Закрыть

Нулевая последовательность: Токовая защита нулевой последовательности: принцип действия и применение

Токовая защита нулевой последовательности: принцип действия и применение

В высоковольтных сетях из-за каких-либо повреждений может нарушаться нормальная работа электроустановок. Достаточно частое повреждение – замыкание на землю, при котором возникает угроза как человеческой жизни за счет растекания потенциала, так и оборудованию за счет нарушения симметрии в сети. Чтобы предотвратить возможные последствия от таких повреждений на подстанциях и в других устройствах применяют токовую защиту нулевой последовательности (ТЗНП).

Содержание

Что такое нулевая последовательность?

Преимущественное большинство сетей получают  питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Форма напряжения в трехфазной сетиРис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю. Это означает, что в системах 110, 10 и 6 кВ,  для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать.

Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Для первых двух вариантов угол сдвига будет составлять 120º.

Прямая, обратная и нулевая последовательностьРис. 2. Прямая, обратная и нулевая последовательность

Посмотрите на рисунок 2, здесь нулевая последовательность, в отличии от двух других, показывает, что векторы имеют одно и то же направление, но их смещение в пространстве между собой равно 0º. Подобная ситуация происходит при однофазном кз, при этом токи двух оставшихся фаз устремляются в нулевую точку. Также эту ситуацию можно наблюдать и при междуфазных кз, когда две из них, помимо нахлеста, попадают еще и на землю, а в нуле будет протекать ток лишь одной фазы.

При возникновении трехфазных кз в нейтрали обмоток ток не будет протекать, несмотря на аварию. Потому что токи и напряжения нулевой последовательности по-прежнему будут отсутствовать. Несмотря на то, что фазные напряжения и токи в этой ситуации могут в разы возрасти, в сравнении с номинальными.

Принцип работы ТЗНП

Практически все релейные защиты, действие которых отстраивается от появления токов  нулевой последовательности, имеют схожий принцип. Рассмотрите вариант такой схемы, демонстрирующей действие защиты.

Принципиальная схема простейшей ТЗНП
Принципиальная схема простейшей ТЗНП

Здесь представлен вариант включения  реле тока Т, которое подключается ко вторичным обмоткам трансформаторов тока (ТТ), собранных в звезду. В данной ситуации нулевой провод от звезды обмоток трансформаторов отфильтровывает составляющие нулевой последовательности, в случае их возникновения.  При условии, что система работает симметрично, обмотки реле Т будут обесточенными. А при условии, что в одной из фаз произойдет замыкание на землю, ТТ отреагирует на это, из-за чего по нулевому проводу потечет ток. Это и будет та самая составляющая нулевой последовательности, из-за которой произойдет возбуждение обмотки реле Т.

После чего происходит выдержка времени, определяемая параметрами реле В. При истечении установленного промежутка времени токовая защита посылает сигнал на соответствующую коммутационную установку У. Которая и производит отключение трехфазной сети. Более сложные варианты схемы могут включать и реле мощности, которое позволяет отлаживать работу защиты по направлению.

В случае междуфазных повреждений симметрия не нарушиться, а лишь измениться  величина токов. А ТТ будут продолжать компенсировать токи, стекающиеся в нулевой провод. Преимущество такой схемы заключается в том, что при максимальных рабочих токах, все равно не будет срабатывать защита, поскольку будет сохраняться симметрия.

Но при существенном отличии в магнитных параметрах измерительных трансформаторов, произойдет дисбаланс в системе, и по нулевому проводнику будет протекать ток небаланса. Что может обуславливать ложные срабатывания токовой защиты даже в тех сетях, где соблюдается номинальный режим питания.

Правила подборки трансформаторов тока.

С целью снижения небаланса, влияющего на правильность срабатывания токовой защиты, подбирают такие ТТ, у которых вторичные токи не создадут перетоков. Для чего они должны соответствовать таким требованиям:

  • Обладать идентичными кривыми гистерезиса;
  • Одинаковая нагрузка вторичных цепей;
  • Погрешность на границе участков сети не должна превышать 10%.

К их вторичным цепям запрещено подключать еще какую-либо нагрузку, приводящую к искажению кривой намагничивания хотя бы в одном ТТ. Поэтому на практике при возникновении токов срабатывания от симметричной системы рекомендуют подвергать замене не один и не два, а все три трансформатора одновременно.

Область применения

Токовая защита, способная отреагировать на появление нулевой последовательности, нашла достаточно широкое применение  в линиях с заземленной нейтралью. Так как в них  токи коротких замыканий достигают наибольших величин. А вот при изолированной нейтрали ее установка нецелесообразна, поэтому ТЗНП в них не используют. Сегодня установки ТЗНП находят широкое применение:

  • на шинах районных подстанций для защиты силового оборудования;
  • в распределительных устройствах трансформаторных, переключающих и комплектных подстанций;
  • в токовых цепях крупных промышленных объектов с трехфазным силовым оборудованием.

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставокПример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают. Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи. Так как селективность ТЗНП для каждой  из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Практическая реализация ТЗНП

Сегодня токовая защита, реагирующая на возникновение нулевой последовательности, может реализовываться микропроцессорными установками и посредством реле. В большинстве случаев устаревшие реле повсеместно заменяются на более новые версии токовой защиты. Но, помимо ТЗНП настраиваются в работу дистанционные, дифференциальные защиты и прочие устройства. Чья работа основывается как на симметричных составляющих, так и на других параметрах сети.

Помимо этого, в своем  классическом исполнении ТЗНП не имеет возможности определять место повреждения. То есть для нее не имеет значение, в каком месте произошел обрыв. Поэтому для определения направления, в котором ток протекает по направлению к земле, применяют направленную защиту. Такая система отстраивается не только на токах, а и на напряжении, возникающем от нулевой последовательности. Данные величины подаются с трансформаторов напряжения, включенных по системе разомкнутого треугольника.

Схема работы направленной защитыСхема работы направленной защиты

При замыкании в зоне резервирования токовой защиты к одной из обмоток реле мощности поступает напряжение, а на вторую обмотку поступает ток нулевой последовательности, используемый для токовой защиты. При условии, что вектор мощности направлен в линию, реле мощности разблокирует срабатывание токовой защиты. В противном случае, когда направление мощности указывает, что неисправность произошла на другом участке, реле мощности продолжит блокировать срабатывание токовой защиты.

Сегодня практическая реализация такой защиты выполняется посредством микропроцессорных блоков REL650  или на реле ЭПЗ-1636. Каждый, из которых уже включает в себя и токовую отсечку, и дистанционную защиту, и  пусковое реле для возобновления питания.

Видео в дополнение к написанному

Напряжение нулевой последовательности (3Uo): схемы, применение, смысл

napryg 1 Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

napryg 3

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

napryg 2

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

napryg 4

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

Что такое токовая защита нулевой последовательности

Для чего нужна токовая защита нулевой последовательности (ТЗНП) и как она работает. Область применения данного вида защиты.


Наиболее частой неисправностью в трёхфазной сети является замыкание на землю. Межфазные замыкания встречаются реже. В сетях 110 кВ от однофазных замыканий на землю используется токовая защита нулевой последовательности, сокращенно ТЗНП. В этой статье мы рассмотрим её устройство, принцип действия и назначение. Содержание:

Что такое нулевая последовательность

Для того чтобы разобраться как работает ТЗНП, сначала нужно вспомнить что такое трехфазная сеть. Трехфазная сеть — это сеть переменного синусоидального тока. В трёхфазной цепи фазы сдвинуты друг относительно друга на 120 градусов. Вот так это выглядит на графике:

Интересно! Основные идеи и положения трехфазных сетей электроснабжения были разработаны Михаилом Осиповичем Доливо-Добровольским. Он разработал трёхфазный асинхронный двигатель с КЗ ротором типа беличья клетка, с фазным ротором и пусковым реостатом, искрогасительную решетку, фазометр, стрелочный частотомер.

Если изобразить это на векторной диаграмме, то изображение будет напоминать трехлучевую звезду. При условии равенства токов и напряжений между фазами такая система будет называться симметричной. Геометрическая сумма этих векторов равна нулю.

Важно! Различают прямую и обратную последовательность чередования фаз. Фазы обозначаются буквами A, B и C. Тогда последовательность A B C — прямая, C B A — обратная. При этом угол сдвига фаз в обоих случаях составляет 120 градусов. При нулевой последовательности вектора всех фаз направлены в одном направлении, соответственно результирующий вектор значительно превышает таковой (в 3 раза, по сравнению с нулевой последовательностью) в нормальном состоянии системы.

В случае межфазного замыкания токи во всех фазах возрастут, система все равно останется симметричной. А напряжения и токи нулевой последовательности равны нулю, как и в нормальном состоянии цепи.

В результате однофазного замыкания на землю система станет несимметричной и будут наблюдаться токи нулевой последовательности I0 и U0. Допустим замкнула фаза C, тогда токи фаз A и B устремятся к нулю, а в фазе C к трети от Iкз.

Тогда:

I0=1/3(Ik+0+0)

Отсюда Iк=I0*3. Эти токи возникают под воздействием напряжения КЗ или Uк0 между выводом обмотки трансформатора или генератора и точкой, в которой произошло замыкание.

Область применения на практике

Теоретическая часть без предварительной подготовки воспринимается достаточно сложно, поэтом перейдем к практике и ответим на вопрос, где применяется ТЗНП.

Как уже было сказано токовая защита нулевой последовательности используется в ВВ сетях напряжением 110 кВ с заземленной нейтралью. В сетях среднего напряжения 6, 10 кВ и больше с изолированной нейтралью не используется. Это связано с тем, что в сетях с заземленной нейтралью токи КЗ на землю очень большие.

Важно! Так как ТЗНП защищает от КЗ на землю, ее иногда называют земляной защитой (ЗЗ).

Как это работает

Принцип работы ТЗНП заключается в отключении коммутационной аппаратуры в случае однофазных замыканий с определенной выдержкой времени. Задержка времени нужна для организации селективности защит на разных трансформаторных подстанциях.

Пример схемы токовой защиты нулевой последовательности изображен на рисунке ниже:

Что такое токовая защита нулевой последовательности

В ней используется токовое реле КА и реле мощности KW. Для контроля тока по фазам в ТЗНП используются трансформаторы тока (ТТ). Это специальные измерительные трансформаторы надеваются на шину или провод. На его обмотках наводится ЭДС пропорциональное току, протекающему через жилу или шину.

Одним из главных условий корректной работы ТЗНП является то, чтобы у ТТ были одинаковые кривые намагничивания. Это значит, что они должны быть не просто одинаковы по входным и выходным характеристикам, но и быть одной марки. Кроме того, стоит отметить, что погрешности их выходных параметров не должны быть больше 10 процентов. Их вы видите на картинке ниже.

Что такое токовая защита нулевой последовательности

Чтобы получить токи выведенной из баланса системы сигнал пропускают через фильтр. В реальном применении соединяют обмотки трансформаторов между собой. Это называют фильтром токов нулевой последовательности.

В нормальном состоянии электросети токи нулевой последовательности равны нулю, соответственно Iвыходные фильтра ТЗНП тоже равны нулю. В аварийном режиме, при КЗ, выходной ток отличен от нуля. Остальные части ТЗПН настраиваются таким образом, чтобы исключить ложные срабатывания под определенный ток КЗ.

Если ранее токовая защита нулевой последовательности представляла собой релейные схемы, то в настоящее время выпускаются микропроцессорные терминалы для защитных цепей. То есть, современная ТЗНП может выполняться на микроконтроллерных схемах.

Рассмотренная система используется в качестве резервной защиты. Благодаря её свойствам можно достичь селективность срабатывания, где РЗиА каждой последующей ТП срабатывает быстрее, чем на предыдущей. Защита нужна чтобы минимизировать дальнейшие повреждения ЛЭП, трансформаторов, генераторов, а также, чтобы обезопасить окружающую среду и людей, которые могут попасть в опасную зону.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое токовая защита нулевой последовательности, как она работает и для чего нужна. Если возникли вопросы, обязательно задавайте их в комментариях под статьей!

Материалы по теме:

  • Причины возникновения короткого замыкания
  • Защита минимального напряжения
  • Перекос фаз в трехфазной сети


НравитсяЧто такое токовая защита нулевой последовательности0)Не нравитсяЧто такое токовая защита нулевой последовательности0)

Метод симметричных составляющих (Лекция №19)

Метод симметричных составляющих относится к специальным методам расчета трехфазных цепей и широко применяется для анализа несимметричных режимов их работы, в том числе с нестатической нагрузкой. В основе метода лежит представление несимметричной трехфазной системы переменных (ЭДС, токов, напряжений и т.п.) в виде суммы трех симметричных систем, которые называют симметричными составляющими. Различают симметричные составляющие прямой, обратной и нулевой последовательностей, которые различаются порядком чередования фаз.

Симметричную систему прямой последовательности образуют (см. рис. 1,а) три одинаковых по модулю вектора и со сдвигом друг по отношению к другу на рад., причем отстает от , а — от .

 

Введя, оператор поворота , для симметричной системы прямой последовательности можно записать

.

Симметричная система обратной последовательности образована равными по модулю векторами и с относительным сдвигом по фазе на рад., причем теперь отстает от , а — от (см. рис. 1,б). Для этой системы имеем

.

Система нулевой последовательности состоит из трех векторов, одинаковых по модулю и фазе (см. рис. 1,в):

.

При сложении трех указанных систем векторов получается несимметричная система векторов (см. рис. 2).

Любая несимметричная система однозначно раскладывается на симметричные составляющие. Действительно,


; (1)
; (2)
. (3)

Таким образом, получена система из трех уравнений относительно трех неизвестных , которые, следовательно, определяются однозначно. Для нахождения сложим уравнения (1)…(3). Тогда, учитывая, что , получим

. (4)

Для нахождения умножим (2) на , а (3) – на , после чего полученные выражения сложим с (1). В результате приходим к соотношению

. (5)

Для определения с соотношением (1) складываем уравнения (2) и (3), предварительно умноженные соответственно на и . В результате имеем:

. (6)

Формулы (1)…(6) справедливы для любой системы векторов , в том числе и для симметричной. В последнем случае .

В заключение раздела отметим, что помимо вычисления симметричные составляющие могут быть измерены с помощью специальных фильтров симметричных составляющих, используемых в устройствах релейной защиты и автоматики.

Свойства симметричных составляющих токов
и напряжений различных последовательностей

Рассмотрим четырехпроводную систему на рис. 3. Для тока в нейтральном проводе имеем

.

Тогда с учетом (4)


, (7)

т.е. ток в нейтральном проводе равен утроенному току нулевой последовательности.

Если нейтрального провода нет, то и соответственно нет составляющих тока нулевой последовательности.

Поскольку сумма линейных напряжений равна нулю, то в соответствии с (4) линейные напряжения не содержат составляющих нулевой последовательности.

Рассмотрим трехпроводную несимметричную систему на рис. 4.

Здесь

Тогда, просуммировав эти соотношения, для симметричных составляющих нулевой последовательности фазных напряжений можно записать

.

Если система ЭДС генератора симметрична, то из последнего получаем

. (8)

Из (8) вытекает:

  • в фазных напряжениях симметричного приемника отсутствуют симметричные составляющие нулевой последовательности;
  • симметричные составляющие нулевой последовательности фазных напряжений несимметричного приемника определяются величиной напряжения смещения нейтрали;
  • фазные напряжения несимметричных приемников, соединенных звездой, при питании от одного источника различаются только за счет симметричных составляющих нулевой последовательности; симметричные составляющие прямой и обратной последовательностей у них одинаковы, поскольку однозначно связаны с соответствующими симметричными составляющими линейных напряжений.

При соединении нагрузки в треугольник фазные токи и могут содержать симметричные составляющие нулевой последовательности . При этом (см. рис. 5) циркулирует по контуру, образованному фазами нагрузки.

Сопротивления симметричной трехфазной цепи
для токов различных последовательностей

Если к симметричной цепи приложена симметричная система фазных напряжений прямой (обратной или нулевой) последовательностей, то в ней возникает симметричная система токов прямой (обратной или нулевой) последовательности. При использовании метода симметричных составляющих на практике симметричные составляющие напряжений связаны с симметричными составляющими токов той же последовательности. Отношение симметричных составляющих фазных напряжений прямой (обратной или нулевой) последовательности к соответствующим симметричным составляющим токов называется комплексным сопротивлением прямой

,

обратной

и нулевой

последовательностей.

Пусть имеем участок цепи на рис. 6. Для фазы А этого участка можно записать

. (9)

Тогда для симметричных составляющих прямой и обратной последовательностей с учетом, того, что , на основании (9) имеем

.

Отсюда комплексные сопротивления прямой и обратной последовательностей одинаковы и равны:

.

Для симметричных составляющих нулевой последовательности с учетом равенства соотношение (9) трансформируется в уравнение

,

откуда комплексное сопротивление нулевой последовательности

.

В рассмотренном примере получено равенство сопротивлений прямой и обратной последовательностей. В общем случае эти сопротивления могут отличаться друг от друга. Наиболее типичный пример – различие сопротивлений вращающейся машины для токов прямой и обратной последовательностей за счет многократной разницы в скольжении ротора относительно вращающегося магнитного поля для этих последовательностей.

Применение метода симметричных составляющих
для симметричных цепей

Расчет цепей методом симметричных составляющих основывается на принципе наложения, в виду чего метод применим только к линейным цепям. Согласно данному методу расчет осуществляется в отдельности для составляющих напряжений и токов различных последовательностей, причем в силу симметрии режимов работы цепи для них он проводится для одной фазы (фазы А). После этого в соответствии с (1)…(3) определяются реальные искомые величины. При расчете следует помнить, что, поскольку в симметричном режиме ток в нейтральном проводе равен нулю, сопротивление нейтрального провода никак ни влияет на симметричные составляющие токов прямой и обратной последовательностей. Наоборот, в схему замещения для нулевой последовательности на основании (7) вводится утроенное значение сопротивления в нейтральном проводе. С учетом вышесказанного исходной схеме на рис. 7,а соответствуют расчетные однофазные цепи для прямой и обратной последовательностей (рис. 7,б) и нулевой последовательности (рис. 7,в).

Существенно сложнее обстоит дело при несимметрии сопротивлений по фазам. Пусть в цепи на рис. 3 . Разложив токи на симметричные составляющие, для данной цепи можно записать

(10)

В свою очередь

(11)

Подставив в (11) значения соответствующих параметров из (10) после группировки членов получим

(12)

где ;

Из полученных соотношений видно, что если к несимметричной цепи приложена несимметричная система напряжений, то каждая из симметричных составляющих токов зависит от симметричных составляющих напряжений всех последовательностей. Поэтому, если бы трехфазная цепь на всех участках была несимметрична, рассматриваемый метод расчета не давал бы преимуществ. На практике система в основном является симметричной, а несимметрия обычно носит локальный характер. Это обстоятельство, как будет показано в следующей лекции, значительно упрощает анализ.

На всех участках цепи, где сопротивления по фазам одинаковы, для i¹k. Тогда из (12) получаем

.

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. В каких случаях отсутствуют составляющие нулевой последовательности в линейных токах?
  2. Для каких цепей сопротивления прямой и обратной последовательностей одинаковы, а для каких – различны?
  3. Для анализа каких цепей возможно применение метода симметричных составляющих?
  4. Как при использовании метода симметричных составляющих учитывается сопротивление в нейтральном проводе?
  5. В чем заключается упрощение расчета цепи при использовании метода симметричных составляющих?
  6. Определить коэффициент несимметрии линейных напряжений , если , .
  7. Ответ: .

  8. До короткого замыкания в фазе А в цепи на рис. 4 был симметричный режим, при котором ток в фазе А был равен .
  9. Разложить токи на симметричные составляющие.
  10. Ответ: ; .

  11. Линейные напряжения на зажимах двигателя и . Определить действующие значения токов в фазах двигателя, если его сопротивления прямой и обратной последовательностей соответственно равны: ; . Нейтральный провод отсутствует.
  12. Ответ: ; ; .

Защита нулевой последовательности (ТЗНП): токи, принцип действия, схемы

tznp 1 Одним из устройств, применяемых для защиты ЛЭП с напряжением 110 кВ, является токовая направленная защита нулевой последовательности (сокращенно – ТНЗНП).

Эти линии электропередач выполняются с эффективно заземленной нейтралью. В отличие от сетей 6-35кВ, у которых нейтраль изолирована, токи замыкания на землю достаточно большие, что вызывает необходимость фиксировать их и отключать с минимально возможной выдержкой времени. Но для этого нужно не просто определить факт наличия в системе замыкания на землю, но и найти линию, на которой оно произошло. Для этого такие защиты и делаются направленными.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол, равный 120 градусов. При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу. Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Если поменять порядок прохождения векторов с А-В-С на С-В-А, получается обратная последовательность. В обоих случаях неизменным остается одно: между векторами разных фаз сохраняется угол в 120 градусов.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий. Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю. Он должен быть проведен от начала первого суммируемого вектора к концу последнего.

tznp 2Но так будет только при отсутствии в системе замыканий на землю. При междуфазных КЗ увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие КЗ еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

В системах с изолированной нейтралью для выделения этих токов используется специальный трансформатор, надеваемый на кабель.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

tznp 3Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Напряжение нулевой последовательности

Имея в наличии только информацию о токах нулевой последовательности, невозможно определить, где произошло КЗ: в самой линии, или «за спиной». В противоположном от линии конце находится либо распределительное устройство с другими подключенными к нему ЛЭП, либо трансформаторы. У них есть своя собственная защита, которая лучше разберется в ситуации.

Для того, чтобы определить направление на замыкание на землю, потребуется информация о напряжении нулевой последовательности. Оно берется с особых обмоток трансформаторов напряжения, соединенных в разомкнутый треугольник.

Это тоже векторная сумма, но не токов, а фазных напряжений. Она равна нулю в нормальном режиме и при симметричных КЗ, но при однофазных КЗ имеет определенную величину.

Далее в дело вступает реле направления мощности. На одну его обмотку подается напряжение нулевой последовательности, а на другую – ток, использующийся для работы земляной защиты. Срабатывание происходит при таком угле между этими величинами, когда мощность КЗ направлена в линию. В других случаях, при КЗ «за спиной», отсутствие срабатывания этого реле блокирует работу защиты.

Принцип действия ТЗНП, защита нулевой последовательности

Токи небаланса

 Правильное сложение токов возможно только в случае полной идентичности характеристик трансформаторов тока. На этапе проектирования для защиты обязательно выбираются одинаковые обмотки трансформаторов с одинаковым классом точности, кратностью насыщения.

Кроме того, в цепи этих обмоток не должны быть включены другие устройства или приборы, нарушающие симметрию их нагрузки.

Но и этого может оказаться недостаточно. Если при всем при этом характеристики намагничивания оказываются разными, ток небаланса все-таки появляется. Если в нормальном режиме он не приводит к ложному срабатыванию защиты, то при симметричных КЗ, когда токи становятся в несколько раз большими, ток небаланса существенно возрастет.

Поэтому при замене трансформаторов тока, если не удается подобрать аналог для одного из них с полным соответствием вольт-амперных характеристик, то лучше сменить не один или два, а все три.

Реализация защит ТЗНП

Широко применялись еще с советских времен панели защит ЛЭП-110 кВ на базе электромеханических реле, например ЭПЗ-1636. В ее состав, кроме ТЗНП входит еще дистанционная защита и токовая отсечка.

Однако электромеханические реле эксплуатирующихся панелей давно выработали свой ресурс, а точечная их замена не всегда приводит к надежным результатам.

Поскольку со времен разработки данной релейной техники прогресс уже ушел далеко вперед, старое оборудование целиком меняется на панели или шкафы, включающие в себя микропроцессорные терминалы релейных защит.

Токовая защита нулевой последовательности: принцип действия и назначение

Наиболее частой неисправностью в трёхфазной сети является замыкание на землю. Межфазные замыкания встречаются реже. В сетях 110 кВ от однофазных замыканий на землю используется токовая защита нулевой последовательности, сокращенно ТЗНП. В этой статье мы рассмотрим её устройство, принцип действия и назначение.

Что такое нулевая последовательность

Для того чтобы разобраться как работает ТЗНП, сначала нужно вспомнить что такое трехфазная сеть. Трехфазная сеть — это сеть переменного синусоидального тока. В трёхфазной цепи фазы сдвинуты друг относительно друга на 120 градусов. Вот так это выглядит на графике:

Трехфазная сеть

Интересно! Основные идеи и положения трехфазных сетей электроснабжения были разработаны Михаилом Осиповичем Доливо-Добровольским. Он разработал трёхфазный асинхронный двигатель с КЗ ротором типа беличья клетка, с фазным ротором и пусковым реостатом, искрогасительную решетку, фазометр, стрелочный частотомер.

Если изобразить это на векторной диаграмме, то изображение будет напоминать трехлучевую звезду. При условии равенства токов и напряжений между фазами такая система будет называться симметричной. Геометрическая сумма этих векторов равна нулю.

Векторная диаграмма трехфазной сети

Важно! Различают прямую и обратную последовательность чередования фаз. Фазы обозначаются буквами A, B и C. Тогда последовательность A B C — прямая, C B A — обратная. При этом угол сдвига фаз в обоих случаях составляет 120 градусов. При нулевой последовательности вектора всех фаз направлены в одном направлении, соответственно результирующий вектор значительно превышает таковой (в 3 раза, по сравнению с нулевой последовательностью) в нормальном состоянии системы.

В случае межфазного замыкания токи во всех фазах возрастут, система все равно останется симметричной. А напряжения и токи нулевой последовательности равны нулю, как и в нормальном состоянии цепи.

В результате однофазного замыкания на землю система станет несимметричной и будут наблюдаться токи нулевой последовательности I0 и U0. Допустим замкнула фаза C, тогда токи фаз A и B устремятся к нулю, а в фазе C к трети от Iкз.

Тогда:

I0=1/3(Ik+0+0)

Отсюда Iк=I0*3. Эти токи возникают под воздействием напряжения КЗ или Uк0 между выводом обмотки трансформатора или генератора и точкой, в которой произошло замыкание.

Область применения на практике

Теоретическая часть без предварительной подготовки воспринимается достаточно сложно, поэтом перейдем к практике и ответим на вопрос, где применяется ТЗНП.

ТЗНП

Как уже было сказано токовая защита нулевой последовательности используется в ВВ сетях напряжением 110 кВ с заземленной нейтралью. В сетях среднего напряжения 6, 10 кВ и больше с изолированной нейтралью не используется. Это связано с тем, что в сетях с заземленной нейтралью токи КЗ на землю очень большие.

Важно! Так как ТЗНП защищает от КЗ на землю, ее иногда называют земляной защитой (ЗЗ).

Как это работает

Принцип работы ТЗНП заключается в отключении коммутационной аппаратуры в случае однофазных замыканий с определенной выдержкой времени. Задержка времени нужна для организации селективности защит на разных трансформаторных подстанциях.

Пример схемы токовой защиты нулевой последовательности изображен на рисунке ниже:

Схема ТЗНП

В ней используется токовое реле КА и реле мощности KW. Для контроля тока по фазам в ТЗНП используются трансформаторы тока (ТТ). Это специальные измерительные трансформаторы надеваются на шину или провод. На его обмотках наводится ЭДС пропорциональное току, протекающему через жилу или шину.

Одним из главных условий корректной работы ТЗНП является то, чтобы у ТТ были одинаковые кривые намагничивания. Это значит, что они должны быть не просто одинаковы по входным и выходным характеристикам, но и быть одной марки. Кроме того, стоит отметить, что погрешности их выходных параметров не должны быть больше 10 процентов. Их вы видите на картинке ниже.

Трансформаторы тока

Чтобы получить токи выведенной из баланса системы сигнал пропускают через фильтр. В реальном применении соединяют обмотки трансформаторов между собой. Это называют фильтром токов нулевой последовательности.

В нормальном состоянии электросети токи нулевой последовательности равны нулю, соответственно Iвыходные фильтра ТЗНП тоже равны нулю. В аварийном режиме, при КЗ, выходной ток отличен от нуля. Остальные части ТЗПН настраиваются таким образом, чтобы исключить ложные срабатывания под определенный ток КЗ.

Если ранее токовая защита нулевой последовательности представляла собой релейные схемы, то в настоящее время выпускаются микропроцессорные терминалы для защитных цепей. То есть, современная ТЗНП может выполняться на микроконтроллерных схемах.

Рассмотренная система используется в качестве резервной защиты. Благодаря её свойствам можно достичь селективность срабатывания, где РЗиА каждой последующей ТП срабатывает быстрее, чем на предыдущей. Защита нужна чтобы минимизировать дальнейшие повреждения ЛЭП, трансформаторов, генераторов, а также, чтобы обезопасить окружающую среду и людей, которые могут попасть в опасную зону.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое токовая защита нулевой последовательности, как она работает и для чего нужна. Если возникли вопросы, обязательно задавайте их в комментариях под статьей!

Материалы по теме:

Что является источником токов обратной и нулевой последовательностей?

Ток нулевой последовательности это:

Сумма мгновенных значений токов трех фаз трехфазной системы Система нулевой последовательности существенно отличается от прямой иобратной тем, что отсутствует сдвиг фаз. Нулевая система токов по существу представляет три однофазныхтока, для которых три провода трехфазной цепи представляют прямой провод, а обратным проводом служитземля или четвертый (нулевой), по которому ток возвращается.

Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное илидвухфазноеКЗ).
Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Ток обратной последовательности, как известно из [22], появляется при любом несимметричном, а кратковременно и при трехфазном КЗ. Ток нулевой последовательности используется для повышения чувствительности пуска ВЧ-передатчика при КЗ на землю, а пусковое реле фазного тока КА — при симметричных КЗ

Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:

Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0 .

Зёх фазный ток — это когда фазы а,в,с отстоют друг от друга на 120градусов. Когда три фазы повёрнуты в 1 сторону — ток нулевой последовательности. Такое возникает при однофазных замыканиях на землю в сетях с заземлённой нейтралью. Поэтому применяются ТЗНП — токовые защиты нулевой последовательности для защиты от замыканий на землю — появился ток нулевой последовательности, значит есть замыкание на землю, защита срабатывает. . Токи обратной последовательности — это когда нарушен порядок чередования фаз. Возникают при межфазных замыканиях, для зашиты применяю ТЗОП — токовые защиты обратной последовательности. В двух словах так. Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное или двухфазное КЗ).



Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Токи нулевой последовательности по существу являются однофазным током, разветвленным между тремя фазами и возвращающимся через землю и параллельные ей цепи. В силу этого, путь циркуляции токов нулевой последовательности резко отличен от пути, по которому проходят токи прямой или обратной последовательности Для практической реализации метода симметричных составляющих необходимо составлять три схемы замещения: прямой, обратной и нулевой последовательностей. Конфигурация этих схем и параметры их элементов в общем случае не одинаковы.

Схема прямой последовательности является той же, что и для расчета тока трехфазного замыкания. Из этой схемы находят результирующую ЭДС и результирующее сопротивление прямой последовательности: и . Началом этой схемы являются точки нулевого потенциала источников питания, концом – место короткого замыкания, к которой приложено напряжение прямой последовательности . Составляющие обратной последовательности возникают при появлении в сети любой несимметрии: однофазного или двухфазного короткого замыкания, обрыва фазы, несимметрии нагрузки.

Составляющие нулевой последовательности имеют место при замыканиях на землю (одно- и двухфазных) или при обрыве одной или двух фаз. В случае междуфазного замыкания составляющие нулевой последовательности(токи и напряжения) равны нулю.

Этот метод используют многие устройства РЗиА. В частности, принцип работы трансформатора тока нулевой последовательности основан на сложении значений тока во всех трех фазах защищаемого участка. В нормальном(симметричном) режиме сумма значений фазных токов равна нулю. В случае возникновения однофазного замыкания, в сети появятся токи нулевой последовательности и сумма значений токов в трех фазах будет отлична от нуля, что зафиксирует измерительный прибор (например, амперметр), подключенный ко вторичной обмотке трансформатора тока нулевой последовательности.

Для трехфазных транспозированых ЛЭП результат этого преобразования — точная матрица собственных векторов (матрица модального преобразования)[1]. Она одинакова как для тока, так и для напряжения.

 


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

Что такое ток обратной последовательности и как он влияет на работу генератора

Воздействие несбалансированных токов…

Как вы знаете, генераторы и двигатели должны работать с сбалансированной трехфазной нагрузкой, но воздействие несбалансированных токов неизбежно. Дисбалансы могут возникать из-за множества различных источников, таких как несбалансированные нагрузки, нетранспонированные линии электропередачи, неисправности и обрыв фазы и т. Д.

What is negative sequence current and how does it affect generator work Что такое ток обратной последовательности и как он влияет на работу генератора

Эти дисбалансы появляются как ток обратной последовательности в выводах генератора.По определению, величины обратной последовательности имеют вращение, противоположное вращению энергосистемы. Этот обратный вращающийся ток статора вызывает двухчастотные токи в конструкциях ротора.

Обогрев в результате может очень быстро повредить ротор.

В течение десятилетий электромеханические реле максимальной токовой последовательности были предусмотрены в качестве стандартной защиты от несбалансированного тока для генераторов среднего и большого размера. Электромеханическая технология сильно ограничивает чувствительность этих реле.В результате они могли обеспечить только резервную защиту для неотключенных межфазных и замыканий на землю .

Потенциально повреждающие слаботочные условия, такие как разомкнутая фаза или ограниченная неисправность, не были обнаружены.

С появлением полупроводниковой и микропроцессорной технологии теперь доступна ретрансляция для обеспечения защиты генератора в широком диапазоне условий дисбаланса.


Так что же такое ток обратной последовательности?

Концепция тока обратной последовательности основана на методологии симметричного компонента.Основная теория симметричных компонентов заключается в том, что фазные токи и напряжения в трехфазной системе питания могут быть представлены тремя однофазными компонентами.

Это компоненты положительной, отрицательной и нулевой последовательности. Компонента прямой последовательности тока или напряжения имеет такое же вращение, что и система питания. Этот компонент представляет собой сбалансированную нагрузку.

Если фазные токи генератора равны и смещены точно на 120 °, будет существовать только ток прямой последовательности .Дисбаланс тока или напряжения между фазами по амплитуде или фазовому углу приводит к появлению компонентов отрицательной и нулевой последовательности.

Symmetrical components Symmetrical components Рисунок 1 — Симметричные компоненты: положительная, отрицательная и нулевая последовательность

Компонент обратной последовательности имеет вращение, противоположное вращению энергосистемы. Компонент нулевой последовательности представляет собой дисбаланс, который вызывает ток в нейтрали.

Компонент обратной последовательности аналогичен системе прямой последовательности, за исключением того, что результирующее поле реакции вращается в направлении, противоположном d.с. полевая система. Следовательно, создается поток, который разрезает ротор с удвоенной скоростью вращения, тем самым вызывая двухчастотные токи в полевой системе и в корпусе ротора.

Результирующие вихревые токи очень велики и вызывают сильный нагрев ротора.

Этот эффект настолько серьезен, что однофазная нагрузка, равная нормальному трехфазному номинальному току, может быстро нагреть клинья паза ротора до точки размягчения .

Затем они могут выдавливаться под действием центробежной силы до тех пор, пока они не окажутся над поверхностью ротора, когда возможно, что они могут ударить сердечник статора.

Генератору присвоен непрерывный рейтинг обратной последовательности .

Для турбогенераторов этот рейтинг низкий — приняты стандартные значения 10% и 15% от непрерывного рейтинга генератора. Более низкий рейтинг применяется, когда применяются более интенсивные методы охлаждения, например, водородное охлаждение с помощью газовых каналов в роторе, чтобы облегчить прямое охлаждение обмотки.

Кратковременный нагрев представляет интерес в условиях неисправности системы, и при определении способности выдерживать обратную последовательность генератора обычно предполагается, что тепловыделение в такие периоды незначительно.

Используя это приближение, можно выразить отопление по закону:

I 2 2 t = K

где:

  • I 2 = компонент обратной последовательности (на единицу максимального непрерывного рейтинга)
  • т = время (секунды)
  • K = постоянная, пропорциональная теплоемкости ротора генератора

Для нагрева в течение периода, превышающего несколько секунд, необходимо учитывать рассеиваемое тепло.Из комбинации номиналов непрерывного и короткого времени общая характеристика нагрева может быть получена:

Overall heating characteristic of a generator Overall heating characteristic of a generator

, где I 2R — непрерывный рейтинг отрицательной последовательности фаз на единицу максимального непрерывного рейтинга (MCR)

Чтобы проиллюстрировать происхождение этих компонентов, обратитесь к загрузке в образце системы генератора, показанной на рисунке 2.

Generator unbalanced currents Generator unbalanced currents Рисунок 2 — Генератор несбалансированных токов

Нагрузка генератора не сбалансирована, и, следовательно, тока отрицательной и / или нулевой последовательности присутствует в дополнение к току положительной последовательности.Последовательные токи могут быть определены из фазных токов, когда известны величина и фазовый угол.

Математически, токи положительной (I 1 ), отрицательной (I 2 ) и нулевой (I 0 ) последовательностей в системе с вращением ABC определяются как (Уравнение 1):

Positive (I<sub>1</sub>), negative (I<sub>2</sub>) and zero (I<sub>0</sub>) sequence currents Positive (I<sub>1</sub>), negative (I<sub>2</sub>) and zero (I<sub>0</sub>) sequence currents

Подставляя фазовые токи и углы из рисунка 1 в уравнение (1), найдены последовательные токи:

Substituting phase currents and angles Substituting phase currents and angles

Номинальный ток для измерительной системы составляет 4370 А .Тогда ток прямой последовательности составляет 4108 A / 4370 A = 0,94 pu , а ток обратной последовательности составляет 175 A / 4370 A = 0,04 Pu .

Ток нулевой последовательности является векторной суммой фазных токов и должен протекать в нейтрали или заземлении .

Генератор системы отбора проб подключен к дельта-обмотке трансформатора повышающего генератора (GSU). Без нейтрального обратного пути ток нулевой последовательности не может существовать. Расчетный ток нулевой последовательности является результатом ошибок измерения и должен рассматриваться как нулевой.


Влияние тока обратной последовательности

Роторное отопление

Магнитное поле в воздушном зазоре, которое вращается с синхронной (роторной) скоростью в том же направлении, что и ротор. Поскольку магнитное поле, индуцированное ротором и обратной последовательностью, движется с одинаковой скоростью и направлением, поле сохраняет фиксированное положение относительно ротора, и ток не индуцируется в ротор.

Несбалансированный ток создает ток обратной последовательности, который, в свою очередь, создает обратное вращающееся поле в воздушном зазоре.Это магнитное поле вращается с синхронной скоростью, но в обратном направлении к ротору.

С точки зрения точки на поверхности ротора это поле вращается с двойной синхронной скоростью. По мере того как это поле пронизывает ротор , оно индуцирует токи двойной частоты в корпус ротора цилиндрической роторной машины и в поверхность полюса выдающейся полюсной машины.

Части полученного пути индуцированного тока имеют высокое электрическое сопротивление индуцированному току. Результат — быстрый нагрев.

Повреждение из-за потери механической целостности или повреждения изоляции может произойти в считанные секунды.


Цилиндрические роторные генераторы

Цилиндрический ротор изготовлен из ковки из цельной стали с прорезями по всей длине. Каждая полевая катушка требует двух пазов, по одному на каждую сторону обмотки катушки. Паз может содержать одну или несколько обмоток катушки.

Гребни между пазами называются зубцами .Рисунок 3 иллюстрирует конфигурацию ротора.

Salient-pole rotor Salient-pole rotor Рисунок 3 — Ротор с выступающими полюсами

Канавки обрабатываются по бокам каждого зуба, чтобы можно было вдавливать клинья по всей длине паза. Клинья удерживают обмотки поля в пазах. В некоторых машинах в щелях между клином и полевой катушкой установлены токопроводящие полосы.

Эти полосы соединены на стопорных кольцах , чтобы обеспечить путь с низким сопротивлением для индуцированных токов .Петли, образованные этими полосами, известны как обмотки амортизатора.

Конфигурации пазов клина, полевой катушки и дополнительной обмотки амортиссера показаны на рисунке 4.

Slots and wedges Slots and wedges Рисунок 4 — Слоты и клинья

На концах корпуса ротора стопорные кольца удерживают концы обмоток возбуждения на месте против центробежной силы. Стопорные кольца обычно имеют усадочную посадку на корпусе ротора, но в старых машинах они могут свободно плавать при случайном контакте с корпусом ротора.

Кольца и клинья рассчитаны на механическую прочность , потому что они должны ограничивать большие обмотки возбуждения при частоте вращения генератора . Стопорные кольца являются компонентом наибольшего напряжения ротора.

Индуцированные токи 120 Гц протекают в виде петель вдоль корпуса цилиндрического ротора, как показано на рисунке 5. В роторе столько же петель тока, сколько полюсов статора.

Когда переменный ток проходит через проводник, в этом случае корпус ротора, плотности тока неодинаковы.

Rotor currents Rotor currents Рисунок 5 — Токи ротора

«Эффект скин-эффекта» заставляет переменный ток мигрировать к внешней поверхности проводника. Эта тенденция увеличивается с частотой.

В цилиндрическом роторе индуцированный ток 120 Гц занимает поперечное сечение, простирающееся от поверхности до глубины , не превышающей 0,1-0,4 дюйма . Это заставляет индуцированный ток в зубья и клинья на поверхности ротора. В результате высокая плотность тока значительно увеличивает сопротивление ротора для тока 120 Гц по сравнению с постоянным током или током 60 Гц.

Чем выше сопротивление, тем выше потери и больше тепла на усилитель для тока 120 Гц, чем для тока низкой частоты.

Индуцированные токи производят максимальный нагрев на концах корпуса ротора . Значительное тепло генерируется контактным сопротивлением, как передать токи от клиньев к зубам, чтобы войти в стопорное кольцо и от кольца до зубов затем клиньев на обратном цикле. Повышенный нагрев также вызван высокой плотностью тока в этих местах, так как ток собирается в зубьях для входа и выхода стопорных колец на конце ротора.

Допуск обратной последовательности генератора зависит от поддержания хорошего электрического контакта между конструкциями ротора. Низкое сопротивление минимизирует нагрев и предотвращает искрение в точках контакта . Дизайнеры включают в себя множество функций для улучшения проводимости.

К ним относится добавление обмоток амортизатора в пазы ротора для формирования дорожек с низким сопротивлением по всей поверхности ротора. Концы обмоток амортизатора соединены со стопорными кольцами для обеспечения моста с низким сопротивлением от прорези к кольцу.

Алюминиевые щелевые клинья также могут быть использованы для уменьшения сопротивления на этом пути тока.

Посеребренные алюминиевые пальцы могут обеспечить токопровод низкого сопротивления от клиньев до стопорных колец. Поверхность ротора в месте прессовой посадки стопорного кольца является часто покрытым серебром, чтобы минимизировать сопротивление и нагрев в месте соединения.

Два типа отказов ротора связаны с несбалансированным током.

Перегрев клиньев паза вызовет отжиг и разрушение при сдвиге от силы материала в пазах.Вторая неудача будет вполне стопорное кольцо. Чрезмерное нагревание может привести к термозажима стопорное кольцо, чтобы поднять свободный от тела ротора. Это создаст две проблемы.

стопорное кольцо не может перестроить после того, как он остынет, переустановка во взведенном положении на корпусе ротора. В результате получится Вибрация.

Кроме того, потеря хорошего электрического контакта во время плавания может привести к точечной коррозии и ожогам в местах прерывистого или плохого контакта. Стопорные кольца, предназначенные для плавания, также будут испытывать повреждение дуги в точках прерывистого контакта или плохой проводимости.

Результирующие локализованные высокие температуры могут охрупчивать участки кольца, а может привести к растрескиванию под воздействием различных нагрузок при повторном запуске и останове агрегата .

Характеристики нагрева различных конструкций генератора показаны на рисунке 6 ниже.

Typical negative phase sequence current withstand of cylindrical rotor generators Typical negative phase sequence current withstand of cylindrical rotor generators Рисунок 6 — Типичная выдерживаемая по току последовательность с обратной последовательностью фаз цилиндрических роторных генераторов
Генераторы выдающихся полюсов

Генераторы выдающихся полюсов обычно имеют обмотку амортизатора в форме проводящих стержней, расположенных на лицевой стороне каждого полюса ротора.Концы спаяны, чтобы сформировать путь низкого сопротивления на поверхности полюса.

Существует два основных типа амортизаторов: Несвязанные обмотки амортизатора изолированы на каждой поверхности полюса. Подключенные амортизаторы имеют токопроводящие перемычки, которые соединяют полюса для соединения концов всех групп амортиссеров на каждом полюсе.

Большая часть тока, индуцируемого в роторе машины с выдающимися полюсами, течет в амортизаторах с полюсной поверхностью. Поскольку соединения паяны, этот путь не имеет горячих точек контактного сопротивления, присущих машине с цилиндрическим ротором.

Тем не менее, ток амортизаторов имеет тенденцию течь во внешних стержнях, и индуцированный ток может вызвать повреждение напряжения из-за неравномерного расширения стержней.

Amortisseurs windings Amortisseurs windings Рисунок 7 — Обмотки амортиссеров

Если амортизаторы не подключены между полюсами — Большая часть тока, наведенного в этих обмотках, протекает по корпусу полюса в ласточкин хвост, который удерживает полюс на роторе, а затем обратно на соседний полюс. Соединение у ласточкиного хвоста создаст сопротивление, создавая тепло, которое может повредить изоляцию и конструкцию ротора.

Если амортиссеры подключены между полюсами — Ток ласточкиного хвоста резко уменьшается, но в соединении между полюсами будет течь большой ток.

Подключение амортизаторов также оказывает текущий балансировочный эффект на стержнях полюсов.

Машины с выдающимися полюсами и подключенными амортизаторами будут иметь более высокую способность по току обратной последовательности, чем машины без них. Ограничивающими компонентами на подключенных машинах часто являются стержни, которые соединяют полюса.

Большой индуцированный ток, протекающий в этих стержнях, может вызвать достаточный нагрев для отжига стержня , что приведет к механическому повреждению под действием центробежной силы .

Difference in salient pole rotor and round or cylindrical rotor Difference in salient pole rotor and round or cylindrical rotor Рис. 8 — Различие в роторе с выступающими полюсами и роторе с круглой или цилиндрической поверхностью

Пульсирующий крутящий момент

Ток обратной последовательности создает обратное вращающееся магнитное поле в воздушном зазоре. Это поле вызывает пульсацию крутящего момента вала с удвоенной частотой линии. Величина крутящего момента пропорциональна на единицу тока обратной последовательности в статоре.Пульсации передаются на статор.

Если статор установлен на пружине, пульсация будет поглощена. Без пружинных креплений пульсация будет передаваться на фундамент статора, где они могут быть конструктивным фактором.

В общем, проблемы, связанные с пульсацией крутящего момента, являются вторичными по отношению к нагреву ротора.

Источники:

  1. Защитная ретрансляция для систем производства электроэнергии от Дональда Реймерта
  2. Руководство по защите и автоматизации сети от Alstom
,
Что означает импеданс последовательности? Положительное, отрицательное и нулевое сопротивление последовательности

Импеданс последовательности сети описывает поведение системы в условиях асимметричного повреждения. Производительность системы определяется путем расчета полного сопротивления, предлагаемого другим элементом системы питания, для потока другой составляющей последовательности фаз тока. Каждый компонент энергосистемы (статический или вращающийся) имеет три значения сопротивления по одному для каждого симметричного значения тока.Импеданс последовательности силовой системы имеет три типа, а именно импеданс прямой последовательности, импеданс обратной последовательности и импеданс нулевой последовательности.

Импеданс положительной последовательности — Импеданс, предлагаемый сетью потоку тока прямой последовательности, называется сопротивлением прямой последовательности. Положительная последовательность означает, что все электрические величины численно равны и смещают друг друга на 120º.

positive-sequence-impedance

Полное сопротивление обратной последовательности — Полное сопротивление обратной последовательности означает полное сопротивление сети, предлагаемое потокам тока обратной последовательности.

negative-sequence-impedance

Импеданс нулевой последовательности — Импеданс, предлагаемый для тока нулевой последовательности, называется сопротивлением нулевой последовательности.

zero-sequence-impedance

Полное сопротивление компонента положительной, отрицательной и нулевой последовательности определяется отношением напряжения последовательности фаз к току последовательности фаз системы.

seqeucne-impedanced-equation

Нет взаимного сопротивления между различными симметричными компонентами. Каждый импеданс последовательности рассматривается отдельно, что упрощает расчет асимметричных расчетов неисправностей.

,
Вычисление компонентов с положительной, отрицательной и нулевой последовательностью трехфазного сигнала

Simscape / Электротехника / Специализированные энергосистемы / Контроль и измерения / Измерения

Simscape / Электротехника / Специализированные энергосистемы / Фундаментальные блоки / Измерения / Дополнительные измерения

Описание

Блок анализатора последовательности выводит величину и фазу из положительной, отрицательной и нулевой последовательностей компонентов множества из трех сбалансированных или несбалансированных сигналов.Индекс 1 обозначает положительный последовательность, индекс 2 обозначает отрицательную последовательность, а индекс 0 обозначает нулевая последовательность. Сигналы могут дополнительно содержать гармоники. три последовательные составляющие трехфазного сигнала (напряжения V 1 В 2 В 0 или токи I 1 I 2 I 0 ) рассчитываются следующим образом:

V1 = 13 (Va + a⋅Vb + a2⋅Vc) V2 = 13 (Va + a2⋅Vb + a⋅Vc) V0 = 13 (Va + Vb + Vc) Va, Vb, Vc = три вектора напряжения на указанной частотеa = ej2π / 3 = 1∠120∘ комплексный оператор

A Фурье-анализ по скользящему окну одного цикла указанная частота сначала применяется к трем входным сигналам.Это оценивает векторные значения Va, Vb и Vc при заданном фундаментальном или гармоническая частота. Затем преобразование применяется для получения положительная последовательность, отрицательная последовательность и нулевая последовательность.

В качестве блока используется скользящее среднее окно для выполнения Фурье анализ, один цикл моделирования должен завершиться до выхода дать правильную величину и угол. Например, ответ блока с шагом изменения V1 является одноцикловой рампой. Для первого цикла моделирование, выход поддерживается постоянным с использованием указанных значений по начальным входным параметрам.

Примеры

Модель power_SequenceAnalyzer показывает использование блока анализатора последовательности для вычисления трех составляющие последовательности трехфазного синусоидального напряжения. Модель время выборки

Время выборки модели параметризуется набором переменных Ts к значению по умолчанию 50e-6 с. Установите Ts на 0 в командном окне на моделировать модель в непрерывном режиме.

Что такое сети последовательностей? Определение и объяснение

Определение: Сеть с полным сопротивлением последовательности определяется как сеть с эквивалентным балансом для системы баланса мощности в воображаемых рабочих условиях, так что в системе присутствует только один компонент последовательности напряжения и тока. Симметричные компоненты полезны для вычисления несимметричного отказа в разных точках сети энергосистемы.Сеть прямой последовательности определяет исследования потока нагрузки в энергосистеме.

Каждая энергосистема имеет сеть с тремя последовательностями (сети с положительной, отрицательной и нулевой последовательностью), и эти сети несут ток с тремя последовательностями. Эти токи последовательности соединяются по-разному, чтобы представить различные условия неисправности дисбаланса. Эти последовательность тока и напряжения рассчитываются во время повреждения, из-за которого могут быть определены фактический ток и напряжение.

Положительная сеть учитывается при анализе симметричного разлома.Сеть с прямой последовательностью такая же, как сеть с последовательным сопротивлением или сетью с полным сопротивлением. Сеть с обратной последовательностью аналогична сети с прямой последовательностью, единственное отличие состоит в том, что сеть с обратной последовательностью имеет знак, противоположный знаку полного сопротивления прямой последовательности. Сеть нулевой последовательности будет внутренне свободна от внутренней точки повреждения и протекания тока, вызванного напряжением в точке повреждения.

Последовательная сеть

для расчета ошибок

Ошибка в энергосистеме означает, что система переведена в несбалансированное рабочее состояние.Несбалансированное положение энергосистемы заменяется сбалансированным положительным набором и симметричным сбалансированным набором отрицательных последовательностей и однофазным набором нулевой последовательности. Когда происходит сбой в системе, считается, что набор из трех последовательностей вводится в систему. Напряжение и ток после повреждения определяются реакцией системы каждого набора компонентов.

Для определения реакции системы используется три последовательных компонента. Считается, что каждая сеть последовательности заменяется эквивалентной цепью Тевенина между двумя точками.Каждая сеть последовательности может быть уменьшена до одного напряжения и одного полного сопротивления, показанного на рисунке ниже. Сеть последовательности представлена ​​блоком, в котором одна точка является точкой отказа, а другая — нулевым потенциалом эталонной шины N.

sequence-network

Для сети с прямой последовательностью напряжение Thevenin — это напряжение разомкнутой цепи V F в точке F. Напряжение V f — это напряжение перед фазой a, в точке отказа F.Например, это также представляет. Напряжение Тэвина в сетях с отрицательной и нулевой последовательностью равно нулю, потому что напряжение отрицательной и нулевой последовательностей в точке неисправности равно нулю в сбалансированной системе.

Ток I a течет из системы в отказ, поэтому его составляющая I a0 , I a1 и I a2 течет от точки повреждения F. Симметричная составляющая напряжения при неисправности точка может быть записана как

sequence-network-equation, где Z 0 , Z 1 и Z 2 — полное эквивалентное полное сопротивление сети с нулевой, прямой и обратной последовательностью вплоть до точки повреждения.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *