Закрыть

Моторчик своими руками: Как сделать простой моторчик своими руками

Содержание

Простой электродвигатель своими руками из подручных средств

Многие радиолюбители всегда не прочь смастерить какой-нибудь декоративный прибор исключительно в демонстративных целях. Для этого используются простейшие схемы и подручные средства, особенно большим спросом пользуются подвижные механизмы, способные наглядно показать воздействие электрического тока. В качестве примера мы рассмотрим, как сделать простой электродвигатель в домашних условиях.

Что понадобится для простейшего электродвигателя?

Учтите, что изготовить рабочую электрическую машину, предназначенную для совершения какой либо полезной работы от вращения вала в домашних условиях довольно сложно. Поэтому мы рассмотрим простую модель, демонстрирующую принцип работы электрического двигателя. С его помощью вы можете продемонстрировать взаимодействие магнитных полей в обмотке якоря и статоре. Такая модель будет полезной в качестве наглядного пособия для школы или приятного  и познавательного времяпрепровождения с детьми.

Для изготовления простейшего самодельного электродвигателя вам понадобится обычная пальчиковая батарейка, кусочек медной проволоки с лаковой изоляцией, кусочек постоянного магнита, по размерам не больше батарейки, пара скрепок. Из инструмента хватит кусачек или пассатижей, кусочка наждачной бумаги или другой абразивный инструмент, скотч.

Процесс изготовления электродвигателя состоит из таких этапов:

  • Намотайте на пальчиковую батарейку от 10 до 15 витков медной проволоки – это и будет ротор мотора. Можно использовать не только батарейку, но и любое круглое основание.
  • Снимите намотку с батарейки, постарайтесь не сильно нарушать диаметр витков. Зафиксируйте всю катушку двумя диаметрально противоположными витками, как показано на рисунке ниже. Рис. 1: зафиксируйте обмотку витками
  • При помощи мелкого наждака зачистите концы якоря электродвигателя. Ваша задача – удалить слой изоляции, так как через эти концы будет осуществляться токосъем.
  • При помощи пассатижей согните две скрепки таким образом, чтобы получились круглые петли посредине скрепки. В качестве основания для перегиба петли можно использовать любой твердый предмет, к примеру, спичку. Рис. 2: согните скрепку
  • Зафиксируйте скотчем обе скрепки на выводах пальчиковой батарейки, важно добиться плотного прилегания. Если нужно, намотайте несколько слоев скотча.
  • Поместите в петли концы ротора, он же будет выступать и валом электродвигателя. Зачищенные концы провода должны располагаться на скрепках. Рис. 3: поместите ротор в петли
  • Зафиксируйте под катушкой на поверхности пальчиковой батарейки постоянный магнит.

Простой электродвигатель готов – достаточно толкнуть пальцем катушку и она начнет вращательное движение, которое будет продолжаться до тех пор, пока вы не остановите   вал мотора или не сядет батарейка.

Рис. 4: запустите катушку

Если вращение не происходит, проверьте качество токосъема и состояние контактов, насколько свободно ходит вал в направляющих и расстояние от катушки до магнита. Чем меньше расстояние от магнита до катушки, тем лучше магнитное взаимодействие, поэтому улучшить работу электродвигателя можно за счет уменьшения длины стоек.

Одноцилиндровый электродвигатель

Если предыдущий вариант никакой полезной работы не выполнял в силу его конструктивных особенностей, то эта модель будет немного сложнее, зато найдет практическое применение у вас дома. Для изготовления вам понадобится одноразовый шприц на 20мл, медная проволока для намотки катушки (в данном примере используется диаметром 0,45мм­), проволока из меди большего диаметра для коленвала и шатуна (2,5 мм),  постоянные магниты, деревянные планки для каркаса и конструктивных элементов, источник питания постоянного тока.

Из дополнительных инструментов понадобится клеевой пистолет, ножовка, канцелярский нож, пассатижи.

Процесс изготовления электродвигателя заключается в следующем:

  • При помощи ножовки или канцелярского ножа обрежьте шприц, чтобы получить пластиковую трубку.
  • Намотайте на пластиковую трубку тонкую медную проволоку и зафиксируйте ее концы клеем, это будет обмотка статора. Рис. 5: намотайте проволоку на шприц
  • С толстой проволоки удалите изоляцию при помощи канцелярского ножа. Отрежьте два куска проволоки.
  • Согните из этих кусков проволоки коленчатый вал и шатун для электродвигателя, как показано на рисунке ниже. Рис. 6: согните коленвал и шатун
  • Наденьте кольцо шатуна на коленчатый вал, чтобы обеспечить его плотную фиксацию, можно надеть кусок изоляции под кольцо. Рис. 7: наденьте шатун на коленвал
  • Из деревянных плашек изготовьте две стойки для вала, деревянное основание и ушко для неодимовых магнитов.
  • Склейте неодимовые магниты вместе и приклейте к ним ушко при помощи клеевого пистолета.
  • Зафиксируйте второе кольцо шатуна в ушке при помощи шплинта из медной проволоки. Рис. 8: зафиксируйте второе кольцо шатуна
  • Вставьте вал в деревянные стойки и наденьте втулки для ограничения перемещения, сделайте их из кусочков родной изоляции провода.
  • Приклейте статор с обмоткой, стойки с шатуном на деревянное основание, кроме дерева можете использовать и другой диэлектрический материал. Рис. 9: приклейте стойки и статор
  • При помощи саморезов с плоской шляпкой зафиксируйте выводы на деревянном основании. Два контакта должны иметь достаточную длину, чтобы касаться вала электродвигателя – один выгнутой части, другой прямой. Рис. 10: точки касания вала
  • Наденьте на вал с одной стороны маховик для стабилизации вращения, а с другой крыльчатку для вентилятора.
  • Припаяйте один вывод обмотки электродвигателя к контакту колена, а второй к отдельному выводу. Рис. 11: припаяйте выводы обмотки
  • Подключите электродвигатель к батарейке при помощи крокодилов.

Одноцилиндровый электродвигатель готов к эксплуатации – достаточно подключить питание к его выводам для работы и прокрутить маховик, если он находится  в том положении, с которого сам стартовать не может.

Рис. 12: подключите питание

Чтобы прекратить вращение вентилятора, отключите электродвигатель посредством снятия крокодила хотя бы с одного из контактов.

Электродвигатель из пробки и спицы

Также представляет собой относительно простой вариант самоделки, для его изготовления вам понадобится пробка от шампанского, медная проволока в изоляции для намотки якоря, вязальная спица, медная проволока для изготовления контактов, изолента, деревянные заготовки, магниты, источник питания. Из инструментов вам пригодятся пассатижи, клеевой пистолет, мелкий натфиль, дрель, канцелярский нож.

Процесс изготовления электродвигателя будет состоять из таких этапов:

  • Обрежьте края пробки, чтобы получить две плоских поверхности, на которых будет располагаться провод.
  • Просверлите сквозное отверстие в пробке и проденьте в него спицу. С одной стороны намотайте изоленту. Рис. 13: вставьте спицу и намотайте изоленту
  • В торце пробки вставьте два отрезка проволоки и приклейте их.
  • Намотайте обмотку ротора из тонкой проволоки в одном направлении. Сделайте перемотку якоря изолентой, чтобы витки в электродвигателе не распустились во время работы.
  • Зачистите надфилем концы обмотки электродвигателя и выводы на пробке и соедините их.
Рис. 14: соедините концы обмотки и выводы

Для лучшего контакта можно припаять. Выводы следует согнуть так, чтобы они буквально лежали на спице.

Рис. 15: согните выводы
  • Сделайте деревянное основание, две опоры для вала и две стойки для магнитов. Высверлите в опорах отверстия под спицу.
  • Приклейте опоры на основание и вставьте в них ротор электродвигателя. Зафиксируйте подвижный элемент ограничителями, наиболее просто сделать их из изоленты. Рис. 16: установите вал на стойки
  • Из двух концов проволоки изготовьте щетки для электродвигателя и зафиксируйте их саморезами на основании. Рис. 17: щетки для электродвигателя
  • На стойки приклейте два магнита и разместите их с двух сторон от ротора с минимальным зазором.
Рис. 18: установите магниты

Наденьте крыльчатку вентилятора на вал и подключите к источнику питания – при протекании электрического тока по катушке произойдет магнитное взаимодействие с полем постоянных магнитов, благодаря чему и возникнет вращательное движение. Простейший электродвигатель готов, запитать его можно и от переменного тока в сети, но вместо батарейки вам придется использовать блок питания.

Видео инструкции в помощь

Ремонт электрического мини моторчика своими руками. Основные неисправности мотора. « ЭлектроХобби

Ремонт электрического мини моторчика своими руками. Основные неисправности мотора. « ЭлектроХобби

Блог Монтаж Ремонт Обслужив.

Мини электродвигатели постоянного тока применяются во многих устройствах. Многие должны были сталкиваться с их поломкой, хотя бы в быту это поломка любимой машинки на моторчике у ребенка. Естественно, покупать новую игрушку или иное электрическое устройство только из-за одного сломанного электродвигателя не совсем выгодно и разумно. Гораздо лучше и проще просто восстановить прежнюю работоспособность этого моторчика. Причем в большинстве случаев приходится встречаться с простыми неисправностями, которые вполне может сделать человек, даже не связанный с профессией электрика и электронщика. В этой статье давайте с вами разберем основные неисправности мини электродвигателей, моторчиков, их причины и способы устранения.

Итак, большинство малогабаритных электрических двигателей постоянного тока разбираются очень просто. Достаточно отогнуть металлические скобы, зажимчики, которые держат заднюю крышку, плотно прилегающей к основанию мотора. Далее мы просто снимаем эту крышку. На ней, изнутри, можно увидеть две небольших щетки, которые прислоняются к контактам ротора, соединенных с обмотками двигателя. Эти щетки у мини моторчиков сделаны из металла, имеющего хорошую проводимость и пружинность. Именно по ним передается постоянное питание на ротор электродвигателя. Так вот, очень часто бывает, что эти щетки имеют плохой электрический контакт с ротором. Они могут быть отогнуты в сторону, или ослабнуть в результате чрезмерного нагрева, или на них мог образоваться нагар либо грязь. Естественно, в этом случае электрический ток не будет поступать на ротор, и мини моторчик не будет вращаться.

Первым делом после снятия задней крышки на маломощном электродвигателе проверьте состояние этих щеток. Если они отогнуты, то подтяните их, поставив в нормальное положение. Если на них образовался нагар, из-за сильного искрения при работе, то аккуратно ножом или наждачной бумагой зачистите, чтобы был хороший электрический контакт с ротором мотора. В более мощных моторчиках постоянного тока на щетках могут стоять графитовые вставки. Графит со временем стирается от имеющегося трения между щеткой и ротором. Если вы увидели, что графитовая вставка уже стерлась, то придется ее заменить на новую. Процесс относительно трудоемкий, но вполне решаемый. Сделать самодельную графитовую щетку можно из большего куска графита, выточив ее пилкой для металла, напильником и т.д.

Если с щетками все нормально, то далее проверяем сами контактные выводы ротора, к которым припаяны концы обмоток. Может быть, что эти контактные лепестки между собой соприкоснулись (в нормальном состоянии между ними должен быть небольшой зазор). Тогда будет короткое замыкание между обмотками, естественно, мини мотор работать также не будет. Внимательно осматриваем эти контактные выводы ротора. Шилом, концом ножа, иголкой на всякий случай пройдитесь по канавкам между контактами. Обратите внимание на состояние этих контактов. Нет ли на нем нагара, грязи, окисла. Если есть, ножом или наждачной бумагой (самой мелкой) снимите грязь, Эти контакты должны быть чистыми.

Более сложными неисправностями мини моторчиков могут быть повреждения обмоток ротора (вращающейся части электродвигателя). Это может быть из-за чрезмерного нагрева обмоток в случае очень больших механических нагрузок на вал двигателя. Или просто, изначально мини электродвигатель имеет невысокое качество сборки. Для этого нужно взять обычный мультиметр, выставить на нем измерения сопротивления и прозвонить все обмотки. Сопротивление на них должно быть одинаковое. Для маломощных моторчиков оно может быть около 5-300 ом. Если сопротивление на одной из обмоток заметно меньше, то этот моторчик уже будет работать не так как надо. А в последствии может вовсе выйти из строя. Дефектную обмотку нужно перемотать, хотя это не простое дело для новичка.

Порой причиной плохой работы мини моторчика может быть не электрическая, а механическая неисправность. То есть, вследствии падения, чрезмерной механической нагрузки на мини электродвигателе могут образоваться механические дефекты. Ось вращения может сместиться и ротор может внутри статора касаться постоянных магнитов, что заклинит мотор. Или ось ротора может погнуться, что также вызовет повышенную механическую нагрузку и малогабаритный электрический двигатель не будет работать. Просто внимательно осмотрите имеющийся двигатель на наличие физических, механических повреждений, дефектов. При обнаружении таковых по возможности исправьте их. Хотя порой бывает трудно достичь изначальной ровности, что ухудшает работу мини моторчиков после их ремонта.

Видео по этой теме:

P. S. В большинстве при восстановлении работоспособности маломощных мини электродвигателей, моторчиков достаточно просто иметь под рукой острый глаз, небольшую отвертку и мультиметр, которыми мы и можем выявить имеющуюся неисправность. Как правило, поломки легко обнаруживаются при тщательном осмотре моторчика, а если не уверены, то берем мультиметр и начинаем прозванивать цепи по сопротивлению. Вот и все!

Поиск по сайту

Меню разделов



Строите свой собственный электродвигатель

.

Цена: $ 19
Страницы: 161
ISBN: 978-91-633-6172-2
Опубликовано: 2010

Вы можете загрузить электронную книгу, как только ваша покупка будет завершена.

 

 

Это практическое руководство, шаг за шагом описывает, как построить мощный электродвигатель способ «сделай сам». Весь процесс строительства описан в подробно с фотографиями, документирующими каждый шаг на пути.

Двигатель, изготовленный в соответствии с этими инструкциями весит около 10 кг. Внешний диаметр 366. мм, а ширина около 120 мм, выходной вал и резьбовые монтажные стержни/болты в комплект не входят. Максимальная потребляемая мощность пока не определена. Двигатель, описанный в этой книге, непрерывно развивает мощность 7 кВт. со всплесками до 18 кВт без видимых повреждений.

Двигатель может использоваться для приведения в движение легкого мотоцикла, лодка меньшего размера, сверхлегкий самолет и много других интересных творений. Двигатель представляет собой «бесщеточный двухсторонний осевой поток постоянный магнит 3-фазный переменный ток воздух сердечник воздух охлаждаемый датчик на эффекте Холла «Дельта подключенный двигатель». Одной из уникальных особенностей является то, что этот двигатель может быть построен в версии с раздельным статором без датчика с питанием от 7 радиоуправляемых регуляторов для хобби. Эта версия раздельного статора может, в некоторых приложениях быть экономически привлекательным альтернатива версии с датчиком холла, которая обычно питается от более дорогого датчика холла зависимый контроллер.

Содержание

Часть 1: Общая информация о самодельных осевых электродвигателях
Общая информация и внешние границы
Характеристики осевого магнитного двигателя с воздушным сердечником
Два различных способа определения положения ротора
Информация о раздельном статоре
Мощность и эффективность
Электромагнитные катушки и инструменты для намотки катушек
Постоянные магниты
Конструкция статора
Конструкция ротора

Часть 2: Пошаговые инструкции по сборке
Покомпонентное изображение с названными деталями
Изготовление инструмента для намотки катушки
Расчет длины медных проводов
Намотка катушки
Изготовление статора и инструмента для ламинирования статора
Изготовление ротора
Сборка и пробный пуск двигателя

Часть 3: Разное
Список требований к материалам и инструментам
Где купить материалы онлайн
Вдохновляющие картинки
Технические чертежи

Заглянуть в книгу

Вдохновляющие фото и видео

Сборка двигателя, описанная в книге, привела к созданию двигателя, который используется для переделки электрического мотоцикла.

 

 

В первой части видео вы можете увидеть положение постоянных магнитов относительно катушек электромагнита. Вторая половина фильма раскрывает некоторые проблемы, с которыми вы столкнетесь, если решите провести динамическое испытание с помощью пропеллера и в то же время захотите задокументировать испытание с помощью видеокамеры.

 

Экспериментальная бессенсорная версия электродвигателя. В этом клипе он питается от 7x HobbyCity супер простых 100A 24V ESC.

 

youtube.com/v/k-dgtUXvRIs&hl=sv_SE&fs=1″ type=»application/x-shockwave-flash» allowscriptaccess=»always» allowfullscreen=»true»>

В этом видео показана значительно более мощная версия мотора для кикбайка, около 500 Вт.

Если вы заинтересованы в сборке этого мотора, вы можете купить неотредактированную пошаговую инструкцию по сборке.

 

Простой однофазный бесщеточный двигатель.

 

Смотрите другие видеоролики об электродвигателе своими руками на нашем канале YouTube.

Дальнейшая разработка/испытания

Испытание на максимальную мощность с 11 аккумуляторами Thundersky 90 Ач.

youtube.com/v/zWMLVC9Rif0&hl=sv_SE&fs=1″ type=»application/x-shockwave-flash» allowscriptaccess=»always» allowfullscreen=»true»>

Настройка ESC 7x120A нуждается в помощи, чтобы найти направление вращения, поэтому добавлены пусковой двигатель и звездочка свободного хода. Пусковой двигатель управляется левой рукояткой дроссельной заслонки и развивает скорость до 5-6 км/ч. Правая рукоятка газа, которая управляет ESC 7x120A, может использоваться на скоростях выше 3-4 км/ч.

Экспериментальный высокоэффективный и мощный двигатель. 840 параллельных нитей 0,05 мм по 3,9 м каждая. Было немного сложно намотать катушки, фотографии в видео дают вам представление о том, как это сделать. Сопротивление фазы 3,5 мОм. Контроллер Kelly на левой (датчик холла) рукоятке дроссельной заслонки и 6x 180 A пиковый Hobbywing R/C ESC на правой ручке газа (потенциометр Magura 5 кОм). Келли контроллер действует как стартер.

 

 

Новый статор с воздушным сердечником, улучшенное охлаждение.

Ссылки по теме

Сборка двигателя, описанная в книге, привела к созданию двигателя, который используется для переоборудования электрического мотоцикла. Для получения дополнительной информации: http://www.evalbum.com/3318.

Часто задаваемые вопросы

Вопрос:

Люблю вашу работу! Это очень вдохновляет. У меня есть один вопрос по теории двигателя. Поскольку вы не используете массив Хальбаха, выиграет ли ваш двигатель от стальной задней пластины для магнитов, завершающих магнитную цепь? Или, может быть, вы используете стальную заднюю пластину? Как вы думаете, насколько сильнее поле между зазорами вы можете получить со стальными задними пластинами? Заранее спасибо!

Ответ:

Стальная задняя пластина снижает число оборотов/V для данной версии двигателя примерно на 20%, что позволяет построить еще более эффективный двигатель; это все есть в книге!

Вопрос:

Меня очень интересуют ваши планы сборки двигателя с осевым потоком, однако я хотел бы построить такой, который мог бы выдерживать 20 кВт. Ваш усовершенствованный дизайн, проиллюстрированный в ваших новых разработках, делает это?

Ответ:

Я не проводил систематических испытаний двигателя в лаборатории, а скорее в реальных условиях, а именно в качестве тягового двигателя в переоборудовании электрического мотоцикла. В этом приложении двигатель выдерживает импульсную мощность 20 кВт при скорости вращения около 1500 об/мин. Я бы не ожидал, что двигатель будет выдерживать 20 кВт на низких оборотах в течение более длительных периодов времени. Тем не менее, работа двигателя на более высоких оборотах позволила бы передавать большую мощность через двигатель без его перегрева. Этого можно было бы достичь разными способами, либо путем установки более высокого напряжения, либо путем намотки катушек в направлении более высоких об / мин. Также, конечно, есть возможность масштабировать мотор.

 

Вопрос:
Хорошо, это потрясающе. У меня есть мельница, но нет токарного станка. Токарный станок обязателен?

Ответ:
Нет, в этой сборке нет необходимости использовать токарный станок. Есть две детали сборки, которые можно изготовить на токарном станке, но это не обязательно для достижения хорошего конечного результата.

 

Вопрос:
Я заинтересован в создании собственного электродвигателя для своего электромобиля. Однако у меня есть определенные значения двигателя (крутящий момент и обороты), которых мне нужно достичь. Как правило, для этого приложения требуется низкоскоростной двигатель с высоким крутящим моментом. Предоставляет ли ваша книга необходимую информацию для определения обмотки катушки на основе целевой производительности двигателя (Kt и Kv)? Хорошая работа, кстати…

Ответ:
В книге вы найдете грубый способ расчета нужной длины медного провода/катушки, необходимой для определенной скорости вращения/напряжения. В целом книга представляет собой практическую инструкцию по сборке и не охватывает лежащую в ее основе математику. Однако в процессе создания электродвигателей я приобрел большой практический опыт, который постарался изложить в письменной форме. Говоря об опыте, двигатель с осевым потоком с воздушным сердечником без надлежащей передачи не был бы моим первым выбором для двигателя с низким числом оборотов в минуту и ​​высоким крутящим моментом.

Круглый и круглый с простыми двигателями

1. Дайте определение термину «электродвигатель».

Расскажите классу, что электродвигатель — это устройство, которое преобразует электрическую энергию в механическую. Магнетизм играет важную роль в этом процессе. Объясните, что учащиеся собираются построить простой электродвигатель, который они будут использовать в эксперименте для проверки гипотезы. Во-первых, они примут участие в некоторых демонстрациях частей двигателя.

 

2. Продемонстрируйте, что магниты имеют два полюса и что, когда два магнита соединяются вместе, эти полюса могут вызывать движение объекта.

Покажите магниты второго класса. Спросите: Что произойдет, если эти два магнита сблизить? (Магниты будут притягиваться друг к другу противоположными полюсами и отталкиваться друг от друга одинаковыми полюсами.) Продемонстрируйте с помощью магнитов и попросите учащихся изложить свои наблюдения. Объясните, что магниты имеют два полюса, по одному на каждом конце, северный и южный. Когда противоположные полюса (северный и южный) находятся рядом друг с другом, они притягиваются друг к другу. Когда одноименные полюса находятся рядом друг с другом (например, север и север), они отталкиваются друг от друга. Чтобы продемонстрировать, прикрепите один магнит к задней части маленькой игрушечной машинки. Используйте второй магнит, чтобы заставить автомобиль двигаться, удерживая одинаковые полюса рядом друг с другом. Предложите учащимся попробовать сдвинуть машину с помощью магнитов. Спросить: Будет ли машина двигаться, если противоположные полюса держать рядом друг с другом? Пригласите на демонстрацию студента-добровольца.

 

3. Продемонстрируйте взаимосвязь между текущим электричеством и магнетизмом.

Продемонстрируйте, что катушка проволоки и гвоздь могут действовать как магнит, когда по проводу проходит электричество. Поднимите гвоздь, чтобы все могли видеть. Спросите: Смогу ли я поднимать скрепки этим гвоздем? Будет ли он действовать как магнит? Поднесите гвоздь к скрепкам, чтобы продемонстрировать, что вы не можете поднять скрепки, используя только гвоздь. Теперь вставьте гвоздь в спираль, которую вы сделали перед уроком. Спросить: Смогу ли я поднять скрепки с помощью гвоздя, теперь, когда он обернут металлической спиралью? Поднесите гвоздь со спиралью к скрепкам, чтобы продемонстрировать, что вы все еще не можете поднять скрепки. Объясните, что вы собираетесь превратить гвоздь и катушку в электромагнит с помощью батарейки.

 

Следуйте инструкциям в разделе «Настройка», чтобы создать электромагнит перед занятием. В классе поместите батарею типа D в держатель для батареи типа D. Прикрепите один конец провода к каждой из клемм на держателе батареи. Попросите класс предсказать, что произойдет, если вы поднесете гвоздь, свернутый в спираль и подключенный к батарее, рядом со скрепками. Держите гвоздь рядом со скрепками. Объясните, что теперь он поднимает скрепки, потому что вы создали электромагнит, добавив электричество. Гвоздь намагничивается, потому что через катушку протекает электрический ток. Обязательно отсоедините провода от аккумулятора, чтобы он не перегревался.

 

4. Объясните, что для создания крутящего момента можно использовать электричество и магнетизм.

Объясните, что крутящий момент является мерой силы вращения. Продемонстрируйте крутящий момент для класса. Вызовите добровольца вперед и попросите ученика держать резинку за два конца. Вставьте пластиковую ложку в центр резинки и крутите ее по кругу, пока резинка не станет тугой и перекрученной. Попросите класс предсказать, что произойдет, если вы отпустите ложку. Отпусти ложку. Объясните, что при приложении к резинке скручивающего движения создается сила вращения, называемая крутящим моментом. Крутящий момент можно использовать для питания механических устройств, таких как роботы-манипуляторы и системы мобильности, где шестерни используются для регулирования скорости, с которой применяется этот крутящий момент. Крутящий момент — это также сила вращения, которую вы используете, открывая бутылку газировки или используя гаечный ключ, чтобы ослабить или затянуть гайку.

 

Расскажите классу, что крутящий момент можно создать с помощью сил электричества и магнетизма — притяжения и отталкивания, проявляемых магнитами, свидетелями которых они были ранее. Объясните, что они будут собирать в классе простой двигатель, использующий эти принципы.

 

5. Учащиеся выдвигают гипотезу о двигателях, слушают инструкции по технике безопасности, а затем конструируют простой двигатель для проверки своей гипотезы.

Спросите: Как можно использовать движение, создаваемое простым двигателем, для обеспечения движения другого объекта? Напишите предложения учащихся на доске. Продолжайте задавать вопросы, пока предложения не будут сведены к одной проверяемой гипотезе, разработанной всем классом. (Гипотеза представлена ​​в разделе «Советы», если она вам нужна.) Объясните, что учащиеся должны построить простой двигатель, чтобы использовать его в эксперименте для проверки этой гипотезы.

 

Перед раздачей материалов скажите учащимся, что они никогда не должны соединять положительный и отрицательный полюс батареи напрямую друг с другом с помощью провода или чего-либо другого проводящего, так как это создаст короткое замыкание и приведет к выходу батареи из строя. сильно нагреваться и может привести к болевому шоку. Кроме того, попросите студентов немедленно разобрать свой проект, если какая-либо часть станет горячей, а затем сообщить об этом преподавателю.

 

Разделите учащихся на группы по 2–4 человека. Раздайте каждой группе раздаточный материал «Как построить простой двигатель » и рабочий лист «Научный метод ». Вместе с классом просмотрите шаги из раздаточного материала «Как построить простой двигатель», а затем попросите каждую группу отправить по одному участнику, чтобы собрать предметы, которые потребуются группе для сборки двигателя. Попросите каждую группу заполнить разделы «проблема/вопрос» и «гипотеза» в своем рабочем листе «Научный метод». Учащиеся также записывают информацию о создании своего двигателя в разделе «Процесс». Следите за прогрессом каждой группы по мере их создания. Спроектируйте фотогалерею Build a Simple Motor, в которой при необходимости документируется каждый шаг из раздаточного материала How to Build a Simple Motor. Задавайте вопросы каждой группе и помогайте по мере необходимости.

 

6. Учащиеся планируют эксперимент для проверки своей гипотезы с использованием простого двигателя.

Когда все группы успешно соберут свои моторы, предложите им поделиться своим опытом с остальным классом. Затем, работая в своих группах, предложите учащимся спланировать эксперимент, используя свою моторику, чтобы проверить гипотезу, выдвинутую классом ранее. Предложите учащимся нарисовать экспериментальную установку в своих группах, подписать свои рисунки и написать полное описание шагов, которые они предпримут, в процедурной части рабочего листа «Научный метод».

 

7. Попросите группы поделиться описаниями своих экспериментов и обсудите в классе сходства и различия между всеми экспериментами для проверки одной и той же гипотезы .

Спросите: Что общего у экспериментов? Чем отличались эксперименты? Если позволяет время, устройте демонстрацию, где группы смогут изучить чертежи установки эксперимента других групп. Предложите учащимся представить, как двигатель может приводить в действие более крупные объекты, например робота. (Двигатели обычно используются для обеспечения движения механических структур робота; например, колеса для перемещения робота или рука для взаимодействия с окружающей средой.)

Неформальное оценивание

Соберите рабочий лист учащихся по научному методу, схему и описание эксперимента и оцените полноту.

Расширение обучения

Запасите все дополнительные материалы, необходимые для проведения одного или нескольких экспериментов учащихся, и попросите учащихся провести эксперимент и заполнить оставшуюся часть рабочего листа «Научный метод».

Предметы и дисциплины
  • Физика
Цели обучения

Учащиеся будут:

  • Разрабатывать научную гипотезу в условиях сотрудничества
  • Построить рабочую модель простого двигателя
  • Объясните, как работает двигатель с использованием электромагнитных сил
  • Разработать эксперимент для проверки гипотезы
Подход к обучению
  • Обучение для использования
Методы обучения
  • Экспериментальное обучение
  • Практическое обучение
Обзор навыков

Это задание направлено на следующие навыки:

  • Навыки критического мышления
    • Анализ
    • Применение
    • Создание
    • Оценка
    • Вспоминая
    • Понимание
  • Научная и инженерная практика
    • Задавать вопросы (для науки) и формулировать проблемы (для техники)
    • Построение объяснений (для науки) и разработка решений (для инженерии)
    • Разработка и использование моделей
    • Получение, оценка и передача информации

Связь с национальными стандартами, принципами и практиками

Национальные стандарты научного образования
  • (5-8) Стандарт A-1: Способности, необходимые для проведения научных исследований
  • (5-8) Стандарт А-2: Понимание научных исследований
  • (5-8) Стандарт Б-3: Передача энергии
Научные стандарты следующего поколения
  • Энергетика: ГС-ПС3-5. Разработайте и используйте модель двух объектов, взаимодействующих через электрические или магнитные поля, чтобы проиллюстрировать силы между объектами и изменения энергии объектов из-за взаимодействия.
  • Энергия: ГС-ПС3-3. Спроектируйте, создайте и усовершенствуйте устройство, которое работает с заданными ограничениями для преобразования одной формы энергии в другую форму энергии.
  • Инженерный проект: МС-ETS1-4. Разработайте модель для генерации данных для итеративного тестирования и модификации предлагаемого объекта, инструмента или процесса, чтобы можно было достичь оптимального дизайна.
  • Инженерный проект: МС-ЭТС1-1. Определить критерии и ограничения проблемы проектирования с достаточной точностью, чтобы гарантировать успешное решение, принимая во внимание соответствующие научные принципы и потенциальное воздействие на людей и природную среду, которое может ограничить возможные решения.
  • Инженерный проект: МС-ETS1-2. Оцените конкурирующие проектные решения, используя систематический процесс, чтобы определить, насколько хорошо они соответствуют критериям и ограничениям проблемы.
  • Инженерный проект: МС-ETS1-3. Проанализируйте данные тестов, чтобы определить сходства и различия между несколькими проектными решениями, чтобы определить лучшие характеристики каждого из них, которые можно объединить в новое решение, чтобы лучше соответствовать критериям успеха.
  • Движение и устойчивость: силы и взаимодействия: МС-ПС2-5. Проведите исследование и оцените план эксперимента, чтобы получить доказательства существования полей между объектами, воздействующими друг на друга, даже если объекты не находятся в контакте.
  • Движение и устойчивость: силы и взаимодействия: МС-ПС2-3. Задайте вопросы о данных, чтобы определить факторы, влияющие на силу электрических и магнитных сил.
  • Движение и устойчивость: силы и взаимодействия: ГС-ПС2-5. Спланируйте и проведите исследование, чтобы предоставить доказательства того, что электрический ток может создавать магнитное поле и что изменяющееся магнитное поле может создавать электрический ток.

Что вам понадобится

Материалы, которые вы предоставите
  • 1 1 магнит в виде пончика ¼ дюйма на группу
  • 1 держатель батареи типа D на группу
  • 1 батарея типа D на группу
  • 1 карандаш на группу
  • 1 резинка на группу
  • 1 лист наждачной бумаги на группу
  • 1 маленькая игрушечная машинка
  • 2 английских булавки на группу
  • 45–60 см (18–24 дюйма) изолированного магнитопровода 20-го калибра (медный эмалированный провод 20-го калибра) на группу
  • Карандаши
  • Малярная лента
  • Гвозди
  • Бумага
  • Пластиковая ложка
Требуемая технология
  • Доступ в Интернет: Требуется
Физическое пространство
  • Класс
Настройка

Комната должна быть оборудована таким образом, чтобы учащиеся могли легко работать в группах.

Соберите и испытайте электромагнит перед уроком. Намотайте 40 см (15 дюймов) изолированного магнитного провода на стальной гвоздь, оставив два конца по 10 см (4 дюйма) отходящими от гвоздя с обоих концов. Используя наждачную бумагу, удалите 2,5 см (1 дюйм) изоляции с каждого конца провода, отходящего от гвоздя. Гвоздь должен легко входить и выходить из катушки, сохраняя при этом хороший контакт с проволокой. Проверьте электромагнит. Поместите батарею типа D в держатель батареи. Прикрепите один конец провода к каждой из клемм, создав цепь. Попробуйте использовать гвоздь, чтобы подобрать маленькие скрепки. По окончании проверки отсоедините провода от аккумулятора и вытащите гвоздь из катушки. Бросьте гвоздь на землю, чтобы размагнитить его перед демонстрацией в классе.

Группировка
  • Инструкция большой группы

Исходная информация

Двигатели преобразуют электрическую энергию во вращательное движение, называемое крутящим моментом. Многие роботы используют крутящий момент, обеспечиваемый двигателями, для вращения колес или для перемещения шарнирных частей рук или ног. Эти двигатели известны как исполнительные механизмы. В простом двигателе, построенном в классе, используется катушка, которая является временным электромагнитом. Эта катушка получает силу, чтобы помочь создать крутящий момент от электрического тока, подаваемого аккумулятором. Магнит-бублик, используемый в двигателе, является постоянным магнитом, что означает, что у него есть северный и южный полюса, которые постоянно находятся на месте. Силы магнетизма и электричества работают вместе, заставляя катушку двигателя вращаться. Полюса постоянного магнита отталкивают одноименные полюса временного магнита, заставляя катушку совершать половинный оборот. После этого первого полуоборота изолированная часть провода (часть, которая не была отшлифована) входит в контакт с предохранительными булавками, и поток электричества прекращается и позволяет гравитации тянуть катушку до тех пор, пока не отшлифуется часть провода. проволока снова соприкасается с предохранительными штифтами. Электричество снова течет, и процесс начинается снова. Мощность двигателя или величина крутящего момента определяется напряжением аккумулятора и длиной провода в катушке; чем больше катушек, тем сильнее магнитное поле, тем больше крутящий момент.

 

Предварительные знания

  • Знание основных схем
  • Знание основных свойств магнитов

Рекомендуемая предшествующая деятельность

  • Строительные схемы
  • Схемы с друзьями

Словарь

инерция

Существительное

свойство материи, благодаря которому она остается в покое или в равномерном движении, если на нее не действует какая-либо внешняя сила.

изоляция

Существительное

любое из различных веществ, блокирующих или замедляющих прохождение электрических или тепловых токов.

магнит

Существительное

материал, обладающий способностью физически притягивать другие вещества.

магнитное поле

Существительное

область вокруг и под действием магнита или заряженной частицы.

магнетизм

Существительное

сила, благодаря которой объекты притягиваются или отталкиваются друг от друга.

двигатель

Существительное

двигатель, используемый для создания движения.

полярность

Существительное

свойство иметь полюса или притягиваться к ним, такие как положительные и отрицательные электрические заряды.

вращение

Существительное

Полный оборот объекта вокруг своей оси.

крутящий момент

Существительное

момент силы или системы сил, стремящихся вызвать вращение.

Интерактивы

  • Интерактивная магнитная игра
Наконечники и модификации
Наконечник 903:30

Ознакомьтесь с действием, выполнив его самостоятельно заранее, так как может потребоваться немного проб и ошибок, чтобы заставить двигатель работать.

Наконечник

В некоторых случаях было бы лучше предложить учащимся гипотезу для проверки. Хороший пример гипотезы: чем больше петель в катушке, тем быстрее будет вращаться катушка.

Наконечник 903:30

Проецируйте фотогалерею «Собери простой мотор», пока учащиеся собирают свои моторы. Эти фотографии отражают каждый этап процесса.

Модификация

Учащиеся могут использовать iPad/iPhone, чтобы документировать в цифровом виде этапы сборки двигателя и этапы проверки своей гипотезы. Затем фотографии можно аннотировать с помощью приложения для рисования, такого как Skitch. Готовые проекты можно опубликовать в блоге или использовать в качестве мультимедийной презентации при сравнении результатов занятий.

Модификация

Это задание можно выполнить с младшими школьниками, сместив акцент на магнитные свойства и то, как их можно использовать для создания движения. Выполните только шаги 1–3 задания и дайте учащимся время поэкспериментировать с магнитами после этого.

Модификация

Чтобы выполнить шаги 5–7 с младшими учащимися, покажите классу предварительно собранный простой двигатель и то, как он работает.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *