Закрыть

Наведенные токи: причины возникновения и меры защиты

Содержание

причины возникновения и меры защиты

Ремонтные бригады довольно часто сталкиваются с проблемой наличия напряжения в разорванной цепи. Такое явление случается на воздушных линиях, нередко в бытовой электросети. Это так называемое наведенное напряжение, появляющееся на отключенных проводах вследствие воздействия электромагнитного поля, от работающих рядом электролиний.

Для лучшего понимания эффективности защитных мер при ремонте воздушных линий электропередач (ВЛ) рассмотрим более подробно физическую сущность наводки. Это поможет лучше понять механизмы защиты от поражения током, образовавшимся на отключенных проводах.

Определение наведенного напряжения

Официальная терминология наведённым напряжением называет потенциал, опасный для жизни, возникающий в результате электромагнитных воздействий параллельной воздушной линии или электричества циркулирующего в контактных сетях. Этот потенциал является паразитным, порождённым влиянием функционирующей параллельной линией электрической сети и прямо не относится к транспортируемому току. Отсюда и название – наведённое напряжение.

В чем опасность явления?

Наличие в проводах потенциала, наведённого переменным током или статическим электричеством часто невозможно предсказать. В этом кроется главная опасность наводки. На наведённое напряжение не реагируют штатные защитные приборы. На электромеханика, попавшего под действие наводки, будет действовать ток, пока он самостоятельно, либо с помощью напарника не высвободит руку или другую часть тела, соприкоснувшуюся с оголенным проводом.

Если в результате короткого замыкания на ВЛ произойдёт срабатывание защиты, отключающее рабочее напряжение, провода могут оказаться под наведённым током. Опасность также возникает при появлении грозовых разрядов, в т. ч. и междуоблачных.

Обратите внимание: штатная защита не реагирует на напряжения срабатывания, возникшие в результате наводки. Поэтому при отключенной ВЛ – следует применять особые схемы заземления, позволяющие создавать точки нулевого потенциала в конкретной зоне, при обслуживании линий.

Опасность обусловлена поведением наведённого тока. Дело в том, что источником тока является наводка от соседних ВЛ, распространяющаяся по всей длине провода не одинаково. Поэтому поведение таких токов отличается от привычного для нас рабочего электричества.

Наличие штатного линейного заземления не гарантируют безопасности, а наоборот, сопутствует появлению электрического тока в отсоединённых проводах. Как видно на рисунке 1, максимальный ток находится в точках заземления, то есть на заземляющих ножах.

Значение напряжений между заземляющими ножамиРис. 1. Значение напряжений между заземляющими ножами

В некоторых случаях целесообразно отключить заземления ВЛ, а для защиты использовать переносные заземления, которые устанавливают с каждой стороны от места повреждения, как можно ближе к точке проведения работ.

Причины возникновения

Для начала рассмотрим физическую картину возникновение наводки, а потом выясним причины явления в различных ситуациях:

  • на воздушной линии;
  • электроустановках;
  • в квартире;
  • электропроводке.

Если расположить параллельно два длинных проводника и по одному из них пропустить переменный ток, то на втором возникнет напряжение. Причём проявится электромагнитное влияние и действие электростатической составляющей. Величины электрических потенциалов на неподключённом проводнике зависят от длины, расстояния между проводами, а также от тока нагрузки. Подобные явления происходят и в реально действующих линиях энергоснабжения.

На воздушной линии (ВЛ)

Ток, который создаёт электростатическая составляющая, имеет одинаковый потенциал по всему проводнику: Uэ = k×Uв, где Uэнаведённое электростатическое напряжение,

k является коэффициентом ёмкостной связи, а Uврабочее влияющее напряжение. Очевидно, что наведённое напряжение зависит от разницы потенциалов на проводах параллельно расположенной влияющей линии.

Заметим, что электростатическое напряжение является результатом не только действия расположенных поблизости электромагнитных полей фазных проводов. Любое статическое электричество вызывает такой же эффект. Например, в северных широтах статическую наводку может вызвать полярное сияние, а также, упомянутые выше грозовые разряды (показано на рисунке ниже).

Статическое напряжение от полярного сиянияРис. 2. Статическое напряжение от полярного сияния

Для устранения электростатического потенциала достаточно заземлить провод в любом месте.

Компонент напряжения электромагнитной составляющей, сильно отличается от статического. Потенциал возникает вследствие действия электромагнитных полей, образованных токами проводов фазы. На рисунке 3 показана схема образования наведённого напряжения.

Электромагнитная составляющая наведённого напряженияЭлектромагнитная составляющая наведённого напряжения

Важные особенности электромагнитной составляющей:

  • её величина пропорциональна рабочем току ВЛ;
  • зависит от расстояния до влияющей воздушной линии;
  • на наведённый потенциал влияет протяжённость взаимодействующих проводов;
  • выраженная зависимость от схемы переносного заземления ВЛ и от сопротивления заземления.

Наведённая ЭДС в этом случае вычисляется по формуле:

M × L× I, 

Здесь

M – коэффициент индуктивной связи, L – протяжённость параллельного участка, I – сила тока влияющей линии.

Как видно из формулы, величина напряжения провода фазы не влияет на ЭДС.

В конкретной точке x наведённое напряжение можно вычислить по формуле:

U = – (E*x)/L+ E/2 , где E – ЭДС, L – длина параллельного следования, x – расстояние от точки вычисления напряжения до начала линии.

Очевидно, что напряжение в точке отсечения (где x  = 0) принимает значение: U = + E/2 , в середине линии (x равняется условной единице) U = 0, а в конечной точке U = – E/2. Понятно, что напряжение уже не является константой на всём участке проводов линии. Оно линейно изменяется между заземлениями, образуя нулевой потенциал в определённой точке. Если заземление одно, тогда положение нулевой точки находится в месте входа заземляющего ножа.

На схемах, приведённых ниже (рисунок 4), видно как распределяется наведённое напряжение. Обратите внимание, как перемещается точка нулевого потенциала и как она зависит от выбранного способа заземления.

Схемы распределения наводимого напряжения в зависимости от расположения точек заземленияРис. 4. Схемы распределения наводимого напряжения в зависимости от расположения точек заземления

Из схематических изображений видно, как работа обслуживающего персонала одновременно в нескольких местах отключённой ВЛ может представлять опасность. Ввиду несимметрии токов наведённое напряжение может распределиться таким образом, что нулевые потенциалы сдвинутся за пределы рабочего пространства людей. Вследствие этого ремонтники могут оказаться под опасным воздействием наведённого напряжения.

В электроустановках

Ввиду того, что стационарные электроустановки неразрывно связаны с ВЛ, существует вероятность попадания наведённого напряжения на токоведущие части оборудования. Чаще всего это случается при обрыве нуля.

Особенность электроустановок в том, что там используются изолированные кабели, в которых плотно уложены провода. Хотя длина такой проводки обычно незначительна, однако, наводка в кабеле может иметь существенный потенциал (из-за плотного размещения проводов). Поэтому при работе с электроустановками необходимо обеспечивать защитные меры по снятию опасного наведённого напряжения, использовать средства индивидуальной защиты, отвечающие классу напряжения. Необходимо придерживаться ПУЭ, выставлять ограждения для соблюдения безопасных расстояний к токоведущим частям электроприборов.

В квартире

Наводка в обычной бытовой сети наблюдается при обрыве нулевого провода на входе или на участке воздушной линии. Если поискать индикатором фазу в розетке – он покажет напряжение на каждом из выходов. В действительности же, рабочее напряжение существует на проводе фазы, а на нулевом – наблюдается ток наводки. При устранении неисправности всё становится на свои места.

Поскольку поиск и ликвидация неисправности в квартире проводится при отключенных предохранителях, то тем самым обеспечивается необходимая защита.

В электропроводке

Электропроводка в доме монтируется с использованием двух-, а иногда трёхжильных проводов. Обычно кабели укладываются в короба, откуда выходят разветвления. Если выключатель разъединяет нулевой провод, то при такой укладке в нём неизбежно появится наводка. Возникает напряжение безопасной величины, однако его достаточно для зажигания диодного освещения (выключенные диодные лампы тускло светятся). Проблема решается просто – необходимо на выключателе поменять местами провода фазы и нуля.

Известны случаи, когда для заземления розетки использовался провод трёхжильного кабеля. На этом проводнике всегда присутствует довольно ощутимое наведённое напряжение. Поэтому для заземления используйте отдельный одножильный кабель большого сечения и прокладывайте его как можно далее от проводки с номинальными напряжениями.

Меры защиты

Учитывая то, что наведённые токи могут достигать предельно опасных значений, особенно на участках ВЛ или в электроустановках, при их обслуживании следует применять меры защиты [ 2 ]:

  • использовать сигнализаторы напряжения;
  • обеспечивать безопасный уровень напряжения на участках, где предстоит работа;
  • использовать защитную одежду, диэлектрические коврики и т.п.;
  • пользоваться указателями напряжения, универсальными электроизолирующими штангами для оценки значений токов наводки.
  • применять приспособления для снятия напряжений.

Перед проведением работ на линиях с наводкой устанавливайте переносные заземления с двух сторон повреждённого участка ВЛ на небольшом расстоянии. Заземляйте провода с поверхности земли, используя изоляционные штанги. Выдерживайте расстояния срабатывания защиты заземлений.

На рисунке 5 показано как влияет расстояние от заземления на снижение наведённого напряжения.

Снижение наведённого напряженияРис. 5. Снижение наведённого напряжения

Измерение напряжения проводите в изолирующих перчатках и ботах, а измерительные приборы располагайте на ковриках или подставках. Используйте только те измерительные устройства, которые предназначены для указанных целей и рассчитаны на измерение в соответствующих пределах. Помните, что штатные защитные приспособления для наведённого тока не предназначены. Нельзя проводить измерения в условиях тумана, осадков, а также при сильном ветре.

Всегда проверяйте наличие фазного тока на всех проводах. Если с помощью прибора УПСФ-10 вы определили линейное рабочее напряжение, то использовать переносное заземление запрещается.

В целях безопасности всегда считайте нулевой кабель таким, что находится под напряжением.

Видео в тему


Наведенное напряжение, что это такое, как защитится

Наведенное напряжение — невидимый враг, который в электрических сетях с высоким U может привести к сильным ожогам, нарушению работы внутренних органов и даже смерти.

В бытовой сети такие риски отсутствуют из-за низкого потенциала, но игнорировать опасность все равно не стоит.

Ниже рассмотрим, что такое наведенное напряжение, и как от него защититься. Укажем причины появления такого фактора на ВЛ (высоковольтной линии), в проводке, квартире и электрических установках.

Знание этих особенностей позволит защититься от негативных воздействий и лучше понимать природу электрического тока в целом.

Что это такое?

Под термином «наведенное напряжение» скрывается потенциал, который возникает в зоне электромагнитного влияния действующих электроустановок или проводников электротока.

Такая наводка может возникать в зоне высоковольтных линий, электрических установок высокого U и даже бытовой сети. Явление наведенного напряжения состоит из 2-х составляющих, которые рассмотрим подробнее.

Электростатика

Создание потенциала объясняется распространением электрического поля от источника электричества, находящегося в непосредственной близости.

Наибольшее воздействие характерно для двух проводов, которые расположены рядом и находятся параллельно друг относительно друга. При этом один находится под U, а второй нет.

Величина наведенного напряжения зависит от следующих аспектов:

  1. Размер разности потенциалов.
  2. Расстояние от источника питания с напряжением до другого элемента.

Для лучшего понимания систему можно сравнить с одним или несколькими конденсаторами. Формально наводка формируется по всей длине проводника.

Во избежание накопления заряда необходимо заземлить отключенный проводник. В таком случае наведенное напряжение пойдет в землю, а работа будет безопасна для человека.

Для расчета статического напряжения необходимо перемножить два элемента:

  1. Коэффициент емкостного воздействия. Его размер можно получить в справочнике, а сам параметр зависит от расстояния до источника U и типа проводника.
  2. Рабочее напряжение.

Чем больше U и чем ближе находится проводник, тем выше наведенный параметр.

Для расчета максимального наведенного напряжения применяется формула:

Электромагнитная составляющая

Существует еще один тип наводки — ЭМ наведенное напряжение. Его суть состоит в распространении магнитного поля на определенной территории во все стороны от проводника.

Чем сильнее ЭМ поле, тем выше наведенное U в отключенном проводнике.

Наведенная ЭДС в отключенной линии электропередача будет равна:

При заземлении проводника в месте соединения с землей потенциал будет равен нулю, но по мере удаления от этого места он увеличится. Это означает, что максимальный параметр разницы потенциалов будет на наиболее удаленных концах линии (ВЛ или КЛ).

Напряжение в точке х относительно земли будет равно:

В чем опасность?

Наведенное напряжение имеет не меньшую опасность, чем обычный потенциал. Если при КЗ проводника работает релейная защита и отсекает аварийный участок, в случае с наведенным U все сложнее. Здесь защитные устройства не сработают, поэтому человек может оказаться под длительным воздействием негативных факторов.

При КЗ на рабочей линии, которая находится возле отключенного участка, на обесточенной ВЛ наведенное напряжение увеличивается в несколько раз. В результате ремонтный персонал оказывается под действием наведенного U, что может привести к ожогам и даже остановке сердца. Величина параметра может достигать 10-20 тысяч Вольт.

В ПУЭ прописано, что U выше 25 В уже опасно для здоровья человека. Вот почему важно внимательно подходить к этому обстоятельству и принимать меры, обеспечивающие дополнительную защиту. Как защититься от проводки, будет рассмотрено ниже в статье.

Причины появления

При рассмотрении вопроса, связанного с наводкой, важно понимать причины его появления. Для лучшего понимания рассмотрим несколько ситуаций — для квартиры, электрической проводки, электроустановок и ВЛ.

В квартире

Наводка в обычной сети 220 В появляется при обрыве 0-го проводника на ВЛ или до входа в квартиру (дом). Если проверить напряжение с помощью индикатора, лампочка будет светиться в любом из отверстий.

На самом деле, U присутствует только на одном из проводов (фазном), а второй принимает наведенный потенциал. Появляется такое явление, как две фазы в розетке.

После восстановления линии или возврата нуля ситуация нормализуется.

При выполнении ремонтных работ в квартире необходимо отключить входной автомат или достать предохранители, чтобы исключить попадание под напряжение.

В электропроводке

Одним из признаков наведенного напряжения является свечение экономки при отключенном свете. При этом напряжение может достигать 40-60 В.

Такая ситуация возникает при параллельной прокладке линий, питающих розетки и осветительные устройства в квартире.

Для устранения проблемы необходимо пересмотреть маршруты проводки и убедиться в правильности выполнения заземления или зануления.

Но существует еще одна причина. При создании проводки используются 2-х или 3-х жильные провода. Как правило, кабельная продукция укладывается в короба, откуда проводники направляются к своим потребителям.

Если выключатель разделяет не фазный, а нулевой провод, появляется наведенное U. Оно имеет небольшую величину, как отмечалось выше, но ее достаточно для зажигания диодного освещения.

Для решения проблемы необходимо поменять фазу и ноль местами. Сделать это не всегда удается, ведь один из проводов с коробки идет напрямую к источнику света и не проходит через выключатель.

В электроустановках

Выключатели, силовые трансформаторы, трансформаторы тока и напряжения, а также другие электроустановки неизбежно связаны с линией электропередач. Вот почему они часто попадают под наведенное напряжение и чаще всего это происходит при обрыве 0-го проводника.

Во многих электроустановках применяются изолированные кабели, внутри которых находятся плотно уложенные проводники.

Несмотря на небольшую длину участков, может появляться сильная наводка с большими рисками для персонала. Вот почему при выполнении таких работ важно принимать защитные меры, использовать СИЗ и следовать требованиям ПУЭ.

На линии электропередач

Выше мы отмечали, что электростатическая составляющая наводки имеет идентичный потенциал по всей длине проводника. Для расчета нужного значения коэффициент емкостной связи умножается на рабочее влияющее напряжение.

Для обеспечения защиты работников достаточно одного заземления в любой точке.

Отметим, что статическое U может возникнуть не только при наличии рядом ЭМ полей, но и других факторов — молнии или полярного сияния.

В случае с электромагнитной составляющей, ситуация обстоит по-иному. Этот параметр зависит от расстояния до ВЛ под напряжением, величины рабочего тока, длины линии и сопротивления заземления.

Для расчета наведенного U необходимо перемножить три элемента:

  • коэффициент индуктивной связи;
  • длина участка параллельно расположенной линии;
  • сила тока ВЛ под напряжением.

В отличие от электростатической составляющей, заземления в одной точке недостаточно. Это связано с тем, что потенциал в заземленной точке будет нулевым, но при удалении от этого участка он увеличивается. Чем дальше провод от места заземления, тем выше наводка.

Вот почему при одновременной работе в разных местах персонал может оказаться под действием опасного U. Чтобы избежать проблем, необходимо установить заземление непосредственно в месте работы.

Как защититься, меры безопасности

Из сказанного видно, что наведенное напряжение несет большие риски, что требует ответственности реализации мероприятий по защите людей от попадания в опасную зону.

Организационные меры безопасности:

  1. Работники, выполняющие работы в области наводки, должны иметь 3-ю группу по электробезопасности, а руководитель работ — 4-ю.
  2. Наличие опыта работ по ремонту и обслуживанию силовых линий, а также элементов молниезащиты.
  3. Организация параметра безопасности возле рабочего места, выполнение мероприятий, указанных в заявке и наряде-допуске.
  4. Нулевой провод в измеряемой группе считается таковым, что находится под U.
  5. Начало и завершение работ оформляется в письменном виде. Как правило, заполняется журнал допуска с подписью работников, заполняется наряд-допуск.

Измерения и работы нельзя проводить в условиях сильного тумана или ветра, осадков или плохой видимости. Если в процессе измерений работник выявляет поврежденный элемент ВЛ или КЛ, работы останавливаются до устранения неполадки.

При работе на линиях с наводкой необходимо учесть следующие нюансы:

  1. Заземление должно находиться в зоне видимости рабочего места.
  2. При наличии только статического напряжения достаточно одного заземления, но для надежности лучше установить заземлитель в двух местах. Если одно из устройств выйдет из строя, второе подстрахует.
  3. В случае с электромагнитной проводкой принимаются более серьезные меры безопасности. В этом случае заземление ставится непосредственно на рабочем месте. В этом случае наведенный потенциал в месте выполнения работ будет равен нулю.

Заземление — надежный способ защититься от наведенного напряжения. Но даже в этом случае отключенная линия будет находиться под негативным воздействием.

Для работы можно выбрать один из вариантов:

  1. Отключение электроустановок, которые находятся параллельно к рабочей линии. В таком случае ремонтные работы должны выполняться как можно быстрее, чтобы исключить простой потребителей без электричества или длительное снижение надежности сети.
  2. Разделение ремонтируемой линии на несколько участков, которые не имеют электрической связи. Здесь работает принцип, который упоминался выше. Речь идет о том, что величина наводки напрямую зависит от длины участка.
  3. Работы под напряжением или с его отключением, но с применением специальных средств персональной защиты. В таком случае действия работника несколько скованы, но зато удается избежать отключения или снижения надежности сети.

Для обеспечения личной безопасности применяются следующие изделия:

  1. Сигнализаторы напряжения — показывают факт наличия U или наводки.
  2. Применение защитной одежды и ковриков на диэлектрической основе во избежание прохождения тока через организм человека.
  3. Использование указателей напряжения, а также электроизолирующих штанг для проверки уровня наведенного U.
  4. Работа в ботах и изолирующих перчатках.

При использовании измерительных устройств и СИЗ необходимо ориентироваться на класс U, для которого они предусмотрены.

Итоги

Опасность наведенного напряжения нельзя недооценивать. При отсутствии необходимой защиты и нахождении отключенной линии в зоне влияния проводника под напряжением наводка может оказаться опасной для жизни.

Осознание возможных рисков, установка заземлений, следованием правилам ПУЭ и применение СИЗ позволяет свести опасность к минимуму.

Эти правила обязательны к выполнению в электроустановках, на КЛ и ВЛ, а также должны приниматься во внимание при выполнении работы в бытовой сети 220 В.

наведенный ток — это… Что такое наведенный ток?


наведенный ток

3.41 наведенный ток: Ток, возникающий в отключенных и заземленных линиях в результате емкостного и индуктивного взаимодействия с соседними линиями, находящимися под напряжением.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • наведенный в токопроводящих линейных элементах технических средств сигнал
  • навершие

Смотреть что такое «наведенный ток» в других словарях:

  • наведенный ток — Ток, возникающий в отключенных и заземленных линиях в результате емкостного и индуктивного взаимодействия с соседними линиями, находящимися под напряжением [ГОСТ Р 52726 2007] Тематики высоковольтный аппарат, оборудование … EN induced current …   Справочник технического переводчика

  • наведенный ток электрода — Составляющая тока электрода, обусловленная движением всех заряженных частиц, находящихся в междуэлектродном промежутке …   Политехнический терминологический толковый словарь

  • номинальный наведенный ток — Максимальный наведенный ток, который заземлители способны включать и отключать при номинальном наведенном напряжении [ГОСТ Р 52726 2007] Тематики высоковольтный аппарат, оборудование …   Справочник технического переводчика

  • номинальный наведенный ток — 3.56 номинальный наведенный ток: Максимальный наведенный ток, который заземлители способны включать и отключать при номинальном наведенном напряжении. Источник: ГОСТ Р 52726 2007: Разъединител …   Словарь-справочник терминов нормативно-технической документации

  • наведенный в токопроводящих линейных элементах технических средств сигнал — 3.5 наведенный в токопроводящих линейных элементах технических средств сигнал; наводка: Ток и напряжение в токопроводящих элементах, вызванные электромагнитным излучением, емкостными и индуктивными связями. Источник: ГОСТ Р 51275 2006: Защита… …   Словарь-справочник терминов нормативно-технической документации

  • паразитный ток — Протекающий по кабелю наведенный ток, способный вызвать повреждение оборудования линии связи из за перегрева, и в то же время его уровень недостаточен для срабатывания системы защиты. Такой ток обычно возникает вследствие плохого заземления или… …   Справочник технического переводчика

  • номинальный емкостной ток — IС, А Максимальный наведенный электростатическим полем ток в случае, когда один конец линии передачи отключен, а коммутация на землю осуществляется на другом ее конце. [ГОСТ Р 52726 2007] Тематики высоковольтный аппарат, оборудование …   Справочник технического переводчика

  • номинальный индуктивный ток — IL, А Максимальный наведенный электромагнитным полем ток в случае, когда один конец линии передачи заземлен, а коммутация на землю осуществляется на другом ее конце [ГОСТ Р 52726 2007] EN FR Тематики высоковольтный аппарат, оборудование …   Справочник технического переводчика

  • номинальный емкостной ток IC — 3.53 номинальный емкостной ток IC , А: Максимальный наведенный электростатическим полем ток в случае, когда один конец линии передачи отключен, а коммутация на землю осуществляется на другом ее конце. Источник …   Словарь-справочник терминов нормативно-технической документации

  • номинальный индуктивный ток IL, А — 3.54 номинальный индуктивный ток IL, А: Максимальный наведенный электромагнитным полем ток в случае, когда один конец линии передачи заземлен, а коммутация на землю осуществляется на другом ее конце. Источник …   Словарь-справочник терминов нормативно-технической документации

Особенности работы электронных ламп на СВЧ

Для более правильного понимания работы электронных ламп на СВЧ необходимо познакомиться с наведенными токами в цепях электродов этих ламп.

При рассмотрении работы ламп обычно для упрощения считают, что ток в цепи какого-либо электрода возникает благодаря попаданию на этот электрод потока электронов, летящих внутри лампы. Такой поток электронов внутри лампы называют конвекционным током. Более глубокое изучение работы электронных ламп показало, что ток во внешней цепи любого электрода представляет собой наведенный (индуцированный) ток, сущность которого легко уяснить, если вспомнить явление электростатической индукции.

Рис. 24.3. Схема электростатической индукции

 

Пусть имеется незаряженный проводник А (рис. 24.3), к одному концу которого приближается отрицательно заряженный конец проводника Б. Тогда некоторое число электронов проводника А, отталкиваемых зарядом проводника Б, уйдет на другой конец проводника А и там возникнет отрицательный заряд. На ближнем к индуцирующему заряду конце проводника А будет недостаток электронов, т.е. появится положительный заряд. При этом вдоль проводника А пройдет ток, который и будет наведенным током. Его значение тем больше, чем больше индуцирующий заряд и чем быстрее он приближается к проводнику А. Если удалять проводник Б от проводника А, то электроны будут возвращаться, и, следовательно, в проводнике А пройдет ток обратного направления, значение которого по-прежнему будет определяться скоростью движения проводника Б и индуцирующим зарядом.

Итак, если электрический заряд приближается к какому-либо проводнику или удаляется от него, то в этом проводнике появляется наведенный ток.

В электронных лампах функцию индуцирующего отрицательного заряда выполняет поток электронов, т. е. конвекционный ток. Этот ток всегда возбуждает наведенные токи в проводах, соединенных с электродами лампы. Наведенный ток увеличивается при увеличении числа и энергии летящих электронов, а также при уменьшении расстояния между ними и данным электродом.

Пусть, например, на анод диода с накаленным катодом подается постоянное напряжение. Тогда от катода к аноду внутри лампы начнет двигаться поток электронов, который вызовет наведенный ток во внешней части анодной цепи. Таким образом, анодный ток возникает не в тот момент времени, когда электроны достигают анода, а в момент, когда они начинают удаляться от катода.

В статическом или квазистатическом режиме, когда tпр << Т, наведенный ток в анодной цепи диода равен конвекционному току. Это позволяет для данных режимов вообще не вводить понятие «наведенный ток». Но на СВЧ, когда за время пролета электронов от одного электрода к другому напряжения значительно изменяются, необходимо рассматривать наведенные токи в цепях электродов. Можно представить себе даже такой случай, когда электроны совершают колебания, например, в промежутке катод — анод, но из-за своей инерции не попадают на анод. Однако они создают в анодной цепи наведенный ток.

С учетом наведенного тока можно лучше понять преобразование энергии, совершающееся при движении электронов в электрическом поле. Рассмотрим для примера движение электронов в ускоряющем или тормозящем поле между двумя электродами, считая, что это поле создано источником ЭДС в виде батареи (рис. 24.4). Поток летящих внутри лампы электронов создает в цепи

Рис. 24.4. Наведенный ток при движении электронов в поле, созданном постоянным напряжением

 

С учетом наведенного тока можно лучше понять преобразование энергии, совершающееся при движении электронов в электрическом поле. Рассмотрим для примера движение электронов в ускоряющем или тормозящем поле между двумя электродами, считая, что это поле создано источником ЭДС в виде батареи (рис. 24.4). Поток летящих внутри лампы электронов создает в цепи батареи наведенный ток, направление которого совпадает с направлением конвекционного тока. Здесь, как и везде далее, стрелки показывают направление движения электронов от минуса к плюсу, а не условное направление тока от плюса к минусу. Нетрудно видеть, что при ускоряющем поле (рис. 24.4, а) наведенный ток, проходящий через батарею, будет для нее разрядным током. Батарея разряжается, т. е. расходует свою энергию, которая с помощью электрического поля передается летящим электронам и увеличивает их кинетическую энергию. А при тормозящем поле (рис. 24.4,б) наведенный ток, наоборот, будет для батареи зарядным током, т. е. электроны отдают свою энергию, которая накапливается в батарее. Процессы заряда и разряда аккумуляторной батареи наведенным током, конечно, не имеют практического применения в технике СВЧ и описаны только в качестве примера.

Рис. 24.5. Наведенный ток при движении электронов в поле, созданном переменным напряжением колебательного контура

 

Следует учитывать также возникновение наведенных токов в колебательных контурах, подключенных к лампе. На рис. 24.5 изображен колебательный контур, состоящий из индуктивности L и емкости С, которой может быть емкость между двумя электродами лампы. Пусть в контуре происходят свободные затухающие колебания. Тогда на зажимах контура и на электродах лампы будет переменное напряжение. Предположим, что между электродами движется поток электронов (каким способом он получен, пока не имеет значения).

Если поле, созданное напряжением электродов, тормозит электроны (рис. 24.5, а), то наведенный ток будет током, питающим контур. Действительно, направление этого тока таково, что создаваемое им в контуре напряжение совпадает по фазе с напряжением, имеющимся в контуре от свободных колебаний. Это значит, что наведенный ток препятствует затуханию колебаний. Иначе говоря, часть кинетической энергии летящих электронов передается в контур и поддерживает там колебательный процесс.

Но если поле, созданное переменным напряжением, будет ускоряющим для электронов (рис. 24.5,б), то наведенный ток создает в контуре падение напряжения, противоположное по фазе переменному напряжению свободных колебаний, т. е. способствующее более быстрому их затуханию. В данном случае контур тратит часть своей энергии на увеличение скорости полета электронов, и поэтому затухание колебаний в контуре усиливается.

Таким образом, для ослабления затухания, т. е. для поддержания колебаний в контуре, подключенном к электродам лампы, необходимо направлять в пространство между электродами поток электронов в те промежутки времени, когда электрическое поле будет тормозящим.

Чтобы лучше представить себе возникновение наведенного тока, следует изучить этот процесс в диоде. Полученные при этом выводы будут справедливы и для любой другой системы из двух электродов. Для упрощения рассуждений рассмотрим случай, когда анодное напряжение представляет собой импульс прямоугольной формы, длительность которого соизмерима с временем пролета. Графики этого напряжения и наведенного тока в проводах анода и катода диода приведены на рис. 24.6, а. На рис. 24.6,б показано для различных моментов времени распределение электронного потока, т.е. конвекционного тока, в промежутке анод — катод.

Рис. 24.6. Наведенный ток в диоде

 

В момент t1 электроны начинают двигаться от катода (точнее, от «электронного облачка» около катода) и возникает наведенный ток. Промежуток анод — катод еще не заполнен электронами. Через некоторое время, в момент t2, значительная часть этого промежутка уже заполнена электронами. Так как они движутся в ускоряющем поле, то скорость их больше, чем в момент t1,. Благодаря этому наведенный ток становится больше и скорость его нарастания увеличивается. В момент t3 электроны достигают анода и все пространство анод — катод заполнено движущимися электронами. Наведенный ток становится максимальным. Такое положение сохраняется до конца импульса напряжения (момент t4). после чего новые электроны уже не будут двигаться от катода к аноду. А электроны, заполняющие промежуток анод — катод, продолжают по инерции двигаться к аноду. Число их уменьшается, т. е. промежуток «очищается» от электронов, и соответственно уменьшается наведенный ток (момент t5). Когда в момент t6 в промежутке анод — катод не остается электронов, наведенный ток становится равным нулю. Как видно, импульс наведенного тока растянут во времени по сравнению с импульсом напряжения и отстает от последнего, т. е. позже достигает максимума и позже спадает до нуля.

Если после положительного импульса анодного напряжения последует отрицательный импульс, то часть электронов все же долетит до анода, а другая часть затормозится настолько, что остановится и станет возвращаться на катод.

Следовательно, возникает конвекционный ток обратного направления и соответственно создается импульс обратного наведенного тока. Аналогичные явления происходят и при подаче на диод переменного синусоидального напряжения.

 
Наведенное напряжение. Причины возникновения и опасность

Наводка напряжения на линиях воздушной электропередачи возникает не так уж редко. Это наведенное напряжение также возникает в бытовых условиях и в электроустановках, связанных с линиями электропередач. Это явление создает такую же опасность для жизни человека, как и рабочее напряжение. Для того, чтобы правильно защитить себя от такого опасного явления, необходимо рассмотреть природу его появления.

Причины возникновения

Наведенное напряжение может появиться на воздушной линии электропередач, которая выведена в ремонт и отключена от питания, из-за воздействия на нее находящейся рядом действующей электроустановки, либо другой линии под напряжением. Действие оказывает не сама линия или электроустановка, а их электромагнитное поле.

Поэтому, воздушная линия, параллельно протянутая возле обесточенной линии, наводит внешний потенциал, представляющий большую опасность для ремонтного и обслуживающего персонала. Величина такого наведенного напряжения не является постоянной, и меняется в зависимости от длины участка линии, параллельной действующей, а также значения рабочего напряжения, тока нагрузки, удаленности фазных проводников, погодных условий.

Наведенное напряжение на линии электропередач разделяется по видам воздействия:

  • Электромагнитная часть. Возникает вследствие воздействия магнитного поля, появляющегося от течения электрического тока по действующей линии электропередач. Особенностью и отличием такой составляющей является фактор того, что при заземлении линии в разных нескольких местах, электромагнитное влияние не исчезает и ее величина остается прежней. Влияет разве что нахождение точки нулевого потенциала.
  • Электростатическая составляющая. Она отличается от электромагнитной тем, что исчезает путем подключения заземления на краях линии и в месте производства работы. Уменьшить значение наведенного напряжения можно путем заземления одной точки линии.

Разберемся, отчего возникает наводка, и каков его принцип действия. На рисунке изображен проводник А-А. При прохождении по нему переменного тока образуется электромагнитное поле, действие которого снижается по мере удаления от провода (окраска менее яркая).

Пульсации электромагнитного поля также изменяются при изменении величины электрического тока и его направления. Если в это поле попадает другой проводник, то в нем возникает наводка. На рисунке показаны провода с подсоединенными приборами измерения для контроля значения напряжения.

Необходимо определить, какая величина напряжения будет опасной для человека, обслуживающего линию электропередач. Принято считать, что наличие на отключенной воздушной линии наведенного напряжения не более 25 вольт, предполагает применение защитных мер обычного использования.

Если это значение будет превышено, то требуются специальные средства безопасности и осуществление мероприятий, создающих необходимую степень защиты от опасного действия потенциала напряжения. Такими мерами являются отключение заземления по концам линии, подключение заземления на рабочем участке воздушной линии, а также возможен разрез проводника на отдельные части.

Опасность наведенного напряжения

Это явление считается более опасным и уникальным в отличие от действующего рабочего напряжения, ввиду того, что защитные устройства на него не действуют. Если электромонтер попадет под наводка, то под его действием он будет находиться, пока не освободится от него. А при воздействии рабочего напряжения срабатывает устройство защиты и электричество автоматически отключается.

При коротком замыкании на действующей линии осуществляется наводка на обесточенную линию, и ток возрастает в несколько раз. Это оказывает опасное воздействие на ремонтный персонал, работающий на обесточенной линии передач. Последствия таких наведений напряжения бывают очень серьезными: сильные ожоги тела, поражения током важных органов, летальные исходы. Поэтому необходимо соблюдать правила безопасности при работах на выключенных линиях электропередач.

Наведенное напряжение может достигать несколько десятков киловольт. Иногда приходится работать одновременно в нескольких местах. При работе с вышки, ее обязательно необходимо заземлить, при этом нельзя забывать о выравнивании потенциала провода заземления и корзины вышки, с которой производится работа. При заземлении линии по ее концам, на участке работы напряжение может превысить допустимую величину, так как нулевой потенциал сместится в точку между заземлениями. Если возникла необходимость работы на линии в нескольких местах, то вся линия должна быть разделена на отдельные участки, электрически не связанные между собой. На таком участке можно приступить к ремонту, заземлившись в одной лишь точке.

Для гарантии безопасности необходимо устанавливать на рабочем месте два заземления. Случится что-нибудь с одним заземлением – подстрахует второе. Это особенно необходимо, если предстоит разъединить провод. До разъединения провода заземление следует устанавливать с обеих сторон от места предполагаемого разрыва с обязательным подсоединением их к одному заземлению.

Теперь можно разъединить шлейф, не опасаясь, что замкнете на себя уравнительный ток между концами провода. Заземлив линию в единственной точке на участке только на месте работы, можете быть уверены, что вашей жизни ничто не угрожает.

Нельзя забывать об основных мерах безопасности при осуществлении различных измерений на линии. Соединительные провода, вольтметр и рама разъединителя могут быть под напряжением, поэтому для безопасности необходимо перед измерением собрать схему измерений, а потом уже подключать ее к проводникам фаз.

Соединительные проводники должны иметь изоляцию, которая рассчитана на минимальное напряжение 1 кВ. Работники должны находиться в диэлектрических перчатках и ботах. Если при измерении напряжения будет нужно изменить пределы шкалы прибора, то сначала отключают от напряжения всю схему измерений от воздушной линии.

Наведенное напряжение в квартире

Явление наводки напряжения кроме воздушных линий может возникать и в бытовых условиях в квартире, либо собственном доме в бытовой сети. Наводка возникает в кабеле, находящемся рядом с проводником, подключенным к бытовой сети. Рассмотрим это на примере.

При отключенном выключателе на лампах освещения, которые имеют в своей конструкции светодиоды, может появиться слабое свечение. Это явление образуется вследствие расположенного рядом проводника питания фазного напряжения. Поэтому при воздействии электромагнитного поля возникает наведенное напряжение, хотя и незначительное, но достаточное для слабого свечения светодиодов.

Другим примером может служить наведенное напряжение в розетке. Она появляется в том случае, если образовался обрыв провода ноля. При этом, измеряя индикатором в розетке напряжение, обнаруживаются две фазы. На самом деле фаза одна. Вторая фаза исчезнет после устранения обрыва нулевого проводника.

Похожие темы:
Что такое вихревые токи и какие меры принимают для их уменьшения

Что такое вихревые токи и почему их еще называют токами Фуко? Причины возникновения данного явления и способы применения.


В электричестве есть целый ряд явлений, которые нужно знать специалистам. Хоть и не вся информация может пригодиться в повседневной практике, но иногда поможет понять причину какой либо проблемы. Вихревые токи послужили причиной становления некоторых технологических ухищрений при изготовлении электрических машин и даже стали основой для принципа работы некоторых изобретений. Давайте разберемся, что такое вихревые токи Фуко и как они возникают. Содержание:

Краткое определение

Вихревые токи — это токи, которые протекают в проводниках под воздействием на них переменного магнитного поля. Не обязательно поле должно изменяться, может и тело двигаться в магнитном поле, все равно в нем начнёт течь ток.

Нельзя найти реальную траекторию движения токов для их учёта, ток протекает там, где находит путь с наименьшим сопротивлением. Вихревые токи всегда протекают по замкнутому контуру. Основные условия для его возникновения — нахождение предмета в переменном магнитном поле или его перемещение относительно поля.

История открытия

В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться. Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой. Это назвали, тогда как явление Араго.

Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.

Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.

На видео ниже предоставлено более подробное определение данного явления:

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Как снизить потери

Потери энергии в магнитопроводе не приносят пользы, тогда как с ними бороться? Чтобы снизить их величину сердечник набирают из тонких пластин электротехнической стали — это своеобразные меры профилактики для снижения паразитных токов. Такие потери описывает формула, по которой можно произвести расчет:

Как известно: чем меньше сечение проводника, тем больше его сопротивление, а чем больше его сопротивление, тем меньше ток. Пластины изолируют друг от друга окалиной или слоем лака. Сердечники крупных трансформаторов стягиваются изолированной шпилькой. Так снижают потери сердечника, т.е. это и есть основные способы уменьшения токов Фуко.

Какие последствия от влияния этого явления? Магнитное поле, возникающее из-за протекания токов Фуко ослабляет поле, из-за которого они возникли. То есть вихревые токи уменьшают силу электромагнитов. То же самое касается и конструкции деталей электродвигателей и генератора: ротора и статора.

Применение на практике

Теперь о полезных сферах применения токов Фуко. Огромный вклад был внесен в металлургию изобретением индукционных сталеплавильных печей. Они устроены таким образом, что расплавляемую массу металла помещают внутри катушки, через которую протекает ток высокой частоты. Его магнитное поле наводит большие токи внутри металла до его полного плавления.

Примечание автора! Развитие индукционных печей значительно повысило экологичность производства металла и изменило представление о методах плавки. Я работаю на металлургическом комбинате, где десять лет назад запустили новый высокотехнологичный цех с такими установками, а спустя несколько лет после освоения нового оборудования был закрыт классический мартен. Это говорит о продуктивности такого способа нагрева металлов. Также используются вихревые токи для поверхностной закалки металла.

Наглядное применение на практике:

Кроме металлургии они используются на производстве электровакуумных приборов. Проблемой является полное удаление газов перед герметизацией колбы. С помощью токов Фуко электроды лампы разогревают до высоких температур, таким способом деактивируя газ.

В быту вы можете встретить кухонные индукционные плиты, на которых готовят пищу, благодаря как раз применению данного явления. Как видите, вихревые токи имеют свои плюсы и минусы.

Токи Фуко несут и пользу, и вред. В некоторых случаях их влияние влечёт за собой не электрические проблемы. Например, трубопровод, проложенный около кабельных линий, быстрее сгнивает без видимых сторонних причин. В то же время устройства индукционного нагрева довольно показали себя с хорошей стороны, тем более такой прибор для бытового использования можно собрать самому. Надеемся, теперь вы знаете, что такое вихревые токи Фуко, а также какое применение нашлось им на производстве и в быту.

Материалы по теме:

  • Как сделать индукционный котел своими руками
  • Зависимость сопротивления проводника от температуры
  • Правило буравчика простыми словами


НравитсяЧто такое вихревые токи и какие меры принимают для их уменьшения0)Не нравитсяЧто такое вихревые токи и какие меры принимают для их уменьшения0)
Насколько опасны токи, наведенные линиями электропередачи?

Электрическое поле

Землевладельцы и застройщики должны представлять возможные неприятные и пугающие удары током (вызванные наведенным напряжением), которые могут возникать, если кто-то входит в контакт с большими проводящими объектами (например, средства передвижения, строения или даже ограждения), находящимися на полосе отчуждения или даже вне нее.
Эти удары тока известны, как «неприятные» или «пугающие», поскольку они не приводят к физическому поражению током, но некоторые люди их замечают, и они вызывают неожиданную реакцию.
Эти токи касания возникают, когда заземленный человек прикасается к незаземленному объекту, находясь в электрическом поле. Проводящие объекты, помещенные в электрическое поле, накаливают заряд, и человек, коснувшись такого объекта, может ощутить неприятный или пугающий удар тока в тот момент, когда его тело пропускает через себя ток, становясь проводником на заземлю.
Существует множество факторов, оказывающих влияние на неприятные удары током, и на степень восприятия этих токов. К таким факторам относятся:
— Напряжение линии электропередачи.
— Расстояние от проводника до земли
— Размеры конструкции или объекта
— Нахождение в полосе отчуждения, или вне нее
— Атмосферные условия
— Индивидуальные физиологические особенности человека
Электрические поля создаются любым проводником, к которому подается напряжение. Более высокие напряжения линий электропередачи порождают более сильные электрические поля. И, чем ближе проводник расположен к земле, тем, как правило, сильнее электрическое поле под ним, и тем выше вероятность удара электрическим током.
Более крупные объекты, такие как строения и большие конструкции, могут накапливать заряд большей величины, и, следовательно, удар током будет более заметен. Известно, что металлические объекты, находящиеся на заднем дворе жилого дома, такие как качели, переносные жаровни и газонокосилки, тоже способны порождать такие удары током.
Незаземленные металлические ограды могут получить достаточный заряд, чтобы стать причиной неприятного удара током. Во время строительства зданий, рабочие также могут получить удары током, монтируя незаземленные водосточные желоба и трубы на конструкциях, расположенных близко к полосе отчуждения линии электропередачи. И если такие водостоки не заземлены, то владельцы домов также могут ощущать неприятные удары тока, прочищая водостоки.
Люди или животные могут получить удар тока, касаясь металлических объектов, расположенных вблизи линии электропередачи.
Этот удар током напоминает тот, который можно получить, коснувшись телевизора, если подойти к нему по ковру. Величина и сила заряда будет связана с массой незаземленного металлического объекта, и его ориентации по отношению к линии электропередачи. Наведение тока можно предотвратить, заземляя металлические объекты, находящиеся вблизи линии электропередачи.
На тракторах можно использовать заземляющие цепи. Металлические ограждения можно присоединить к простому заземляющему стрежню изолированным проводом и проволочным хомутом. Правильно заземленные металлические изгороди будут продолжать функционировать, даже если будут повергнуты наведенному напряжению. Не рекомендуется помещать топливозаправочные машины непосредственно под линией электропередачи. Искра от разряжающейся на землю металлической конструкции, имеющей наведенное напряжение, может вызвать возгорание топлива. Риск такого возгорания выше для машин на бензиновом топливе, чем для дизельных машин.

Электрическая индукция — конструкции

Обычно, возведение строений и складских навесов внутри коридора прохождения линии электропередачи не допускается. Поэтому, особо беспокоиться о них не следует. Однако электрическое поле небольшой напряженности может существовать и за пределами полосы отчуждения, и на строения, стоящие близко к линии электропередач, стоит обратить внимание. 
Для строений, находящихся вне полосы отчуждения, снизить потенциал неприятного или пугающего разряда можно, присоединив заземленный провод к металлической крыше.  Это также обеспечивает и определенную защиту строения от разряда молнии. Строения, полностью сделанные из металла, как правило, не требуют внимания, так как они естественно заземлены, но здесь могут быть и исключения для конструкций с деревянным основанием, или в случае использования материала с высоким сопротивлением. И опять же, обычно достаточно просто заземлить эти объекты при необходимости.

Цинковый водосток

Цинковый водосток

Точно так же, водосточные желоба и трубы на большом строении, расположенном вблизи линии электропередачи, могут поразить ощутимым разрядом тока человека на алюминиевой лестнице.
Количественный анализ худшего сценария в любом конкретном случае может оказаться затруднительным, но можно определить, будет ли разумной предосторожностью снижение потенциала воспринимаемого разряда тока. 
Присоединение провода к водосточной трубе, и заземление его через металлическую трубу водопровода, или присоединение к существующему заземлению, является достаточно простой операций, позволяющей снизить эффекты разряда.

Электрическая индукция — ограждения

опоры ЛЭП и ограждения

Опоры линий электропередачи рядом с велосипедной дорожкой и металлическими ограждениями

Длинные проволочные ограждения, натянутые на деревянные столбы, могут создать возможность поражения током, если они параллельны линии электропередачи, и располагаются близко к ней. Здесь основным фактором влияния являются изоляционные свойства дерева. Ограждения, проходящие перпендикулярно, значительно меньше подвержены наведению тока и напряжения.
Под воздействием погодных условий, деревянные столбы могут стать не очень хорошими изоляторами. Отсутствие изоляции в данном случае снижает индуцированное напряжение в проволоке ограды, и ограничивает величину искрового разряда.
Тем не менее, некоторые ограды могут быть изолированы своими столбами в достаточной мере, чтобы обеспечить неприятный удар тока при контакте с ограждением. Чтобы вызвать неприятный удар тока, ограждения такого типа должны проходить близко к линии и быть достаточно длинными. Длинные ограждения часто заземляются, контактируя с окружающими растениями. При таком заземлении, влияние электрического поля будет снижено, хотя эффекты магнитного поля останутся.
В случае «электроизгородей», это обеспечивается специальными фильтрам, которые устраняют только наведенный заряд. Однако, изгородь, заземленная в одной или нескольких точках, и изолированная в остальных местах, может обеспечить определенные возможности появления эффектов индуцированного магнитного поля.
Снижение потенциала этих эффектов требует электрического разделения длинной изгороди не небольшие заземленные участки.

90000 what is Difference between induced emf and induced current? 90001 90002 90003 90004 90005 There are many ways to produced induced emf figure illustrated one of them. Consider a straight piece of wire of length l placed in the magnetic field of a permanent magnet. The wire is connected to a sensitive galvanometer. This forms a closed path or loop without any battery. In beginning when the loop is at rest in the magnetic field, no current is shown by the galvanometer. If we move the loop from the left to right, the length l of the wire is dragged across the magnetic field and a current follows through the loop.As stop moving the loop, current also stops. Now, if we move the loop in opposite direction, current also reverses its direction. This is indicated by the deflection of the galvanometer opposite direction. 90005 The induced current depends upon the speed with which conductor moves and upon the resistance of the loop. If we change the resistance of the loop by inserting different resistors in the loop, and it in the magnetic field with the same speed every time, we find that the product of induced current 90007 I 90008 and the resistance 90007 R 90008 of the loop remains constant, i.e., 90005 90012 90007 I 90008 × R = constant 90015 90005 This statement is the induced emf. This induced emf leads to an induced current when the circuit is closed. The current can be increased by 90017 90018 90019 Using a stronger magnetic field 90020 90019 Moving the loop faster 90020 90019 Replacing the loop by a coil of many turns 90020 90025 90003 If we perform the above experiment in the other way ie, instead of moving the loop across the magnetic field, we hold the loop stationary and move the magnet, then it can be easily observed that the results are the same.Thus, it can be concluded that it is the relative motion of the loop and the magnet that causes the included emf. 90005 In fact, this relative motion changes the magnetic flux through the loop, therefore, if we say that an induced emf is produced in a loop if the magnetic flux through it changes. The greater the rate of change of flux, the larger is the induced emf. 90005 There are some other methods described below in which an emf is induced in a loop by producing a change of magnetic flux through it.90005 90005 Fig (a) shows a bar magnet and a coil of wire to which a galvanometer is connected. When there is no relative motion between the magnet and the coil, the galvanometer indicates no current in the circuit. As soon as the bar magnet is moved towards the coil, a current appears in it as shown in fig (b). In moving the magnet, the magnetic flux through the coil changes, and this changing flux produces the induced current in the coil. When the magnet moves away from the coil, a current is again induced but now in opposite direction.The current would also be induced if the magnets were held stationary and the coils were moved. 90005 There is another method in which the current is induced in a coil by changing the area of ​​the coil in a constant magnetic field. That no current is induced in the coil of constant area that is placed in a constant magnetic field. However, when the coil is being distorted so as to reduce its area, an induced emf and hence current appears. The current vanishes when the area is no longer changing. If the distorted coil is brought to its original circular shape thereby increasing the area, an oppositely directed current is induced which lasts as long as the area is changing.90005 90033 duction 90005 An induced current can also be generated when a coil of constant area is rotated in a constant magnetic field. Here, also, the magnetic flux through the coil changes shows in above figure. This is the basic principle used in electric generators. 90005 A very interesting method to induce current in a coil involves by producing a change of magnetic flux in a nearby coil. 90005 90037 90005 Two coils placed side by side. The coil P is connected in series with a battery, a rheostat and a switch, while the other coil S is connected to a galvanometer only.Since there is no battery in the coil S, one might expect that the current through it will always be zero. Now, if the switch of the coil P is suddenly closed, a momentary current induced in coil S. This is indicated by the galvanometer, which suddenly deflects and the returns to zero. No induced current exits in coil S as long as the current flows steadily in the coil P. An oppositely directed current is induced in the coil S at the instant the switch of the coil P is opened. Actually, the current in P grows from zero to its maximum value just after the switch is closed.The current come down to zero when the switch is opened. Due to change in current, the magnetic flux associated with the coil P changes momentarily. This changing flux also linked with the coil S that causes the induced current in it. Current in coil P can also be changed with the help of rheostat. 90005 It is also possible to link the changing magnetic flux with a coil by using an electromagnetic instead of a permanent magnet. The coil is placed in the magnetic field of an electromagnetic. 90005 90041 90005 Both the coil and the electromagnet are stationary.The magnetic flux through the coil is changed by changing the current of the electromagnet, thus producing the induced current in the coil. 90017.90000 Induced currents and fields 90001 90002 The quantum energy of 50 Hz electromagnetic fields is too small to break chemical bonds. It is clear that power-frequency EMFs or radiation does not cause ionisation in the same way that x-rays or alpha particles do. Instead, the main known way 50 Hz fields interact with people is by inducing currents. 90003 90002 Microshocks are a related but different phenomenon. 90003 90006 What currents do magnetic fields produce? 90007 Any alternating magnetic field will induce an electric field, which in turn produces a current in a conducting medium.The human body is conducting and will therefore have a current induced in it — albeit, usually, a very small one. As shown on the right the current circulates round the body. 90002 In power-frequency calculations, it is common to assume the human body has a radius of 0.2 m and a conductivity of 0.2 S m 90009 -1 90010. Using this model, a magnetic field of 160 microteslas (μT) induces a peripheral current density of 1 mA m 90009 -2 90010. More accurate numerical calculations can be done which take account of the actual shape of the body and the varying conductivities of different tissues.90003 90006 What currents do electric fields produce? 90007 90002 90017 Alternating electric fields also induce currents in the body. As shown on the right, for a vertical field, they run up and down the body. The calculation has to take account of the perturbation to the field caused by the body itself. For a typical person standing in a vertical field, a current of 1 mA through the body is induced by 70 kV m 90009 -1 90010; more on numerical calculations. 90003 90002 90003 90006 Effects of induced currents on the body 90007 90002 Within the body, currents induced by fields have the same range of effects as currents injected via electrodes, e.g. in an electric shock. But these effects depend entirely on the size of the current. Thus current densities of about 0.1 A m 90009 -2 90010 can stimulate excitable tissue and current densities above about 1 A m 90009 -2 90010 can cause ventricular fibrillation, as well as producing heating. However these current densities correspond to fields far larger than are ever encountered at 50 Hz. 90003 90002 At lower fields a range of possible effects have been reported. The established effect observed in humans at the lowest magnetic field is the magnetophosphene effect, where a flickering sensation is produced in peripheral vision by 50 Hz magnetic fields above about 10 mT (i.e. 10,000 μT). Magnetophosphenes are probably caused by induced current densities in the retina; the threshold at 20 Hz (the most sensitive frequency) is about 20 mA m 90009 -2 90010. 90003 90002 Microshocks are a related but separate phenomenon, caused not by a continuous current but by a one-off discharge. 90003 90006 What is a safe level of induced current? 90007 90002 Exposure guidelines are usually designed to prevent all effects of induced currents, on the basis that any effect in the brain or nervous system is potentially harmful.For example, the ICNIRP exposure guidelines currently recommend that people at work should not be exposed to current densities in the head, neck and trunk of greater than 10 mA m 90009 -2 90010 (the «basic restriction») with a lower limit of 2 mA m 90009 -2 90010 for the general population which may include people who are more sensitive because of medical conditions. 90003 90002 See more on how induced currents are calculated 90003.90000 Induced current — definition of Induced current by The Free Dictionary 90001 It is well-known that EIT is a highly ill-posed problem, which means that the induced current can not be uniquely determined from Eq. (5.) Kappenman, J., «Low-Frequency Protection Concepts for the Electric Power Grid : Geomagnetically Induced Current (GIC) and E3 HEMP Mitigation, «Meta-R-322, Metatech, January 2010.This EMF can reach several kilovolts in long-distance electric power transmission lines (PTL) of 400-500 km, and the quasi direct current, which is also called geomagnetically induced current (GIC), circulates in electric networks [9].Keywords: Human model electric field magnetic field transmission line and induced current.As there is a lack of induced current in those bars, the magnetic field will become gradually more asymmetrical, which will lead to local saturation in stator and rotor teeth near the broken bar and disproportional distribution of magnetic field in the air-gap [6] .However, the induced current of the solar cell can be considerably improved by coupling it to a CsI (Tl) scintillator.The variations of the shear modulus were observed with increasing CIP volume fraction and induced current.The experimental results revealed that the maximum variation rate of the shear modulus was 76.3% for 40 vol% of CIP and an induced current of 4 A.In this composite model due to the incident tapered electric field and the coupling scattering between the target and the rough surface, the induced current [J.sub.s] on the rough surface, electric current [J.sub.o] and magnetic current [K.sub.o] on the target surface can be driven and expressed as linear superposition of pulse basis functions — In Equation (1), Maxwell’s equations in the frequency domain must contain the induced current density term (loss term) for the investigated problem.Ye et al., «Polarity inversion and coupling of laser beam induced current in as-doped long-wavelength HgCdTe infrared detector pixel arrays: experiment and simulation,» Applied Physics Letters, vol.Also, the system ground plane around the antenna ground has induced current caused by conduction.The higher current density in one trace is offset by the reduction in net current in each trace due to the induced current and reduction in the net magnitude of current in the return path. .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *