Закрыть

Неисправности транзистора: Как проверить транзистор мультиметром

Содержание

Как проверить транзистор мультиметром

Опытные электрики и электронщики знают, что для полной проверки транзисторов существуют специальные пробники.

С помощью них можно не только проверить исправность последнего, но и его коэффициент усиления — h31э.

Необходимость наличия пробника

Пробник действительно нужный прибор, но, если вам необходимо просто проверить транзистор на исправность вполне подойдет и мультиметр.

Устройство транзистора

Прежде, чем приступить к проверке, необходимо разобраться что из себя представляет транзистор.

Он имеет три вывода, которые формируют между собой диоды (полупроводники).

Каждый вывод имеет свое название: коллектор, эмиттер и база. Первые два вывода p-n переходами соединяются в базе.

Один p-n переход между базой и коллектором образует один диод, второй p-n переход между базой и эмиттером образует второй диод.

Оба диода подсоединены в схему встречно через базу, и вся эта схема представляет собой транзистор.

Читайте также:

Ищем базу, эмиттер и коллектор на транзисторе

Как сразу найти коллектор.

Чтобы сразу найти коллектор нужно выяснить, какой мощности перед вами транзистор, а они бывают средней мощности, маломощные и мощные.

Транзисторы средней мощности и мощные сильно греются, поэтому от них нужно отводить тепло.

Делается это с помощью специального радиатора охлаждения, а отвод тепла происходит через вывод коллектора, который в этих типах транзисторов расположен посередине и подсоединен напрямую к корпусу.

Получается такая схема передачи тепла: вывод коллектора – корпус – радиатор охлаждения.

Если коллектор определен, то определить другие выводы уже будет не сложно.

Бывают случаи, которые значительно упрощают поиск, это когда на устройстве уже есть нужные обозначения, как показано ниже.

Производим нужные замеры прямого и обратного сопротивления.

Однако все равно торчащие три ножки в транзисторе могу многих начинающих электронщиков ввести в ступор.

Как же тут найти базу, эмиттер и коллектор?

Без мультиметра или просто омметра тут не обойтись.

Итак, приступаем к поиску. Сначала нам нужно найти базу.

Берем прибор и производим необходимые замеры сопротивления на ножках транзистора.

Берем плюсовой щуп и подсоединяем его к правому выводу. Поочередно минусовой щуп подводим к среднему, а затем к левому выводам.

Между правым и среднем у нас, к примеру, показало 1 (бесконечность), а между правым и левым 816 Ом.

Эти показания пока ничего нам не дают. Делаем замеры дальше.

Теперь сдвигаемся влево, плюсовой щуп подводим к среднему выводу, а минусовым последовательно касаемся к левому и правому выводам.

Опять средний – правый показывает бесконечность (1), а средний левый 807 Ом.

Это тоже нам ничего не говорить. Замеряем дальше.

Теперь сдвигаемся еще левее, плюсовой щуп подводим к крайнему левому выводу, а минусовой последовательно к правому и среднему.

Если в обоих случаях сопротивление будет показывать бесконечность (1), то это значит, что базой является левый вывод.

А вот где эмиттер и коллектор (средний и правый выводы) нужно будет еще найти.

Теперь нужно сделать замер прямого сопротивления. Для этого теперь делаем все наоборот, минусовой щуп к базе (левый вывод), а плюсовой поочередно подсоединяем к правому и среднему выводам.

Запомните один важный момент, сопротивление p-n перехода база – эмиттер всегда больше, чем p-n перехода база – коллектор.

В результате замеров было выяснено, что сопротивление база (левый вывод) – правый вывод равно 816 Ом, а сопротивление база – средний вывод 807 Ом.

Значит правый вывод — это эмиттер, а средний вывод – это коллектор.

Итак, поиск базы, эмиттера и коллектора завершен.

Читайте также:

Как проверить транзистор на исправность

Чтобы проверить транзистор мультиметром на исправность достаточным будет измерить обратное и прямое сопротивление двух полупроводников (диодов), чем мы сейчас и займемся.

В транзисторе обычно существуют две структуру перехода p-n-p и n-p-n.

P-n-p – это эмиттерный переход, определить это можно по стрелке, которая указывает на базу.

Стрелка, которая идет от базы указывает на то, что это n-p-n переход.

P-n-p переход можно открыть с помощью минусовое напряжения, которое подается на базу.

Выставляем переключатель режимов работы мультиметра в положение измерение сопротивления на отметку «200».

Черный минусовой провод подсоединяем к выводу базы, а красный плюсовой по очереди подсоединяем к выводам эмиттера и коллектора.

Т.е. мы проверяем на работоспособность эмиттерный и коллекторный переходы.

Показатели мультиметра в пределах от 0,5 до 1,2 кОм скажут вам, что диоды целые.

Теперь меняем местами контакты, плюсовой провод подводим к базе, а минусовой поочередно подключаем к выводам эмиттера и коллектора.

Настройки мультиметра менять не нужно.

Последние показания должны быть на много больше, чем предыдущие. Если все нормально, то вы увидите цифру «1» на дисплее прибора.

Это говорит о том, что сопротивление очень большое, прибор не может отобразить данные выше 2000 Ом, а диодные переходы целые.

Преимущество данного способа в том, что транзистор можно проверить прямо на устройстве, не выпаивая его оттуда.

Хотя еще встречаются транзисторы где в p-n переходы впаяны низкоомные резисторы, наличие которых может не позволить правильно провести измерения сопротивления, оно может быть маленьким, как на эмиттерном, так и на коллекторном переходах.

В данном случае выводы нужно будет выпаять и проводить замеры снова.

Признаки неисправности транзистора

Как уже отмечалось выше если замеры прямого сопротивления (черный минус на базе, а плюс поочередно на коллекторе и эмиттере) и обратного (красный плюс на базе, а черный минус поочередно на коллекторе и эмиттере) не соответствуют указанным выше показателям, то транзистор вышел из строя.

Другой признак неисправности, это когда сопротивление p-n переходов хотя бы в одном замере равно или приближено к нулю.

Это указывает на то, что диод пробит, а сам транзистор вышел из строя. Используя данные выше рекомендации, вы легко сможете проверить транзистор мультиметром на исправность.

Причины выхода транзистора из строя — Ремонт электрорадиотехнических деталей — Ремонт деталей теплоизмерительных и электроизмерительных приборов

Измеряя сопротивление, не допускают перегрузки переходов р-п током, так как она приводит к возрастанию температуры и выходу из строя транзистора. Наиболее безопасно применять омметры с внутренним источником напряжения 1,5 В или меньше, а в многопредельных омметрах использовать шкалы с пределами 1 х 100 или 1 х 1000 Ом.

Сопротивление между коллектором и эмиттером в прямом и обратном направлениях должно быть не менее 10 кОм. При меньшем сопротивлении транзистор будет иметь большие токи утечки и должен быть заменен. Сопротивление между выводами базы и эмиттера и выводами базы и коллектора должно составлять в одном направлении меньше 150 Ом, в другом — более нескольких тысяч ом.

Выявление неполадок транзисторов может быть осуществлено также измерением напряжения на их выводах, что требует особой осторожности, так как даже кратковременные замыкания между коллектором и базой выводят транзистор из строя. При обрыве вывода базы на ней сохраняется нормальное напряжение, в то время как транзистор находится в режиме отсечки, на что указывает отсутствие тока в цепях коллектора и эмиттера.

Если вольтметр показывает одинаковые напряжения на коллекторе и эмиттере, то наиболее вероятной причиной неисправности является пробой в коллекторном или эмиттерном переходах.

Вместе с тем это явление может возникнуть из-за изменения напряжения смещения, вследствие которого транзистор оказывается чрезмерно открытым. В этом случае напряжение на эмиттере будет примерно равным напряжению на коллекторе. Для проверки исправности такого каскада подключают вольтметр параллельно резистору в эмиттерной цепи, после чего замыкают выводы эмиттера и базы. Если транзистор исправен, то показания вольтметра должны уменьшиться, поскольку прямое напряжение смещения при этом упадет до нуля.

Выявление неполадок полевых транзисторов

Полевые транзисторы по сравнению с биполярными обладают большим входным сопротивлением и наличием термостабильной точки, вследствие чего предпочтительны для применения в усилителях постоянного тока, используемых в различных контрольно-измерительных приборах и регуляторах теплоэнергетических процессов. Полевые транзисторы также обладают лучшими шумовыми свойствами на низких и инфранизких частотах и хорошей стабильностью электрических параметров.

Наиболее часто повреждения полевых транзисторов возникают в результате разряда на них статического электричества, накопленного на производственном оборудовании или на одежде и обуви обслуживающего, например ремонтного, персонала.


«Справочное пособие по ремонту приборов и регуляторов»,
А.А.Смирнов

Как проверить тарнзистор — тестирование биполярных, полевых, цифровых, однопереходных транзисторов

Прежде чем рассмотреть способы как проверить исправность транзисторов необходимо знать, как проверять исправность p-n перехода или как правильно тестировать диоды. Именно с этого мы и начнем…

Тестирование полупроводниковых диодов

При тестировании диодов с помощью стрелочных ампервольтомметрами следует использовать нижние пределы измерений. При проверке исправного диода сопротивление в прямом направлении составит несколько сотен Ом, в обратном направлении — бесконечно большое сопротивление. При неисправности диода стрелочный (аналоговый) ампервольтомметр покажет в обоих направлениях сопротивление близкое к 0 (при пробое диода) или бесконечно большое сопротивление при разрыве цепи. Сопротивление переходов в прямом и обратном направлениях для германиевых и кремниевых диодов различно.

Проверка диодов с помощью цифровых мультиметров производится в режиме их тестирования. При этом, если диод исправен, на дисплее отображается напряжение на р-n переходе при измерении в прямом направлении или разрыв при измерении в обратном направлении. Величина прямого напряжения на переходе для кремниевых диодов составляет 0,5…0,8 В, для германиевых — 0,2…0,4 В. При проверке диода с помощью цифровых мультиметров в режиме измерения сопротивления при проверке исправного диода обычно наблюдается разрыв как в прямом, так и в обратном направлении из-за того, что напряжение на клеммах мультиметра недостаточно для того, чтобы переход открылся.

Как проверить исправность транзистора

Для наиболее распространенных биполярных транзисторов их проверка аналогична тестированию диодов, так как саму структуру транзистора р-n-р или n-р-n можно представить как два диода (см. рисунок выше), с соединенными вместе выводами катода, либо анода, представляющими собой вывод базы транзистора. При тестировании транзистора прямое напряжение на переходе исправного транзистора составит 0,45…0,9 В. Говоря проще, при проверке омметром переходов база-эмиттер, база-коллектор исправный транзистор в прямом направлении имеет маленькое сопротивление и большое сопротивление перехода в обратном направлении. Дополнительно следует проверять сопротивление (падение напряжения) между коллектором и эмиттером, которое для исправного транзистора должно быть очень большое, за исключением описанных ниже случаев. Однако есть свои особенности и при проверке транзисторов. На них мы и остановимся подробнее.

Одной из особенностей является наличие у некоторых типов мощных транзисторов встроенного демпферного диода, который включен между коллектором и эмиттером, а также резистора номиналом около 50 Ом между базой и эмиттером. Это характерно в первую очередь для транзисторов выходных каскадов строчной развертки. Из-за этих дополнительных элементов нарушается обычная картина тестирования. При проверке таких транзисторов следует сравнивать проверяемые параметры с такими же параметрами заведомо исправного однотипного транзистора. При проверке цифровым мультиметром транзисторов с резистором в цепи база-эмиттер напряжение на переходе база-эмиттер будет близким или равным 0 В.

Другими «необычными» транзисторами являются составные, включенные по схеме Дарлингтона. Внешне они выглядят как обычные, но в одном корпусе имеется два транзистора, соединенные по схеме, изображенной на рис. 2. От обычных их отличает высокий коэффициент усиления — более 1000.

Тестирование таких транзисторов особенностями не отличается, за исключением того, что прямое напряжение перехода база-эмиттер составляет 1,2…1,4 В. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв.

Тестирование однопереходных и программируемых однопереходных транзисторов

Однопереходный транзистор (ОПТ) отличается наличием на его вольт-амперной характеристике участка, с отрицательным сопротивлением. Наличие такого участка говорит о том, что такой полупроводниковый прибор может использоваться для генерирования колебаний (ОПТ, туннельные диоды и др.).

Однопереходный транзистор используется в генераторных и переключательных схемах. Для начала разберем, чем отличается однопереходный транзистор от программируемого однопереходного транзистора. Это несложно:

  • общим для них является трехслойная структура (как у любого транзистора) с 2мя р-n переходами;
  • однопереходный транзистор имеет выводы, называемые база 1 (Б1), база 2 (Б2), эмиттер. Он переходит в состояние проводимости, когда напряжение на эмиттере превышает значение критического напряжения переключения, и находится в этом состоянии до тех пор, пока ток эмиттера не снизится до некоторого значения, называемого током запирания. Все это очень напоминает работу тиристора;
  • программируемый однопереходный транзистор имеет выводы, называемые анод (А), катод (К) и управляющий электрод (УЭ). По принципу работы он ближе к тиристору. Переключение его происходит тогда, когда напряжение на управляющем электроде превышает напряжение на аноде (на величину примерно 0,6 В — прямое напряжение р-n перехода). Таким образом, изменяя с помощью делителя напряжение на аноде, можно изменять напряжение переключения такого прибора т.е. «программировать» его.

Чтобы проверить исправность однопереходного и программируемого однопереходного транзистора следует измерить омметром сопротивление между выводами Б1 и Б2 или А и К для проверки на пробой. Но наиболее точные результаты можно получить, собрав схему для проверки однопереходных и программируемых однопереходных транзисторов (см. схему ниже — для ОПТ — рис. слева, для программируемого ОПТ — рис. справа).

Рис. 3

Проверка цифровых транзисторов

Рис. 4 Упрощенная схема цифрового транзистора слева, Справа — схема тестирования. Стрелка означает «+» измерительного прибора

Другими необычными транзисторами являются цифровые (транзисторы с внутренними цепями смещения). На рис 4. выше изображена схема такого цифрового транзистора. Номиналы резисторов R1 и R2 одинаковы и могут составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы.

Цифровой транзистор внешне не отличается от обычного, но результаты его «прозвонки» могут поставить в тупик даже опытного мастера. Для многих они как были «непонятными», так таковыми и остались. В некоторых статьях можно встретить утверждение — «тестирование цифровых транзисторов затруднено… Лучший вариант — замена на заведомо исправный транзистор». Бесспорно, это самый надежный способ проверки. Попробуем разобраться, так ли это на самом деле. Давайте разберемся, как правильно протестировать цифровой транзистор и какие выводы сделать из результатов измерений.

Для начала обратимся к внутренней структуре транзистора, изображенной на рис.4, где переходы база-эмиттер и база-коллектор для наглядности изображены в виде двух включенных встречно диодов. Резисторы R1 и R2 могут быть как одного номинала, так и могут отличаться и составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы. Пусть сопротивление резистора R1 будет 10 кОм, a R2 — 22 кОм. Сопротивление открытого кремниевого перехода примем равным 100 Ом. В частности, эту величину показывает стрелочный авометр Ц4315 при измерении сопротивления на пределе х1.

В прямом направлении цепь база-коллектор рассматриваемого транзистора состоит из последовательно соединенных резистора R1 и сопротивления собственно перехода база-коллектор (VD1 на рис. 1). Сопротивлением перехода, так как оно значительно меньше сопротивления резистора R1, можно пренебречь, и этот замер даст величину, приблизительно равную значению сопротивления резистора R1, которое в нашем примере равно 10 кОм. В обратном направлении переход остается закрытым, и ток через этот резистор не течет. Стрелка авометра должна показать «бесконечность».

Цепь база-эмиттер представляет собой смешанное соединение резисторов R1, R2 и сопротивления собственно перехода база-эмиттер (VD2 на рис. 4 слева). Резистор R2 включен параллельно этому переходу и практически не изменяет его сопротивления. Следовательно, в прямом направлении, когда переход открыт, ампервольтомметр вновь покажет величину сопротивления, приблизительно равную значению сопротивления базового резистора R1. При изменении полярности тестера переход база-эмиттер остается закрытым, и ток протекает через последовательно соединенные резисторы R1 и R2. В этом случае тестер покажет сумму этих сопротивлений. В нашем примере она составит приблизительно 32 кОм.

Как видите, в прямом направлении цифровой транзистор тестируется так же, как и обычный биполярный транзистор, с той лишь разницей, что стрелка прибора показывает значение сопротивления базового резистора. А по разности измеренных сопротивлений в прямом и обратном направлениях можно определить величину сопротивления резистора R2.

Теперь рассмотрим тестирование цепи эмиттер-коллектор. Эта цепь представляет собой два встречно включенных диода, и при любой полярности тестера его стрелка должна была бы показать «бесконечность». Однако, это утверждение справедливо только для обычного кремниевого транзистора.

В рассматриваемом случае из-за того, что переход база-эмиттер (VD2) оказывается зашунтированным резистором R2, появляется возможность открыть переход база-коллектор при соответствующей полярности измерительного прибора. Измеренное при этом сопротивление транзисторов имеет некоторый разброс, но для предварительной оценки можно ориентироваться на значение примерно в 10 раз меньшее сопротивления резистора R1. При смене полярности тестера сопротивление перехода база-коллектор должно быть бесконечно большим.

На рис. 4 справа подведен итог вышесказанному, которым удобно пользоваться в повседневной практике. Для транзистора прямой проводимости стрелка будет означать «-» измерительного прибора.

В качестве измерительного прибора необходимо использовать стрелочные (аналоговые) АВОметры с током отклонения головки около 50 мкА (20 кОм/В).

Следует отметить, что вышеизложенное носит несколько идеализированный характер, и на практике, могут быть ситуации, требующие логического осмысления результатов измерений. Особенно в случаях, если цифровой транзистор окажется дефектным.

Как проверить полевой МОП-транзистор

Существует несколько разных способов проверки полевых МОП-транзисторов. Например такой:

  • Проверить сопротивление между затвором — истоком (3-И) и затвором — стоком (3-С). Оно должно быть бесконечно большим.
  • Соединить затвор с истоком. В этом, случае переход исток — сток (И-С) должен прозваниваться как диод (исключение для МОП-транзисторов, имеющих встроенную защиту от пробоя — стабилитрон с определенным напряжением открывания).

Самой распространенной и характерной неисправностью полевых МОП-транзисторов является короткое замыкание между затвором — истоком и затвором — стоком.

Другим способом является использование двух омметров. Первый включается для измерения между истоком и стоком, второй — между истоком и затвором. Второй омметр должен иметь высокое входное сопротивление — около 20 МОм и напряжение на выводах не менее 5 В. При подключении второго омметра в прямой полярности транзистор откроется (первый омметр покажет сопротивление близкое к нулю), при изменении полярности на противоположную транзистор закроется. Недостаток этого способа — требования к напряжению на выводах — второго омметра. Естественно, цифровые мультиметры для этих целей не подходит. Это ограничивает применение такого способа проверки.

Еще один способ похож на второй. Сначала кратковременно соединяют между собой выводы затвора и истока для того, чтобы снять имеющийся на затворе заряд. Далее к выводам истока-стока подключают омметр. Берут батарейку напряжением 9 В и кратковременно подключают ее плюсом к затвору, а минусом — к истоку. Транзистор откроется и будет открыт некоторое время после отключения батарейки за счет сохранения заряда. Большинство полевых МОП-транзисторов открывается при напряжении затвор-исток около 2 В.

При тестировании полевых МОП-транзисторов следует соблюдать особую осторожность, чтобы не вывести его из строя транзистор статическим электричеством.

Как определить структуру и расположения выводов транзисторов, тип которых неизвестен

При определении структуры транзистора, тип которого неизвестен, следует путем перебора шести вариантов — определить вывод базы, а затем измерить прямое напряжение на переходах. Прямое напряжение на переходе база-эмиттер всегда на несколько милливольт выше прямого напряжения на переходе база-коллектор (при пользовании стрелочного мультиметра сопротивление перехода база-эмиттер в прямом направлении несколько выше сопротивления перехода база-коллектор). Это связано с технологией производства транзисторов, и правило применимо к обыкновенным биполярным транзисторам, за исключением некоторых типов мощных транзисторов, имеющих встроенный демпферный диод. Полярность щупа мультиметра, подключенного при измерениях на переходах в прямом направлении к базе транзистора укажет на тип транзистора: если это «+» — транзистор структуры n-p-n, если «-» — структуры р-n-р.

Как проверить биполярный транзистор | AUDIO-CXEM.RU

Сегодня я расскажу, как проверить исправность биполярного транзистора с помощью мультиметра. Эта проверка на наличие пробоя, то есть, она позволяет узнать живой транзистор или нет.  Такую проверку я произвожу перед каждым впаиванием элемента при сборке новой схемы или в процессе ремонта.  На сленге её также именуют «прозвонкой».

У всех современных мультиметров есть режим диодной проверки, вот его и нужно включить.

После чего необходимо подключить щупы, черный в разъем «COM», а красный в разъем со значком диода или измерения сопротивления.

После включения режима на экране прибора единица, которая означает обрыв, бесконечное сопротивление или закрытый PN переход транзистора или диода.

Дальше необходимо соединить щупы между собой и убедиться, что есть контакт щупов с мультиметром и они исправные.

На дисплее значение изменится с единицы на несколько нулей, в зависимости от точности прибора и сопротивления щупов. Некоторые приборы предусматривают звуковую сигнализацию в режиме проверки диодов (как у меня), это удобно при ремонте устройств, так как в момент проверки можно не смотреть на дисплей мультиметра, а сконцентрироваться на проблемном месте. Звуковой сигнал звучит только при малом сопротивлении (десятки и единицы Ом).

Определяем тип транзистора и обозначение выводов

Биполярные транзисторы бывают двух структур PNP и NPN. От типа структуры будет зависеть их проводимость. В дебри про электронно-дырочную структуру я углубляться не буду, а лишь опишу процесс проверки.

У меня есть транзистор КТ837H, на примере которого я буду описывать процесс проверки.

Первым делом необходимо найти техническое описание элемента (Datasheet) или справочник. В документации находим название структуры транзистора, в моем случае это PNP. Следующая нужная информация это расположение и обозначение выводов (цоколевка).

Транзистор, как два диода…

Транзисторы имеют два PN перехода и их можно представить как два последовательно соединенных диода. И проверять транзисторы можно как два диода. Точка соединения диодов будет базой, а два остальных вывода коллектором и эмиттером.

Если диоды соединены катодами (отрицательными выводами), то база N типа (N- negative, отрицательный).

Если диоды соединены анодами (положительными выводами), то база P типа (P- positive, положительный).

Полезным будет прочесть статью «Как проверить диод мультиметром».

Проверка транзисторов структуры PNP

Для PNP транзисторов соединяем черный щуп(отрицательный) к базе, а красным по очереди касаемся коллектора и эмиттера. Это называется прямым смещением. Переходы должны открыться.

Для исправного транзистора на дисплее должно отобразиться напряжение открытия переходов (обычно несколько сотен милливольт, примерно 500-800мВ), но ни в коем случае не десятки и тем более не единицы милливольт.

Как мы видим, исправный транзистор PNP типа открылся при касании базы черным (отрицательным) щупом, а красным (положительным) мы касались коллектора и эмиттера.

После чего, к базе транзистора PNP типа подключаем уже красный щуп, а черным по очереди касаемся коллектора и эмиттера. Транзистор, точнее его переходы должны быть закрыты, если элемент исправный. Это называется обратным смещением.

В этих положениях переходы заперты и на дисплее должна быть единица (она же бесконечность). Если в этих положениях переходы открываются и на дисплее отображается напряжение открытия  (любое), то такой элемент не исправен. Обычно у пробитых элементов показания на дисплее прибора меньше десяти милливольт.

Ниже пример неисправного полупроводникового прибора, у него все выводы замкнуты, сопротивление между ними единицы Ом, поэтому в режиме диодной прозвонки (независимо от положения щупов) на дисплее 2мВ, то есть переход «пробитый».

Если хотя бы один переход звонится накоротко (на дисплее десятки или единицы милливольт), то такой полупроводник сразу подлежит замене.

Проверка транзисторов структуры NPN

Та же самая процедура, что и с PNP структурой, только открытие переходов у исправного элемента происходит при соединении красного (положительного)  щупа к базе, а черного (отрицательного) к коллектору и эмиттеру.

При соединении черного щупа к базе, а красного к коллектору и эмиттеру у исправного полупроводника переходы должны быть закрыты и на дисплее «обрыв» (единица).

Примечание

В режиме диодной проверки на дисплее отображается значение не сопротивления в Омах, как многие считают, а значение напряжения открытия PN перехода в милливольтах.

 

 


Похожие статьи

Ремонт строчной развертки телевизора ST TV2106

Всем привет. Сегодня будем ремонтировать телевизор ST TV2106, который не включается.

Модель телевизора

После подачи напряжения, на телевизоре начинает моргать красный светодиод и слышен писк. Скажу сразу, что неисправность я найду, а вот отремонтировать телевизор не выйдет, но о этом ниже в статье.

Разборка, чистка платы и первоначальная диагностика

После снятия задней крышки, первым делом решил почистить плату от пыли.

Состояние платы после снятия задней крышки

Видно, что телевизор собран на стандартном китайском шасси, ремонт которого обычно не очень тяжелый. Дабы немного упростить работы, решил почистить плату от пыли. Для этого, я использовал малярную кисточку и пылесос.

Плата после чистки

Так как после включения слышен писк, то зачатую виновником такого поведения является короткое замыкание в выходных цепях блока питания. В большинстве случаев это сгоревший строчный транзистор.рочный транзистор. Его я и решил проверить на предмет короткого замыкания. Мои подозрения подтвердились, так как строчный транзистор был полностью закорочен.

Проверка строчного транзистора. Транзистор закорочен, мультиметр в режиме прозвонки показывает падение напряжения 0,003 в

Далее, я выпал  транзистор, и  начал искать возможную причину выхода его из строя.

Что бы исключить замыкание на стороне платы, повторно прозвонил транзистор в выпаянном состоянии

Процесс полной диагностики телевизора и устранение неисправностей.

После удаления с платы неисправного транзистора, я решил подать напряжение на плату. Результат порадовал, так как появились все выходные напряжения, в частности питание на строчную развертку составило 111,6 вольт.

Напряжение питания строчной развертки

Для таких телевизоров данное напряжение является нормальным.

Чтобы выяснить истинную причину неисправности строчной развертки, для себя я использую какую последовательность действий:

  • Первым делом, я проверяю на исправность коллекторную ёмкость. Найти ее несложно. Обычно, это пленочный конденсатор номиналом от 6 нанофарад до 20 нанофарад, и напряжением 1600-1800 вольт. Этот конденсатор подключается одной ногой к коллектору строчного транзистора (центральная ножка транзистора), а второй к минусу.
  • Если с конденсатором всё нормально, то следующим под проверку попадает отклоняющая система (далее ОС). Телевизоры с неисправной отклоняющей системой попадаются очень часто. Со временем, лак на проводах ОС повреждается, после чего образуется короткое замыкание.
  • Последним проверяю ТДКС.

Для защиты строчной развертки, я выпаял перемычку от блока питания к ТДКС, и вместо нее впаял лампу накаливания на 60 ВТ. Данная лампа защитит строчный транзистор в случае неправильной работы строчной развертки.

Для установки защитной лампы, я удалил перемычку, и вместо нее запаял лампу накаливания

После установки лампы, начал проверку конденсатора в коллектороной цепи. Им оказался конденсатор 912j на 1800 вольт. Его номинал должен соответствовать 9 нанофарадам. Подключив данный конденсатор к мультиметру, тот показал 8,8 nF, что в пределах нормы.

Проверка коллекторной емкости

После проверки конденсатора, решил впаять строчный транзистор и включить телевизор. Лампа ярко загорелась, что свидетельствовало о том, что строчная развертка работает неправильно, так как идет очень большое потребление тока. В нормальном состоянии лампа должна немного загореться, или вообще не гореть. Это актуально для телевизоров 14-21 дюйм, для телевизоров большей диагонали, необходимо использовать лампу большей мощности, так как потребление тока в таких телевизорах намного больше.

Свечение лампы накаливания при включении телевизора

Если бы я не установил бы лампу, то строчный транзистор сразу бы сгорел.

Следующей под проверку попала ОС (отклоняющая система). Чтобы легко ее проверить, необходимо отключить родную ОС, и вместо нее подкинуть какую-то оску с разборки.

Разъем ОС

Если не знаете на доноре где строчные витки, где кадровые, не беда. Берем мультиметр, и измеряем сопротивление на проводах. Где сопротивление меньше (порядка 6 ом), там у нас строчные катушки, где больше там кадровые.

Поискав у себя в закромах, я нашел ОС для проверки.

ОС с донора для подстановки

Предварительно, я отключил разъем оски от родной платы, и вместо нее припаял строчные катушки донорской ОС.  Кадровые катушки не подпаивал, так как они нам не нужны пока. После этого, кратковременно включил плату. Лампа немного засветилась, после чего потухла.

