оборудования
Стандарт IEEE 142-1982 Заземление промышленных и коммерческих систем питания
Общие сведения о тестировании сопротивления заземления AEMC (рабочая тетрадь, издание 6.0)
Для многих инженеров, подрядчиков и техников Национальный электротехнический кодекс и его статья 250 (Заземление и соединение) являются единственной основой при проектировании и установке системы заземления.
Перед тем, как начать курс, жизненно важно, чтобы мы рассмотрели цель и ограничения Национального электрического кодекса (NEC) — чтобы понять, как следует применять NEC.
Статья 90.1 Национального электротехнического кодекса устанавливает его цель и намеренные ограничения:
90.1 Цель(A) Практическая защита — Целью настоящего Кодекса является практическая защита людей и имущества от опасностей, возникающих в результате использования электричества.
(B) Соответствие — этот Кодекс содержит положения, которые считаются необходимыми для обеспечения безопасности. Их соблюдение и надлежащее техническое обслуживание приводят к установке, которая по существу не опасна, но не обязательно эффективна, удобна или адекватна для хорошего обслуживания или будущего расширения использования электричества.
(C) Намерение — Этот Кодекс не предназначен в качестве проектной спецификации или руководства по эксплуатации для неподготовленных людей!
Согласно NEC — Инженеры, проектирующие и определяющие заземление и подключение, не должны использовать Национальный электрический кодекс (NEC) в качестве поваренной книги.
NEC не заменяет понимание теории, лежащей в основе требований кодекса.
Чтобы понять заземление и связывание, важно знать значения слов, которые мы будем использовать. В статье 110 Национального электротехнического кодекса содержатся определения слов, которые мы будем использовать в этом курсе. Они перечислены в порядке важности, не обязательно в алфавитном порядке.
Приложение 1 Различные компоненты заземления и соединения.Заземленный проводник. Система или провод цепи, который намеренно заземлен. Его также обычно называют нейтральным проводом в заземленной звездообразной системе.
Заземляющий провод. Проводник, используемый для соединения оборудования или заземленной цепи системы электропроводки с заземляющим электродом или электродами.
Заземляющий провод, оборудование. Проводник, используемый для подключения нетоковедущих металлических частей оборудования, кабельных каналов и других кожухов к заземленному проводнику системы, проводнику заземляющего электрода или к тому и другому на сервисном оборудовании или в источнике отдельно созданной системы.Статья 250.118 NEC описывает различные типы заземляющих проводов оборудования. Правильный выбор заземляющих проводов оборудования приведен в 250.122 и таблице 250.122.
Электрод заземления. Устройство, обеспечивающее электрическое соединение с землей.
Провод заземляющего электрода. Проводник, используемый для подключения заземляющего электрода (ов) к заземляющему проводу оборудования, к заземленному проводу или к обоим при обслуживании, в каждом здании или сооружении, где питание подается от фидера (ов) или ответвительной цепи (ов). , или в источнике отдельно производной системы.
Склеивание (скрепленное). Постоянное соединение металлических частей для образования электропроводящего пути, обеспечивающего непрерывность электрического тока и способность безопасно проводить любой ток, который может возникнуть.
Назначение соединения — установить эффективный путь для тока короткого замыкания, который, в свою очередь, облегчает работу устройства защиты от сверхтока. Это объясняется в статьях 250.4 (A) (3) и (4) и 250.4 (B) (3) и (4) Национального электротехнического кодекса. Конкретные требования к соединению содержатся в Части V Статьи 250 и в других разделах Кодекса, как указано в Статье 250 NEC.3.
Соединительная перемычка. Надежный проводник, обеспечивающий необходимую электрическую проводимость между металлическими частями, подлежащими электрическому соединению.
Заглушки концентрического и эксцентрического типа могут ухудшить электрическую проводимость между металлическими частями и фактически вызвать ненужное сопротивление в цепи заземления. Установка перемычки (перемычек) — это один из часто используемых методов между металлическими дорожками качения и металлическими частями для обеспечения электропроводности. Связывающие перемычки можно найти в сервисном оборудовании [NEC 250.92 (B)], подключение более 250 В (NEC 250.97) и расширительные фитинги в металлических дорожках качения (NEC 250.98). На рис. 2 показана разница между выбивками концентрического и эксцентрического типов. На Таблице 2 также показан один из методов установки соединительных перемычек при этих типах заглушек.
Приложение 2 Соединительные перемычки устанавливаются вокруг концентрических или эксцентрических выбивных отверстий.Клеящая перемычка, оборудование. Соединение между двумя или более частями заземляющего провода оборудования.
Соединительная перемычка, основная. Соединение между заземленным проводом цепи и заземляющим проводом оборудования на сервисе.
На рисунке 3 показана основная перемычка, используемая для обеспечения соединения между заземленным служебным проводом и заземляющим проводом оборудования на рабочем месте. Связывающие перемычки могут быть расположены по всей электрической системе, но основная перемычка заземления находится только в служебных помещениях. Основные требования к перемычкам подключения приведены в NEC 250.28.
Приложение 3. Основная перемычка, устанавливаемая на сервисе, между заземленным проводником и заземляющим проводом оборудования.Соединительная перемычка, System. Соединение между проводником заземленной цепи и проводом заземления оборудования в отдельно выделенной системе.
На рисунке 4. показана перемычка для соединения системы, используемая для обеспечения соединения между заземленным проводником и заземляющим проводом (проводниками) оборудования трансформатора, используемого как отдельно производная система.
Приложение 4. Перемычка заземления системы, устанавливаемая рядом с источником отдельно выделенной системы между заземленным проводником системы и заземляющим проводом (ами) оборудования.Перемычки соединения системы расположены рядом с источником отдельно производной системы. В производной системе используется соединительная перемычка, если производная система содержит заземленный провод. Подобно основной перемычке заземления на сервисном оборудовании, перемычка заземления системы обеспечивает необходимое соединение между заземляющими проводниками оборудования и заземленным проводником системы, чтобы создать эффективный путь для тока замыкания на землю. Требования к перемычкам для подключения системы находятся в NEC 250.30 (А) (1).
Заземлен. Подключен к земле или к какому-либо проводящему телу, которое служит вместо земли.
Эффективно заземлено. Преднамеренно подключено к земле через заземление или соединения с достаточно низким сопротивлением и достаточной допустимой нагрузкой по току для предотвращения повышения напряжения, которое может привести к чрезмерной опасности для подключенного оборудования или людей.
Без заземления. Подключено к земле без установки резистора или устройства импеданса.
Распространенное заблуждение состоит в том, что заземление и соединение — это одно и то же. Хотя они связаны, это не одно и то же. Цель этого курса — прояснить каждую тему.
В редакции Национального электротехнического кодекса 2005 г. это признается и изменено название статьи 250 (которая раньше называлась «Заземление») на «Заземление и соединение», чтобы усилить, что заземление и соединение — это две отдельные концепции, но не исключающие друг друга, и фактически, напрямую связаны между собой требованиями статьи 250.
Соединение — это соединение двух или более проводящих объектов друг с другом с помощью проводника, такого как провод.
Заземление, также называемое «заземлением», представляет собой особую форму соединения, при которой один или несколько проводящих объектов соединяются с землей с помощью проводника, такого как провод или стержень.
Правильное заземление объектов (проводников) в поле обычно включает как связи между объектами, так и особую связь с землей (землей).
Заземление для целей этого курса означает намеренное соединение с землей или другим проводящим телом относительно большой протяженности, которое служит вместо земли.Другое слово для обозначения заземления — «заземление». Если мы будем помнить об этом и использовать термин «заземление» всякий раз, когда мы используем термин «заземление», это поможет нам понять, что такое заземление (или заземление), а что нет.
Соединение — это соединение проводящих частей между собой с целью поддержания общего электрического потенциала и обеспечения электрического проводящего пути, который будет гарантировать непрерывность электрической цепи и способность безопасно проводить любой ток, который может возникнуть. IEEE Std. 1100–1999.
В соответствии со статьей 250.4 (A) Национального электротехнического кодекса, ниже приведены общие требования к заземлению и соединению заземленных систем. В системе с заземлением вторичные обмотки питающего трансформатора могут иметь конфигурацию «звезда» с заземлением общей ветви или конфигурацию «треугольник» с заземленным центральным отводом или заземленным углом.
Следующие общие требования определяют, какие заземления и соединения электрических систем необходимо выполнить. Для соответствия эксплуатационным требованиям этого раздела необходимо следовать предписывающим методам, содержащимся в Статье 250.(1) Заземление электрической системы Заземленные электрические системы должны быть подключены к земле таким образом, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и стабилизировать напряжение относительно земли во время нормальной работы. операция.
(2) Заземление электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть заземлены, чтобы ограничить напряжение относительно земли на этих материалах.
(3) Соединение электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть соединены вместе и с источником электропитания таким образом, чтобы установить эффективный ток замыкания на землю. дорожка.
(4) Соединение электропроводящих материалов и другого оборудования Электропроводящие материалы, которые могут оказаться под напряжением, должны быть
соединены вместе и с источником электропитания таким образом, чтобы создать эффективный путь тока замыкания на землю.
(5) Эффективный путь тока замыкания на землю Электрооборудование, проводка и другие электропроводящие материалы, которые могут оказаться под напряжением, должны быть установлены таким образом, чтобы создать постоянную цепь с низким сопротивлением, облегчающую работу устройства максимального тока или детектора заземления для системы с высокоомным заземлением. Он должен быть способен безопасно пропускать максимальный ток замыкания на землю, который может быть наложен на него из любой точки системы электропроводки, где может произойти замыкание на землю источника электропитания.Заземление не должно рассматриваться как эффективный путь тока замыкания на землю.
Давайте рассмотрим с предыдущей страницы общие требования, представленные в Национальном электротехническом кодексе для заземления и соединения, чтобы лучше понять, какие требования выполняются посредством заземления (заземления), а какие — посредством методов соединения.
Требования (1) и (2) относятся к заземлению — они конкретно относятся к «заземлению».
Требование (1) — заземление системы или преднамеренное соединение системного проводника в заземленной системе с землей.Заявленная цель этого намеренного подключения к земле состоит в том, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и это стабилизирует напряжение относительно земли во время нормальной работы.
Требование (2) выполняется путем присоединения нетоковедущих металлических предметов к заземляющему проводу оборудования, который присоединен к проводнику заземляющего электрода на служебном входе и на стороне нагрузки каждой отдельно выведенной системы.
Требования (3), (4) и (5) являются связующими. Путем соединения всех металлических предметов, которые могут оказаться под напряжением в случае неисправности (и путем обеспечения заземляющего проводника оборудования, соединенного с этими предметами и с источником), обеспечивается эффективный путь заземления, облегчающий работу устройств защиты от перегрузки по току. Проще говоря, путь тока короткого замыкания должен иметь достаточно низкое сопротивление, чтобы пропускать ток короткого замыкания достаточно высокой величины, чтобы вызвать срабатывание защитного устройства на входе.Связывание также помогает обеспечить безопасность персонала, так что кто-то, прикоснувшись к двум частям оборудования одновременно, не получит шока, став путем выравнивания, если они окажутся под разными потенциалами. По той же причине, по которой соединение защищает людей, оно защищает оборудование, уменьшая ток по проводам питания и данных между частями оборудования с разными потенциалами.
Важно понимать разницу между соединением и заземлением. Имейте в виду, что земля (грунт) является плохим проводником, и на нее нельзя полагаться как на часть пути возврата тока замыкания на землю — это путь, предназначенный для устранения замыкания.Причина, по которой никогда нельзя полагаться на землю / почву как часть обратного пути замыкания на землю, связана с ее высоким сопротивлением.
Сопротивление земли примерно в один миллиард раз больше, чем у меди (согласно стандарту IEEE 142, раздел 2.2.8), и обеспечивает возврат к источнику только нескольких ампер (1-10).
Стандарт 142 Института инженеров по электротехнике и электронике гласит: «Самая сложная система заземления, которую можно спроектировать, может оказаться неадекватной, если соединение системы с землей не является адекватным и имеет низкое сопротивление.Отсюда следует, что заземление является одной из наиболее важных частей всей системы заземления. Это также самая сложная часть для проектирования и получения … Для небольших подстанций и промышленных предприятий в целом должно быть получено сопротивление менее 5 Ом, если это практически возможно ».
Однако с практической точки зрения на заземляющий электрод, независимо от его сопротивления, нельзя полагаться на устранение замыкания на землю. Если оборудование эффективно заземлено и соединено, то должен быть предусмотрен путь с низким сопротивлением (не через заземляющий электрод к земле и через землю обратно к источнику), чтобы облегчить работу устройств максимального тока в цепи.В то время как минимальное практическое сопротивление заземляющего электрода желательно и будет лучше ограничивать потенциал корпусов оборудования над землей, более важно обеспечить путь с низким импедансом для быстрого устранения повреждения в целях обеспечения безопасности. Чтобы получить наименьшее практическое сопротивление, цепь заземления оборудования должна быть подключена к заземленному проводу внутри вспомогательного оборудования.
Ни заземление (заземление), ни система заземляющих электродов не помогают устранять электрические неисправности. Именно соединение металлических предметов с заземляющим проводом оборудования обратно к источнику обеспечивает путь с достаточно низким импедансом, позволяющим срабатывать защитным устройствам от сверхтоков и устранять неисправности.Если путь замыкания на землю опирается на землю, то тока короткого замыкания (из-за высокого импеданса) будет недостаточно для срабатывания защитного устройства
.
Помните закон Ома, V = I x R? Рассмотрим следующий пример. Фазный провод на 120 В намеренно подключается непосредственно к земле (если оголенный провод под напряжением был соединен с заземляющим стержнем в грязи), а заземляющий стержень имеет сопротивление 25 Ом к заземленному источнику питания (трансформатору). Этот сценарий даст чуть менее 5 Ампер (4.8А) тока замыкания на землю. Это преднамеренное соединение с землей не дало бы достаточного тока короткого замыкания для отключения даже автоматического выключателя на 20 А, поскольку автоматический выключатель на 20 А может непрерывно выдерживать 16 Ампер.
Такой же высокий импеданс земли, который ограничивает ток короткого замыкания до уровней, меньших, чем требуется для размыкания защитных устройств, создаст опасные скачки напряжения или напряжения прикосновения в непосредственной близости от заземляющего стержня, которые могут быть смертельными. Несколько человек умерли в последние годы именно из-за этого состояния, когда столбы уличного освещения были заземлены (заземлены) заземляющими стержнями, но не имели заземляющих проводов оборудования, которые могли бы служить эффективным путем обратного тока короткого замыкания к источнику питания.
Давайте исследуем факторы, которые влияют на сопротивление систем заземляющих электродов (давайте использовать стержни для обсуждения).
Сопротивление электрода (разница всего в несколько миллиом между различными обычно используемыми материалами и размерами — IEEE Std 142-1982). Сопротивление электрода зависит от материала стержня и площади поверхности стержня. Площадь поверхности стержня зависит от диаметра стержня.
От стержня к поверхности почвы (незначительный фактор — обычно составляет лишь долю Ом — если стержень вбивается в уплотненный грунт и не является рыхлым — IEEE Std 142-1982) Различия в размерах заземляющих стержней и материалах делают небольшая заметная разница в сопротивлении электрода (однако материал стержня играет роль в ожидаемом сроке службы стержня).
Контактное сопротивление между стержнем и окружающей почвой. Если стержень вбивается в уплотненный грунт, тогда сопротивление между стержнем и окружающей почвой не является существенным фактором (это обсуждается более подробно в разделе, посвященном стержням для заземления с глубоким забиванием).
Сопротивление почвы, окружающей электрод (самый большой фактор). В правильно установленной системе заземляющих электродов сопротивление почвы является ключевым фактором, определяющим, каким будет сопротивление заземляющего электрода и на какую глубину необходимо ввести стержень, чтобы получить низкое сопротивление заземления.
Удельное сопротивление почвы зависит от глубины от поверхности, типа концентрации растворимых химических веществ (минералов и растворенных солей) в почве, содержания влаги и температуры почвы. Другими словами, удельное сопротивление определяется электролитом в почве. Сопротивление заземляющего стержня 5/8 дюйма для типичных типов грунта из IEEE 142-1982 представлено ниже:
Вот несколько удивительных фактов:
Согласно этой таблице IEEE 142-1992, 10-дюймовый заземляющий стержень приводится в действие в двух из четырех категорий типов грунтов в среднем не обеспечивали сопротивления 25 Ом или меньше! Это обычное дело во многих районах с песчаной почвой.
Наличие поверхностных вод не обязательно указывает на низкое удельное сопротивление (IEEE Std 142-1982).
Недавний проект наглядно иллюстрирует истинность этого утверждения. Почва водомелиоративного сооружения всегда была влажной. Инженеры-электрики, исследующие проблемы с заземлением на месте, наивно полагали, что постоянное присутствие воды (из-за высокого уровня грунтовых вод) гарантирует низкое удельное сопротивление почвы и что отдельных стержней заземления или, возможно, параллельных стержней заземления будет достаточно для создания заземления с низким сопротивлением. (заземление).Однако все было наоборот. Дальнейшие исследования показали, что высокий уровень грунтовых вод был связан с подземным водным потоком. Буквально через это место протекала река, которая была частью гидрологии района. Почва была очень песчаной.
Со временем все растворимые минералы, которые существовали, были растворены и унесены медленно текущей водой, оставив песок и дистиллированную воду — оба отличные изоляторы!
Это открытие радикально изменило направленность исследования заземления площадки и соответствующих корректирующих действий, заставив инженеров задуматься о стратификации почвы.
Традиционные методы заземления, которым в течение последних сорока лет обучали производителей заземления и тестирования заземления, основаны на предполагаемом однородном состоянии почвы. Традиционные методы породили практические правила, которые стали приняты многими инженерами
как стандартные практики. Одна из таких практик заключалась в том, что как удвоение глубины заземляющего стержня, так и установка двух параллельных заземляющих стержней были одинаково эффективными методами для снижения сопротивления стержня (ов) относительно земли.Эти практические правила предполагали, что почва однородна — что почва остается того же типа и сопротивления при погружении на большую глубину. На практике на многих территориях имеется слоистая почва, а не однородная почва.
Как ответственные инженеры, мы должны помнить, что практика использования параллельных заземляющих стержней, иногда соединенных по схеме треугольника, которая была разработана с использованием методов, предполагающих однородность грунтовых условий, может быть не лучшей практикой для стратифицированных почвенных условий.
Мы рассмотрим это более подробно в следующем разделе.
Что может служить заземляющим электродом?
Помните: заземляющий электрод — это средство выполнения двух из пяти требований к заземлению и соединению, перечисленных в Национальном электротехническом кодексе.
(1) Заземление электрической системы Заземленные электрические системы должны быть подключены к земле таким образом, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и стабилизировать напряжение относительно земли во время Нормальная операция.
(2) Заземление электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть заземлены, чтобы ограничить напряжение относительно земли на этих материалах.
В соответствии с Национальным электротехническим кодексом в качестве заземляющих электродов можно использовать следующие электроды, и если их больше одного, они должны быть соединены вместе:
Металлическая подземная водопроводная труба (NEC 250.52 (A) (1))
Металлический каркас конструкции (NEC 250.52 (A) (2))
Заземляющий электрод в бетонном корпусе (также известный как заземление UFER) (NEC 250,52 (A) (3))
Кольцо заземления (NEC 250,52 (A) (4))
Заземляющий стержень (NEC 250.52 (A) (5))
Заземляющие пластины (NEC 250.52 (A) (6))
В Национальных электротехнических правилах указаны конкретные требования к установке для каждого типа электрода.
Два или более заземляющих электрода, которые эффективно соединены вместе, должны рассматриваться как единая система заземляющих электродов.
Давайте рассмотрим различные места, где требуется заземление (имеется в виду преднамеренное соединение или подключение к системе заземления). Национальный электротехнический кодекс требует следующего:
Служебный вход — Статья 250.24 (A) NEC требует, чтобы в системе электропроводки помещения, снабжаемой заземленной службой переменного тока, был провод заземляющего электрода, соединенный с заземленным служебным проводом (также называемый нейтралью). дирижер). Статья 250.24 (A) (1) требует, чтобы соединение было выполнено в любой доступной точке от конца нагрузки на линии ответвления или боковой линии обслуживания до терминала или шины, к которым подключен заземленный провод (нейтраль), на стороне обслуживания и включительно. отключающие средства.Это переводится в одно из трех мест, как показано ниже,
Отдельно производные системы — Обратитесь к разделу VI для обсуждения отдельно производного заземления системы.
Металлические водопроводные и другие металлические трубопроводы, которые могут оказаться под напряжением — 250.104 (A) и (B) требует, чтобы металлическая система водяных трубопроводов была соединена с системой заземления в любом из следующих мест: кожух вспомогательного оборудования, заземленный провод на обслуживание, провод заземляющего электрода или заземляющие электроды.В то время как металлические водопроводные трубы должны быть соединены с землей, другие металлические трубопроводные системы должны быть соединены с землей (заземлены) только в том случае, если есть вероятность, что они будут под напряжением — то есть там, где в оборудовании (например, газовые приборы) имеются механические трубопроводы и электрические соединения. .
Конструкционный металл — 250.104 (C) требует наличия открытого конструкционного металла, который соединен между собой для образования металлического каркаса здания и не заземлен намеренно и может оказаться под напряжением, должен быть соединен с землей либо в корпусе сервисного оборудования, либо в заземленном проводнике в сервисе. , провод заземляющего электрода или к заземляющим электродам.
Если система переменного тока (AC) подключена к заземляющему электроду в здании или сооружении или на них, тот же электрод должен использоваться для заземления корпусов проводников и оборудования в этом здании или сооружении или на них. Если отдельные службы, фидеры или ответвления питают здание и должны быть подключены к заземляющему электроду (ам), следует использовать тот же заземляющий электрод (а). Это необходимо для того, чтобы все металлические объекты в конструкции имели одинаковый потенциал земли.
Какое сопротивление земли требуется? Разрешается?
Если вас спросят: «Сколько Ом сопротивления земли требуется Национальным электрическим кодексам (NEC) для заземления системы?» Что бы вы сказали? А) 25 Ом? Б) 10 Ом? В) 100 Ом? Или D) Вы бы сказали, что NEC не устанавливает минимальных требований?
Если бы вы ответили D), вы были бы правы! Как бы трудно в это поверить, но в Национальном электротехническом кодексе нет заявленного минимального сопротивления заземления для заземления системы.
Давайте посмотрим на статью 250-56 NEC
250.56 Сопротивление стержневых, трубных и пластинчатых электродов: Отдельный электрод, состоящий из стержня, трубы или пластины, который не имеет сопротивления заземления 25 Ом или менее, должен может быть усилен одним дополнительным электродом любого из типов, указанных в пунктах от 250,52 (A) (2) до (A) (7). Если в соответствии с требованиями данного раздела установлено несколько стержневых, трубных или пластинчатых электродов, они должны находиться на расстоянии не менее 1,8 м (6 футов) друг от друга.
FPN: Эффективность параллельного включения стержней длиннее 2.5 м (8 футов) увеличивается за счет расстояния более 1,8 м (6 футов).
Обратите внимание, что NEC говорит, где «Один электрод…». Также обратите внимание, что это не требует повторных испытаний и установки дополнительных стержней или стержней дополнительной длины до тех пор, пока не будет достигнуто сопротивление 25 Ом или меньше. Эта статья NEC позволяет подрядчику запускать две штанги, разнесенные на 6 футов друг от друга, не проводить наземных испытаний и прекращать работу!
Многие районы имеют слоистую (то есть слоистую) песчаную почву. Наиболее чистый песок — это кварц, диоксид кремния (SiO2).Диоксид кремния — это высококачественный электрический изолятор, который обычно используется в качестве барьерного материала при имплантации примесей или диффузии, для электрической изоляции полупроводниковых устройств, в качестве компонента металлооксидных полупроводниковых (МОП) транзисторов или в качестве межслойного диэлектрика при многоуровневой металлизации. такие структуры, как многокристальные модули
. Песок — хороший изолятор; это НЕ хороший заземляющий материал.
Чтобы выйти из слоистых песчаных почв, необходимо продвинуть заземляющие стержни глубже через слой песка (каким бы глубоким он ни был) в более проводящую почву.
Размещение нескольких параллельных стержней в песчаной почве не имеет большого значения, если требуется соединение с землей с низким сопротивлением — вы должны пройти под слоем песка.
Национальный электротехнический кодекс содержит две таблицы, в которых указаны размеры заземления и соединения.
Таблица 250.66 Заземляющий провод для систем переменного тока
Таблица 250.122 Минимальный размер заземляющих проводов оборудования для заземляющих каналов и оборудования.
Таблица 250.66 Провод заземляющего электрода для систем переменного тока Примечания:
1.Если используются несколько наборов служебных вводных проводников, как это разрешено в 230.40, исключение № 2, эквивалентный размер самого большого служебного вводного проводника должен определяться по наибольшей сумме площадей соответствующих проводников каждого набора.
2. Если нет проводов для входа в сервисный центр, размер проводника заземляющего электрода должен определяться эквивалентным размером самого большого входного проводника, необходимого для обслуживаемой нагрузки.
Примечание:
Если необходимо, чтобы соответствовать требованиям 250.4 (A) (5) или (B) (4), заземляющий провод оборудования должен иметь сечение больше, чем указано в этой таблице.
* См. Ограничения на установку в 250.120.
Источником этих таблиц был отчет комитета IEEE «Руководство по безопасности при заземлении подстанций переменного тока». В отчете комитета обсуждалась обоснованность размеров заземляющих проводов, указанных в таблицах, исходя из типичной длины проводника 100 футов и падения напряжения на проводе на основе этой длины 100 футов. [Руководство к Национальному электротехническому кодексу — Грегори Биералс — Институт проектирования электрооборудования].Для длин более 100 футов «минимальный размер», указанный в таблице, может оказаться недостаточным для устранения неисправности или проведения тока повреждения, которому она подвержена.
С практической точки зрения, проводники заземляющих электродов редко проектируются так, чтобы их длина превышала 100 футов, и на Таблицу 250.66 можно положиться почти без исключения.
Заземляющие проводники оборудования, с другой стороны, часто длиннее 100 футов, то есть всегда, когда длина ответвленной цепи или фидера заземляющего проводника оборудования, с которым они установлены, превышает 100 футов.В этих ситуациях минимальный провод заземления оборудования, указанный в таблице 250.122, не будет достаточным для пропускания и / или снятия ожидаемых токов повреждения.
Опытные инженеры-электротехники и специалисты по проектированию знакомы с необходимостью увеличения размеров проводников для длинных ответвлений цепи и проводов фидера для решения и смягчения проблем, связанных с падением напряжения. В статье 250.122 (B) указывается, что заземляющий провод оборудования также должен быть увеличен.
250.122 (B) Увеличенный размер — Если размер незаземленных проводов увеличен, заземляющие проводники оборудования, если они установлены, должны быть увеличены в размере пропорционально круговой миловой площади незаземленных проводов.
Заземляющие провода оборудования на стороне нагрузки средств отключения обслуживания и устройств максимального тока подбираются в зависимости от размера устройств максимального тока фидера или ответвленной цепи перед ними.
Если незаземленные проводники цепи (токоведущие, линейные) увеличены в размере для компенсации падения напряжения или по любой другой причине, связанной с правильной работой схемы, заземляющие проводники оборудования должны быть пропорционально увеличены.
Пример:
240-вольтовая однофазная 250-амперная нагрузка питается от 300-амперного выключателя, расположенного в щитке на расстоянии 500 футов.«Нормальная» цепь (без увеличения размера для ограничения падения напряжения) будет состоять из медных проводников на 250 тыс. Куб. М с медным заземляющим проводом оборудования 4 AWG. Если количество проводников было увеличено до 350 тыс. Куб. М из соображений падения напряжения, каков минимальный размер заземляющего проводника оборудования с учетом требования пропорционального увеличения?
Решение
ШАГ 1.
Рассчитайте соотношение размеров проводов увеличенного диаметра и проводов нормального размера:
ШАГ 2.
Рассчитайте площадь поперечного сечения заземляющего проводника оборудования увеличенного размера, умножив размерное соотношение на площадь поперечного сечения заземляющего проводника оборудования стандартного размера, взятого из Таблицы 250.122 для защитного устройства на 250 А (необходимо использовать следующий больший или 300 А). В таблице 250.122 указано, что подходит медный провод номер 4 AWG. В соответствии с таблицей 8 главы 9 Национального электротехнического кодекса — Свойства проводника
(см. Стр. 21) заземляющий провод 4 AWG имеет поперечное сечение 41 740 круглых мил.
Соотношение размеров x круговых милов заземляющего проводника
1,4 x 41,740 круглых милов = 58 436 круглых милов
ШАГ 3.
Определите сечение заземляющего проводника нового оборудования.
Опять же, обращаясь к таблице 8 главы 9, мы обнаруживаем, что 58 436 круговых милов больше 3 AWG. Следующий больший размер — 66 360 круглых милов, который преобразуется в медный заземляющий провод для оборудования 2 AWG.
Для данного сценария нормальный заземляющий провод оборудования, указанный в Таблице 250.122 для цепи на 250 А будет медным заземляющим проводом № 4 AWG. В этом случае заземляющий провод оборудования необходимо увеличить до медного заземляющего проводника № 2 AWG, чтобы соответствовать требованиям статьи 250.122 (B) NEC. Целью этого требования к увеличению размера является обеспечение проводника, имеющего соответствующий размер, чтобы выдерживать и устранять ожидаемые токи короткого замыкания.
NEC Ch. 9 Таблица 8Согласно требованиям Национального электрического кодекса (NEC) нейтраль и заземляющий провод оборудования должны быть подключены к главной сервисной панели и вторичной стороне отдельно выделенной системы (подробнее об этом ниже).NEC разрешает использовать только одно соединение нейтрали с землей в каждой отдельно производной системе. Неправильное дополнительное соединение нейтрали с землей — довольно распространенная проблема, которая не только создает опасность поражения электрическим током для обслуживающего персонала, но также может ухудшить характеристики электронного оборудования. Неправильное соединение нейтрали и заземления в розетках можно обнаружить с помощью тестера проводки и заземления, предназначенного для этой цели.
Вольтметр также можно использовать для определения наличия неправильных соединений в розетках.Измерение напряжения между нейтралью и землей на розетках может указывать на напряжение в диапазоне от милливольта до нескольких вольт при нормальных рабочих условиях и в зависимости от нагрузки, длины цепи и т. Д. Однако показание 0 В может указывать на наличие ближайшей нейтрали. — земляная связь. Чрезмерный ток заземления оборудования в распределительных панелях также указывает на возможность заземления нейтрали на стороне нагрузки. Визуальный осмотр нейтральной шины внутри щитков необходим, чтобы проверить расположение этих дополнительных и неправильных соединений.
Если в отдельно созданной системе существует более одной связи нейтраль-земля, это приводит к намеренному соединению (или соединению) проводов нейтрали и земли в двух местах. Это создает параллельное соединение, в котором ток нейтрали делится на часть, возвращающуюся на нейтраль, а остальная часть возвращается к источнику через путь заземления оборудования в соответствии с законом Ом (ток будет делиться пропорционально, чтобы пройти путь наименьшего сопротивления с напряжением падение по каждой параллельной траектории одинаково).На рисунке ниже представлены два варианта предотвращения протекания нежелательного тока в системе заземления (и соединения).
Отдельно производные системы — это системы, которые не имеют прямого соединения между выходными проводниками питания и входными проводниками питания. Это трансформаторы без прямого соединения между нейтралью первичной системы и вторичной нейтралью, только системы ИБП, которые включают в себя изолирующие трансформаторы, таким образом получая новый нейтральный системный проводник (примечание — все системы ИБП не являются отдельно производными системами), и комплекты двигателей-генераторов, к системе электропроводки здания через 4-полюсный автоматический переключатель являются отдельно производными системами, поскольку они имеют отдельную нейтраль, которая не имеет прямого соединения с нейтралью электросети (из-за 4-го полюса безобрывного переключателя).Двигатель — генераторные установки, в которых применяются 3-полюсные системы переключения, имеют прямое соединение с нейтралью энергосистемы общего пользования, не являются отдельно производными системами и не могут иметь заземления нейтрали на двигателе-генераторе. [IEEE Std 1100-1999]
Есть много дискуссий об отдельных или специальных основаниях, связанных с чувствительным электронным оборудованием. Статья 250.96 (B) Национального электротехнического кодекса разрешает изолировать электронное оборудование от кабельного канала так же, как шнур и подключенное к вилке оборудование изолированы от кабельного канала.
250,96 (B) Изолированные цепи заземления. Если требуется для снижения электрического шума (электромагнитных помех) в цепи заземления, корпус оборудования, питаемый от ответвленной цепи, должен быть разрешен для изоляции от кабельного канала, содержащего цепи, питающие только это оборудование, с помощью одного или нескольких перечисленных неметаллических фитингов кабельного канала, расположенных в точку крепления кабельного канала к корпусу оборудования. Металлический кабельный канал должен соответствовать положениям данной статьи и должен быть дополнен внутренним изолированным заземляющим проводом оборудования, установленным в соответствии с 250.146 (D), чтобы заземлить корпус оборудования.
FPN (ПРИМЕЧАНИЕ ОТНОСИТЕЛЬНО ПЕЧАТИ): Использование изолированного заземляющего проводника оборудования не отменяет требования по заземлению системы кабельных каналов.
Ключом к этому методу заземления электронного оборудования является постоянное обеспечение того, чтобы изолированный заземляющий провод, независимо от того, где он заканчивается в системе распределения, был подключен таким образом, чтобы создать эффективный путь для тока замыкания на землю (через соединение), как требуется NEC 250.4 (А) (5).
Хотя использование изолированных заземляющих проводов оборудования может быть полезным для снижения электромагнитных помех, очень важно, чтобы требование изолированного заземления НЕ приводило к изолированному, изолированному или иным образом не подключенному к заземлению заземлению заземляющей системе электродов здания. Такой изолированный стержень заземления (соединение с землей) нарушит NEC 250.50.
250,50 Система заземляющих электродов Все заземляющие электроды, как описано в пунктах 250.52 (A) (1) — (A) (6), которые имеются в каждом обслуживаемом здании или сооружении, должны быть соединены вместе, чтобы сформировать систему заземляющих электродов.
Причина, по которой изолированный заземляющий стержень (то есть тот, который не соединен с другими заземленными или заземленными электродами) запрещен, и что NEC требует, чтобы отдельные заземляющие электроды были соединены вместе, заключается в уменьшении разницы потенциалов между ними из-за молния или случайный контакт с линиями электропередач. Системы молниезащиты, связи, радио и телевидения, а также заземления систем кабельного телевидения ВСЕ должны быть соединены вместе, чтобы минимизировать потенциальные различия между системами.Отсутствие соединения (или соединения) всех компонентов заземления может привести к серьезному поражению электрическим током и пожару.
Например, для установки кабельного телевидения, показанной на Рисунке 250.39, предположим, что ток индуцируется в линии электропередачи импульсным перенапряжением или ближайшим ударом молнии, так что мгновенный ток силой 1000 ампер возникает по линии электропередачи к источнику питания. линия земли. Такая сила тока не является чем-то необычным при таких обстоятельствах — она может быть и часто бывает значительно выше.Также предположим, что заземление питания имеет сопротивление 10 Ом, что в большинстве случаев является очень низким значением (одиночный заземляющий стержень в среднем грунте имеет сопротивление относительно земли около 40 Ом).
Приложение 250.39 Установка кабельного телевидения, не соответствующая Кодексу, демонстрирующая, почему необходимо соединение между различными системами. Согласно закону Ома, ток через оборудование, подключенное к электрической системе, будет на мгновение увеличиваться до потенциала 10 000 вольт (1000 вольт). амперы × 10 Ом).Этот потенциал в 10000 вольт будет существовать между системой CATV и электрической системой, а также между заземленным проводником в кабеле CATV и заземленными поверхностями в стенах дома, такими как водопроводные трубы (которые подключены к заземлению). по которому проходит кабель. Этот потенциал также может появиться у человека, держащего одной рукой кабель кабельного телевидения, а другой рукой — металлическую поверхность, подключенную к заземлению (например, радиатор или холодильник).
Фактическое напряжение, вероятно, будет во много раз больше рассчитанного 10 000 вольт, поскольку для сопротивления заземления и тока были приняты чрезвычайно низкие (ниже нормального) значения.Однако большинство систем изоляции не рассчитано выдерживать даже 10 000 вольт. Даже если система изоляции действительно выдерживает скачок напряжения в 10 000 вольт, она может быть повреждена, и выход из строя системы изоляции приведет к искрообразованию.
Такая же ситуация могла бы существовать, если бы скачок тока был на кабеле CATV или телефонной линии. Единственная разница будет заключаться в напряжении, которое будет зависеть от индивидуального сопротивления заземляющих электродов относительно земли.
Решение состоит в том, чтобы соединить две системы заземляющих электродов вместе или соединить оболочку кабеля CATV с заземлением питания, что в точности и требуется Кодексом.Когда одна система поднимается выше потенциала земли, вторая система достигает того же потенциала, и между двумя системами заземления отсутствует напряжение.
Exhibit 250.40 Установка кабельного телевидения, соответствующая требованиям 250.94.Ниже приведены примеры реальных случаев, когда отдельные заземления или предметы, которые должны быть заземлены (заземлены), были изолированы друг от друга (не соединены вместе):
Женщина заметила «покалывание» электричеством, когда принимала душ. Расследование показало, что между сливом душа и ручками душа было электрическое напряжение.Тот факт, что женщина была босиком с мокрыми руками (а люди часто бывают в душе!), Способствовал тому, что она чувствовала разницу в напряжении. Причиной проблемы были паразитные напряжения, создаваемые воздушной распределительной линией. Разница в напряжении была между колодцем и септической системой. Решением было скрепить дренажную и водопроводную трубы вместе.
Владелец бизнеса жаловался на постоянные сбои компьютерного модема и компьютера. Коммунальная компания обнаружила, что сбои произошли по совпадению с нарушениями питания (замыканиями на землю) на одном из основных фидеров, обслуживающих объект.Проведенное расследование показало, что телефонная, водопроводная и силовая площадки были электрически изолированы (не соединены друг с другом). Правильное соединение (соединение) систем устранило дальнейшие проблемы с этим клиентом.
[Примеры приведены из статьи «Заземление энергосистем: практическая точка зрения», номер статьи PCIC-2002-xx Джон П. Нельсон, член IEEE]
Термин «заземление Ufer» назван в честь консультанта, работающего в США. Армия во время Второй мировой войны. Техника Mr.Придуманный Уфер был необходим, потому что на участке, нуждающемся в заземлении, не было грунтовых вод и мало осадков. Это место в пустыне представляло собой серию хранилищ бомб в районе Флагстаффа, штат Аризона.
Принцип Уфер земли прост. Его очень эффективно и недорого устанавливать при новом строительстве. Земля Уфер использует агораскопические свойства бетона. Бетон быстро впитывает влагу и очень медленно теряет влагу. Минеральные свойства бетона (известь и другие) и присущий им pH означает, что бетон имеет запас ионов для проведения тока.Почва вокруг бетона становится «легированной» бетоном. В результате pH почвы повышается и понижается, что обычно составляет 1000 Ом · м в почвенных условиях (трудно получить хороший грунт). Присутствующая влага (бетон очень медленно отдает влагу) в сочетании с «легированной» почвой являются хорошим проводником для электрической энергии или тока молнии.
Эффект почти такой же, как и при химической обработке почвы вокруг электрода. Авторы статьи IEEE 1969 года пришли к выводу, что следующие обширные испытания такой электродной системы: «.. . Сети из арматурных стержней… бетонных опор обеспечивают приемлемо низкое сопротивление заземления, с возможностью защиты от коротких замыканий и импульсных токов, подходящих для всех типов заземления конструкций и цепей. . . . Не последним преимуществом системы арматуры является ее доступность и низкая стоимость ». [Fagan & Lee, «Использование бетонных арматурных стержней в качестве заземляющих электродов», Конференция по нефтяной и химической промышленности 1969 г.]
Методы Ufer используются при строительстве нижних колонтитулов, бетонных полов, радио- и телебашен, анкеров для опорных тросов, освещения столбы и др.Медная проволока не работает как «уферское» заземление из-за pH-фактора бетона (обычно + 7pH). Использование стальной арматуры в качестве «уферского» грунта работает хорошо, и бетон не трескается и не отслаивается, как это было с медью. Использование медной проволоки, привязанной к стержням арматуры, находящимся вне бетона, не вызывает ни одной из этих проблем.
Минимальный размер арматуры, необходимый для предотвращения проблем с бетоном, зависит от:
1. Тип бетона, его содержание, плотность, удельное сопротивление, коэффициент pH и т. Д.
2. Площадь поверхности бетона, контактирующей с почвой.
3. Удельное сопротивление почвы и содержание грунтовых вод.
4. Размер и длина арматурного стержня, проволоки или пластины.
5. Величина тока удара молнии.
На следующей диаграмме показана проводимость тока молнии на фут арматурного стержня (арматурного стержня). Учитывается только внешний арматурный стержень. Арматурный стержень в центре нижнего колонтитула или фундамента не учитывается в этом расчете. В нижнем колонтитуле траншеи можно учитывать только арматуру по бокам и внизу нижнего колонтитула.
Г-н Уфер не знал, что он нашел, пока не экспериментировал с проволокой различной длины в бетоне. Сегодняшний информированный инженер извлекает выгоду из открытия г-на Уфера и привяжет стержни стальной арматуры в здании или другом фундаменте к электрическому заземлению здания. При соединении с электрическим заземлением, строительной сталью и т. Д. Армированный пол и фундамент здания становятся частью системы заземления здания. Результатом является значительно улучшенная система заземления с очень низким общим сопротивлением относительно земли.
Если бы одного заземления Ufer было достаточно, производители заземляющих стержней прекратили бы свою деятельность. Но одной только земли Уфер этого недостаточно. Немногие здания, даже те, которые строятся сегодня, построены с учетом преимуществ земли Уфер. Часто можно увидеть использование «заземления Ufer» на военных объектах, компьютерных залах и других сооружениях с очень специфическими характеристиками заземления. Это не распространено на большинстве промышленных предприятий, офисных зданий и жилых домов. Сегодня более распространенным является заземление в соответствии с минимальными национальными и местными электротехническими нормами.Это будет включать в себя один или несколько приводных заземляющих стержней, подключенных (соединенных) к нейтральному проводу электрического служебного входа.
В 2005 году NEC был пересмотрен, чтобы четко требовать включения UFER или электрода в бетонном корпусе (теперь 250,52 (A) (3)) в систему заземляющих электродов для зданий или сооружений, имеющих бетонное основание или фундамент без площадь поверхности менее 20 футов в непосредственном контакте с землей. Это требование применяется ко всем зданиям и сооружениям с фундаментом и / или опорой, имеющей 20 футов или более или более 1/2 дюйма.или армирующая сталь с большей электропроводностью, или 20 футов или более из чистой меди не менее 4 AWG.
Заземляющие стержни бывают разных видов, но чаще всего в заземлении электрических сетей используются заземляющие стержни из оцинкованной стали. Пожалуйста, помните, лучший день для заземляющего стержня (удельное сопротивление) — это день его установки. Коррозия, остекление и т. Д. — все это факторы, снижающие эффективность заземляющих стержней.
Заземляющие стержни обычно делятся на один из следующих размеров; 1/2 дюйма, 5/8 дюйма, 3/4 дюйма и 1 дюйм.Они бывают из стали с покрытием из нержавеющей, оцинкованной или медной стали и могут быть из твердой нержавеющей стали или из мягкой (без плакировки) стали. Их можно приобрести с отрезками без резьбы или с резьбой, которые различаются по длине. Наиболее распространенная длина — 8 футов и 10 футов. Некоторые из них будут иметь заостренный конец, другие будут иметь резьбу и могут быть соединены вместе для образования более длинных стержней при движении.
Эффективность заземляющего стержня диаметром 1 дюйм над стержнем заземления 1/2 дюйма минимальна при снятии показаний сопротивления. Штанги большего размера выбираются для более сложных почвенных условий.Глиняные или каменистые условия часто требуют использования силовых приводов, похожих на ударные, используемые механиками при работе с вашим автомобилем. Обычно они бывают электрическими или пневматическими. Силовые приводы при использовании с тяжелыми заземляющими стержнями диаметром 1 дюйм будут работать на большинстве почв.
Пруток с медным покрытием диаметром 1 дюйм по сравнению с прутком с медным покрытием 1/2 дюйма в тех же почвенных условиях дает улучшение производительности примерно на 23%. Площадь поверхности стержня 1/2 дюйма составляет 1,57 по сравнению с площадью поверхности стержня 1 дюйм при 3,14 (3,14 x.5 = 1,57 и 3,14 х 1 = 3,14). Таким образом, удвоение площади поверхности дает улучшение производительности примерно на 23%.
Покрытие заземляющих стержней предназначено для защиты стали от ржавчины. Большинство думает, что оболочка (медь на стальном стержне) предназначена для увеличения проводимости стержня. Это действительно способствует проводимости, но основная цель покрытия — предохранить стержень от ржавчины.
Не все плакированные заземляющие стержни одинаковы, и важно, чтобы плакированный стержень имел достаточно толстую оболочку.Высококачественные промышленные заземляющие стержни из стали, плакированной медью, могут стоить немного дороже, но они оправдывают небольшие дополнительные затраты.
Когда заземляющий стержень вбивается в каменистую почву, он может поцарапать покрытие, и стержень заржавеет. В сухом виде ржавчина не проводит электричество, это хороший изолятор. Когда он влажный, он все еще не такой проводящий, как медь на стержне. Можно проверить pH почвы, и это должно определить тип используемого стержня. В почвенных условиях с высоким pH следует использовать только высококачественные плакированные стержни.Если почва очень кислая, лучше всего подойдут нержавеющие стержни. Один из самых популярных стержней заземления — стержень заземления из оцинкованной (горячеоцинкованной) стали.
Этот стержень используется с медными и алюминиевыми проводниками для формирования заземления служебного входа в большинстве зданий и жилых домов. Это плохой выбор для определения удельного сопротивления грунта с течением времени. Стыки между заземляющим стержнем и проводом выполняются выше или ниже поверхности земли и в большинстве случаев подвержены постоянной влажности. В лучших условиях соединение двух разнородных материалов со временем приведет к коррозии и увеличению сопротивления.
При соединении разнородных материалов происходит электролиз. Если алюминий используется с медью, которая не покрыта оловом, алюминий будет разъедать медь, оставляя меньшую площадь поверхности для контакта, и соединение может расшататься и даже вызвать искрение. Любой резкий удар или удар могут привести к разрыву соединения. При установке в грунт не рекомендуется использовать луженую проволоку. Олово, свинец, цинк и алюминий более анодны, чем медь, и они пожертвуют (исчезнут) в почве.При подключении над поверхностью почвы в распределительном щите допускается использование луженой проволоки.
Имейте в виду, что статья 250.64 Национального электротехнического кодекса указывает, что алюминиевые или медные алюминиевые заземляющие проводники не должны соприкасаться с почвой или бетоном и должны иметь концевые заделки не менее чем на 18 дюймов выше готовой конструкции при использовании вне помещений.
Другой способ лечения коррозии стыков — это использование герметика для швов для предотвращения образования мостиков влаги между металлами.Наиболее популярными соединениями являются частицы меди или графита, погруженные в консистентную смазку. Использование аналогичного материала — лучшее решение, поскольку даже стыковые смеси могут потерять свою эффективность, если их не поддерживать в надлежащем состоянии, но их использование предпочтительнее, чем сухое соединение. Соединения работают путем погружения частиц в металлы, чтобы сформировать чистый стык с низким сопротивлением, лишенным воздуха, когда они находятся под давлением. Это давление обеспечивается за счет затягивания зажима на проводе и стержне.
Проблема разнородных материалов не встречается в стальных стержнях, плакированных медью.Из всех вариантов по разумной цене лучшим выбором будет стальной пруток, плакированный медью с медным проводником. Если бы деньги не были предметом, золотой проводник и заземляющий стержень были бы идеальными, но вряд ли экономически практичными.
Ведомый стержень намного лучше по сравнению со стержнем с обратным наполнением. Плотность ненарушенного грунта намного выше, чем даже уплотненного грунта. Связь грунта со стержнем — ключ к производительности удилища.
Одним из интересных аспектов проводников заземляющих электродов является их необходимость в физической защите.Если для защиты проводника заземляющего электрода используется стальной канал или гильза, то на каждом конце гильзы должны быть предусмотрены средства, чтобы сделать ее непрерывной электрически с проводником. Этого можно добиться, установив перемычку на каждом конце гильзы и подключив ее к гильзе, оборудованию и заземляющему электроду на каждом конце. Причина, по которой этот метод важен, заключается в том, что в условиях сильного повреждения стальная трубная муфта создает дроссельный эффект (индуктивность муфты создает магнитное поле, которое препятствует изменениям тока), а полное сопротивление системы заземления резко возрастает.Из-за этого — по возможности лучше использовать неметаллическое покрытие соответствующего номинала (таблица 80, где возможны повреждения) для обеспечения физической защиты.
Установить заземляющие стержни несложно, но необходимо соблюдать соответствующие процедуры, а полученные стержни должны быть проверены на работоспособность.
Установка заземляющих стержней глубиной более 10 футов представляет несколько проблем. Должны использоваться секционные стержни (обычно длиной 10-12 футов) и соединяться вместе для достижения желаемой глубины.Муфта имеет больший диаметр, чем стержень, и поэтому образует отверстие больше, чем сам стержень. Это создает пустоту муфты, ограничивающую контакт почвы с поверхностью штанги дополнительных секций. Только первая секция будет поддерживать полный контакт стержня с почвой.
Ручное забивание штанг с помощью кувалд, трубных инструментов и других средств не может обеспечить достаточное усилие для проникновения в твердые почвы. Для стержней с глубоким приводом необходимы механические или механические приводы.
Материал штанги и конструкция муфты должны выдерживать силу, необходимую для прохождения через твердый грунт.
Из-за чрезмерных усилий, необходимых для привода более длинных штанг, винтовые муфты механически выходят из строя. Резьба обрывается, что приводит к плохому контакту стержня со стержнем. Коническая шлицевая / компрессионная муфта зарекомендовала себя как самая надежная муфта.
Чтобы поддерживать полный контакт стержня с почвой, суспензионная смесь натриевого бентонита (природная глина) может быть введена в полость муфты при установке стержней. Это обеспечивает токопроводящий материал между поверхностью стержня и почвой по глубине стержня.Для обычного 60-футового заземляющего стержня требуется от 2 до 5 галлонов бентонита.
Недостатком более длинных и глубоких штанг является то, что соединенные штанги могут изгибаться при столкновении с более плотной почвой. В одном из проектов подрядчику требовалось соединить и установить заземляющий стержень длиной 100 футов для достижения сопротивления 5 Ом в слоистых песчаных почвах. Когда подрядчик соединил и проехал пятую 10-ю секцию штанги, было замечено, что «заостренный конец» заземляющей штанги проходил под автомобилем на ближайшей стоянке.[Глубокое заземление по сравнению с заземлением на мелководье, Computer Power Corporation, Мартин Д. Конрой и Пол Г. Ричард — http://www.cpccorp.com/deep.htm]
Эффективность заземляющих стержней снижается из-за состояния почвы , токи молнии, физические повреждения, коррозия и т. д. и должны регулярно проверяться на сопротивление. Тот факт, что в прошлом году земля была хорошей, не означает, что это хорошо сегодня.
Проверили бы его методом испытания на падение потенциала или методом зажима при условии, что установка подходит для измерения сопротивления заземления с использованием метода зажима (см. Следующий раздел для обсуждения инструментов и методов тестирования).
Измерение сопротивления заземления может выполняться только с помощью специально разработанного оборудования. В большинстве приборов используется принцип падения потенциала переменного тока, циркулирующего между вспомогательным электродом и заземляющим электродом при тестировании. Показание выражено в омах и представляет собой сопротивление заземляющего электрода к окружающей земле. Несколько производителей испытательного оборудования недавно представили тестеры сопротивления заземления, которые также будут обсуждаться.
Принцип измерения сопротивления заземления (падение потенциала — трехточечное измерение)
Разность потенциалов между стержнями X и Y измеряется вольтметром, а ток между стержнями X и Z измеряется амперметром (см. Рисунок 13). )
По закону Ома E = IR или R + E / I, тогда мы можем получить сопротивление заземляющего стержня R. Если E = 20 В и I = 1 A, то:
R = E / I = 20/1 = 20
Нет необходимости проводить все измерения при использовании тестера заземления.Тестер заземления будет измерять непосредственно, генерируя собственный ток и отображая сопротивление заземляющего электрода.
Положение вспомогательных электродов при измерениях
Целью точного измерения сопротивления относительно земли является размещение вспомогательного токового электрода Z на достаточном удалении от тестируемого заземляющего электрода, чтобы вспомогательный потенциальный электрод Y находился за пределами эффективного площадь сопротивления как заземляющего электрода, так и вспомогательного токового электрода.Лучший способ узнать, находится ли вспомогательный потенциальный стержень Y за пределами эффективных областей сопротивления, — это переместить его между X и Z и снять показания в каждом месте. Если вспомогательный потенциальный стержень Y находится в зоне эффективного сопротивления (или оба, если они перекрываются, как на рисунке 14), при его перемещении полученные показания будут заметно отличаться по величине. В этих условиях невозможно определить точное значение сопротивления заземления.
С другой стороны, если вспомогательный потенциальный стержень Y расположен за пределами эффективных областей сопротивления (рисунок X), когда Y перемещается вперед и назад, вариация показаний минимальна.Полученные показания должны быть относительно близки друг к другу и являются наилучшими значениями сопротивления заземления X. Показания должны быть нанесены на график, чтобы гарантировать, что они лежат в области «плато», как показано на рисунке 15. Эту область часто называют. как «62% площади».
Измерение сопротивления заземляющих электродов (метод 62%)
Метод 62% был принят после графического рассмотрения и после реальных испытаний. Это наиболее точный метод, но он ограничен тем фактом, что тестируемая земля представляет собой единое целое.
Этот метод применяется только тогда, когда все три электрода находятся на прямой линии, а заземление представляет собой один электрод, трубу или пластину, как показано на рисунке 16.
Рассмотрим рисунок 17, на котором показаны площади эффективного сопротивления (концентрические оболочки) заземляющего электрода X и вспомогательного токового электрода Z. Области сопротивления перекрываются. Если бы показания были сняты путем перемещения вспомогательного потенциального электрода Y к X или Z, тогда разница показаний была бы большой, и нельзя было бы получить показания в разумном диапазоне допуска.Чувствительные области перекрываются и постоянно действуют, увеличивая сопротивление по мере удаления Y от X.
Теперь рассмотрим рисунок 18, на котором электроды X и Z достаточно разнесены, чтобы области эффективного сопротивления не перекрывались. Если мы построим график измеренного сопротивления, мы обнаружим, что уровень измерений сбился, когда Y расположен на 62% расстояния от X до Z, и что показания по обе стороны от начального значения Y (62%), скорее всего, будут в пределах установленный диапазон допуска.Этот диапазон допуска определяется пользователем и выражается как
процентов от начального показания +/- 2%, +/- 5%, +/- 10% и т. Д.
Расстояние между вспомогательными электродами
Нет определенного расстояния между Могут быть заданы X и Z, поскольку это расстояние зависит от диаметра испытуемого стержня, его длины, однородности испытываемого грунта и, в частности, от эффективных площадей сопротивления. Однако приблизительное расстояние можно определить из следующей таблицы, которая дается для однородной почвы и электрода диаметром 1 дюйм (для диаметра ½ дюйма уменьшите расстояние на 10%).
Измерение сопротивления заземления с помощью зажима
В отличие от метода падения потенциала (трехточечный), который требует, чтобы заземляющий стержень или тестируемая система были отключены от энергосистемы, этот метод измерения требует соединения между тестируемым стержнем для подключение электросети к земле. В результате метод предлагает возможность измерения сопротивления без отключения заземления. Он также предлагает преимущество включения заземления и общего сопротивления заземляющего соединения.
Принцип работы
Обычно заземленную систему общей распределительной линии можно смоделировать как простую базовую схему, как показано на рисунке 29, или как эквивалентную схему, показанную на рисунке 30. Если напряжение E приложено к любому измеренному заземляющему элементу Rx через специальный трансформатора, через цепь протекает ток I, который может быть представлен следующим уравнением:
Суть этого состоит в том, что заземляющий электрод для типичной заземленной электрической системы i параллелен заземляющим стержням и стыковому заземлению на каждом трансформаторе. и столб, который находится на стороне линии обслуживания, для которого вы тестируете землю.Все параллельные заземления выше по потоку становятся очень и очень малым параллельным сопротивлением по сравнению с сопротивлением стержня, на котором вы отдыхаете (R x ).
Если R x и R 1 , и R 2 …. все примерно одинаковой величины, а n — большое число (например, 200), тогда х будет намного меньше
Например, если х , 1 , 2 , R 3 и т. Д. Все равны 10 Ом и n = 200, тогда:
В этом примере мы видим, что до тех пор, пока количество заземляющих стержней в системе электроснабжения велико (и проверяемый стержень подключен к ним), то эквивалентное сопротивление боковых стержней линии (.05 Ом) незначительно по отношению к измеряемому сопротивлению заземления (10 Ом).
E / I = Rx установлен. Если I определяется при постоянном значении E, можно получить измеренное сопротивление заземляющего элемента. Снова обратитесь к рисункам 29 и 30. Ток подается на специальный трансформатор через усилитель мощности через генератор постоянного напряжения 1,7 кГц. Этот ток обнаруживается детекторным трансформатором тока. На частоте 1,7 кГц сигнал усиливается фильтрующим усилителем. Это происходит перед аналого-цифровым преобразованием и после синхронного выпрямления.Затем он отображается на жидкокристаллическом дисплее.
Фильтр-усилитель используется для отсечки как тока земли на промышленной частоте, так и высокочастотного шума. Напряжение обнаруживается катушками, намотанными на трансформатор тока впрыска, который затем усиливается, выпрямляется и сравнивается компаратором уровня. Если зажим на CT не закрыт должным образом, и на ЖК-дисплее появляется индикация OPEN или OPEN.
Хотя точность клещей для тестеров сопротивления заземления хороша для многих сценариев, но имеет свои ограничения.Например, если условия заземления на стороне линии неизвестны (на этом основана теория работы клещевого тестера) или если в системе электроснабжения не так много заземлений на стороне линии (заземления полюсов), тогда трехточечный падение потенциального испытания должно быть выполнено.
Перед тем, как использовать и полагаться на данные любого измерительного оборудования, убедитесь, что оно откалибровано и сертифицировано. Если вы этого не сделаете, данные, которые он предоставляет, могут оказаться бесполезными.
Это обсуждение методов тестирования сопротивления заземления было взято из не защищенного авторским правом материала из рабочей книги AEMC Instruments «Общие сведения об испытании сопротивления заземления», издание 6.0.
Проводники заземления оборудования для систем кабельных лотков
Кабельные лоткиимеют отличные показатели безопасности и надежности. Эти отличные показатели являются результатом уникальных характеристик кабельного лотка, а также правильного проектирования и монтажа систем электропроводки кабельного лотка. Целью данной статьи является обзор методов заземления для систем разводки кабельных лотков. Заземляющие провода оборудования являются наиболее важными проводниками в электрических системах.Заземляющий провод оборудования является защитным проводом электрической цепи.
При проектировании системы электропроводки кабельного лотка проектировщик должен оценить варианты заземляющего проводника оборудования (EGC) Национального электротехнического кодекса (NEC), применимые к проекту.
Оцените следующие параметры:
- Используйте кабельный лоток в качестве EGC. [Кабельный лоток можно использовать только в качестве EGC на соответствующих объектах, как указано в разделе 318-3 (c) NEC ].
- Используйте одножильный кабель в качестве общего EGC для всех цепей в кабельном лотке [NEC Раздел 318-3 (b) (1) Исключение 2].
- Используйте отдельные жилы EGC в каждом многожильном кабеле в кабельном лотке (раздел 250-95 NEC).
- Параллельно EGC с кабельным лотком.
NEC Раздел 110-10. Импеданс цепи и другие характеристики . Указывает, что компоненты и характеристики схемы должны быть правильно выбраны и согласованы, чтобы неисправность (короткое замыкание) была устранена без значительного повреждения электрических компонентов схемы.
NEC Раздел 250-1 (f). В примечании к мелкому шрифту (FPN) № 2 говорится, что проводящие материалы, охватывающие электрические проводники или оборудование, заземляются для ограничения напряжения относительно земли на этих проводящих материалах и соединяются для облегчения работы устройств перегрузки по току в условиях замыкания на землю.
Раздел 250-51 NEC гласит, что эффективный путь заземления должен быть: постоянным и электрически непрерывным, иметь способность безопасно проводить любой ток короткого замыкания, наложенный на него, иметь достаточно низкий импеданс, чтобы ограничить напряжение на землю и облегчить работу. защитных устройств.
Раздел 318-6 (a) NEC гласит, что кабельный лоток не обязательно должен быть механически непрерывным, но он должен быть электрически непрерывным, а соединение должно выполняться в соответствии с разделом 250-75 NEC.
Желательно, чтобы замыкание на землю быстро устранялось устройством защиты цепи. Пока существует замыкание на землю, персонал объекта, а также объект могут находиться в небезопасных условиях. Напряжения могут распределяться по металлическим компонентам установки таким образом, что они могут создавать условия, которые могут привести к поражению электрическим током или травмам персонала установки, который физически контактирует с металлическими компонентами под напряжением.Если электрические дуги тока короткого замыкания станут источниками возгорания, существует вероятность повреждения объекта огнем.
NEC Раздел 318-3 (c) Заземляющие провода оборудования гласит, что металлические кабельные лотки должны быть разрешены для использования в качестве EGC, где постоянное техническое обслуживание и контроль гарантируют, что квалифицированный персонал будет обслуживать установленную систему кабельных каналов и что кабельный лоток соответствует требованиям. положения NEC Раздел 318-7 Заземление .
Это означает, что кабельный лоток может использоваться в качестве EGC на любом подходящем объекте. Нет ограничений в отношении типа помещения, в котором кабельный лоток может использоваться в качестве EGC. Квалификационное ограничение основано на опыте электротехнического персонала объекта. Привлекаемый к работе электротехнический персонал должен быть квалифицированным.
Металлические кабельные лотки классифицированы лабораторией Underwriters Laboratories (UL) с точки зрения пригодности для использования в качестве EGC. Классификационная маркировка гласит: «Классифицировано Underwriters Laboratories Inc.относительно его пригодности в качестве проводника заземления оборудования ». Кабельный лоток не внесен в список UL, он классифицирован UL как EGC.
Площадь поперечного сечения металла, доступного для использования в качестве EGC, указана в каталогах производителей для различных кабельных лотков. Это сумма площадей поперечного сечения двух боковых направляющих. Для кабельных лотков цельной конструкции общая площадь поперечного сечения представляет собой сумму поперечных сечений боковой направляющей плюс площадь поперечного сечения сплошного днища. Если в нижней части кабельного лотка есть вентиляционные отверстия, вентиляционные отверстия уменьшают площадь поперечного сечения нижней части кабельного лотка, доступную для обслуживания EGC.Если кабельный лоток будет использоваться в качестве EGC, это должно быть указано в заказе на поставку, а производитель нанесет или разместит постоянную информационную этикетку на боковой направляющей кабельного лотка. Эта маркировка или информационная этикетка будет указывать на поперечное сечение металлической поверхности EGC кабельного лотка и указывать, что кабельный лоток классифицирован UL для использования в качестве EGC. Нет необходимости наносить токопроводящий компаунд на соединения стандартной соединительной пластины кабельного лотка или устанавливать перемычки между стандартными соединениями соединительной плиты кабельного лотка для алюминиевого или стального кабельного лотка.
Таблица 318-7 (b) (2) «Требования к металлическим площадям для кабельных лотков, используемых в качестве заземляющих проводов оборудования» показывает минимальное металлическое поперечное сечение, которое требуется для алюминиевых или стальных кабельных лотков, которые будут использоваться в качестве EGC. наивысший номинал любого защитного устройства (номинал предохранителя или срабатывание автоматического выключателя) для цепей в кабельном лотке. Если площадь поперечного сечения кабельных лотков недостаточна для номинала защитного устройства, кабельный лоток нельзя использовать в качестве EG, и в кабельный лоток необходимо установить отдельный одножильный кабель EGC, иначе каждый многожильный кабель должен содержать провод EGC.Подключения кабелепроводов и / или кабелей (соединение и / или EGC) к кабельным лоткам должны быть выполнены с помощью соединителей, внесенных в список UL, которые правильно установлены, чтобы обеспечить хорошую электрическую непрерывность между кабельным лотком и кабелепроводами и / или кабелями.
Согласно разделу 318-7 (a) NEC, все металлические кабельные лотки должны быть заземлены в соответствии с требованиями статьи 250 NEC, независимо от того, используется ли кабельный лоток в качестве EGC.
NEC Раздел 318-3 (b) (1) Исключение №2 говорится, что изолированные, покрытые или неизолированные одиночные проводники сечением № 4 AWG или больше могут использоваться в качестве кабелей EGC в кабельных лотках.
При использовании одножильного кабеля EGC размер одножильного кабеля EGC должен соответствовать номиналу предохранителя или уставке срабатывания автоматического выключателя (таблица 250-95 NEC) цепи максимальной мощности в кабельном лотке, в которой потенциально может использоваться одножильный провод. Кабель EGC, если должно произойти замыкание на землю.
Во влажной среде не следует устанавливать оголенный медный EGC в алюминиевый кабельный лоток из-за возможности электролитической коррозии алюминиевого кабельного лотка.Для таких установок лучше всего использовать покрытый или изолированный провод и удалить покрытие или изоляцию в местах, где выполняются соединения с кабельным лотком, перемычками, дорожками качения, корпусами оборудования и т. Д. С помощью оловянных или оцинкованных соединителей, включенных в списки UL.
Хотя в этом нет необходимости, есть преимущества в том, чтобы прикреплять одножильный кабель EGC к кабельному лотку каждые 50–100 футов с помощью разъема, внесенного в список UL. Таким образом кабельный лоток электрически параллелен кабелю EGC.Если происходит замыкание на землю, такая практика может привести к более низким напряжениям относительно земли, оказываемым на металлические компоненты оборудования, находящиеся под напряжением. Электрически параллельный кабельный лоток и кабель EGC становятся EGC с низким сопротивлением (см. Вариант № 4). Кабели EGC должны быть надежно привязаны к кабельному лотку через каждые 10–20 футов, чтобы в условиях неисправности магнитные силы не выбрасывали EGC из кабельного лотка.
Могут быть указаны многожильные кабели, содержащие собственный EGC.Проводники EGC в многожильных кабелях могут быть неизолированными, покрытыми или изолированными. Если он покрыт или изолирован, внешняя отделка должна быть зеленого или зеленого цвета с одной или несколькими желтыми полосами [см. NEC Раздел 250-57 (b)]. На соответствующих объектах любой изолированный проводник в многожильном кабеле может быть постоянно идентифицирован как EGC одним из трех указанных методов, указанных в NEC, Раздел 250-57 (b) Исключение № 4 .
EGC параллельных многожильных кабелей в кабельных лотках.
Значительное изменение было внесено в раздел 250-95 NEC . Размер проводов заземления оборудования для NEC 1993 и 1996 годов, что влияет на параллельную прокладку стандартных многожильных кабелей в кабельных лотках. Это изменение требует увеличения размера EGC в трехжильных кабелях, когда фазные проводники параллельны, а EGC параллельны, или в кабельном лотке должен быть установлен отдельный EGC надлежащего размера.
Предложения, которые были приняты для пересмотра раздела NEC 250-95 , не содержали никаких задокументированных проблем безопасности.Обоснование заявителя заключалось в том, что жилы кабелей разрешается соединять параллельно, поэтому EGC одного размера применительно к системам кабельных каналов следует применять к многожильным кабелям. В результате « или кабель » было помещено после слова « кабельная дорожка » в разделе NEC 250-95 .
Не было опубликовано никаких публичных фактов о каких-либо проблемах безопасности или технических проблемах, связанных с параллельной работой стандартных трехжильных кабелей с EGC стандартного размера.Это обычная промышленная практика на протяжении нескольких десятилетий. На многих предприятиях химической промышленности, производства пластмасс и текстиля фидеры на 480 В (кабели типа TC) от подстанций до центров управления двигателями были подключены параллельно стандартным трехжильным кабелям со стандартными EGC, подключенными параллельно с начала 1960-х годов.
Для обеспечения соответствия трехжильного кабеля, проложенного в кабельном лотке, в соответствии с NEC 1996 г., необходимо выбрать один из следующих вариантов:
А.Заказывайте специальные трехжильные кабели, которые содержат EGC большего размера. Размер EGC будет зависеть от номинала или настройки защитного устройства цепи согласно NEC, таблица 250-95 . Это означает, что размер EGC зависит от количества трехжильных кабелей, подключенных параллельно, чтобы получить желаемую пропускную способность цепи.
B. Используйте трехжильные кабели без EGC и установите одножильный EGC в кабельный лоток или используйте кабельный лоток в качестве EGC в подходящих установках в соответствии с Разделом 318-3 (c).
C. Используйте стандартные трехжильные кабели с EGC стандартного размера и параллельно EGC, которые находятся в кабельных сборках, с одножильным EGC (размер согласно таблице 250-95) в кабельном лотке или с кабельным лотком, если он используется в качестве EGC. Это соответствует требованиям раздела 250-95 NEC.
Электрическое параллельное соединение одножильного EGC с кабельным лотком путем присоединения одножильного EGC к кабельному лотку через каждые 50–100 футов создает установку, которая может обеспечить некоторую степень повышенной электробезопасности для объекта и его персонала в условиях замыкания на землю.Соединение кабельного лотка с одножильным EGC через каждые 50–100 футов не требуется NEC, но это желательная дополнительная практика.
Ниже приводится сравнение для установки, в которой однопроводной EGC электрически не параллелен с кабельным лотком, и для установки, где одножильный EGC параллелен кабельному лотку.
В качестве основы для простого сравнения двух случаев были сделаны следующие предположения:
Система: Показана одна фаза (277 В) вторичной обмотки трансформатора на 480 В, соединенного звездой.
Проводники: Фазный провод представляет собой медный провод 500 куб. М с изоляцией 75 ° C. Он рассчитан на 380 ампер без снижения номинальных значений для температурных условий окружающей среды. Защитное устройство рассчитано на 400 ампер. EGC — это медь № 3 AWG (таблица 250-95 NEC). Поперечное сечение боковых направляющих алюминиевого кабельного лотка составляет 2 квадратных дюйма. Электропроводность алюминия кабельного лотка составляет около 55 процентов от проводимости меди.
Сопротивление медного проводника 500 кСм мил равно 0.0258 Ом / к фут.
Сопротивление медного проводника № 3 AWG составляет 0,245 Ом / к фут.
Сопротивление алюминиевого кабельного лотка составляет приблизительно 0,0143 Ом / к-фут.
Сопротивление параллельно подключенного EGC №3 и алюминиевого кабельного лотка составляет 0,0135 Ом / к фут. [Результирующее сопротивление параллельных проводов составляет R1 x R2 / R1 + R2. = (0,0143) (0,245) / 0,0143) + (0,245) = 0,0135 Ом].
Допущения: Для упрощения примеров вместо импеданса используются значения сопротивления.В реальной установке импеданс будет определять величину тока короткого замыкания и падение напряжения. Падение напряжения на дуге повреждения не учитывается. Предполагается, что весь обратный ток короткого замыкания будет ограничиваться однопроводным EGC или одножильным EGC и кабельным лотком, когда они электрически параллельны. Предполагается, что фазовый провод, EGC и алюминиевый кабельный лоток имеют одинаковую длину
Электрическое подключение кабельного лотка параллельно одножильному EGC — это вариант, который стоит рассмотреть.В результате сниженное сопротивление EGC может улучшить общую электрическую безопасность оборудования. Сниженный импеданс цепи повреждения приведет к более высокому значению тока повреждения, что приведет к более быстрому обесточиванию неисправной цепи защитными устройствами. Потенциал поражения электрическим током для персонала объектов ниже (в примере 95 вольт все еще потенциально смертельно, но не так вероятно, как 251 вольт). Более низкий потенциал относительно земли в месте короткого замыкания может привести к меньшим величинам паразитного тока замыкания, протекающего через металлические предметы оборудования.Это снижает вероятность возникновения электрических дуг, которые могут быть источниками возгорания.
% PDF-1.4 % 180 0 объект > эндобдж xref 180 99 0000000016 00000 н. 0000002331 00000 п. 0000002471 00000 н. 0000002966 00000 н. 0000003141 00000 п. 0000003224 00000 н. 0000003349 00000 п. 0000003423 00000 н. 0000003536 00000 н. 0000003603 00000 н. 0000003731 00000 н. 0000003868 00000 н. 0000004021 00000 н. 0000004087 00000 н. 0000004177 00000 н. 0000004266 00000 н. 0000004332 00000 н. 0000004436 00000 н. 0000004502 00000 н. 0000004610 00000 н. 0000004676 00000 н. 0000004742 00000 н. 0000004894 00000 н. 0000004960 00000 н. 0000005050 00000 н. 0000005139 00000 п. 0000005205 00000 н. 0000005309 00000 н. 0000005375 00000 п. 0000005483 00000 н. 0000005549 00000 н. 0000005615 00000 н. 0000005770 00000 н. 0000005836 00000 н. 0000005926 00000 н. 0000006015 00000 н. 0000006081 00000 н. 0000006185 00000 п. 0000006251 00000 н. 0000006359 00000 н. 0000006425 00000 н. 0000006490 00000 н. 0000006556 00000 н. 0000006646 00000 н. 0000006735 00000 н. 0000006800 00000 н. 0000006904 00000 н. 0000006969 00000 н. 0000007077 00000 н. 0000007142 00000 н. 0000007207 00000 н. 0000007273 00000 н. 0000007371 00000 н. 0000007469 00000 н. 0000007533 00000 н. 0000007597 00000 п. 0000007638 00000 н. 0000007807 00000 н. 0000007927 00000 н. 0000008047 00000 н. 0000008167 00000 н. 0000008287 00000 н. 0000008407 00000 н. 0000008526 00000 н. 0000008644 00000 н. 0000008762 00000 н. 0000008880 00000 н. 0000008998 00000 н. 0000009118 00000 п. 0000009238 00000 п. 0000009358 00000 п. 0000009478 00000 н. 0000009598 00000 п. 0000009717 00000 н. 0000009835 00000 н. 0000009953 00000 н. 0000010065 00000 п. 0000010194 00000 п. 0000116394 00000 н. 0000116473 00000 н. 0000116537 00000 н. 0000116601 00000 н. 0000116666 00000 н. 0000116731 00000 н. 0000116796 00000 н. 0000116861 00000 н. 0000116926 00000 н. 0000116992 00000 н. 0000117058 00000 н. 0000117124 00000 н. 0000117190 00000 н. 0000117256 00000 н. 0000117322 00000 н. 0000117388 00000 н. 0000117454 00000 н. 0000117520 00000 н. 0000117586 00000 п. 0000002527 00000 н. 0000002944 00000 н. трейлер ] >> startxref 0 %% EOF 181 0 объект > эндобдж 182 0 объект > эндобдж 277 0 объект > поток Hb«`e`A`lMxY’q) + & ll KxU} X-DɈ4 ‘?] 5˄byyE = w nKEZ.P
Методы заземления и соединения кабельных лотков
Металлические кабельные лотки
Кабельный лоток можно использовать в качестве заземляющего проводника оборудования (EGC) в любой установке, где квалифицированный персонал будет обслуживать установленную систему кабельных лотков. Нет никаких ограничений относительно места установки системы кабельных лотков.
Методы заземления и соединения кабельных лотков (фото: whereis.com)Металл в кабельных лотках может использоваться в качестве EGC в соответствии с ограничениями таблицы 392.60 (А). Все металлические кабельные лотки должны быть заземлены в соответствии с требованиями статьи 250.96 независимо от того, используется ли кабельный лоток в качестве заземляющего проводника оборудования (EGC).
EGC — самый важный проводник в электрической системе, так как его функция — электрическая безопасность.
Заземление и соединение кабельных лотковСуществует три варианта подключения для обеспечения EGC в системе проводки кабельного лотка:
- Провод EGC внутри или на кабельном лотке.
- Каждый многожильный кабель с отдельной жилой EGC.
- Кабельный лоток используется в качестве EGC на соответствующих объектах.
Правильные методы соединения
Для обеспечения правильного заземления системы кабельного лотка
Если кабель EGC установлен в кабельном лотке или на нем, он должен быть прикреплен к каждой или альтернативным секциям кабельного лотка с помощью заземляющих зажимов (это не требуется NEC®, но это желательная практика)
Помимо обеспечения электрического соединения между секциями кабельного лотка и EGC, зажим заземления механически прикрепляет EGC к кабельному лотку, так что в условиях тока короткого замыкания магнитные силы не выбрасывают EGC из кабельного лотка.
Оголенный медный провод заземления оборудования не следует помещать в алюминиевый кабельный лоток из-за возможности электролитической коррозии алюминиевого кабельного лотка во влажной среде.
Для таких установок лучше всего использовать изолированный проводник и удалить изоляцию в местах соединения кабельного лотка, кабельных каналов, кожухов оборудования и т. Д. С помощью оловянных или оцинкованных соединителей.
NEC Таблица 250.122 — Минимальный размер заземляющих проводов оборудования для заземляющих каналов и оборудования
Таблица 2 — Минимальный размер заземляющих проводов оборудования для заземляющих кабельных каналов и оборудованияСистемы алюминиевых кабельных лотков
Таблица 392.60 (A) — Требования к площади металлических поверхностей для кабельных лотков, используемых в качестве заземляющие проводники оборудования
Требования к площади металлических участков для кабельных лотков, используемых в качестве заземляющих проводов оборудования Для блоков Sl: 1 квадратный дюйм = 645
* Общая площадь поперечного сечения обеих боковых направляющих для лотков лестницы или желоба или кабельных лотков минимальная площадь поперечного сечения металла в лотках желоба или лотках неразъемной конструкции.
** Стальные кабельные лотки нельзя использовать в качестве заземляющих проводов оборудования для цепей с защитой от замыканий на землю более 600 ампер. Алюминиевые кабельные лотки нельзя использовать в качестве заземляющих проводов оборудования для цепей с защитой от замыканий на землю более 2000 ампер.
Таблица 392.60 (A) «Требования к металлическим площадям для кабельных лотков, используемых в качестве проводников заземления оборудования» показывает минимальную площадь поперечного сечения боковых направляющих кабельного лотка (сумма обеих боковых направляющих), необходимых для установки кабельного лотка. используется в качестве заземляющего проводника оборудования (EGC) для определенного номинала предохранителя, номинального тока срабатывания автоматического выключателя или настройки срабатывания реле защиты от замыкания на землю.
Это фактические настройки отключения для автоматических выключателей, а не максимально допустимые настройки отключения, которые во многих случаях совпадают с размером корпуса автоматического выключателя.
Если максимальная сила тока кабельного лотка недостаточна для использования защитного устройства, кабельный лоток нельзя использовать в качестве EGC, и в каждую кабельную сборку должен быть включен отдельный EGC или отдельный EGC должен быть установлен или прикреплен к кабельному лотку.
Информацию о конкретных областях, требующих соединения для обеспечения непрерывности электрической цепи, см. На рисунках 1-4 .
Рис. 1 слева: Расширительные соединительные пластины; Рисунок 2 справа: горизонтальные регулируемые пластиныРисунок 3 слева: прерывистые сегменты; Рис. 4 справа: Секции кабельного лотка регулируемая вертикальная соединительная пластина
Неметаллические кабельные лотки не служат проводником. Также не рекомендуется использовать кабельные лотки из проволочной сетки в качестве заземляющего провода оборудования.
Несмотря на то, что это разрешено NEC, это рекомендуется из-за уникальной природы проволочной сетки, фитинги производятся в полевых условиях из прямых участков путем отрезания токоведущих структурных проводов, что снижает токонесущую способность системы.Таким образом, использование кабельных лотков из проволочной сетки в качестве заземляющего проводника оборудования не рекомендуется .
Если кабельный лоток с проволочной сеткой должен использоваться в качестве заземляющего провода оборудования, то рекомендуется установка заземляющего провода .
Если кабельный лоток с проволочной сеткой поддерживает кабель со встроенным заземляющим проводом оборудования или контрольными или сигнальными кабелями, тогда лоток должен иметь путь с низким сопротивлением к несистемному заземлению, чтобы уменьшить шум и устранить наведенные или паразитные токи.Отдельный заземляющий кабель, прикрепленный к кабельному лотку с проволочной сеткой, обычно не требуется.
Каталожные номера:
- РУКОВОДСТВО ПО КАБЕЛЬНЫМ ЛОТКАМ Основано на Национальных электротехнических правилах 2011 г. — EATON
- Рекомендации по установке кабельных лотков — Публикация стандартов NEMA VE 2-2006
Электроэнергия и пожарная безопасность NFPA 921
NFPA 921, разделы с 14-1 и 14-9 по 14-12.2
Электричество и пожарная
[interFIRE VR Примечание: таблицы и рисунки не воспроизводились.]
14-1. Вступление. В этой главе обсуждается анализ электрических системы и оборудование. Основное внимание уделяется зданиям с напряжением 120/240 вольт, однофазные электрические системы. Эти напряжения типичны для жилых и коммерческие здания. В этой главе также обсуждаются основные принципы физики, которые относятся к электричеству и огню.
Предполагается, что до начала анализа конкретного электрического элемента что лицо, ответственное за определение причины пожара, будет иметь уже определили область или точку отправления.Электрооборудование должно рассматриваться как источник возгорания наравне со всеми другими возможными источниками и не в качестве первого или последнего выбора. Наличие электропроводки или оборудование в месте возникновения пожара или рядом с ним не обязательно означает, что пожар был вызван электрической энергией. Часто огонь может разрушить изоляцию или вызвать изменения внешнего вида проводов или оборудования, которые могут к ложным предположениям. Требуется тщательная оценка.
Правильно используемые и защищенные электрические провода и оборудование предохранители или автоматические выключатели должного размера и исправные представляют опасность пожара.Однако проводники и оборудование могут обеспечить источники воспламенения, если присутствуют легковоспламеняющиеся материалы, когда они были неправильно установлены или использованы. Состояние электропроводки что не соответствует Национальному электротехническому кодексу, может или не может быть связанным с причиной пожара.
14-9. Зажигание от электрической энергии.
14-9.1. Общий. Для зажигания от источника электричества, должно произойти следующее:
(a) Электропроводка, оборудование или компонент должны быть под напряжением. от электропроводки здания, аварийной системы, аккумулятора или другого источник.
(b) Достаточное количество тепла и температуры для воспламенения горючего материала должны быть произведены за счет электроэнергии в точке происхождения электрический источник.
Зажигание от электрической энергии предполагает выработку как достаточного высокая температура и тепло (т. е. компетентный источник воспламенения) при прохождении электрический ток для воспламенения близкого материала. Достаточное тепло и температура может быть вызвана самыми разными способами, такими как короткое замыкание и разделительные дуги при замыкании на землю, чрезмерный ток через проводку или оборудование, резистивный нагрев или обычные источники, такие как лампочки, нагреватели, и кухонное оборудование.Требование к воспламенению заключается в том, чтобы температура электрического источника должны поддерживаться достаточно долго, чтобы топливо до температуры воспламенения с воздухом, позволяющим сгорать.
Наличие энергии, достаточной для воспламенения, не гарантирует воспламенения. Необходимо учитывать распределение факторов потерь энергии и тепла. Для Например, электрическое одеяло, разложенное на кровати, может постоянно рассеивать 180 Вт безопасно. Если это же одеяло свернуть, нагрев будет сконцентрирован. в меньшем пространстве.Большая часть тепла будет удерживаться внешними слоями. одеяла, что приведет к повышению внутренней температуры и, возможно, зажигание. В отличие от 180 Вт, используемых обычным электрическим одеялом, просто несколько ватт, потребляемых небольшой лампочкой фонарика, заставят нить накала светиться белый горячий, с указанием температуры выше 4000 ° F (2204 ° C).
Принимая во внимание возможность электрического воспламенения, температура и продолжительность нагрева должна быть достаточно большой, чтобы зажечь исходное топливо.Необходимо оценить тип и геометрию топлива, чтобы убедиться, что тепла было достаточно для образования горючих паров и для источника тепла все еще быть достаточно горячим, чтобы воспламенить эти пары. Если подозреваемый электрический Компонент не является подходящим источником возгорания, необходимо изучить другие причины.
14-9.2. Сопротивление нагрева.
14-9.2.1. Общий. Когда электрический ток проходит через проводящий материал, тепло будет производиться.См. 14-2.13 для отношений тока, напряжения, сопротивления и мощности (т.е. нагрева). При правильном конструкция и соответствие нормам, электромонтажные системы и устройства будут иметь сопротивление достаточно низкое, чтобы токоведущие части и соединения не перегреваться. Некоторые специфические детали, такие как нити лампы и нагревательные элементы предназначены для того, чтобы становиться очень горячими. Однако при правильном проектировании и изготовлении и при использовании в соответствии с инструкциями эти горячие части не должны вызывать пожары.
Применение в электропроводке медных или алюминиевых проводов достаточного сечения системы (например, 12 AWG на ток до 20 А для меди) сохранят сопротивление низкий. Немного выделяемого тепла должно легко отводиться в воздух. вокруг проводника при нормальных условиях. Когда проводники термически изолированы и работают при номинальных токах, может быть доступно достаточно энергии вызвать неисправность или возгорание.
14-9.2.2. Тепловыделяющие устройства. Обычные тепловыделяющие устройства может вызвать возгорание при неправильном использовании или при возникновении определенных неисправностей во время правильного использования. использовать. Примеры включают горючие вещества, расположенные слишком близко к лампам накаливания. или нагревателям, кофеваркам и фритюрницам, чья температура регулируется выходят из строя или обходятся. ( См. Главу 18. )
14-9.2.3. Плохое соединение. Когда в цепи плохое соединение например, ослабленный винт на клемме, повышенное сопротивление приводит к увеличению нагрев на контакте, что способствует образованию границы раздела оксидов.Оксид проводит ток и поддерживает работоспособность цепи, но сопротивление оксида в этой точке значительно больше, чем в металлах. На границе раздела оксидов образуется пятно нагрева, которое может стать достаточно горячим. светиться. Если горючие материалы расположены достаточно близко к горячей точке, они можно воспламенить. Как правило, соединение будет в коробке или приборе, и вероятность возгорания значительно снижается. Мощность хорошо развитой нагревательные соединения в электропроводке могут достигать 30-40 Вт при токах 15-20 Вт. А.Нагревательные соединения меньшей мощности также были отмечены при токах всего около 1 А.
14-9.3. Перегрузка по току и перегрузка. Перегрузка по току — это условие в котором в проводнике течет больше тока, чем допускается принятой безопасностью стандарты. Величина и продолжительность перегрузки по току определяют, есть возможный источник возгорания. Например, перегрузка по току на 25 А в медном проводе 14-AWG не должно представлять опасности возгорания, за исключением обстоятельств. которые не позволяют рассеивать тепло, например, при теплоизоляции или в комплекте с кабелем.Большая перегрузка 120 А в 14-AWG проводник, например, заставит проводник раскалиться докрасна и может зажечь соседние горючие вещества.
Сохраняющиеся большие сверхтоки (т. Е. Перегрузка) могут привести к повреждению проводника. до температуры плавления. В качестве проводника возникает короткая разделительная дуга. тает пополам. Расплавление открывает контур и прекращает дальнейший нагрев.
Чтобы получить большую перегрузку по току, либо должна быть неисправность, которая обходит нормальные нагрузки (т.е.е., короткое замыкание) или слишком много нагрузок должны быть включенным в схему. Чтобы иметь длительную перегрузку по току (т. Е. Перегрузку), защита (например, предохранители или автоматические выключатели) не должна срабатывать или должна были побеждены. Воспламенение от перегрузки в цепях, имеющих проводники надлежащего размера по всей цепи, потому что большую часть времени защита открывается и прекращает дальнейший нагрев до возникновения условий возгорания получены. Когда происходит уменьшение диаметра проводника между нагрузка и защита цепи, например удлинитель, тем меньше проводник может нагреваться сверх допустимой температуры.Это может произойти без активации максимальной токовой защиты. Для примера см. 14-2.16.
14-9.4. Дуги. Дуга — это высокотемпературная светящаяся электрическая разряд через разрыв. Температуры внутри дуги находятся в диапазоне несколько тысяч градусов в зависимости от обстоятельств, включая ток, напряжение падение, и металл задействован. Чтобы дуга проскочила даже самый маленький промежуток в воздухе самопроизвольно должна быть разница напряжений не менее 350 В.В в рассматриваемых здесь системах на 120/240 В дуги не образуются самопроизвольно при нормальных обстоятельствах. ( См. Раздел 14-12. ) Несмотря на очень высокие температуры в дуговом тракте, дуги могут быть не грамотным зажиганием источники для многих видов топлива. В большинстве случаев искрение настолько короткое и локализованное. что твердые виды топлива, такие как деревянные элементы конструкции, не могут воспламениться. Топлива с высоким соотношением площади поверхности к массе, например, хлопчатобумажный ватин и ткань бумага и горючие газы и пары могут воспламениться при контакте с дуга.
14-9.4.1. Высоковольтные дуги. Высокое напряжение может попасть в сеть 120/240 В системы из-за случайного контакта между распределительной системой энергокомпания и системы на территории. Есть ли сиюминутный разряда или длительного высокого напряжения, дуга может возникнуть в устройстве для разделение проводящих частей безопасно при 240 В, но не во многих тысячи вольт. При наличии легковоспламеняющихся материалов вдоль дуговая дорожка, можно развести огонь.Молния может послать чрезвычайно высокое напряжение скачок в электроустановку. Потому что напряжения и токи от ударов молнии настолько высоки, что дуги могут прыгать во многих местах, механические повреждения, возгорание многих видов горючих материалов. ( См. 14-12.8. )
14-9.4.2. Статическое электричество. Статическое электричество стационарное заряд, который накапливается на некоторых объектах. Прогулка по ковру в сухом атмосфера будет производить статический заряд, который может вызвать дугу при разряде.Другие виды движения могут вызвать накопление заряда, в том числе тянущее снятие одежды, работа конвейерных лент и протекание жидкостей. ( См. Раздел 14-12. )
14-9.4.3. Разделительные дуги. Разделительная дуга — это кратковременный разряд, происходит, когда электрический путь под напряжением открывается во время протекания тока, например, выключив выключатель или выдернув вилку из розетки. Дуга обычно не бывает видно в переключателе, но может быть замечено, когда вытаскивают вилку, пока течет.Двигатели со щетками могут почти непрерывно отображать искрение между щетками и коммутатором. При 120/240 В переменного тока пробор дуга не поддерживается и быстро гаснет. Обычные разделительные дуги в электрических системах обычно настолько кратковременны и имеют достаточно низкую энергию, что могут воспламеняться только горючие газы, пары и пыль.
При дуговой сварке для начала дуговой сварки стержень должен сначала коснуться заготовки. текущий течет. Затем стержень отводится на небольшое расстояние, чтобы создать разделительная дуга.Если зазор не станет слишком большим, дуга будет продолжаться. Сварочная дуга имеет достаточно мощности, чтобы зажечь практически любой горючий материал. Однако для получения устойчивой дуги при сварке необходимы определенные конструктивные характеристики. в источнике питания, которые отсутствуют в большинстве ситуаций с разделительной дугой в системах электропроводки 120/240 В.
Другой вид разделительной дуги возникает при прямом коротком замыкании или замыкание на землю. Скачок тока плавит металлы в точке контакта и вызывает короткую разделительную дугу, поскольку между металлическими деталями образуется зазор.Дуга сразу гаснет, но могут выбрасывать частицы расплавленного металла (т. Е. искры) вокруг. (см. 14-9.5. )
14-9.4.4. * Отслеживание дуги. На непроводящих поверхностях могут возникать дуги. материалы, если они загрязнены солями, токопроводящей пылью или жидкостями. Считается, что небольшие токи утечки из-за такого загрязнения вызывают деградация основного материала, приводящая к дуговому разряду, обугливание или воспламенение горючих материалов вокруг дуги.Отслеживание дуги — известное явление при высоких напряжениях. Об этом также сообщалось в экспериментальных исследованиях. в сетях 120/240 В переменного тока.
Электрический ток будет протекать через воду или влагу только тогда, когда это вода или влага содержат загрязнители, такие как грязь, пыль, соли или минеральные вещества. депозиты. Этот паразитный ток может способствовать электрохимическим изменениям, которые могут привести к возникновению электрической дуги. В большинстве случаев паразитные токи через Загрязненная влажная дорожка вызывает достаточно тепла, чтобы дорожка высохла.потом ток почти отсутствует, и нагрев прекращается. Если влажность постоянно пополняется так, чтобы токи выдерживались, отложения металлов или коррозия продукты могут образовываться по пути электрического тока. Этот эффект более выражен в ситуациях постоянного тока. Более энергичная дуга через отложения может вызвать пожар при правильных условиях. Требуется больше исследований, чтобы больше четко определить условия, необходимые для возникновения пожара.
14-9.5. Искры. Искры — это светящиеся частицы, которые могут образовываться когда дуга плавит металл и разбрызгивает частицы от точки дуга. Термин «искра» обычно используется для обозначения высоковольтного разряда. как свеча зажигания в двигателе. В целях расследования электрического пожара, термин искра зарезервирован для частиц, выброшенных дугами, тогда как дуга — это светящийся электрический разряд через промежуток.
Короткие замыкания и сильноточные замыкания на землю, например, при незаземленном дирижер (т.е., провод под напряжением) касается нейтрали или земли, производят жестокие события. Потому что в коротком замыкании может быть очень небольшое сопротивление. В цепи ток короткого замыкания может составлять многие сотни и даже тысячи ампер. Энергии, которая рассеивается в точке контакта, достаточно, чтобы расплавить вовлеченные металлы, тем самым создавая зазор и видимую дугу и бросая искры. Защитные устройства в большинстве случаев откроются (т. Е. Отключат цепь) за доли секунды и предотвратите повторение события.
Когда в дугу вовлечены только медь и сталь, брызги расплавленных металл сразу же начинает остывать, когда они летят по воздуху. Когда алюминий участвует в разломах, частицы могут гореть во время полета и продолжают быть очень горячими, пока они не сгорят или не погаснут при приземлении на каком-то материале. Следовательно, горящие алюминиевые искры могут иметь большее способность воспламенять мелкое топливо, чем искры из меди или стали. Тем не мение, искры от дуг в параллельных цепях являются неэффективными источниками воспламенения и при благоприятных условиях может воспламенять только мелкое топливо.В дополнение к температура, размер частиц важен для общего тепла содержание частиц и способность воспламенять горючее. Например, искры брызги сварочной дуги могут воспламенить многие виды топлива из-за относительно большой размер частиц и общее теплосодержание. Дуга во вводных кабелях может образовываться больше и больше искр, чем искрение в ответвлении схемы.
14-9.6. Разломы с высоким сопротивлением. Повреждения с высоким сопротивлением долговечны события, при которых ток короткого замыкания недостаточно высок для отключения цепи максимальная токовая защита, по крайней мере, на начальных этапах.С высоким сопротивлением неисправность в параллельной цепи может привести к выработке достаточной энергии воспламенять горючие вещества при контакте с точкой нагрева. Это редкость найти доказательства неисправности с высоким сопротивлением после пожара. Пример короткое замыкание с высоким сопротивлением — это провод под напряжением, контактирующий с плохо заземленный объект.
14-10 Интерпретация повреждений электрических систем
14-10.1. Общий. Аномальная электрическая активность обычно вызывает характерные повреждения, которые можно распознать после пожара. Свидетельства этого электрическая активность может быть полезна для определения места происхождения. Повреждение могут возникать на проводниках, контактах, клеммах, кабелепроводах или других компонентах. Однако в результате неэлектрических событий могут возникнуть многие виды повреждений. Этот В разделе будут приведены рекомендации по определению того, был ли нанесен наблюдаемый ущерб электрической энергией и было ли это причиной пожара или результатом огня.Эти рекомендации не являются абсолютными и во многих случаях являются физическими. Доказательства будут неоднозначными и не позволят сделать однозначный вывод. Фигура 14-10.1 иллюстрирует некоторые типы повреждений, с которыми можно столкнуться.
14-10.2. * Дуга короткого замыкания и замыкания на землю. Когда бы то ни было провод под напряжением контактирует с заземленным проводником или металлическим предметом, который заземлен с почти нулевым сопротивлением в цепи, будет скачок тока в цепи и плавление в точке соприкосновения.Этот Событие может быть вызвано размягченной теплоизоляцией в результате пожара. Высота при протекании тока выделяется тепло, которое может расплавить металлы в точках соприкосновения вовлеченных объектов, тем самым создавая зазор и разделительную дугу. А сплошной медный проводник обычно выглядит так, как будто на нем есть надрез круглый напильник. [См. Рис. 14-10.2 (а).] Паз может разрезать, а может и не разрезать дирижер. Проводник легко сломается в выемке при обращении с ним. В При микроскопическом исследовании можно увидеть, что поверхность надреза была растаял.Иногда в выемке может быть выступ пористой меди.
Разделительная дуга плавит металл только в точке первоначального контакта. Соседние поверхности не будут расплавлены, если пожар или другие события не вызовут последующее плавление. В случае последующего плавления может возникнуть затруднение для определения места первоначального короткого замыкания или замыкания на землю. Если проводники были изолированы до повреждения, и есть подозрение на неисправность в качестве причины возгорания необходимо будет определить, как утеплитель вышла из строя или была удалена и как проводники контактировали друг с другом.Если проводник или другой металлический предмет, вовлеченный в короткое замыкание или Замыкание на землю было без изоляции во время повреждения, может быть брызгами металла на прилегающих поверхностях, которые иначе не расплавились.
Многожильные проводники, такие как шнуры для ламп и электроприборов, кажутся отображать менее устойчивые эффекты от коротких замыканий и замыканий на землю чем в одножильных проводниках. На многожильном проводе может быть выемка. с отрезанными только некоторыми прядями, или все пряди могут быть отрезаны с соединенными вместе прядями или расплавленными отдельными прядями.[См. Рис. 14-10.2 (b).]
14-10.3. * Дуговой разряд Изоляция проводов, когда подвергается воздействию прямого пламени или лучистого тепла, может обугливаться перед плавлением. Этот уголь при воздействии огня обладает достаточной проводимостью, чтобы допускать спорадические дуга через обугливание. Эта дуга может привести к плавлению поверхности в местах или может проплавить проводник, в зависимости от продолжительности и повторения дуги. Часто возникает несколько точек искрения.Несколько дюймов проводника можно разрушить, расплавив или оторвав несколько мелких сегменты.
Когда проводники подвергаются сильному локальному нагреву, например, от при образовании дуги через обугливание концы отдельных проводов могут быть оборваны. Когда отрезанные, у них на конце будут бусинки. Борт может сваривать два проводника. все вместе. Если проводники находятся в кабелепроводе, отверстия могут расплавиться. Бусинки можно отличить от глобул, которые создаются нелокализованными нагрев, такой как перегрузка или плавление пламенем.Бусины характеризуются отчетливая и различимая демаркационная линия между расплавленным шариком и соседний нерасплавленный участок проводника. [См. Рисунки 14-10.3 (а), (b) и (c).]
Проводники после источника питания и точка, где проводники оборваны и обесточены. Эти проводники, скорее всего, остаются в мусоре с частично или полностью разрушенной изоляцией. В перед остатками проводов между точкой отсечения дуги и источник питания может оставаться под напряжением, если срабатывает максимальная токовая защита. не работает.Эти проводники могут выдерживать дальнейшее искрение через обугленный. В ситуации с несколькими отключениями дуги в одной цепи, отключение дуги дальше всего от источника питания произошло первое. Надо найти как как можно больше проводников определить расположение первых дуга через обугливание. Это укажет на первую точку цепи, которую нужно могут быть скомпрометированы огнем и могут быть полезны при определении области источник. В ответвленных цепях можно увидеть отверстия на несколько дюймов. в кабелепроводе или в металлических панелях, к которым подводится проводник.
Если неисправность происходит в проводниках служебного входа, следует использовать провод длиной несколько футов. могут быть частично расплавлены или разрушены в результате повторяющихся дуговых разрядов, потому что обычно нет максимальной токовой защиты служебного входа. Удлиненное отверстие или В канале можно увидеть серию отверстий на несколько футов.
14-10.4. * Соединения с перегревом. Точки подключения самые вероятное место перегрева цепи. Наиболее вероятная причина перегрева будет слабое соединение или наличие резистивного оксиды в точке соединения.Металлы при перегреве соединения будут быть более сильно окисленным, чем аналогичные металлы с эквивалентным воздействием Огонь. Например, перегретое соединение на дуплексной розетке будет быть более серьезно поврежденными, чем другие соединения на этой розетке. Поверхность проводника и клемм может быть покрыта ямками или они могут быть устойчивыми. потеря массы при плохом контакте. Эта потеря массы может появиться как недостающий металл или сужение проводника. Эти эффекты более вероятны выжить при пожаре, когда медные проводники подключены к стальным клеммам.Там, где в соединении задействованы латунь или алюминий, металлы имеют больший вес. скорее будет растоплен, чем без косточек. Это плавление может происходить либо из-за сопротивления отопление или от огня. Точечная коррозия также может быть вызвана легированием. (См. 14-10.6.3.)
14-10.5. * Перегрузка. Токи, превышающие номинальную допустимую нагрузку, производят эффекты пропорциональны степени и продолжительности перегрузки по току. Сверхтоки которые достаточно велики и сохраняются достаточно долго, чтобы вызвать повреждение или создать опасность возгорания называются перегрузками.При любых обстоятельствах подозреваемый перегрузки требуют проверки защиты цепи. Наиболее вероятно место возникновения перегрузки — на удлинителе. Перегрузки маловероятны возникать в электрических цепях с надлежащей защитой от перегрузки по току.
Перегрузка вызывает внутренний нагрев проводника. Это нагревание происходит по всей длине перегруженного участка цепи и может вызвать оплетку. Оплетка — это размягчение и провисание термопластичного проводника. изоляция из-за нагрева жилы.Если перегрузка серьезная, проводник может стать достаточно горячим для воспламенения топлива при контакте с ним, поскольку утеплитель плавится. Сильные перегрузки могут привести к расплавлению проводника. Если проводник плавится пополам, контур открывается и нагрев сразу прекращается. Другой места, где началось таяние, могут замерзнуть в качестве смещений. Этот эффект был отмечен в проводниках из меди, алюминия и нихрома. (См. Рисунок 14-10.5.) Обнаружение отчетливых смещений указывает на большую перегрузку.Свидетельство перегрузки по току плавления проводов не является доказательством воспламенения от это означает.
Перегрузка в служебных входных кабелях встречается чаще, чем в ответвленных цепях. но обычно это результат пожара. Повреждение входных кабелей вызывает искрение. и плавится только в точке повреждения, если проводники не выдерживают постоянный контакт, чтобы позволить длительные массивные перегрузки, необходимые для плавления длинные участки кабелей.
14-10.6. Эффекты, не вызванные электричеством. Проводники могут быть повреждены до или во время пожара другими способами, кроме электрических, и часто эти эффекты отличаются от электрической активности.
14-10.6.1. Цвета поверхности проводника. При повреждении изоляции и снятая с медных проводников любыми способами, тепло вызовет темно-красный к черному окислению на поверхности проводника. Зеленые или синие цвета могут образовывать когда присутствуют кислоты.Чаще всего кислота образуется при разложении ПВХ. Эти различные цвета не имеют значения для определения причины, потому что они почти всегда являются результатом пожара.
14-10.6.2. Таяние в огне. При воздействии огня медные проводники может растаять. Сначала появляются пузыри и искажения поверхности. [Видеть Рис. 14-10.6.2 (а).] Бороздки на поверхности проводника. во время производства стираются.Следующий этап — поток меди. на поверхности с образованием свисающих капель. Дальнейшее плавление может позволить течь с тонкими участками (то есть сужениями и каплями). [См. Рисунок 14-10.6.2 (b).] В этом случае поверхность проводника становится гладкой. Повторно затвердевшая медь образует глобулы. Глобулы, возникшие в результате воздействия огня имеют неправильную форму и размер. Они часто сужаются и могут быть заостренными. Нет четкой границы между расплавленными и нерасплавленными поверхностями.
Многожильные проводники, которые только что достигают температуры плавления, становятся жесткими. Дальнейшее нагревание может позволить меди течь между жилами, так что проводник становится твердым с неровной поверхностью, которая может показать, где пряди были. [См. Рисунок 14-10.6.2 (c).] Продолжение нагрева может вызвать текучесть, истончение и образование глобул, характерных для твердых проводников. Увеличение необходимо, чтобы увидеть некоторые из этих эффектов. Многопроволочные жилы большого сечения тающие в огне нити могут быть сплавлены вместе с течением металла или пряди могут быть истончены и оставаться разделенными.В некоторых случаях индивидуальные пряди могут иметь шарик, похожий на шарик, даже если поврежден проводник. был от таяния.
Алюминиевые проводники плавятся и снова затвердевают, приобретая неправильную форму, которая обычно не имеет значения для интерпретации причины. [См. Рис. 14-10.6.2 (d).] Потому что из-за относительно низкой температуры плавления можно ожидать алюминиевых проводников таять почти в любом пожаре и редко помогает найти причину.
14-10.6.3. * Легирование. Металлы, такие как алюминий и цинк, могут образовывать сплавы при плавлении в присутствии других металлов. Если алюминий капает на оголенный медный проводник во время пожара и остывает, алюминий будет просто слегка прилип к меди. Если это пятно нагреть и дальше, огонь алюминий может проникать через границу раздела оксидов и образовывать сплав с медью который плавится при более низкой температуре, чем любой чистый металл. После возгорание, пятно из алюминиевого сплава может выглядеть как грубая серая область на поверхности, или это может быть блестящая серебристая область.Медно-алюминиевый сплав хрупкий, и проводник может легко сломаться, если его согнуть в месте легирования. Если во время пожара расплавленный сплав будет стекать с проводника, возникнет быть котлованом, выложенным сплавом. Наличие сплавов можно подтвердить химическим анализом.
Алюминиевые проводники, плавящиеся от огня на клеммах, могут вызвать легирование и питтинг клемм. Нет четкого способа визуально отличая легирование от последствий перегрева соединения.Цинк легко образует сплав латуни с медью. Он желтоватого цвета и не такой же хрупкий, как алюминиевый сплав.
14-10.6.4. * Механические зарезы. Образовавшиеся вмятины и вмятины в проводнике механическими средствами обычно можно отличить от дугового отметки при микроскопическом исследовании. На механических впадинах обычно видны царапины. следы от того, что вызвало выбоину. Вмятины покажут деформацию проводники под вмятинами.Вмятины или выбоины не покажут сплавленные поверхности вызвано электрической энергией.
14-11. Соображения и предостережения. Лабораторные эксперименты, комбинированные со знанием основных химических, физических и электрических наук, указывают на то, что некоторые предыдущие убеждения неверны или верны только при ограниченные обстоятельства.
14-11.1. Проводники меньшего размера. Проводники меньшего размера, такие как провод 14 AWG в цепи 20 А, иногда считается, что он перегревается и вызвать пожары.Допустимые значения токовой нагрузки имеют большой запас прочности. Хотя ток в проводе 14 AWG должен быть ограничен 15 А, дополнительный нагрев от увеличения тока до 20 А не обязательно указать причину пожара. Более высокая рабочая температура ухудшит изоляция быстрее, но не расплавляет ее и не вызывает отрыв и оголите проводник без каких-либо дополнительных факторов для создания или удержания нагревать. Наличие проводов меньшего сечения или защиты от перезарядки не допускается. доказательство причины пожара.(См. 14-2.16.)
14-11.2. Зазубренные или растянутые проводники. Проводники, которые иногда считается, что поперечное сечение уменьшено за счет надрезания или выдавливания чрезмерно нагреть порез. Расчеты и эксперименты показали что дополнительный нагрев незначителен. Кроме того, иногда думают что протягивание проводников через кабелепровод может растянуть их, как ириску и уменьшите поперечное сечение до размера, слишком малого для допустимой по току защиты.Медные проводники не растягиваются так сильно, не ломаясь в самых слабых местах. точка. Какое бы растяжение ни могло произойти до пластической деформации превышение не приведет к значительному уменьшению поперечного сечения или чрезмерное сопротивление нагреву.
14-11.3. Изношенная изоляция. Когда термопластичная изоляция портится с возрастом и нагреванием, становится хрупким и трескается если согнуть. Эти трещины не допускают утечки тока, если только токопроводящие растворы попасть в щели.Резиновая изоляция разрушается легче, чем термопластичная изоляция и теряет больше механической прочности. Таким образом, резина изолированные шнуры лампы или электроприборов, которые могут быть перемещены, могут стать опасно из-за разрыва хрупкой изоляции. Однако простой растрескивание резиновой изоляции, как и термопластической изоляции, не допускайте утечку тока, если в трещины не попадут токопроводящие растворы.
14-11.4. * Скрепка с перегрузкой или неправильной посадкой. Скобы забиты слишком сильно над неметаллическим кабелем вызывают нагрев или сбой. Предположения варьируются от индуцированных токов из-за скобки. находиться слишком близко к проводникам, чтобы разрезать изоляцию и касаясь проводов. Правильно установленная скоба для кабеля со сплющенным верх нельзя прогнать через изоляцию. Если скоба согнута, край его можно продеть через изоляцию для контакта с проводниками.В этом случае может произойти короткое замыкание или замыкание на землю. Это событие после пожара должно быть видно по точкам перегиба скобы и плавлению. пятна на скобе или на проводниках, если они не стираются в результате Пожар. Короткое замыкание должно вызвать срабатывание максимальной токовой защиты цепи. работать и предотвратить дальнейшее повреждение. Не было бы продолжения нагрев на контакте, и короткая разделительная дуга не воспламенит изоляцию на проводе или дереве, к которому он был прикреплен скобами.
Если скрепка неправильно забита так, что одна ножка скобы входит в изоляция и контакты как проводника под напряжением, так и заземленного проводника, тогда произойдет короткое замыкание или замыкание на землю. Если скоба рассекает провод под напряжением, в этой точке может быть образовано нагревательное соединение.
14-11.5. Короткое замыкание. Короткое замыкание (т. Е. Низкое сопротивление и большой ток) в проводке в ответвленной цепи считалось воспламенением изоляция проводов и обеспечение распространения огня.Обычно быстрое мигание разделительной дуги перед срабатыванием защиты цепи не может обеспечить достаточную теплоизоляцию для образования воспламеняющихся паров, даже если температура сердцевины дуги может составлять несколько тысяч градусов. Если Защита от перегрузки по току неисправна или неисправна, тогда короткое замыкание может стать причиной перегрузки и, как таковая, может стать источником воспламенения.
14-11.6. Бисерный проводник. Бусинка на конце проводника в и сам по себе не указывает на причину пожара.
14-12. Статическое электричество.
14-12.1. Введение в статическое электричество. Статическое электричество электрический заряд материалов через физический контакт и разделение и различные эффекты, возникающие в результате положительного и отрицательного электрического заряды, образованные в результате этого процесса. Это достигается за счет передачи электроны (отрицательно заряженные) между телами, одно отдает электроны и становится положительно заряженным, а другой получает электроны и становится противоположно, но в равной степени заряжен отрицательно.
Общие источники статического электричества включают следующее:
(a) Пыльчатые материалы, проходящие по желобам или пневматическим конвейерам
(b) Пар, воздух или газ, вытекающие из любого отверстия в трубе или шланге, когда пар влажный или поток воздуха или газа содержит твердые частицы
(c) Непроводящая энергия или движущиеся конвейерные ленты
(d) Транспортные средства
(e) Непроводящие жидкости, протекающие по трубам или разбрызгивающие, проливая, или падение
(f) Перемещение слоев одежды друг относительно друга или контакт обуви с полами и напольными покрытиями во время прогулки
(g) Грозы, вызывающие сильные воздушные потоки и перепады температур. которые перемещают воду, пыль и кристаллы льда, создавая молнии
(h) Движения всех видов, которые связаны с изменением относительного положения контактирующие поверхности, обычно из разнородных жидкостей или твердых тел
14-12.2. Генерация статического электричества. Поколение статическое электричество нельзя полностью предотвратить, но это мало последствия, потому что развитие электрических зарядов не может само по себе быть потенциальной опасностью пожара или взрыва. Чтобы там было возгорание должен быть разряд или внезапная рекомбинация разделенных положительных и отрицательные заряды в виде электрической дуги в воспламеняющейся атмосфере.
Когда электрический заряд присутствует на поверхности непроводящего материала. тело, в котором оно захвачено или не может ускользнуть, называется статическим. электричество.Электрический заряд на контактирующем проводящем теле только с непроводящими проводами также предотвращается утечка и, следовательно, немобильный или статичный. В любом случае говорят, что тело заряжено. В заряд может быть как положительным (+), так и отрицательным (-).
* A-14-9.4.4 Дополнительная информация по отслеживанию дуги найдена по Кэмпбеллу, отказы от пробоев из-за образования дуги в мокром проводе и слежения за ним, и Кэхилл и Дейли, Самолетное электрическое отслеживание дуги с мокрым проводом.
* A-14-10.2 Для получения дополнительной информации см. Beland, Рекомендации о возникновении дуги как причине пожара и Beland, причине или следствии электрических повреждений?
* A-14-10.3 Для получения дополнительной информации см. Beland, Обсуждение о возникновении дуги как причине пожара и Beland, «Электрические повреждения — причина или следствие»?
* A-14-10.4 Для получения дополнительной информации см. Ettling, Светящиеся соединения.
* A-14-10.5 Для получения дополнительной информации см. Beland, Обследование электрических проводов после пожара.
* A-14-10.6.3 Для получения дополнительной информации см. Beland et al., Copper-Aluminium Взаимодействие в условиях пожара.
* A-14-10.6.4 Для получения дополнительной информации см. Ettling, Arc Marks. и трещины в проводах и нагревательных элементах в канавках.
* A-14-11.4 Для получения дополнительной информации см. Ettling, The Overdriven. Скоба как причина возгорания и воспламеняемость ПВХ электроизоляции по методу Ettling пользователя Arcing.
За дополнительной информацией обращайтесь:
Библиотека NFPA по телефону (617) 984-7445 или электронная библиотека @ nfpa.org
Взято из Руководства по расследованию пожаров и взрывов NFPA 921 1998 Издание , авторское право © Национальная ассоциация противопожарной защиты, 1998. Этот материал не является полной и официальной позицией NFPA. по упомянутой теме, которая представлена только стандартом в целиком.
Используется с разрешения.
AURUBIS FOXROD для проводов и кабелей
Транспортировка электроэнергии
Провода и кабель являются наиболее заметными и важными частями всей системы электроснабжения.Они транспортируют электричество от источника энергии на электростанции к месту использования, где оно преобразуется в механическое движение, тепло, свет или цифровые сигналы. Провода и кабели бывают самых разных сечений, длин и пропускной способности по току, от подводных высоковольтных кабелей длиной в сотни километров до сверхтонких проводов микронного диапазона, используемых для соединений в передовом электронном оборудовании.
Потоки постоянного тока (DC) равномерно распределяются по длине кабеля с потерями энергии, обратно пропорциональными его поперечному сечению.Однако переменный ток (AC) течет больше к поверхности поперечного сечения кабеля. Чем выше частота электрического тока, тем сильнее становится скин-эффект. По этой причине в конкретных приложениях обычной практикой является переплетение нескольких проводов меньшего сечения вместо использования одного провода с большим сечением.
Электрические кабели состоят из различных жил:
- Два (одна фаза + обратный провод)
- Три (одна фаза + обратный провод + заземляющий провод)
- Четыре (три фазы + нейтральный провод)
- Пять (три фазы + нейтральный провод + заземляющий провод)
Отдельные проводники и весь кабель окружены электрической изоляцией из соображений безопасности и во избежание коротких замыканий.
Правильный материал и нужный размер
Правильный выбор материала кабеля и правильного сечения кабеля важны для обеспечения наилучшей электропроводности.
При использовании меди с высокой проводимостью вместо меди или алюминия более низкого качества потери энергии в кабеле будут ниже, а проводник будет выделять меньше тепла. Использование такого высокоэффективного электрического проводника также приводит к уменьшению сечения кабеля при той же допустимой нагрузке по току, что позволяет сэкономить место и изоляционный материал.
В большинстве стран поперечное сечение кабеля измеряется в квадратных миллиметрах. В Северной Америке сечения кабелей меньшего размера измеряются с помощью американского калибра проводов, а сечения кабелей большего размера — в круглых милах.
Идеальное сечение кабеля зависит от используемых критериев. Технические стандарты размеров кабеля основаны на критериях безопасности и определенных аспектах качества электроэнергии, таких как минимизация падения напряжения. Однако с точки зрения расчета стоимости жизненного цикла и учета потерь энергии внутри кабеля оптимальное сечение кабеля будет значительно больше, чем предписано минимальными техническими стандартами.Оптимальное значение для окружающей среды, рассчитанное с помощью анализа жизненного цикла, достигается при еще большем поперечном сечении кабеля.
Медь с высокой проводимостью
Чистая медь имеет высокую электропроводность, уступающую только серебру. Медная катанка Aurubis сохраняет это важное качество благодаря своей необычайной степени чистоты. Он производится из собственных медных катодов чистотой 99,998%. В ходе наших современных производственных процессов мы делаем все возможное, чтобы медный материал не был загрязнен.Благодаря такому исключительному уровню чистоты медная катанка Aurubis является идеальным базовым материалом для производства проводов и кабелей. Он показывает значения электропроводности, которые значительно превышают стандарты электропроводности меди ETP. Это дает множество преимуществ для конечных пользователей, связанных с компактностью и низкими потерями энергии.
Высокая чистота медной катанки Aurubis также является важной характеристикой для производства ультратонкой проволоки. Для волочения проволоки размером порядка микрон любая небольшая примесь может быть фатальной.Высокочистая медь Aurubis сводит к минимуму производственные потери из-за примесей и обеспечивает требуемое качество конечной продукции.
> вернуться к AURUBIS FOXROD
Технические характеристики системы катодной защиты BHEL | Кабель
РАЗДЕЛ:
C
НАЗВАНИЕ:
ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К
КАТОДНАЯ ЗАЩИТА
СПЕЦИФИКАЦИЯ № PE-TS-XXX-510-E001 ОБЪЕМ.:
II-B
РЕД №: 00 ДАТА: ЛИСТ: 2 из 42 1.0
ОБЩАЯ ИНФОРМАЦИЯ
1.01 Цель спецификации состоит в том, чтобы охватить следующие виды деятельности для системы катодной защиты для системы закопанного жидкого топлива [FO] и трубопроводов системы CW согласно BoQ / Price Schedule: a. Проектирование, проектирование, производство, изготовление, сборка, инспекция и испытания на заводе-изготовителе, надлежащая морская упаковка и доставка в порт Ченнаи, b. Обследование сайта и анализ, связанный с системой, c.Надзор за всей деятельностью на объекте, включая, помимо прочего, распаковку, выполнение всех связанных строительных работ, монтаж, осмотр, испытания и ввод в эксплуатацию, тестирование производительности на объекте и передачу Заказчику / BHEL. d. Мониторинг системы за указанный период. Прекращенные действия в отношении вышеизложенного перечислены в пункте 4.0 [Объем работ]. 1.02 Подробные спецификации оборудования / работ, включенных в эту спецификацию, приведены в следующих приложениях, прилагаемых к этому разделу.Приложение I Аноды и засыпка Приложение II Кабели, прокладка и заделка кабелей Приложение III Распределительная коробка Приложение IV Эталонный электрод и заземляющая ячейка Приложение V Точка испытательного вывода Приложение VI Блок трансформатора-выпрямителя Приложение VII Термит-сварка Приложение VIII Обзор Приложение IX Руководящие указания по транспортировке и морской годности Упаковка (спец. № PE-TS-XXX-501-A-100) 2,0
СПЕЦИАЛЬНЫЕ ИНСТРУКЦИИ ДЛЯ УЧАСТНИКОВ
2.01. Везде, где материал или изделие указываются или описываются названием конкретной марки, производителя или торговой марки, то же следует понимать как устанавливающие желаемый тип, функцию и качество.Продукция других производителей также может рассматриваться при условии предоставления достаточной информации, позволяющей BHEL определить, что эти продукты эквивалентны указанным. 2.02 Подробная информация о трубопроводах указана в прилагаемой спецификации. 2.03 Участнику торгов рекомендуется посетить объект, чтобы ознакомиться со всей необходимой информацией, такой как состояние почвы, транспортные средства, данные об аналогичных трубопроводах и подземных кабелях, а также кабельный желоб / коридор в соседнем коридоре трубопровода, линия электропередачи / железнодорожная линия помехи и др.на правильное оформление и выполнение работ. Незнание условий сайта не будет приниматься в качестве основания для требования какой-либо компенсации. 2.04 Система катодной защиты также включает определенные работы, связанные с трубопроводами, такие как обеспечение изоляционных соединений. 2.05 Объем работ должен включать услуги по мониторингу в течение определенного периода после завершения первоначальной эксплуатации или ввода в эксплуатацию системы катодной защиты наложенным током (ICCP). В течение этого периода Поставщик должен посетить объект и провести испытания и измерения системы
. .