Подпаял к плате донорскую ОС

Я услышал высокое напряжение, после чего отключил плату. Дело в том, что нельзя на долго включать плату без ОС, так как на кинескопе не будет магнитного поля, и все лучи будут бить в одну точку. На кинескопе будет показывать всего одна точка по центру экрана. Если в таком положении оставить телевизор работать, то получим прогар кинескопа.

Итак, неисправность нашли, далее, я решил снять старую ОС, и вместо нее подкинуть новую.

Процесс снятия ОС. отвинчиваем эти 2 болта, после чего снимаем сначала магниты, потом и саму ОС

Отодрав старый клей, и отвинтив 2 болта у меня это получилось. Подкинув новую оску, и подключив ее к плате, и убрав лампу накаливания, включил телевизор.

Включенный телевизор без подключенных кадровых катушек. Полоса ели проглядывается, это еще при том, что ускоряющее напряжение накручено на 100%

Телевизор включился, но картинка была настолько бледна, при этом отсутствовал один из цветов. Проверив кинескоп на приборе, тот оказался полностью севшим. Созвонившись с хозяином, тот подтвердил, что телевизор ели показывал, и обговорив все детали, пришли к выводу, что ремонтировать телевизор нет смысла.

Вот такой ремонт. Хоть в результате работоспособного телевизора нет, но неисправность была найдена. Вот такой ремонт. Если будут вопросы, создавайте темы на форуме, буду рад ответить. Всем спасибо за внимание, и до скорых встреч в новых ремонтах.

Автор публикации

353 Комментарии: 42Публикации: 53Регистрация: 11-12-2017

Биполярные транзисторы. For dummies / Хабр

Предисловие


Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история


Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики



Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.

Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора


Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером


Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой


Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором


Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах


Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов


Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка


Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл .xls (35 кб) .

Список источников:
http://ru.wikipedia.org
http://www.physics.ru
http://radiocon-net.narod.ru
http://radio.cybernet.name
http://dvo.sut.ru

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Неисправности транзисторов

  • Раздел 7.3 Тестирование транзисторов
  • • Двухдиодная модель для BJT.
  • • Определение соединений транзисторов.
  • • Тестирование BJT.
  • • Тестирование полевых транзисторов.
  • • Тестирование полевых МОП-транзисторов

Модель двухдиодного транзистора

Рис.7.3.1 Модель двухдиодного транзистора.

Как показано на рис. 7.3.1, независимо от того, является ли транзистор (а) типом NPN или (б) биполярным транзистором типа PNP, он состоит из двух диодных переходов, перехода база-эмиттер и перехода база-коллектор. Для целей тестирования их можно представить себе просто как два диода с одним общим соединением, то есть с базой. Итак, чтобы проверить транзистор, вам просто нужно проверить прямое и обратное сопротивление каждого из этих переходов. Однако для этого сначала необходимо выяснить, какой штифт какой.

План A — Используйте лист данных производителя

Лучший способ проверить функции контактов — воспользоваться таблицей данных производителя. Практически каждый транзистор, когда-либо созданный, имеет свой собственный лист данных в Интернете. Просто введите номер транзистора в строку поиска в Интернете, и вы найдете несколько сайтов, на которых публикуются нужные вам данные. Вы также должны найти схему в таблице данных, показывающую соединения контактов транзистора (распиновку), где показаны контакты коллектора, базы и эмиттера, а также любые варианты.Если вы не можете найти нужную информацию, придется прибегнуть к плану Б.

Рис.7.3.2 Общие транзисторные блоки.

Plan B — Определение функций выводов по информации о корпусе транзистора.

Что делать, если вы не можете найти идентификационный номер жизненно важного транзистора на самом транзисторе? Еще не все потеряно; вы все еще можете найти функции булавки, немного поработав детективом. Если транзистор, который вы тестируете, имеет металлический корпус, как на схемах компоновки обычных корпусов TO18, TO3, TO126, TO202, TO72 и т. Д., это полезно. К коллектору почти всегда присоединяется металлический корпус или область радиатора, чтобы тепло отводилось легче. Это означает, что если вы измеряете сопротивление от корпуса или металлической монтажной области к каждому контакту по очереди, то один контакт, который измеряет нулевое сопротивление, является коллектором. Однако нам действительно нужно найти базу. В корпусах транзисторов, таких как TO39, это просто; эмиттер почти всегда находится рядом с металлическим язычком, а коллектор подсоединен к банке.

Обратите внимание, что часто это делает основание центром трех соединений — но это не всегда так; не полагайтесь на то, что база находится в центре.Изучите распространенные типы пакетов, показанные на рис. 7.3.2. Возможны вариации даже в пределах одного типа упаковки. Так что, если план B не решил загадку, не беспокойтесь, всегда есть план C.

Plan C — Тестирование транзисторов с неизвестными выводами.

Однако еще один полезный способ найти основание — это измерить сопротивление между различными контактами. Представьте для начала, что мы подозреваем, что неизвестный транзистор может быть типа NPN (они гораздо чаще, чем PNP в современных схемах), и он может быть неисправным

Рис.7.3.3 Определение выводов транзисторов и поиск неисправных транзисторов
.

Использование таблицы поиска неисправностей

Следуйте инструкциям в ячейках 1, 2 и 3

Если вы переходите к блоку 4, и оба теста дают показания от 500 Ом до 1 кОм, хорошо! Вы нашли базовый вывод с первой попытки, и в поле 5 сообщается, что вы тестируете транзистор NPN.

В качестве альтернативы, если оба измерения указывают на бесконечность, вы перейдете к блоку 6, поскольку положительный вывод не был на базе.Так что вернитесь к тесту 2 и попробуйте еще раз, подключив положительный провод к другому выводу. Повторяйте этот тест, пока не найдете базовый штифт.

Или, если оба измерения на шаге 4 показывают бесконечность, либо транзистор неисправен (один или оба перехода разомкнуты), либо транзистор имеет тип PNP. Поэтому вам нужно начать все сначала, но на этот раз используя отрицательный вывод измерителя, чтобы найти базовый штифт.

Если в тесте 3 один или оба теста показывают 0 Ом (короткое замыкание), и вы случайно не коснулись положительного и отрицательного выводов вместе во время тестов, транзистор неисправен из-за короткого замыкания одного или обоих соединений.

Диагностическая таблица проверяет биполярный транзистор, знаете ли вы, какие контакты какие или нет, но-

Если вы уже знаете распиновку

Вот сокращенная версия для подтверждения того, неисправен известный транзистор или нет. Если все тесты прошли успешно, транзистор в порядке. Если какие-либо тесты не пройдут, транзистор отправляют в мусорное ведро.

1. Проверить сопротивление между коллектором и эмиттером.

2. Затем поменяйте местами положительное и отрицательное подключение счетчика.Если транзистор исправен, в обоих направлениях должно быть показание бесконечности.

Теперь подключите положительный вывод измерительного прибора к базе и проверьте сопротивление обоих переходов, подключив отрицательный измерительный щуп (3) к коллектору, а затем (4) к эмиттеру. В обоих случаях вы должны получить типичное значение прямого сопротивления от 500 Ом до 1 кОм.

Наконец, поменяйте местами соединения счетчика, чтобы отрицательный провод был подключен к базе. Подключите положительный зонд (5) к коллектору, затем (6) к эмиттеру.Оба соединения теперь должны показывать бесконечность.

Тестирование полевых транзисторов

Рис.7.3.4 Диод JFET Модель

Полевые транзисторы

сконструированы иначе, чем биполярные транзисторы, и поэтому требуют других методов тестирования. Сначала рассмотрим схемы JFET на рис. 7.3.4, которые показывают путь сток / исток в виде единого блока кремния типа N или P, а затвор — как простой диод, который имеет либо анод (в JFET с каналом P), либо катод ( в N-канальных полевых транзисторах), подключенных напрямую сток / исток.Поэтому вместо того, чтобы тестировать два PN перехода, как в BJT, в JFET нам нужно проверить только один переход.

Первое, что нужно знать перед тестированием подозрительного полевого транзистора, — это распиновка, как и у любого другого транзистора, ее можно получить, загрузив лист данных для конкретного интересующего полевого транзистора.

Рис.7.3.5 2N3819 Лист данных.

После идентификации контактов источника, стока и затвора следующие тесты цифрового измерителя должны выявить состояние полевого транзистора:

  • 1.Переключите измеритель в режим проверки диодов.
  • 2. Измерьте сопротивление между Источником и Сливом с помощью положительного провода измерителя на сливном штыре.
  • 3. Поменяйте местами провода измерителя (положительный на источник) и снова снимите показания сопротивления.

Результаты тестов 1 и 2 обычно должны быть от 130 до 180 Ом, но это может варьироваться в разных полевых транзисторах JFET. Если сопротивление кажется подозрительно низким, это может означать, что на затворе с очень высоким импедансом имеется остаточное напряжение из-за емкости затворного перехода.Чтобы устранить эту возможность, закоротите затвор и источник, на мгновение коснувшись обоих контактов вместе, затем повторите тесты 1. и 2. Показание 0 Ом или бесконечность означает, что JFET неисправен.

  • 4. Предполагая, что шаги 2 и 3 в порядке, проверьте сопротивление между затвором и источником с помощью положительного измерительного щупа на выводе затвора. Ожидайте сопротивление от 700 Ом до 1 кОм. Это прямое сопротивление диода затвора.
  • 5. Удерживая положительный датчик измерителя на затворе, переместите отрицательный зонд к сливу и проверьте сопротивление между затвором и сливом.Ожидайте аналогичных результатов для теста 4.
  • 6. Теперь поменяйте местами подключения измерителя и проверьте обратное сопротивление диода затвора, поместив отрицательный щуп на вывод затвора, а положительный щуп на вывод истока. Теперь сопротивление должно быть бесконечным.
  • 7. Наконец, проверьте сопротивление затвора для слива, оставив отрицательный датчик на затворе и переместив положительный зонд к контакту слива. Снова чтение должно быть бесконечным.

Рис. 7.3.6 JFET в антистатической пене
.

Во всех этих тестах вы должны по возможности воздерживаться от работы с JFET. В идеале, при работе с полевыми транзисторами любого типа вы должны работать на рабочей станции ESD (Anti Static Discharge) или носить антистатический браслет. В качестве альтернативы вы можете, по крайней мере, воткнуть штыри (при условии, что они достаточно длинные) в кусок антистатической пены, например полевые транзисторы, в которых обычно хранятся полевые транзисторы. Тогда сопротивление между штырями позволит избежать накопления статического напряжения, но будет достаточно высоким. не сильно влиять на показания сопротивления, которые вы снимаете во время этих тестов.

Тестирование полевых МОП-транзисторов

Первое, что нужно понять о полевых МОП-транзисторах, — это то, что они гораздо более чувствительны к повреждению статическим разрядом, чем любые другие типы транзисторов, даже полевые транзисторы. Это связано с тем, что полевые МОП-транзисторы являются транзисторами с изолированным затвором, поэтому затвор полностью изолирован от тракта сток / исток. Это означает, что между затвором и другими выводами существует значительная емкость. Эту емкость можно легко зарядить до любого напряжения, включая чрезвычайно высокие напряжения, которые могут присутствовать на человеческом (вашем) теле, например, просто при ходьбе по комнате с ковровым покрытием.Такие статические напряжения могут легко вывести из строя полевой МОП-транзистор. Поэтому с самого начала следует проявлять осторожность, чтобы не прикасаться к клеммам MOSFET, когда MOSFET не находится в антистатической упаковке или не подключен к цепи. Поэтому для целей этих тестов мы будем предполагать, что тестировщик (вы) будете использовать антистатические методы, как описано в разделе о тестировании JFET. Однако одна мера предосторожности, которую мы не можем использовать, — это вставить MOSFET в антистатическую пену; так как это помешает нашим тестам работать.Поэтому для проведения тестов мы постараемся максимально не прикасаться к выводам полевого МОП-транзистора и вставить выводы в макетную плату.

Тестовая последовательность полевого МОП-транзистора

Рис.7.3.7 MOSFET на макетной плате.

  • 1. Установите цифровой мультиметр в положение проверки диодов.
  • 2. На мгновение замкните клеммы затвора и стока вместе с одним из щупов измерителя, чтобы разрядить любую емкость затвора.
  • 3. Подключите положительный датчик измерителя к клемме слива, а отрицательный датчик к клемме источника.Счетчик должен показывать бесконечность.
  • (Если измеритель показывает 0 Ом, попробуйте снова замкнуть затвор и сток с отрицательным проводом измерителя, чтобы гарантировать удаление любого заряда затвора).
  • Подключите положительный провод измерителя к источнику, а отрицательный датчик — к клемме слива. Измеритель должен теперь показать около 500 Ом
  • .
  • То, что вы сейчас проверили, — это обратное и прямое сопротивление внутреннего защитного диода полевого МОП-транзистора.
  • 4. Теперь подключите отрицательный щуп измерительного прибора к клемме источника и на мгновение коснитесь клеммы затвора положительным щупом измерительного прибора.Это на мгновение зарядит емкость базы, достаточную для включения полевого МОП-транзистора.
  • 5. Подсоедините положительный зонд к сливу, а отрицательный — к источнику (повторение теста 3). На этот раз измеритель должен показывать 0 Ом, потому что MOSFET теперь включается напряжением, которое вы приложили к затвору.
  • 6. Поменяйте местами провода измерителя (положительный на источник и отрицательный на сток). Сопротивление сток / исток снова должно быть 0 Ом, подтверждая, что полевой МОП-транзистор включен.
  • 7.Чтобы выключить полевой МОП-транзистор, используйте любой датчик для кратковременного замыкания затвора на слив.
  • 8. Убедитесь, что полевой МОП-транзистор теперь «выключен», поместив положительный датчик на клемму слива, а отрицательный датчик на источник, чтобы убедиться, что сопротивление между стоком и источником равно бесконечности, еще раз показывая, что при нулевом напряжении на затворе MOSFET теперь выключен, и MOSFET работает правильно.

Заключение.

Проведение тестов JFET или MOSFET поможет вам определить неисправные полевые транзисторы и лучше понять полевые транзисторы, но также призвано дополнить ваши исследования этих компонентов.Для получения более подробной информации см. Модуль полупроводников 4 (полевые транзисторы), чтобы завершить изучение этих важных компонентов.

Предупреждение: Никогда не работайте с цепями под напряжением, если вы не знаете И ИСПОЛЬЗУЕТЕ безопасные методы работы. Многие цепи, которые получают питание от сети (сети) (а некоторые нет), содержат СМЕРТЕЛЬНОЕ напряжение, а также другие опасности. Работать с цепями под напряжением должен только полностью обученный персонал. Прежде чем приступать к работе с цепями под напряжением с использованием любой информации, представленной на этом веб-сайте, прочтите важный ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ.

Начало страницы.>

Неисправности транзисторов

Типичные неисправности транзисторов.

Рис. 7.2.1 Цифровой мультиметр с функциями тестирования полупроводников
.

Когда транзистор выходит из строя, обычно происходит одно из двух:

  • 1. Переход происходит «короткое замыкание» (сопротивление перехода становится очень низким или равным нулю).
  • 2. Переход становится «разомкнутым» (сопротивление перехода становится очень большим или бесконечным).

В редких случаях соединение может стать «негерметичным» (немного низкое сопротивление), хотя это бывает редко. На практике за такой неисправностью довольно скоро следует полное короткое замыкание.

Таким образом, наиболее распространенные методы тестирования транзисторов состоят из основных проверок сопротивления. Определенная последовательность измерений сопротивления может использоваться, чтобы показать, что транзистор исправен или неисправен. Хотя для разных типов транзисторов (например, BJT, JFET или MOSFET) требуются разные тестовые последовательности, любое из тестов может быть выполнено с использованием довольно недорогого базового мультиметра, и он может быть цифровым или аналоговым.Два типичных примера показаны на рис. 7.2.1. и рис. 7.2.2

Цифровые и аналоговые мультиметры

Цифровой измеритель, показанный на рис. 7.2.1, также имеет полезные дополнительные диапазоны для измерения температуры и hFE (коэффициент усиления по току), полезные для дальнейших испытаний, но не существенные для более часто используемых тестов «годен / не годен».

Рис. 7.2.2 Аналоговый мультиметр.

Аналоговый измеритель имеет действительно полезный дисплей, который сразу отображает требуемые результаты (отклонение стрелки измерителя), вместо того, чтобы считывать и вычислять значение, показанное на цифрах на цифровом измерителе.Однако при использовании аналогового измерителя не все измерители ведут себя одинаково. На более старых аналоговых измерителях полярность испытательного напряжения на положительном и отрицательном измерительных проводах может быть обратной при использовании диапазонов сопротивления: красный = отрицательный, а черный = положительный. Однако на современных аналоговых мультиметрах это не обязательно, поэтому перед началом поиска неисправностей полупроводников убедитесь, какую полярность использует ваш измеритель.

Проверка полярности аналоговых мультиметров

Простым испытанием для подтверждения полярности является измерение прямого и обратного сопротивления заведомо исправного диода.Если ваш измеритель настроен на низкий (x1 или x10) диапазон сопротивления или диапазон диодов, если он есть в измерителе, показание прямого сопротивления на диоде (красный провод, подключенный к аноду, а черный провод — к катоду), должно быть ниже, чем показание сопротивления. получается, когда красный вывод подключен к катоду, а черный — к аноду. Если это так, полярность напряжения, используемого измерителем для измерения сопротивлений, не меняется (красный провод — положительный, а черный провод — отрицательный). Типичными показаниями в этом тесте с использованием хорошего диода будет прямое сопротивление около среднего диапазона на измерителе, а обратное сопротивление будет бесконечным (без движения стрелки).

Начало страницы.>

Как выбрать замену биполярному транзистору || AllTransistors.com

Биполярных транзисторов много, и большинство из них имеет множество аналогов, близких по своим параметрам, так что поиск замены обычно не вызывает никаких затруднений. Конечно, лучший вариант — заменить перегоревший транзистор на такой же, но если достать его невозможно, то с выбором аналога не возникнет никаких трудностей.Вот что нужно сделать для этого:

  1. Чтобы узнать название транзистора. Если это SMD устройство — его код нужно расшифровать в разделе SMD-кодов 🔗.
  2. Проанализировать схему транзистора (связка).
  3. Найдите техническое описание неисправного транзистора и введите его основные параметры в форму аналогового поиска.
  4. Просматривая паспорта предлагаемых транзисторов, выберите наиболее подходящий по параметрам аналог, учитывая режимы его работы в устройстве.

На что обратить внимание?

Открывая PDF-Datasheet, в первую очередь выясним тип транзистора — биполярный или полевой, p-n-p или n-p-n, тип корпуса, расположение распиновок.

Из числовых параметров в первую очередь это максимальные ток и напряжение. Максимальный ток и напряжение при замене транзистора должны быть больше или равны исходному.

Для биполярного транзистора важным параметром является коэффициент передачи тока hFE.Если транзистор находится в ключевых цепях (требует включения-выключения) hFE должен быть больше или равен требуемому коэффициенту. Если он есть в аналоговых усилителях или аналогичных устройствах, он должен быть близок к hFE. В импульсных источниках питания аналоговые транзисторы следует выбирать с близким hFE (нужно будет менять еще и рабочий транзистор, стоящий в паре).

Необходимо проверить температурный режим (нагрев) транзистора после включения прибора. Если транзистор чрезмерно горячий, проблема может быть как в транзисторе, так и в нерабочих элементах его связки.

Основные параметры расшифровки биполярных транзисторов

Полупроводниковый материал: большинство транзисторов будет из германия или кремния. Другие типы не используются в обычных устройствах. С учетом этого параметра будет создана связка транзисторов.

Полярность: при установке транзистора другой полярности выходит из строя.

Pc — Максимальная мощность: необходимо убедиться, что выбранный транзистор может рассеивать достаточную мощность.Этот параметр зависит от максимальной рабочей температуры транзистора — при повышении температуры максимальная мощность снижается. Если рассеиваемая мощность недостаточна — ухудшаются другие характеристики транзистора, например, резкое увеличение тока коллектора, что приводит к еще большему нагреву и выходу транзистора из строя.

Ucb — Максимально допустимое напряжение коллектор-база, определяемое значением напряжения пробоя p-n перехода. Это зависит от тока коллектора и температуры транзистора.

Uce — Максимально допустимое напряжение коллектор-эмиттер. Для Uce необходимо на треть больше напряжения коллекторной цепи. Если в схеме требуется катушка реле, необходимо предусмотреть защиту от перенапряжения транзистора, например диодную.

Ic — Максимальный постоянный ток коллектора. Ток транзистора также берется с запасом не менее 30%. Его значение зависит от температуры транзистора или окружающей среды.

Tj — максимальная температура PN-перехода.Этот параметр важно учитывать, если транзистор работает в экстремальных условиях, например в автомобиле, где его температура может достигать 100 градусов.

ft — Граничная частота коэффициента передачи тока — частота, при которой модуль коэффициента передачи тока в схеме с общим эмиттером стремится к единице. Этот параметр важен, потому что с увеличением частоты входного сигнала коэффициент усиления уменьшается.

Cc — емкость коллекторного перехода.От этого параметра зависит скорость транзистора (поэтому чем ниже, тем лучше).

hfe — Статический коэффициент передачи тока — отношение тока коллектора Iс к току базы Ib.

Выше описаны только самые важные параметры транзистора. Производитель указывает в паспортах множество дополнительных параметров: напряжение насыщения коллектор-эмиттер, максимально допустимый импульсный ток коллектора, обратный ток эмиттера, максимально допустимый базовый ток и т. Д.


Pengertian Transistor и Jenis-jenis Transistor

Pengertian Transistor dan Jenis-jenis Transistor — Transistor adalah komponen semikonduktor yang memiliki berbagai macam sizesi seperti sebagai penguat, pengendali, penyearah mod, docs. Транзистор merupakan salah satu komponen semikonduktor yang paling banyak ditemukan dalam rangkaian-rangkaian elektronika.Boleh dikatakan bahwa hampir semua perangkat elektronik menggunakan Transistor Untuk berbagai kebutuhan dalam rangkaiannya. Perangkat-perangkat elektronik yang dimaksud tersebut seperti Televisi, Computer, Ponsel, Audio Amplifier, Audio Player, Video Player, konsol Game, Power Supply dan lain-lainnya.

Transistor pertama kali ditemukan oleh tiga orang fisikawan yang berasal Amerika Serikat pada akhir tahun 1947 adalah Transistor jenis Bipolar. Мерека адалах Джон Бардин, Уолтер Браттейн, дан Уильям Шокли .Dengan penemuan tersebut, perangkat-perangkat elektronik yang pada saat itu berukuran besar dapat dirancang dalam kemasan yang lebih kecil dan portabel (dapat dibawa kemana-mana). Ketiga fisikawan tersebut mendapatkan Hadiah Nobel Fisika pada tahun 1956 atas penemuan Transistor ini. Namun sebelum ketiga fisikawan Amerika Serikat tersebut menemukan Транзистор биполярный, seorang fisikawan Джерман янь Bernama Julius Edgar Лилинфельд sudah mempatenkan Транзистор JENIS полевой транзистор ди Kanada пада tahun 1925 tetapi Юлиус Эдгар Лилиенфельд tidak pernah mempublikasikan Hasil penelitiannya Baik Dalam bentuk tulisan maupun perangkat прототип-ня.Пада Тахун 1932, изобретатель соранг Джерман Ян Бернама Оскар Хейл Джуга мендафтаркан Патен Ян Хампир сама ди Эропа.

Seiring dengan perkembangannya, Transistor pada saat ini telah dirancang telah berbagai jenis desain dengan fitur aliran arus dan pengendali yang unik. Ada jenis Транзистор янь berada dalam kondisi OFF hingga terminal Basis diberikan arus listrik untuk dapat berubah menjadi ON sedangkan ada jenis lain yang berada dalam kondisi ON hingga harus diberikan arus listrik pada terminal Basis untuk merubahnya menjadi.Ада Джуга Транзистор Ян мембутухкан арус Кесил дан теганган Кесил Untuk mengaktifkannya Namun Ада Ян Ханья memerlukan tegangan Untuk mengoperasikannya. Ada lagi Transistor yang memerlukan tegangan positif untuk memicu pengendalinya di terminal Basis sedangkan ada Transistor yang memerlukan tegangan negatif sebagai pemicunya.
Baca juga: Fungsi, Struktur dan Cara Mengukur Transistor.

Транзистор Джениса-Джениса

Secara umum, Transistor dapat digolongkan menjadi dua keluarga besar yaitu Transistor Bipolar dan Transistor Efek Medan (Полевой транзистор).Perbedaan янь paling utama diantara dua pengelompokkan tersebut adalah terletak pada bias Input (atau Output) ян digunakannya. Транзистор биполярный memerlukan arus (current) Untuk mengendalikan terminal lainnya sedangkan Field Effect Transistor (FET) hanya menggunakan tegangan saja (tidak memerlukan arus). Пада pengoperasiannya, Транзисторный биполярный memerlukan muatan pembawa (переносчик) дыра и электронный sedangkan FET hanya memerlukan salah satunya.

Berikut ini adalah jenis-jenis Transistor beserta penjelasan singkatnya.

1. Транзистор биполярный (БЮТ)

Transistor Bipolar adalah Transistor yang structure dan prinsip kerjanya memerlukan perpindahan muatan pembawanya yaitu electronic di kutup negatif untuk mengisi kekurangan electon atau hole di kutub positif. Биполярный берасал дари ката « би » янь артинья адалах «дуа» дан ката « полярный » янь артинья адалах «кутуб». Транзистор Bipolar Juga Sering Disbut Juga dengan Singkatan BJT yang kepanjangannya adalah Bipolar Junction Transistor .

Jenis-jenis Транзистор биполярный

Transistor Bipolar terdiri doa jenis yaitu Transistor NPN dan Transistor PNP. Tiga Terminal Transistor ini diantaranya adalah terminal Basis, Kolektor dan Emitor.

  • Транзистор NPN адалах транзистор биполярный янь menggunakan arus listrik kecil dan tegangan positif pada terminal Basis Untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Kolektor ke Emitor.
  • транзистор PNP адалах транзистор биполярный янь menggunakan arus listrik kecil dan tegangan negatif pada terminal Basis Untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Emitor ke Kolektor.

Simbol Transistor Bipolar (BJT) dapat dilihat di gambar atas.

2. Транзистор Эфека Медана (Полевой транзистор)

Transistor Efek Medan atau Field Effect Transistor yang disingkat menjadi FET ini adalah jenis Transistor yang menggunakan listrik untuk mengendalikan konduktifitasnya. Ян dimaksud dengan Medan listrik disini adalah Теганган listrik янь diberikan pada терминал Gate (G) Untuk mengendalikan aliran arus dan tegangan pada терминал Drain (D) ke терминал Источник (S).Transistor Efek Medan (FET) ini sering juga disable sebagai Transistor Unipolar karena pengoperasiannya hanya tergantung pada salah satu muatan pembawa saja, apakah muatan pembawa tersebut merupakan Electron Maupun Hole.

Jenis-jenis Transistor Efek Medan (Полевой транзистор)

Transistor jenis FET ini terdiri dari tiga jenis yaitu Junction Field Effect Transistor (JFET), Metal Oxide Semikonductor Field Effect Transistor (MOSFET) and Uni Junction Transistor (UJT).

  • JFET ( Junction Field Effect Transistor ) adalah Transistor Efek Medanyang menggunakan persimpangan (junction) p-n bias terbalik sebagai изолятор antara Gerbang (Gate) dan Kanalnya.JFET тердири dari dua jenis yaitu JFET Kanal P (p-канал) и JFET Kanal N (n-канал). JFET terdiri dari tiga kaki terminal yang masing-masing terminal tersebut diberi nama Gate (G), Drain (D) dan Source (S).
  • MOSFET ( Metal Oxide Semiconductor Field Effect Transistor ) adalah Transistor Efek Medan yang menggunakan Isolator (biasanya menggunakan Silicon Dioksida atau SiO2) diantara Gerbang (Gate) dan Kanalnya. MOSFET ini juga terdiri dua jenis konfigurasi yaitu MOSFET Depletion dan MOSFET Enhancement yang masing-masing jenis MOSFET ini juga terbagi menjadi MOSFET Kanal-P (P-channel) dan MOSFET N-channel).MOSFET terdiri dari tiga kaki terminal yaitu Gate (G), Drain (D) dan Source (S).
  • UJT ( Uni Junction Transistor ) adalah jenis Transistor yang digolongkan sebagai Field Effect Transistor (FET) karena pengoperasiannya juga menggunakan medan listrik atau tegangan sebagai pengendalinya. Berbeda dengan jenis FET lainnya, UJT mememiliki dua terminal Basis (B1 dan B2) dan 1 terminal Emitor. UJT digunakan khusus sebagai pengendali (переключатель) дан tidak dapat dipergunakan sebagai penguat seperti jenis transistor lainnya.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *