Закрыть

Обозначения электронных компонентов на схемах: Страница не найдена

Содержание

коды электронных компонентов на радиосхеме, их УГО

Чтобы можно было собрать радиоэлектронное устройство, необходимо знать обозначение радиодеталей на схеме и их название, а также порядок их соединения. Для осуществления этой цели и были придуманы схемы. На заре радиотехники радиодетали изображались трехмерными. Для их составления требовались опыт художника и знания внешнего вида деталей. Со временем изображения упрощались, пока не превратились в условные знаки.

Чтение электрической схемы

Сама схема, на которой нарисованы условные графические обозначения (УГО), называется принципиальной. Она не только показывает, каким образом соединяются те или иные элементы схемы, но и объясняет, как работает все устройство, показывая принцип его действия. Чтобы добиться такого результата, важно правильно показать отдельные группы элементов и соединение между ними.

Помимо принципиальной, существуют и монтажные. Они предназначены для точного отображения каждого элемента относительно друг друга. Арсенал радиоэлементов огромен. Постоянно добавляются новые. Тем не менее УГО на всех схемах почти одинаково, а вот буквенный код существенно отличается.

Существует 2 вида стандарта:

  • государственный, в этот стандарт может входить несколько государств;
  • международный, пользуются почти во всем мире.

Но какой бы стандарт ни применялся, он должен четко показать обозначение радиодеталей на схеме и их название. В зависимости от функционала радиодетали УГО могут быть простыми или сложными. Например, можно выделить несколько условных групп:

  • источники питания;
  • индикаторы, датчики;
  • переключатели;
  • полупроводниковые элементы.

Этот перечень неполный и служит лишь для наглядности. Чтобы легче было разобраться в условных обозначениях радиодеталей на схеме, необходимо знать принцип действия этих элементов.

Источники питания

К ним относятся все устройства, способные вырабатывать, аккумулировать или преобразовывать энергию. Первый аккумулятор изобрел и продемонстрировал Александро Вольта в 1800 году. Он представлял собой набор медных пластин, проложенных влажным сукном. Видоизмененный рисунок стал состоять из двух параллельных вертикальных прямых, между которыми стоит многоточие. Оно заменяет недостающие пластины. Если источник питания состоит из одного элемента, многоточие не ставится.

В схеме с постоянным током важно знать, где находится положительное напряжение. Поэтому положительную пластину делают выше, а отрицательную ниже. Причем обозначение аккумулятора на схеме и батарейке ничем не отличается.

Также нет отличия и в буквенном коде Gb. Солнечные батареи, которые вырабатывают ток под влиянием солнечного света, в своем УГО имеют дополнительные стрелки, направленные на батарею.

Если источник питания внешний, например, радиосхема питается от сети, тогда вход питания обозначается клеммами. Это могут быть стрелки, окружности со всевозможными добавлениями. Возле них указывается номинальное напряжение и род тока. Переменное напряжение обозначается знаком «тильда» и может стоять буквенный код Ас. Для постоянного тока на положительном вводе стоит «+», на отрицательном «-«, а может стоять знак «общий». Он обозначается перевернутой буквой Т.

Полупроводниковые диоды

Полупроводники, пожалуй, имеют самую обширную номенклатуру в радиоэлектронике. Постепенно добавляются все новые приборы. Все их можно условно разделить на 3 группы:

  1. Диоды.
  2. Транзисторы.
  3. Микросхемы.

В полупроводниковых приборах используется р-п-переход, схемотехника в УГО старается показывать особенности того или иного прибора. Так, диод способен пропускать ток в одном направлении. Это свойство схематически показано в условном обозначении. Оно выполнено в виде треугольника, у вершины которого стоит черточка. Эта черточка показывает, что ток может идти только по направлению треугольника.

Если к этой прямой пририсован короткий отрезок и он обращен в обратную сторону от направления треугольника, то это уже стабилитрон. Он способен пропускать небольшой ток в обратном направлении. Такое обозначение справедливо только для приборов общего назначения. Например, изображение для диода с барьером Шоттки нарисован s-образный знак.

Некоторые радиодетали имеют свойства двух простых приборов, соединенных вместе. Эту особенность также отмечают. При изображении двустороннего стабилитрона рисуются оба, причем вершины треугольников направлены друг к другу. При обозначении двунаправленного диода изображаются 2 параллельных диода, направленных в разные стороны.

Другие приборы обладают свойствами двух разных деталей, например, варикап. Это полупроводник, поэтому он рисуется треугольником. Однако в основном используется емкость его р-п—перехода, а это уже свойства конденсатора. Поэтому к вершине треугольника пририсовывается знак конденсатора — две параллельные прямые.

Признаки внешних факторов, влияющих на прибор, также нашли свое отражение. Фотодиод преобразует солнечный свет в электрический ток, некоторые виды являются элементами солнечной батареи. Они изображаются как диод, только в круге, и на них направлены 2 стрелки, для показа солнечных лучей. Светодиод, напротив, излучает свет, поэтому стрелки идут от диода.

Транзисторы полярные и биполярные

Транзисторы также являются полупроводниковыми приборами, но имеют в основном два p-n-p-перехода в биполярных транзисторах. Средняя область между двумя переходами является управляющей. Эмиттер инжектирует носители зарядов, а коллектор принимает их.

Корпус изображен кружком. Два p-n-перехода изображены одним отрезком в этом кружке. С одной стороны, к этому отрезку подходит прямая под углом 90 градусов — это база. С другой стороны, 2 косые прямые. Одна из них имеет стрелку — это эмиттер, другая без стрелки — коллектор.

По эмиттеру определяют структуру транзистора. Если стрелка идет по направлению к переходу, то это транзистор p-n-p типа, если от него — то это n-p-n транзистор. Раньше выпускался однопереходный транзистор, его еще называют двухбазовым диодом, имеет один p-n-переход. Обозначается как биполярный, но коллектор отсутствует, а баз две.

Похожий рисунок имеет и полевой транзистор. Отличие в том, что переход у него называется каналом. Прямая со стрелкой подходит к каналу под прямым углом и называется затвором. С противоположной стороны подходят сток и исток. Направление стрелки показывает тип канала. Если стрелка направлена на канал, то канал n-типа, если от него, то p-типа.

Полевой транзистор с изолированным затвором имеет некоторые отличия. Затвор рисуется в виде буквы г и не соединяется с каналом, стрелка помещается между стоком и истоком и имеет то же значение. В транзисторах с двумя изолированными затворами на схеме добавляется второй такой же затвор. Сток и исток взаимозаменяемые, поэтому полевой транзистор можно подключать как угодно, нужно лишь правильно подключить затвор.

Интегральные микросхемы

Интегральные микросхемы являются самыми сложными электронными компонентами. Выводы, как правило, являются частью общей схемы

. Их можно разделить на такие виды:

  • аналоговые;
  • цифровые;
  • аналого-цифровые.

На схеме они обозначаются в виде прямоугольника. Внутри стоит код и (или) название схемы. Отходящие выводы пронумерованы. Операционные усилители рисуются треугольником, выходящий сигнал идет из его вершины. Для отсчета выводов на корпусе микросхемы рядом с первым выводом ставится отметка. Обычно это выемка квадратной формы. Чтобы правильно читать микросхемы и обозначения знаков, прилагаются таблицы.

Прочие элементы

Все радиодетали соединяются между собой проводниками. На схеме они изображаются прямыми линиями и чертятся строго по горизонтали и вертикали. Если проводники при пересечении друг с другом имеют электрическую связь, то в этом месте ставится точка. В советских схемах и американских, чтобы показать, что проводники не соединяются, в месте пересечения ставится полуокружность.

Конденсаторы обозначаются двумя параллельными отрезками. Если это электролитический, для подключения которого важно соблюдать полярность, то возле его положительного вывода ставится +. Могут встречаться обозначения электролитических конденсаторов в виде двух параллельных прямоугольников, один из них (отрицательный) окрашивается в черный цвет.

Для обозначения переменных конденсаторов используют стрелку, она по диагонали перечеркивает конденсатор. В подстроечных вместо стрелки используется т-образный знак. Вариконд — конденсатор, меняющий емкость от приложенного напряжения, рисуется, как и переменный, но стрелку заменяет короткая прямая, возле которой стоит буква u. Емкость показывается цифрой и рядом ставится мкФ (микроФарада). Если емкость меньше — буквенный код опускается.

Еще один элемент, без которого не обходится ни одна электрическая схема — это резистор. Обозначается на схеме в виде прямоугольника. Чтобы показать, что резистор переменный, сверху рисуют стрелку. Она может быть соединена либо с одним из выводов, либо являться отдельным выводом. Для подстроечных используют знак в виде буквы т. Как правило, рядом с резистором указывается его сопротивление.

Для обозначения мощности постоянных резисторов могут использоваться знаки в виде черточек. Мощность в 0,05 Вт обозначается тремя косыми, 0,125 Вт — двумя косыми, 0,25 Вт — одной косой, 0,5 Вт — одна продольная. Большая мощность показывается римскими цифрами. Из-за многообразия невозможно провести описание всех обозначений электронных компонентов на схеме. Чтобы определить тот или иной радиоэлемент, пользуются справочниками.

Буквенно-цифровой код

Для простоты радиодетали разделяются на группы по признакам. Группы делятся на виды, виды — на типы. Ниже приведены коды групп:

  • A — устройства;
  • B — преобразователи;
  • C — конденсаторы;
  • D — микросхемы;
  • E — элементы разные;
  • F — защитные устройства;
  • G — источники питания;
  • H — индикаторы;
  • K — реле;
  • L — катушки;
  • M — двигатели;
  • P — приборы;
  • Q — выключатели;
  • R — резисторы;
  • S — выключатели;
  • T — трансформаторы;
  • U — преобразователи;
  • V — полупроводники, электровакуумные лампы;
  • X — контакты;
  • Y — электромагнит.

Для удобства монтажа на печатных платах указываются места для радиодеталей буквенным кодом, рисунком и цифрами. У деталей с полярными выводами у положительного вывода ставится +. В местах для пайки транзисторов каждый вывод помечается соответствующей буквой. Плавкие предохранители и шунты отображаются прямой линией. Выводы микросхем маркируются цифрами. Каждый элемент имеет свой порядковый номер, который указан на плате.

Зарубежные буквенные обозначения электронных комплектующих [Мозаика системного администрирования]

ASeparable assembly or sub-assembly (e.g. printed circuit assembly)Отдельный модуль или устройство
AEAerialАнтенна
ANTAntennaАнтенна
ARAmplifier (other than rotating), repeaterУсилитель, повторитель
ATAttenuator, inductive termination, resistive terminationАттенюатор, индуктивная оконечная нагрузка, резистивная оконечная нагрузка
BBead FerriteФерритовый фильтр
BBatteryБатарея
BMotorЭлектродвигатель
BRBridge rectifierДиодный мост
BTBatteryБатарея
BTPhotovoltaic transducer, solar cellФотогальванический преобразователь, солнечная батарея
CCapacitorКонденсатор
CBCircuit BoardМонтажная плата
CBCircuit breakerАвтоматический выключатель
CNCapacitor networkКонденсаторная сборка
CPConnector adapter, junction (coaxial or waveguide)Переходник, cоединение (коаксиала или волновода)
CRDiode (TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber)
Диод (лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
CRTCathode ray tubeЭлектронно-лучевая трубка
DDiode (LED, TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber)
Диод (светодиод, лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
DCDirectional couplerНаправленный соединитель
DLDelay lineЛиния задержки
DSDisplay, alphanumeric display device, annunciator, signal lampДисплей, алфавитно-цифровой индикатор, световой индикатор, сигнальная лампа
DSPDigital signal processorЦифровой сигнальный процессор
EElectrical contact, antenna, binding post, cable termination, electrical contact brush, electrical shield, ferrite bead rings, hall element, insulator, lightning arrester, magnetic core, permanent magnet, short circuit (termination), telephone protector, vibrating reed, miscellaneous electrical partЭлектрический контакт, электрод, антенна, клемма, кабельный наконечник, электрическая щётка, электрический экран, ферритовое кольцо, элемент на эффекте холла, изолятор, искровой разрядник, магнитный сердечник, постоянный магнит, перемычка, громполоса, вибрирующий пружинный контакт, прочие радиодетали
EPEarphoneГоловные телефоны
EQEqualizerЭквалайзер
FFuseПредохранитель
FBFerrite beadФерритовый фильтр
FDFiducialТочка выравнивания
FEBFerrite beadФерритовый фильтр
FETField-effect transistorПолевой транзистор
FLFilterФильтр
GGenerator or oscillator, electronic chopper, interrupter vibrator, rotating amplifier, telephone magnetoЭлектрогенератор или осциллятор, электронный чоппер, вибропреобразователь, электромашинный усилитель, телефонный индуктор
GDTGas-discharge lampГазоразрядная лампа
GNGeneral networkОбщая сеть
HHardware, e. g., screws, nuts, washersКрепёжные элементы (винты, гайки, шайбы)
HPHydraulic partДеталь гидравлики
HRHeater, heating lamp, heating resistor, infrared lamp, thermomechanical transducerНагревательный элемент, нагревательная лампа, нагревательный резистор, инфракрасная лампа, термомеханический преобразователь
HSHandset, operator's setТелефонная трубка, телефонная гарнитура
HTEarphoneГоловной телефон, наушники
HYCirculator or directional couplerЦиркулятор или направленный ответвитель
ILampЛампа накаливания
ICIntegrated CircuitМикросхема, интегральная схема
JJack, Receptacle, Terminal Strip, connectorГнездо, розетка, патрон, клеммник, коннектор
JWire link, jumperДжампер
JJumper chipРезистор нулевого сопротивления (перемычка или SMD-предохранитель)
JFETJunction gate field-effect transistorОднопереходный полевой транзистор
JPJumper (Link)Джампер
KRelay, contactorРеле, контактор, электромагнитный пускатель
LInductor, choke, electrical solenoid, field winding, generator field, lamp ballast, motor field, reactorКатушка индуктивности, дроссель, соленоид, обмотка электромагнита, обмотка возбуждения генератора, индуктивный балласт, обмотка возбуждения электродвигателя, реактивная катушка
LALightning arresterМолниезащита
LCDLiquid-crystal displayЖК-дисплей
LDRLight Dependent Resistor,Фоторезистор
LEDLight-emitting diodeСветодиод
LSLoudspeaker or buzzer, audible alarm, electric bell, electric horn, siren, telephone ringer, telephone sounderГромкоговоритель или зуммер, звуковая сигнализация, электрический колокол, ревун, сирена, телефонный звонок, телефонный капсюль
MMotorЭлектродвигатель
MMeter, electric timer, electrical counter, oscilloscope, position indicator, thermometerИзмеритель (обобщённый), электрический таймер, электрический счётчик, осциллограф, датчик положения, термометр
MCBMiniature circuit breakerМиниатюрный автоматический выключатель
MGDynamotor, motor-generatorДинамотор, моторгенератор
MICMicrophoneМикрофон
MKMicrophoneМикрофон
MOSFETMetal-oxide-semiconductor field-effect transistorМОП-транзистор
MOVMetal oxide varistorВаристор на базе оксида металла
MPMechanical part (including screws and fasteners)Механическая деталь (в том числе крепёж)
MTAccelerometerАкселерометр
NNeon LampНеоновая лампа
NENeon LampНеоновая лампа
OPOperational amplifierОперационный усилитель
PPlugШтекер, штепсельная вилка
PCPhotocellФотоэлемент
PCBPrinted circuit boardПечатная плата
PHEarphoneГоловные телефоны
PLCProgrammable logic controllerПрограммируемый логический контроллер
PSPower supply, кectifier (complete power-supply assembly)Вторичный источник электропитания, выпрямитель тока
PUPickup, headЗвукосниматель, передающая телевизионная трубка, магнитная головка
QTransistor, semiconductor controlled rectifier, semiconductor controlled switch, phototransistor (3 terminal), thyratron (semiconductor device)Транзистор, полупроводниковый преобразователь, полупроводниковый ключ, фототранзистор трёхконтактный, тиратрон полупроводниковый
RResistor, function potentiometer, instrument shunt, magnetoresistor, potentiometer, relay shunt, rheostatРезистор, функциональный потенциометр, измерительный шунт, магниторезистор, потенциометр, шунт обмотки реле, реостат
RERadio receiverРадиоприёмное устройство
RFCRadio frequency chokeВысокочастотный дроссель
RJResistor JointРезисторная сборка
RLARelayРеле
RNResistor NetworkРезисторная сборка
RTThermistor, ballast lamp, ballast tube, current-regulating resistor, thermal resistorТерморезистор, термистор, электровакуумный стабилизатор тока, газоразрядный стабилитрон, токорегулирующий резистор, терморезистор
RVVaristor, symmetrical varistor, voltage-sensitive resistorВаристор, варистор с симметричной вах, резистор управляемый напряжением
RYRelayРеле
SSwitch, contactor (manually, mechanically or thermally operated), flasher (circuit interrupter), governor (electrical contact type), telegraph key, telephone dial, thermal cutout (circuit interrupter) (not visual), thermostatПереключатель, выключатель, кнопка, пускатель (ручной, механический, термический), прерыватель цепи, регулятор контактного типа, телеграфный ключ, номеронабиратель, термовыключатель, тепловое реле
SCRSilicon controlled rectifierОднонаправленный управляемый тиристор
SPKSpeakerГромкоговоритель
SQElectric squibЭлектровоспламенитель
SRRotating contact, slip ringВращающийся контакт, контактное кольцо
SUSSilicon unilateral switchПороговый тринистор
SWSwitchПереключатель, выключатель, кнопка
TTransformerТрансформатор
TBConnecting strip, test blockКлеммная колодка, тест-блок
TCThermocoupleТермопара
TFTThin-film-transistor displayTFT-дисплей
THThermistorТерморезистор, термистор
TPTest pointКонтрольная (измерительная) точка
TRTransistorТранзистор
TRRadio transmitterРадиопередатчик
TUNTunerТюнер
UIntegrated CircuitМикросхема, интегральная схема
UPhoton-coupled isolatorОптопара
VVacuum tube, valve, ionization chamber, klystron, magnetron, phototube, resonator tube (cavity type), solion, thyratron (electron tube), traveling-wave tube, voltage regulator (electron tube)Радиолампа, ионизационная камера, клистрон, магнетрон, вакуумный фотоэлемент, полостной вакуумный резонатор, хемотронный датчик, тиратрон (радиолампа), лампа бегущей волны, регулятор напряжения (радиолампа)
VCVariable capacitorПеременный конденсатор
VDRVoltage Dependent ResistorВаристор; резистор, управляемый напряжением
VFDVacuum fluorescent displayВакуумно-люминесцентный индикатор
VLSIVery-large-scale integrationСБИС — сверхбольшая интегральная схема
VRVariable resistor (potentiometer or rheostat)Переменный резистор (потенциометр или реостат)
VRVoltage regulatorРегулятор (стабилизатор) напряжения
VTVoltage transformerТрансформатор напряжения
WWire, bus bar, cable, waveguideПровод, шина, кабель, волновод
WTWiring tiepointТочка примыкания
XSolar cellСолнечный элемент
XOther convertersПреобразователи, не включаемые в другие категории
XCeramic resonatorКерамический резонатор, кварцевый генератор
X_Socket connector for another itemРазъём для элементов. Вторая буква соответствует подключаемому элементу
XASocket connector for printed circuit assembly connectorРазъём для печатных плат
XDSSocket connector for light socketРазъём для патрона
XFSocket connector for fuse holderРазъём для предохранителя
XLLampholderЛамповый патрон
XMERTransformerТрасформатор
XTALCrystalКварцевый генератор
XUSocket connector for integrated circuit connectorРазъём для микросхемы
XVSocket connector for vacuum tube socketРазъём для радиолампы
YCrystal or oscillatorКварцевый резонатор или осциллятор
ZZener diodeСтабилитрон
ZBalun, coupled tunable resonator, directional phase shifter (non-reciprocal), gyrator, mode suppressor, multistub tuner, phase shifter, resonator (tuned cavity)Симметрирующий трансформатор, связанный перестраиваемый резонатор, направленный фазовращатель (не обратный), гиратор, фильтр нежелательных типов волн, многошлейфовый согласователь, фазовращатель, объёмный резонатор
ZDZener DiodeСтабилитрон
ZSCTZero sequence current transformer, also called a window-type current transformerТрансформатор тока нулевой последовательности, трансформатор тока с проёмом для первичной цепи
Vddплюс(D — drain, сток)
Vssминус(S — source, исток)

Условное обозначение выключателя на схеме по гост.

Условные графические обозначения элементов электрических и электронных схем. Электромагнитное реле с разными группами контактов

При проведении электротехнических работ каждый человек, так или иначе, сталкивается с условными обозначениями, которые есть в любой электрической схеме. Эти схемы очень разнообразны, с различными функциями, однако, все графические условные обозначения приведены к единым формам и во всех схемах соответствуют одним и тем же элементам.

Основные условные обозначения в электрических схемах ГОСТ, отображены в таблицах

В настоящее время в электротехнике и радиоэлектронике применяются не только отечественные элементы, но и продукция, производимая иностранными фирмами. Импортные электрорадиоэлементы составляют огромный ассортимент. Они, в обязательном порядке, отображаются на всех чертежах в виде условных обозначений. На них определяются не только значения основных электрических параметров, но и полный их перечень, входящих в то или иное устройство, а также, взаимосвязь между ними.

Чтобы прочитать и понять содержание электрической схемы

Нужно хорошо изучить все элементы, входящие в ее состав и принцип действия устройства в целом. Обычно, вся информация находится либо в справочниках, либо в прилагаемой к схеме спецификации. Позиционные обозначения характеризуют взаимосвязь элементов, входящих в комплект устройства, с их обозначениями на схеме. Для того, чтобы обозначить графически тот или иной электрорадиоэлемент, применяют стандартную геометрическую символику, где каждое изделие изображается отдельно, или в совокупности с другими. От сочетания символов между собой во многом зависит значение каждого отдельного образа.

На каждой схеме отображаются

Соединения между отдельными элементами и проводниками. В таких случаях немаловажное значение имеет стандартное обозначение одинаковых комплектующих деталей и элементов. Для этого и существуют позиционные обозначения, где типы элементов, особенности их конструкции и цифровые значения отображаются в буквенном выражении. Элементы, применяемые в общем порядке, обозначаются на чертежах, как квалификационные, характеризующие ток и напряжение, способы регулирования, виды соединений, формы импульсов, электронную связь и другие.

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

Основные функции могут выполнять только неподвижные контакты.

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Электрическая схема - это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы - условные обозначения и правила расшифровки их сочетаний.

Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.

Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Так, например, существует три типа контактов - замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта - замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты , реле времени, путевых выключателей и т.д.

Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.

Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.

Стандарты. Условные графические обозначения на электрических схемах и схемах автоматизации:

ГОСТ 2.710-81 Обозначения буквенно-цифровые в электрических схемах:

Электрическая схема – это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение.

Все условные (условно-графические) обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т.д. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Благодаря огромному количеству разнообразных электрических элементов появляется возможность создавать очень подробные электрические схемы, понятные практически каждому специалисту в электрической области.

Каждый элемент на электрической схеме должен выполняться в соответствие с ГОСТ. Т.е. кроме правильного отображения графического изображения на электрической схеме должны быть выдержаны все стандартные размеры каждого элемента, толщина линий и т. д.

Существует несколько основных видов электрических схем. Это схема однолинейная, принципиальная, монтажная (схема подключений). Также схемы бывают общего вида – структурные, функциональные. У каждого вида своё назначение. Один и тот же элемент на разных схемах может обозначаться и одинаково, и по-разному.

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.

Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления, и т. д.).


На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.

Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т. д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.



Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.


Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е – ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.


УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.


Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D – Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.


УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.


Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.


Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.


Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.


Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В – ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.


Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.



Рисование электрических схем онлайн. Как читать принципиальные схемы

Новички, которые пытаются самостоятельно собрать какие-то электронные схемы и приборы, сталкиваются с самым первым в своей новой деятельности вопросе, как читать электрические схемы? Вопрос, на самом деле серьезный, ведь прежде, чем собрать схему, ее необходимо как-то обозначить на бумаге. Или найти готовый вариант для воплощения в жизнь. То есть, чтение электрических схем – основная задача любого радиолюбителя или электрика.

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО.

Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента. Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.


И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает). Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.


Заключение по теме

Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.

Похожие записи:

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО . Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика . Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора .

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n . Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните...

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт» .

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT , BA , C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1 ; постоянные резисторы R1 , R2 , R3 , R4 ; выключатель питания SA1 , электролитические конденсаторы С1 , С2 ; конденсатор постоянной ёмкости С3 ; высокоомный динамик BA1 ; биполярные транзисторы VT1 , VT2 структуры n-p-n . Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.


Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор , то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 - R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой * . Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2* . При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 - 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5* ), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод . В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому "-" выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем "общий провод" или "корпус" указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и "земля". "Земля " - это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите "Далее "...

"Как читать электрические схемы?". Пожалуй, это самый часто задаваемый вопрос в рунете. Если для того, чтобы научиться читать и писать, мы изучали азбуку, то здесь почти то же самое. Чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш ГОСТ-вариант обозначения радиоэлементов.

Ладно, ближе к делу. Давайте рассмотрим простенькую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Итак, вроде бы определились с задачей этой схемы. Прямые линии - это проводочки, по которым будет бежать электрический ток . Их задача - соединять радиоэлементы.

Точка, где соединяются три и более проводочков, называется узлом . Можно сказать, в этом месте проводочки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводочков

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте проводочки не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R - это значит резистор . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер "2". В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 КилоОм. Ну как-то вот так...

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды - это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А - это различные устройства (например, усилители)

В - преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

С - конденсаторы

D - схемы интегральные и различные модули

E - разные элементы, которые не попадают ни в одну группу

F - разрядники, предохранители, защитные устройства

H - устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

U - преобразователи электрических величин в электрические, устройства связи

V - полупроводниковые приборы

W - линии и элементы сверхвысокой частоты, антенны

X - контактные соединения

Y - механические устройства с электромагнитным приводом

Z - оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD - детектор ионизирующих излучений

BE - сельсин-приемник

BL - фотоэлемент

BQ - пьезоэлемент

BR - датчик частоты вращения

BS - звукосниматель

BV - датчик скорости

BA - громкоговоритель

BB - магнитострикционный элемент

BK - тепловой датчик

BM - микрофон

BP - датчик давления

BC - сельсин датчик

DA - схема интегральная аналоговая

DD - схема интегральная цифровая, логический элемент

DS - устройство хранения информации

DT - устройство задержки

EL - лампа осветительная

EK - нагревательный элемент

FA - элемент защиты по току мгновенного действия

FP - элемент защиты по току инерционнго действия

FU - плавкий предохранитель

FV - элемент защиты по напряжению

GB - батарея

HG - символьный индикатор

HL - прибор световой сигнализации

HA - прибор звуковой сигнализации

KV - реле напряжения

KA - реле токовое

KK - реле электротепловое

KM - магнитный пускатель

KT - реле времени

PC - счетчик импульсов

PF - частотомер

PI - счетчик активной энергии

PR - омметр

PS - регистрирующий прибор

PV - вольтметр

PW - ваттметр

PA - амперметр

PK - счетчик реактивной энергии

PT - часы

QF

QS - разъединитель

RK - терморезистор

RP - потенциометр

RS - шунт измерительный

RU - варистор

SA - выключатель или переключатель

SB - выключатель кнопочный

SF - выключатель автоматический

SK - выключатели, срабатывающие от температуры

SL - выключатели, срабатывающие от уровня

SP - выключатели, срабатывающие от давления

SQ - выключатели, срабатывающие от положения

SR - выключатели, срабатывающие от частоты вращения

TV - трансформатор напряжения

TA - трансформатор тока

UB - модулятор

UI - дискриминатор

UR - демодулятор

UZ - преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD - диод , стабилитрон

VL - прибор электровакуумный

VS - тиристор

VT - транзистор

WA - антенна

WT - фазовращатель

WU - аттенюатор

XA - токосъемник, скользящий контакт

XP - штырь

XS - гнездо

XT - разборное соединение

XW - высокочастотный соединитель

YA - электромагнит

YB - тормоз с электромагнитным приводом

YC - муфта с электромагнитным приводом

YH - электромагнитная плита

ZQ - кварцевый фильтр

Ну а теперь самое интересное: графическое обозначение радиоэлементов.

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы постоянные

а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

Тензорезисторы

Варистор

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности

а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации

а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с различными группами коммутационных контактов (коммутационные контакты могут быть разнесены в схеме от катушки реле)

Предохранители

а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры

Биполярный транзистор

Однопереходный транзистор

Полевой транзистор с управляющим P-N переходом

Чтение принципиальных схем электронных устройств. Электрические схемы для начинающих электриков — условные обозначения. Что делать, если не получается

Основными техническими документами для электромонтера и электромонтажника являются чертежи и электрические схемы. Чертеж включает размеры, форму, материал и состав электроустановки. По нему не всегда можно понять функциональную связь между элементами. В ней помогает разобраться электрическая схема, которую необходимо иметь при пользовании чертежами электроустановок.

Чтобы читать , необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Расчленение схем на простые цепи

Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых - определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно "лишние" условия, и оценить их последствия.

Для решения этих вопросов пользуются несколькими приемами.

Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.

Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.

При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.

Реальность схемных решений

Наладчики хорошо знают, что не всегда могут быть осуществлены на деле схемные решения, хотя они не содержат явных ошибок. Иными словами, проектные электрические схемы не всегда реальны.

Поэтому одна из задач чтения электрических схем состоит в том, чтобы проверить, могут ли быть выполнены заданные условия.

Нереальность схемных решений обычно имеет в основном следующие причины:

    не хватает энергии для срабатывания аппарата,

    В схему проникает "лишняя" энергия, вызывающая непредвиденное срабатывание пли препятствующая своевременному отпусканию ,

    не хватает времени для совершения заданных действий,

    аппаратом задана уставка, которая не может быть достигнута,

    совместно применены аппараты, резко отличающиеся по свойствам,

    не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,

    не учтены условия, в которых электроустановка будет эксплуатироваться,

    при проектировании электроустановки за основу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, например, в результате кратковременного перерыва питания.

Порядок чтения электрических схем и чертежей

Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.

Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.

Если она не отражена па чертежах, то ее выясняют и записывают.

На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.

При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,

3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,

4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,

5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,

5) проверяют схему па отсутствие ложных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами ( , СНиП и т. п.).

Сегодня с таким стремительным развитием технологий очень важно знать, как читать электросхемы автомобилей. И не стоит думать, будто это нужно только владельцам современных иномарок, где полно автоматики. Даже если у вас старенькие Жигули , также полезно будет ознакомиться с этой информацией, так как устройство любой машины предполагает наличие автоэлектрики.

Что такое электросхемы?

Электросхемы – это обыкновенное графическое изображение, на котором показаны пиктограммы разных элементов, расположенных в определенном порядке в цепи и связанных между собой последовательно или параллельно. При этом такие чертежи не отображают реальное расположение данных элементов, а только указывают их связь между собой . Таким образом, человек, разбирающийся в них, с одного взгляда может определить принцип работы электроприбора.

В схемах всегда изображаются три группы элементов: источники питания, вырабатывающие ток, устройства, отвечающие за преобразование энергии, и узлы, которые передают ток, в их роли выступают разные проводники . В роли источника питания могут выступать гальванические элементы с очень маленьким внутренним сопротивлением. А за преобразование энергии часто отвечают электродвигатели. Все объекты, из которых и состоят схемы, имеют свои условные обозначения.

Зачем разбираться в электросхемах?

Уметь читать такие схемы довольно важно для всех, у кого есть автомобиль, ведь это поможет сэкономить очень много денег на услугах специалиста. Конечно, какие-то серьезные поломки починить самостоятельно без участия профессионалов сложно, да и чревато, ведь ток ошибок не терпит. Однако если речь идет о какой-либо элементарной неисправности либо же нужно подключить , ЭБУ, фары, габаритные огни и прочее, то сделать это самостоятельно вполне реально.

Кроме того, нередко мы хотим ввести в цепь и дополнительные электронные устройства, такие как сигнализация, магнитола, которые значительно облегчают процесс вождения и наполняют нашу жизнь комфортом. И здесь не обойтись без умения разбираться в электрических схемах, ведь зачастую они прилагаются ко всем перечисленным приборам. Также это актуально и для владельцев машин с прицепом, так как иногда возникают проблемы с его подключением. И тогда понадобится электросхема прицепа легкового автомобиля и, естественно, навыки, позволяющие разобраться в ней.

Как читать электросхемы автомобилей – основные обозначения

Для того чтобы понять принцип работы какого-то устройства, знающему человеку будет достаточно взглянуть на электросхему. Рассмотрим же основные нюансы, которые помогут разобраться в цепях даже новичку. Понятное дело, что ни один прибор не будет работать без тока, который поступает посредством внутренних проводников. Эти трассы обозначаются тонкими линиями, причем цвет их должен соответствовать реальному цвету проводов.

Если электросхема состоит из большого количества элементов, то трасса на ней изображается отрезками и разрывами, при этом обязательно указываются места их соединения либо же подключения.

Эксперт по автомобильной тематике. Окончил ИжГТУ имени М.Т. Калашникова по специальности «Эксплуатация транспортно-технологических машин и комплексов». Опыт профессионального ремонта автомобилей более 10 лет.

Увидев впервые электрическую схему автомобиля, многие автовладельцы теряются в условных обозначениях и терминах, хотя на деле всё достаточно просто. К тому же все элементы обозначаются одинаково на любом автомобиле, независимо от модели и производителя. Однако некоторые графические обозначения незначительно могут отличаться, встречаются как цветные, так и чёрно-белые элементы в схеме. Буквенные символы всегда идентичные. Сейчас наиболее популярны стали трёхмерные электросхемы, которые легко прочитает даже новичок, ведь всё показано более чем наглядно.

Читая электросхему, следует учитывать некоторые особенности:

  • электропроводка обозначается одним или двумя цветами, обычно на дополнительном цветовом обозначении есть риски, расположенные поперёк или вдоль;
  • в одном жгуте одноцветные провода всегда соединены друг с другом;
  • при входе в жгут любой провод имеет определённый наклон, указывающий на направление, в которое он проложен;
  • чёрный цвет провода всегда используется для соединений «на массу»;
  • часть проводов имеют цифровую маркировку в определённом месте подключения, так можно узнать, откуда идёт провод, не просматривая всю электрическую цепь.

Электросхема - это специализированное графическое изображение, на котором демонстрируются пиктограммы различных элементов, находящихся в определенном порядке в цепи, а также связанных между собой параллельно или же последовательно. При этом стоит отметить тот факт, что любой такой чертеж не демонстрирует реальное местонахождение тех или иных элементов, а используется только для того, чтобы указать их связь друг с другом. Таким образом, человек, который знает, как читать электрические схемы, с одного взгляда может понять принцип работы того или иного устройства.

В схеме присутствует три группы элементов:

  • источники питания, берущие на себя функцию выработки тока;
  • различные устройства, которые отвечают за дальнейшее преобразование энергии;
  • узлы, осуществляющие передачу тока (проводники).

В качестве источника могут выступать самые разнообразные гальванические элементы, характеризующиеся небольшим сопротивлением. Преобразованием энергии в данном случае занимаются различные электронные двигатели. При этом достаточно важно знать условные обозначения каждого отдельного объекта, из которых состоит данная схема, так как читать электрические схемы без этих знаний затруднительно.

Зачем они нужны?

Многие люди часто задаются вопросом о том, а зачем вообще они требуются. Однако на самом деле разбираться в них важно для каждого автомобилиста, ведь если вы знаете, как читать электрические схемы, впоследствии сможете значительно сэкономить на услугах профессиональнов. Конечно, вам будет непросто осуществлять самостоятельный ремонт каких-либо особенно сложных неисправностей, не привлекая к этим работам квалифицированных специалистов, да и в принципе, это чревато дальнейшими осложнениями. Но если же нужно произвести исправление какой-то незначительной неисправности или же осуществить подключение фар, ЭБУ, аккумуляторной батареи и других элементов, вы сможете сделать это даже сами, если знаете, как читать электронные схемы.

Зачем они автомобилисту?

Часто люди хотят ввести в цепь самые разнообразные электронные устройства, включая магнитолу, сигнализацию, кондиционер и множество других приборов, которые существенно упрощают процедуру вождения и делают нашу жизнь более комфортной. В этом случае также важно понять, как научиться читать схемы электрические, потому что в преимущественном большинстве случаев их обязательно прилагают практически к каждому устройству.

Особенно это актуально для владельцев машин с прицепом, потому что нередко случаются самые разные проблемы с его подключением. В таких случаях нужно будет использовать электросхему прицепа легкового автомобиля, и при этом уметь в ней разбираться, так как научиться читать схемы электрические за короткое время не получится.

Основные понятия

Чтобы понять, по какому принципу работает то или иное устройство, знающий человек может просто посмотреть на его электрическую схему. При этом достаточно важно учитывать несколько основных нюансов, которые помогут даже новичку детально прочитать подобные чертежи.

Конечно, ни одно устройство не может нормально работать без тока, поступающего через внутренние проводники. Эти пути обозначаются тонкими линиями, цвет которых выбирается в соответствии с реальным цветом проводов.

В том случае, если в электрическую схему входит достаточно большое количество элементов, трасса на ней отображается в виде разрывов и отрезков, при этом в обязательном порядке должны указываться места их подключения или соединения.

Помимо этого, номера, которые указываются на узлах, также должны полностью соответствовать реальным цифрам, так как читать электрические схемы (обозначения) в противном случае будет бессмысленно. Числа, указанные в кружках, определяют места соединений «минуса» с проводами, в то время как обозначение токоведущих дорожек делает более простым поиск элементов, находящихся на разных схемах. Комбинации букв и цифр полностью соответствуют разъемным соединениям, при этом существует достаточно большое количество специализированных таблиц, при помощи которых можно достаточно просто идентифицировать элементы любой электроцепи. Такие таблицы достаточно просто найти не только в интернете, но и в разных пособиях для специалистов. В общем, разобраться в том, как правильно читать принципиальные электрические схемы, не так сложно. Главное в этом - разобраться с функциональностью различных элементов, а также уметь правильно следить за цифрами.

Чтобы понять, как правильно читать автомобильные электрические схемы, нужно не только детально разбираться в условных обозначениях различных компонентов, но и при этом хорошо представлять себе то, каким образом осуществляется их формирование в блоки. Чтобы вы могли разобраться в особенностях взаимодействия между несколькими элементами электронного устройства, стоит научиться определять, как осуществляются прохождение и преобразование сигнала. Далее мы рассмотрим, как читать электрические схемы. Для новичков инструкция такова:

  1. Первоначально нужно ознакомиться со схемой выделения цепей питания. В преимущественном большинстве случаев места, в которые подается питающее напряжение на каскады прибора, располагаются ближе к верхней части схемы. Питание непосредственно подается на нагрузку, после чего переходит на анод электронной лампы или же непосредственно в коллекторную цепь транзистора. Вам стоит определить место объединения электрода с выводом нагрузки, так как в данном месте усиленный сигнал полностью снимается с каскада.
  2. Установите входные цепи на каждом каскаде. Вам следует выделить основной управляющий элемент, после чего детально изучить вспомогательные, которые к нему прилегают.
  3. Отыщите конденсаторы, расположенные около входа каскада, а также на его выходе. Данные элементы являются чрезвычайно важными в процессе усиления переменного напряжения. Конденсаторы не являются рассчитанными на прохождение через них постоянного тока, вследствие чего значение входного сопротивления следующего блока не будет иметь возможности вывести каскад из стабильного состояния по постоянному току.
  4. Начинайте изучать те каскады, которые используются для усиления определенного сигнала по постоянному току. Всевозможные элементы, формирующие напряжение, объединяются между собой без конденсаторов. В преимущественном большинстве случаев такие каскады работают в аналоговом режиме.
  5. Определяется точная последовательность каскадов для того, чтобы установить направление прохождение сигнала. Особенное внимание в данном случае нужно будет уделить детекторам, а также всевозможным преобразователям частоты. Также вам следует определить, какие каскады подключены параллельно, а какие - последовательно. При использовании параллельного объединения каскадов несколько сигналов будут обрабатываться абсолютно независимо друг от друга.
  6. Помимо того что вы разберетесь, как научиться читать электрические принципиальные схемы, вам следует также разобраться в приложенных к ним схемах соединения, которые принято называть монтажными. Особенности компоновки различных компонентов электронного прибора помогут вам понять, какие блоки в данной системе являются основными. Помимо всего прочего, монтажная схема позволяет проще определить центральный компонент системы, а также понять, как он взаимодействует с вспомогательными системами, так как читать автомобильные электрические схемы без этих значений затруднительно.

Как научиться?

Даже если человек досконально разбирается в различных условных обозначениях, которые используются в электронных схемах, это вовсе не говорит о том, что он сразу сможет понять, каким образом сигналы передаются между компонентами. Именно поэтому, для того чтобы научиться не только называть конкретные компоненты на схеме, но еще и определить взаимодействие их между собой, нужно освоить определенный ряд приемов того, как читать принципиальные электрические схемы.

Типы цепей

В первую очередь вам нужно научиться отличать стандартные цепи питания от сигнальных. Следует обратить свое внимание на то, что место, в котором питание подается на каскад, практически всегда отображается в верхней части соответствующего элемента схемы. Постоянное питающее напряжение почти во всех случаях изначально проходит через нагрузку, и только со временем передается на анод лампы или же на транзисторный коллектор. Точка соединения определенного электрода с нижним выводом нагрузки и будет представлять собой то место, где с каскада снимается усиленный сигнал.

Входные цепи

Зачастую для тех людей, которые приблизительно понимают, как читать электрические схемы автомобиля, входные цепи каскада не требуют никаких пояснений. При этом вам следует учесть, что дополнительные элементы, расположенные вокруг управляющего электрода активного компонента, являются гораздо более важными, чем это может показаться на первый взгляд. Именно при помощи этих элементов формируется напряжение так называемого смещения, с помощью которого компонент будет вводиться в гораздо более оптимальный режим по постоянному току. Не следует забывать также о том, что разные активные компоненты имеют индивидуальные особенности способа подачи смещения.

Конденсаторы

Обязательно нужно обращать свое внимание на конденсаторы, находящиеся как у входа, так и у выхода каскада, который усиливает переменное напряжение. Этими конденсаторами не осуществляется проведение постоянного тока, в связи с чем ни входное сопротивление, ни входной сигнал не имеют возможности вывести каскад из режима по постоянному току.

Каскады усиления

Далее обязательно обратите свое внимание на тот факт, что определенные каскады используются для усиления по постоянному току. В конструкции таких каскадов полностью отсутствуют специализированные формирователи напряжения, в то время как между собой они соединяются без использования конденсаторов. Определенные экземпляры способны работать в аналоговом режиме, в то время как некоторые другие работают только в ключевом. В последнем случае обеспечивается минимально возможный нагрев активного компонента.

Последовательность

Если в системе используется одновременно несколько каскадов, вам нужно будет научиться понять, как именно сигнал проходит через них, так как правильно читать электрические схемы автомобиля без этих знаний вы не сможете. Нужно обязательно выработать навыки определения каскадов, которые занимаются теми или иными преобразованиями в отношении сигнала, к примеру. При этом следует учитывать, что в одной схеме может присутствовать одновременно несколько параллельных каскадных цепочек, обрабатывающих несколько сигналов абсолютно независимо друг от друга.

Невозможно сразу обрисовать все тонкости, без знания которых можно было бы понять, как правильно читать электрические схемы без каких-либо ошибок. Именно по указанной причине многие люди, которые занимаются этим профессионально, штудируют специализированные учебники по схемотехнике.

Как начертить?

Соответственно, перед установкой какой-либо электрической схемы в обязательном порядке чертится ее изображение, но при этом стоит отметить, что далеко не всегда электросхему производители предпочитают прилагать к тем или иным устройствам. Если вы занимаетесь сборкой электронного оборудования своими руками, можете выполнить данную схему полностью самостоятельно. При помощи современных компьютерных программ данная процедура стала предельно простой, и удобно выполняется даже новичками.

Что для этого нужно?

Чтобы провести данную процедуру, вам потребуется всего несколько доступных вещей:

  • Лист бумаги.
  • Стандартный карандаш.
  • Утилита от компании Microsoft под названием Office Visio Professional.

Инструкция

  1. Изначально нужно начертить схематичное изображение определенной конструкции устройства на бумаге. Выполненная таким образом схема предоставит возможность максимально правильно скомпоновать разные элементы системы и расположить их в верной последовательности, а также объединить между собой условными линиями, которые отображают порядок присоединения тех или иных электронных элементов.
  2. Для более точного числового предоставления вашей электронной схемы нужно использовать указанную выше программу Visio. После того как программное обеспечение будет полностью установлено, запустите его.
  3. Далее вам следует войти в меню «Файл» и выбрать там пункт «Создать документ». На представленной панели инструментов следует выбрать такие пункты, как «Привязка» и «Привязка к сетке».
  4. Детально настройте все параметры страницы. Чтобы это сделать, нужно использовать специальную команду из меню «Файл». В появившемся окне вам нужно будет выбрать формат изображения схемы и в зависимости от формата уже определить ориентацию составляемого чертежа. Лучше всего в данном случае будет использовать альбомное расположение.
  5. Определите единицу измерения, в которой будет чертиться электрическая схема, а также необходимый масштаб изображения. В конце нажмите кнопку «Ок».
  6. Перейдите в меню «Открыть», а затем - в библиотеку трафаретов. Вам следует перенести на лист чертежа необходимую форму основной надписи, рамку и еще массу других дополнительных элементов. В последние нужно будет вносить надписи, которые будут пояснять особенности вашей схемы.
  7. Для вычерчивания компонентов схемы можно использовать как уже подготовленные трафареты, находящиеся в библиотеке программы, так и какие-либо собственные заготовки.
  8. Всевозможные однотипные блоки или же компоненты схемы нужно будет изобразить посредством копирования представленных элементов, внося уже потом нужные дополнения и правки.

После того как работа над схемой будет завершена, вам следует проверить, насколько правильно она была составлена. Также постарайтесь детально откорректировать пояснительные надписи, после чего сохраняйте файл под нужным именем. Готовый чертеж можно выводить на печать.

"Как читать электрические схемы ?". Пожалуй, это самый часто задаваемый вопрос в рунете. Если для того, чтобы научиться читать и писать, мы изучали азбуку, то здесь почти то же самое. Чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш ГОСТ-вариант обозначения радиоэлементов.

Электрические чертежи лестниц по-прежнему являются одним из распространенных и надежных инструментов, используемых для устранения неполадок оборудования при его сбое. Как и в любом хорошем инструменте устранения неполадок, вы должны быть знакомы с его основными функциями, чтобы максимально использовать диаграмму в этой области. Другими словами, обладание базовым пониманием того, как выложено чертеж, а также значение чисел и символов, найденных на схеме, сделают вас намного более опытными специалистами по обслуживанию.

Как правило, две отдельные части лестничного рисунка: компонент питания и компонент управления. Силовая часть состоит из таких элементов, как двигатель, контакты стартера двигателя и перегрузки, разъединители и защитные устройства . Контрольная часть включает в себя элементы, которые делают компоненты питания выполняющими свою работу. Для этого обсуждения мы сосредоточимся на контрольной части чертежа. Давайте взглянем на наиболее распространенные компоненты.

Ладно, ближе к делу. Давайте рассмотрим простенькую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Например, в воздушной компрессорной системе будет символ для реле давления. Если человек, выполняющий поиск и устранение неисправностей и ремонт, не распознает этот символ, будет сложно найти коммутатор, чтобы определить, правильно ли он работает. Во многих случаях устройства ввода считаются либо нормально открытыми, либо нормально закрытыми. Нормально открытый или закрытый статус относится к полному состоянию устройства. Если устройство нормально закрыто, проверка сопротивления даст показания. Нормально открытое и нормально закрытое состояние устройств не помечено на чертеже лестницы.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Скорее, вы должны распознать символ. Полезный намек на то, чтобы определить, открыты ли контакты или закрыты, - это думать о них с точки зрения силы тяжести. Если на устройстве действует гравитация, его нормальное состояние показано на чертеже. Исключение из этой концепции содержится в устройствах, содержащих пружины. Например, при рисовании нормально разомкнутой кнопки, кажется, что кнопка должна падать и закрываться. Однако есть пружина в кнопке, которая удерживает контакты в открытом положении.

Итак, вроде бы определились с задачей этой схемы. Прямые линии - это проводочки, по которым будет бежать электрический ток. Их задача - соединять радиоэлементы.

Точка, где соединяются три и более проводочков, называется узлом . Можно сказать, в этом месте проводочки спаиваются:

Управляющее напряжение и безопасность. Управляющее напряжение для системы может поступать от управляющего трансформатора, который подается от силовой части чертежа или другого источника. По соображениям безопасности важно определить источник управляющего напряжения до работы в системе, потому что выключатель питания не может отключить управляющее напряжение, поэтому электрически безопасное состояние не будет установлено.

Рисунок называется лестничным рисунком, потому что он похож на лестницу в том виде, в каком он построен и представлен на бумаге. Две вертикальные линии, которые служат границей для системы управления и доставляют управляющее напряжение на устройства, называются рельсами. Рельсы могут иметь в них сверхтоковые устройства и могут иметь контакты от управляющих устройств. Эти контрольные линии могут быть более толстыми, чем другие, чтобы лучше их идентифицировать.

Если пристально вглядеться в схему, то можно заметить пересечение двух проводочков

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте проводочки не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Как настоящая лестница, рельсы являются опорами для ступеньки. Если рисунок лестницы проходит через несколько страниц, управляющее напряжение переносится с одной страницы на другую вдоль рельсов. Существует несколько способов, которые могут быть представлены на чертеже. Следует отметить номер страницы, на которой продолжаются рельсы.

В этом устройстве схемы последовательность событий может быть описана как таковая. Когда кнопка нажата, цепь завершается, и ток будет течь, чтобы активировать катушку. Ступени. Ступени лестницы состоят из проводов и устройств ввода, которые либо позволяют подавать ток, либо прерывать ток на выходные устройства. Эти линии могут быть тонкими линиями по сравнению с линиями рельсов. От размещения входных и выходных устройств вы можете определить последовательность событий, которые либо активируют, либо обесточивают выходы.

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Ключом к хорошему устранению неполадок является определение этой последовательности событий. Устройства ввода, как правило, размещаются на левой стороне ступени, а выходные устройства расположены справа. Размещение устройств ввода. Входные устройства размещаются на ступеньках таким образом, который указывает текущий поток через цепочку, когда есть полный путь к выходам. Есть несколько способов, которыми эти устройства ввода могут быть размещены на ступеньках, хотя, как указано ранее, они обычно располагаются с левой стороны.

Это означает, что они размещены от конца до конца на чертеже. Чтобы ток протекал через них, они должны находиться в закрытом положении. Понимание этого потока является отличным помощником в устранении неполадок. Ключевой вопрос, который вы всегда задаете себе, - это: «Что нужно, чтобы активировать выход?».

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R - это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер "2". В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 КилоОм. Ну как-то вот так...

Здесь приведен простой пример для анализа. Следуя пути для текущего, вы можете увидеть логику размещения устройств ввода. Эта логика определяет процесс принятия решений устройствами ввода и путь для тока при его движении выходы. Логические операторы. Существует несколько логических операторов, которые можно использовать при размещении устройств ввода в ступеньках. На рисунке 3 представлены все три.

Кнопка пуска запускает путь и активирует катушку. . Размещение выходных устройств. Как отмечалось ранее, выходные устройства размещаются на правой стороне чертежа лестницы. В отличие от устройств ввода, важно, чтобы выходные устройства были размещены параллельно. Если они помещаются последовательно, электрическая теория утверждает, что напряжение будет падать по сопротивлению каждого выхода. Если это произойдет, они не будут работать должным образом.

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды - это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А - это различные устройства (например, усилители)

В - преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

Выходы включают такие элементы, как огни, катушки, соленоиды и нагревательные элементы. В дополнение к общепринятым символам, показанным на фиг. 1, буквы и цифры также помогают идентифицировать устройства вывода. Обычно у катушек есть контакты, связанные с ними. Эти контакты изменят состояние, когда катушка активирована. Меняющиеся контакты либо завершат, либо откроют путь для текущего.

Как отмечено на фиг. 4, когда кнопка нажата, путь завершается, и ток будет течь, чтобы активировать катушку. Когда катушка активирована, контакты, связанные с катушкой, изменят состояние. Красный свет будет гореть, и зеленый свет погаснет. Расположение контактов. В чертеже лестницы контакты, связанные с катушкой, могут быть расположены с использованием системы перекрестных ссылок. Ступеньки обычно пронумерованы на левой стороне рельса. Номер на правой стороне рельса ссылается на контакты, связанные с катушкой.

С - конденсаторы

D - схемы интегральные и различные модули

E - разные элементы, которые не попадают ни в одну группу

F - разрядники, предохранители, защитные устройства

H - устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

U - преобразователи электрических величин в электрические, устройства связи

V - полупроводниковые приборы

W - линии и элементы сверхвысокой частоты, антенны

X - контактные соединения

Y - механические устройства с электромагнитным приводом

Z - оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD - детектор ионизирующих излучений

BE - сельсин-приемник

BL - фотоэлемент

BQ - пьезоэлемент

BR - датчик частоты вращения

BS - звукосниматель

BV - датчик скорости

BA - громкоговоритель

BB - магнитострикционный элемент

BK - тепловой датчик

BM - микрофон

BP - датчик давления

BC - сельсин датчик

DA - схема интегральная аналоговая

DD - схема интегральная цифровая, логический элемент

DS - устройство хранения информации

DT - устройство задержки

EL - лампа осветительная

EK - нагревательный элемент

FA - элемент защиты по току мгновенного действия

FP - элемент защиты по току инерционнго действия

FU - плавкий предохранитель

FV - элемент защиты по напряжению

GB - батарея

HG - символьный индикатор

HL - прибор световой сигнализации

HA - прибор звуковой сигнализации

KV - реле напряжения

KA - реле токовое

KK - реле электротепловое

KM - магнитный пускатель

KT - реле времени

PC - счетчик импульсов

PF - частотомер

PI - счетчик активной энергии

PR - омметр

PS - регистрирующий прибор

PV - вольтметр

PW - ваттметр

PA - амперметр

PK - счетчик реактивной энергии

PT - часы

QF

QS - разъединитель

RK - терморезистор

RP - потенциометр

RS - шунт измерительный

RU - варистор

SA - выключатель или переключатель

SB - выключатель кнопочный

SF - выключатель автоматический

SK - выключатели, срабатывающие от температуры

SL - выключатели, срабатывающие от уровня

SP - выключатели, срабатывающие от давления

SQ - выключатели, срабатывающие от положения

SR - выключатели, срабатывающие от частоты вращения

TV - трансформатор напряжения

TA - трансформатор тока

UB - модулятор

UI - дискриминатор

UR - демодулятор

UZ - преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD - диод, стабилитрон

VL - прибор электровакуумный

VS - тиристор

VT - транзистор

WA - антенна

WT - фазовращатель

WU - аттенюатор

XA - токосъемник, скользящий контакт

XP - штырь

XS - гнездо

XT - разборное соединение

XW - высокочастотный соединитель

YA - электромагнит

YB - тормоз с электромагнитным приводом

YC - муфта с электромагнитным приводом

YH - электромагнитная плита

ZQ - кварцевый фильтр

Ну а теперь самое интересное: графическое обозначение радиоэлементов.

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы постоянные

а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

Тензорезисторы

Варистор

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности

а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации

а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с различными группами коммутационных контактов (коммутационные контакты могут быть разнесены в схеме от катушки реле)

Предохранители

а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры

Биполярный транзистор

Однопереходный транзистор

Полевой транзистор с управляющим P-N переходом

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы ?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов , соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО . Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика. Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора.

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n . Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните...

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт» .

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT , BA , C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты . На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1 ; постоянные резисторы R1 , R2 , R3 , R4 ; выключатель питания SA1 , электролитические конденсаторы С1 , С2 ; конденсатор постоянной ёмкости С3 ; высокоомный динамик BA1 ; биполярные транзисторы VT1 , VT2 структуры n-p-n . Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.


Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока , следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор, то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 - R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой * . Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2* . При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 - 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением , которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5* ), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод . В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому "-" выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем "общий провод" или "корпус" указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток , потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и "земля". "Земля " - это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения , которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите "Далее "...

Буквенное обозначение элементов электрических схем

Первый буквенный символ, обязательный для отражения в маркировке

Группа основных видов элементов и приборов

Элементы, входящие в состав группы (наиболее характерные примеры)

Символы двухбуквенного кода

A

Устройства общего назначения 

B

Различные виды аналоговых или многозарядных преобразователей, указательные или измерительные датчики, устройства, преобразующие неэлектрические величины в электрические, за исключением генераторов и источников питанияГромкоговорители

BA

Магнитострикционные элементы

BB

Детекторы ионизирующих элементы

BD

Приемники – сельсины

BE

Капсюли – телефоны

BF

Датчики – сельсины

BC

Тепловые датчики

BK

Фотоэлементы

BL

Микрофоны

BM

Датчики давления

BP

Пьезоэлементы

BQ

Датчики частоты вращения – тахогенераторы

BR

Звукосниматели

BS

Датчики скорости

BV

C

Конденсаторы 

D

Интегральные схемы, микросборкиСхемы интегральные аналоговые

DA

Схемы интегральные, цифровые, логические элементы

DD

Устройства хранения информации

DS

Устройства задержки

DT

E

Разные элементыНагревательные элементы

EK

Осветительные лампы

EL

Пиропатроны

ET

F

Защитные устройства, предохранители, разрядникиДискретные элементы токовой защиты мгновенного действия

FA

Дискретные элементы токовой защиты инерционного действия

FP

Плавкие предохранители

FU

Дискретные элементы защиты по напряжению, разрядники

FV

G

Генераторы и другие источники питанияБатареи

GB

H

Индикаторные и сигнальные элементыПриборы звуковой сигнализации

HA

Символьные индикаторы

HG

Приборы световой сигнализации

HL

K

Контакторы, пускатели, релеТоковые реле

KA

Указательные реле

KH

Электротепловые реле

KK

Контакторы, магнитные пускатели

KM

Реле времени

KT

Реле напряжения

KV

L

Дроссели, катушки индуктивностиДроссели люминесцентных светильников

LL

M

Двигатели 

P

Измерительные приборы и оборудование (недопустимо использование маркировки РЕ)Амперметры

PA

Счетчики импульсов

PC

Частотометры

PF

Счетчики активной энергии

PI

Счетчики реактивной энергии

PK

Омметры

PR

Регистрирующие приборы

PS

Измерители времени действия, часы

PT

Вольтметры

PV

Ваттметры

PW

Q

Выключатели и разъединители в силовых цепяхАвтоматические выключатели

QF

Короткозамыкатели

QK

Разъединители

QS

R

РезисторыТерморезисторы

RK

Потенциометры

RP

Шунты измерительные

RS

Варисторы

RU

S

Коммутационные устройства в цепях измерения, управления и сигнализацииВыключатели и переключатели

SA

Выключатели кнопочные

SB

Выключатели автоматические

SF

Выключатели, срабатывающие под действием различных факторов:

– от уровня

SL

– от давления

SP

– от положения (путевые)

SQ

– от частоты вращения

SR

– от температуры

SK

T

Трансформаторы, автотрансформаторыТрансформаторы тока

TA

Электромагнитные стабилизаторы

TS

Трансформаторы напряжения

TV

U

Устройства связи, преобразователи неэлектрических величин в электрическиеМодуляторы

UB

Демодуляторы

UR

Дискриминаторы

UI

Выпрямители, генераторы частоты, инверторы, преобразователи частоты

UZ

V

Приборы полупроводниковые и электровакуумныеДиоды, стабилитроны

VD

Электровакуумные приборы

VL

Транзисторы

VT

Тиристоры

VS

W

Антенны, линии и элементы СВЧОтветвители

WE

Короткозамыкатели

WK

Вентили

WS

Трансформаторы, фазовращатели

WT

Аттенюаторы

WU

Антенны

WA

X

Контактные соединенияСкользящие контакты, токосъемники

XA

Штыри

XP

Гнезда

XS

Разборные соединения

XT

Высокочастотные соединители

XW

Y

Механические устройства с электромагнитным приводомЭлектромагниты

YA

Тормоза с электромагнитными приводами

YB

Муфты с электромагнитными приводами

YC

Электромагнитные патроны или плиты

YH

Z

Ограничители, устройства оконечные, фильтрыОграничители

ZL

Кварцевые фильтры

ZQ

Как обозначается мощность на схеме

Каждый, кто работает с электроникой, или когда-нибудь видел электронную схему, знает, что практически ни одно электронное устройство не обходится без резисторов.

Функция резистора в схеме может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени зарядки или разрядки конденсатора в RC-цепочке и т. д. Так или иначе, каждая из этих функций резистора осуществима благодаря главному свойству резистора — его активному сопротивлению.

Само же слово «резистор» — это русскоязычное прочтение английского слова «resistor» , которое в свою очередь происходит от латинского «resisto» — сопротивляюсь. В электрических цепях применяют постоянные и переменные резисторы, и предметом данной статьи будет обзор основных видов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и на их схемах.

Максимальная рассеиваемая резистором мощность

В первую очередь постоянные резисторы классифицируются по максимальной рассеиваемой компонентом мощности: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и даже больше, вплоть до 1 кВт (резисторы для особых применений).

Данная классификация не случайна, ведь в зависимости от назначения резистора в схеме и от условий, в которых должен работать резистор, рассеиваемая на нем мощность не должна привести к разрушению самого компонента и компонентов расположенных поблизости, то есть в крайнем случае резистор должен разогреться от прохождения по нему тока, и суметь рассеять тепло.

Например, керамический резистор с цементным заполнением SQP-5 (5 ватт) номиналом 100 Ом уже при 22 вольтах постоянного напряжения, длительно приложенных к его выводам, разогреется более чем до 200°C, и это необходимо учитывать.

SMD резисторы для поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 ватта — также можно встретить сегодня на печатных платах. Такие резисторы так же как и выводные всегда берутся с запасом по мощности. Например в 12 вольтовой схеме для подтягивания потенциала к минусовой шине можно использовать SMD резистор на 100 кОм типоразмера 0402. Или выводной на 0,125 Вт, поскольку рассеиваемая мощность будет в десятки раз дальше от максимально допустимой.

Проволочные и непроволочные резисторы, точность резисторов

Резисторы для различных целей используют разные. Не желательно, например, проволочный резистор ставить в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения достаточно и проволочного.

Проволочные резисторы изготавливают путем намотки проволоки из манганина, нихрома или константана на керамический или порошковый каркас.

Высокое удельное сопротивление данных сплавов позволяет получить требуемый номинал резистора, однако несмотря на бифилярную намотку, паразитная индуктивность компонента все равно остается высокой, именно по этой причине проволочные резисторы не подходят для высокочастотных схем.

Непроволочные резисторы изготавливают не из проволоки, а из проводящих пленок и смесей на основе связующего диэлектрика. Так, выделяют тонкослойные (на основе металлов, сплавов, оксидов, металлодиэлектриков, углерода и боруглерода) и композиционные (пленочные с неорганическим диэлектриком, объемные и пленочные с органическим диэлектриком).

Непроволочные резисторы — это зачастую резисторы повышенной точности, которые отличаются высокой стабильностью параметров, способны работать при высоких частотах, в высоковольтных цепях и внутри микросхем.

Резисторы в принципе подразделяются на резисторы общего назначения и специального назначения. Резисторы общего назначения выпускаются номиналами от долей ома до десяти мегаом. Резисторы специального назначения могут быть номиналом от десятков мегаом до единиц тераом, и способны работать под напряжением 600 и более вольт.

Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, поскольку обладают исключительно малыми собственными емкостями и индуктивностями. Прецизионные и сверхпрецизионные отличаются точностью номиналов от 0,001% до 1%.

Номиналы резисторов и их маркировка

Резисторы выпускаются на различные номиналы, и есть так называемые ряды резисторов, например широко распространенный ряд Е24. Вообще, стандартизированных рядов у резисторов шесть: Е6, Е12, Е24, Е48, Е96 и Е192. Число после буквы «Е» в названии ряда отражает количество значений номиналов на десятичный интервал, и в Е24 этих значений 24.

Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n — целое отрицательное или положительное число. Каждый ряд характеризуется своим допустимым отклонением.

Цветовая маркировка выводных резисторов в виде четырех или пяти полос давно стала традиционной. Чем больше полос — тем выше точность. На рисунке приведен принцип цветовой маркировки резисторов с четырьмя и пятью полосами.

Резисторы для поверхностного монтажа (SMD – резисторы) с допуском в 2%, 5% и 10% маркируются цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичной дроби, на ее месте ставят букву R. Маркировка 473 обозначает 47 умножить на 10 в степени 3, то есть 47х1000 = 47 кОм.

SMD резисторы начиная с типоразмера 0805, с допуском в 1%, имеют четырехзначную маркировку, где первые три — мантисса (число, которое следует умножить), а четвертая — степень числа 10, на которое следует умножить мантиссу, чтобы получить значение номинала. Так, 4701 обозначает 470х10 = 4,7 кОм. Для обозначения точки в десятичной дроби, на ее место ставят букву R.

Две цифры и одна буква применяются в маркировке SMD резисторов типоразмера 0603. Цифры — это код определения мантиссы, а буквы — код показателя степени числа 10 — второго множителя. 12D обозначает 130х1000 = 130 кОм.

Обозначение резисторов на схемах

На схемах резисторы обозначаются белым прямоугольником с надписью, и в надписи иногда содержится как информация о номинале резистора, так и информация о его максимальной рассеиваемой мощности (если она критична для данного электронного устройства). Вместо точки в десятичной дроби обычно ставят букву R, K, M – если имеются ввиду Ом, кОм и МОм соответственно. 1R0 – 1 Ом; 4K7 – 4,7 кОм; 2M2 – 2,2 МОм и т. д.

Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. д., а в сопроводительной документации к схеме или плате дается список компонентов по этими номерами.

Относительно мощности резистора, на схеме она может быть указана надписью буквально, например 470/5W – значит — 470 Ом, 5 ваттный резистор или символом в прямоугольнике. Если прямоугольник пустой, то резистор берется не очень мощный, то есть 0,125 — 0,25 ватт, если речь о выводном резисторе или максимум типоразмера 1210, если выбран резистор SMD.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы

  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установки Обозначение розеток и выключателей

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).

Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.

На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.

Рисунок 1. Общее обозначение резистора на схеме.

Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.

Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°).

Обозначение мощности резисторов на схемах показано на рисунке 2.

Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.

Обозначение переменных резисторов на схемах показано на рисунке 3.

Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.

Обозначение педстроечных резисторов на схемах показано на рисунке 4.

Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.

Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.

Эти обозначения приведены на рисунке 5.

Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Электрические символы и условные обозначения

ЭЛЕКТРИЧЕСКИЕ СИМВОЛЫ И ОБОЗНАЧЕНИЯ

Символы, используемые в настоящее время для обозначения электрических / электронных деталей и узлов на чертежах NAVSEA, указаны в ANSI Y32.2-1975, Графические символы для электрических и электронных схем. В этой публикации представлены альтернативные методы обозначения определенных частей, и к ней следует обращаться, если символ не совсем понятен.Раздел, посвященный печати электрических / электронных схем в руководстве по техническому обслуживанию вашей системы, обычно содержит описание используемых символов. На Рис. 5-15 показаны электрические символы, используемые на справочных чертежах артустановок, находящихся в эксплуатации в настоящее время.

В некоторых модемных оружейных установках и GMLS для деталей, характерных для конкретной системы, могут использоваться отличные от стандартных условные обозначения. В этом случае производитель присваивает условные обозначения буквами и цифрами. Обычно обозначения, используемые каждым производителем, публикуются в OP для этой конкретной артустановки.

Как правило, электрические компоненты или устройства, используемые в модемной артиллерийской установке или GMLS (5 "/ 54 Mk 45 или Mk 13 Mod 4), идентифицируются комбинацией букв и цифр или группами букв и цифр. Таблица 5 -1 - это частичный перечень обозначений первой и второй групп, используемых на артустановке Mk 45. Первые две буквы обозначают конкретный тип компонента. Третья буква обозначает основной узел оборудования, в котором расположен компонент. Номер следующая за третьей буквой указывает номер

Таблица 5-1.-Обозначения электрических компонентов

Рисунок 5-15.-Электрические символы.

устройство в сборе. Например, SIh2 - это выключатель блокировки (SI), используемый в верхнем левом подъемнике (H), и цифра 1 отличает этот конкретный выключатель от всех других выключателей подъемника.

Как это часто бывает, имеется одна модемная артиллерийская установка (76-мм 62-калибр Mk 75), в которой электрические символы и обозначения не все согласуются с другими артустановками.Например, реле обозначается номером, за которым следует буква K, , за которым следует другой номер (1K1, 2K1 и скоро). Символ реле - прямоугольная рамка.

Электронные схемы, отпечатки и схемы

Чтобы прочитать и понять электронную схему или электронную схему, необходимо понимать основные символы и условные обозначения.

Электронные оттиски делятся на две основные категории: электронные схемы и блок-схемы.Электронные схемы представляют собой наиболее подробную категорию электронных чертежей. Они отображают каждый компонент в цепи, техническую информацию о компоненте (например, его номинальные характеристики) и то, как каждый компонент подключен к цепи.

Блок-схемы - это простейший вид чертежей. Как следует из названия, блок-схемы представляют любую часть, компонент или систему в виде простой геометрической формы, причем каждый блок может представлять отдельный компонент (например, реле) или всю систему.Предполагаемое использование чертежа определяет уровень детализации каждого блока. В этой статье будут рассмотрены основные символы и условные обозначения, используемые в обоих типах рисунков.

Символика для электронных схем

Из всех различных типов электронных чертежей электронные схемы предоставляют наиболее подробную информацию о схеме. Каждый электронный компонент в данной схеме будет изображен, и в большинстве случаев будут предоставлены его номинальные характеристики или другая информация о применимых компонентах.Этот тип чертежа обеспечивает уровень информации, необходимой для поиска и устранения неисправностей электронных схем.

Электронные схемы представляют собой наиболее сложный для чтения тип чертежей, поскольку они требуют очень высокого уровня знаний о том, как каждый из электронных компонентов влияет на электрический ток или на него воздействует. В этой статье рассматриваются только символы, обычно используемые для изображения многих компонентов электронных систем. После усвоения эти знания должны позволить читателю получить функциональное представление о большинстве электронных отпечатков и схем.

На рисунках 1 и 2 показаны наиболее распространенные электронные символы, используемые в электронных схемах.

Рисунок 1: Электронные символы

Рисунок 2: Электронные компоненты

Примеры электронных схем
В электронных схемах

используются символы для каждого компонента электрической цепи, независимо от его размера. На схемах не показано размещение или масштаб, только функции и поток. Исходя из этого, можно определить фактическую работу электронного оборудования.Рисунок 3 представляет собой пример электронной принципиальной схемы.

Рисунок 3 Пример электронной принципиальной схемы

Второй тип электронной принципиальной схемы, графическая схема компоновки, на самом деле является не столько электронной схемой, сколько иллюстрацией того, как на самом деле выглядит электронная схема. Эти рисунки показывают фактическое расположение компонентов на печатной плате. Это обеспечивает двухмерный чертеж, обычно смотрящий сверху вниз, с подробным описанием расположения компонентов.

На рисунке 4 показана схема схемы и той же схемы, нарисованная в графическом или топологическом формате для сравнения. Обычно графический макет сопровождается списком деталей.

Рисунок 4 A: Принципиальная электрическая схема

Рисунок 4 B: Схема печатной платы

Рисунок 4 Сравнение электронной принципиальной схемы и ее графической схемы

Чтение электронных отпечатков, диаграмм и схем

Для правильного чтения распечаток и схем считыватель должен определять состояние показанных компонентов, а также следить за событиями, которые происходят при работе схемы.Как и в случае с электрическими системами, показанные реле и контакты всегда находятся в обесточенном состоянии. Современные электронные системы обычно содержат мало реле или контактов, если они вообще есть, поэтому они обычно играют второстепенную роль.

Электронные схемы труднее читать, чем электрические схемы, особенно при использовании твердотельных устройств (в Фундаментальном справочнике по электронной науке подробно обсуждаются электрические схемы). Знание работы этих устройств необходимо для определения протекания тока.В этом разделе будут рассмотрены только основы, которые помогут развить навыки чтения.

Первое наблюдение при работе с подробной электронной схемой - это источник и полярность питания. Обычно мощность отображается одним из двух способов: либо как входной трансформатор, либо как числовое значение. Когда питание подается от трансформатора, отметки полярности помогут определить ток. В этом соглашении точки на первичной и вторичной обмотках указывают ток, протекающий в первичной обмотке и из вторичной обмотки в данный момент времени.На рисунке 5 ток идет в верхнюю часть первичной обмотки и выходит из нижней части вторичной обмотки.

Рисунок 5 Маркировка полярности трансформатора

Обычно источник электроэнергии указывается в той точке, где он входит в конкретную схему. Эти значения указаны численно с заданной полярностью (+15 В, -15 В). Эти отметки обычно находятся вверху и внизу схемы, но не всегда.

В примере, показанном на Рисунке 6, мощность показана сверху и снизу в цепи, использующей два источника питания.Если не указан источник питания переменного тока (AC), обычно предполагается, что напряжения равны постоянному току (DC).

Рисунок 6 Схема соединений источника питания

В любой цепи необходимо установить заземление для создания полного пути тока. Земля обычно обозначается символом земли, который был показан ранее. Направление тока можно определить, соблюдая полярность источников питания. Когда показаны полярности, можно установить ток, а заземление может не всегда отображаться.

Установив источники питания и точку заземления, можно определить работу устройств.

Наиболее распространенными полупроводниковыми приборами являются транзистор и диод. Они сделаны из таких материалов, как силикон и германий, и обладают промежуточными электрическими свойствами между проводниками и изоляторами. Полупроводник будет одной из двух разновидностей: PNP или NPN. Обозначение указывает направление движения электронов через устройство. Направление стрелки указывает тип, как показано на рисунке 2.Однако существует множество различных способов установки транзистора для достижения различных рабочих характеристик. Их слишком много, чтобы их здесь описать, поэтому будет показана только самая распространенная и базовая конфигурация (общий эмиттер).

Несмотря на то, что транзисторы содержат несколько переходов из материала p- или n-типа, ток обычно течет в одном направлении. При обычном протекании тока (т.е. от + до -) ток будет проходить через транзистор от наиболее положительного к наименее положительному и в направлении стрелки на эмиттере.На рисунке 7 транзистор имеет положительный источник питания с заземлением на эмиттере. Если вход также положительный, транзистор будет проводить.

Рисунок 7 NPN-проводящий транзистор

Если входной сигнал становится отрицательным, как показано на рисунке 8, проводимость устройства прекращается, потому что вход, или в данном случае базовый переход, контролирует состояние транзистора. Обратите внимание, что когда ток течет, он движется в направлении стрелки.

Рисунок 8 Непроводящий NPN-транзистор

На рис. 9 используется транзистор PNP.Применяются те же правила, что и выше, за исключением того, что на этот раз полярности мощности должны измениться, чтобы позволить току течь.

Рисунок 9 PNP-транзистор

Те же правила, что и для транзисторов, справедливы и для диодов. Однако диоды проще, чем транзисторы, потому что они имеют только один переход и проводят только в одном направлении, как показано на рисунке 10. Символ диода, как и символ транзистора, показывает направление проводимости направлением стрелки, которая идет от положительный на отрицательный.

Рисунок 10 Диод

Хотя эти простые правила не позволят вам прочитать все электронные схемы, они помогут понять некоторые из основных концепций.

Элемент, который может вызвать путаницу при чтении электронных распечаток или схем, - это маркировка, используемая для демонстрации бистабильной работы. В большинстве случаев бистабли будут обозначены прямоугольником или кружком, как показано на Рисунке 11 (A). Линии внутри или вокруг этих бистаблей не только отмечают их как бистабли, но также указывают, как они функционируют.

Рисунок 11 Бистабильные символы

На рисунке 11 (B) показаны различные условные обозначения, используемые для обозначения бистабильной работы. Обычно одна схема взаимодействует с другими схемами, для чего требуется метод, позволяющий считывающему устройству следовать по одному проводу или пути сигнала от первого рисунка ко второму. Это можно сделать разными способами, но обычно линия или проводник, который необходимо продолжить, заканчиваются на клеммной колодке. Эта доска будет помечена и пронумерована с указанием продолжения рисунка (для каждой линии может существовать отдельный рисунок).Имея в руках следующий чертеж, для продолжения нужно найти только клеммную колодку, которая соответствует предыдущему номеру.

В случаях, когда клеммные колодки не используются, провод должен заканчиваться номером (обычно одной цифрой), а также следующим номером чертежа. Чтобы помочь найти продолжение, на некоторых чертежах указаны координаты, которые указывают местоположение продолжения на втором чертеже. Точка продолжения на втором чертеже также будет ссылаться на первый чертеж и координаты продолжения.

Символика чертежей блока

Не все печатные издания электроники прорисованы с такой степенью детализации, как отдельные резисторы и конденсаторы, и этот уровень информации не всегда необходим. Эти более простые рисунки называются блок-схемами. Блок-схемы позволяют представить любой тип электронной схемы или системы в простом графическом формате.

Блок-схемы

предназначены для представления потоковой или функциональной информации о цепи или системе, а не подробных данных о компонентах.Символы, показанные на рисунке 12, используются в блок-схемах.

Рисунок 12 Пример

Блоки Когда используются блок-схемы, основные блоки, показанные выше (рис. 12), можно использовать практически для чего угодно. Что бы ни представлял блок, будет написано внутри. Обратите внимание, что блок-схемы представлены в этой статье вместе с электронными схемами, потому что блок-схемы обычно встречаются вместе со сложными схематическими диаграммами, которые помогают представить или обобщить их поток или функциональную информацию.

Использование блок-схем не ограничивается электронными схемами. Блок-схемы широко используются для отображения сложных инструментальных каналов и других сложных систем, когда важен только путь прохождения сигнала.

Примеры блок-схем

Блок-схема является самой простой и простой для понимания из всех типов инженерной печати. Он состоит из простых блоков, которые могут представлять столько, сколько нужно. Пример блок-схемы показан на рисунке 13.

Эта конкретная блок-схема представляет инструментальный канал, используемый для измерения нейтронного потока, индикации измеренного потока и генерации выходных сигналов для использования другими системами.

Рисунок 13 Пример блок-схемы

Каждый блок представляет собой этап в развитии сигнала, который используется для отображения на измерителе внизу или для отправки в системы за пределами чертежа. Обратите внимание, что не все блоки равны. Некоторые представляют несколько функций, в то время как другие представляют только простую ступень или одну бистабильную схему в более крупном компоненте.Создатель блок-схемы определяет содержание каждого блока в зависимости от предполагаемого использования чертежа.

Каждый из типов чертежей, рассмотренных в этом и предыдущих модулях, не всегда отличается и отличается. Во многих случаях два или более типов рисунков будут объединены в один отпечаток. Это позволяет представить необходимую информацию в четком и кратком формате.

На рисунке 14 приведен пример того, как можно комбинировать различные типы рисунков.В этом примере механические символы используются для обозначения технологической системы и клапанов, управляемых электрической схемой; электрические однолинейные символы используются для обозначения электромагнитных реле и контактов, используемых в системе; символы электронных блоков используются для контроллеров, сумматоров, I / P преобразователя и бистаблей.

Рисунок 14 Пример комбинированного чертежа, КИПиА, однопроводной электрической схемы и электронной блок-схемы

На рисунке 15 показано использование электронной блок-схемы в сочетании с однолинейной электрической схемой.На этом чертеже представлена ​​часть схемы защиты генератора атомной электростанции.

Рисунок 15 Пример комбинированной схемы одиночной электрической линии и блок-схемы

Примеры:

Пример 1 Чтобы облегчить ваше понимание чтения символов и схем, ответьте на следующие вопросы, касающиеся следующих рисунков. Ответы на каждый пример приведены на странице вопросов, касающихся следующих вопросов.

Рисунок 16 Пример 1

Обратитесь к Рисунку 16, чтобы ответить на следующие вопросы:

1. Укажите номер, который соответствует указанному компоненту

  • а. катушка или индуктор
  • г. Транзистор PNP
  • г. диод положительный
  • г. блок питания
  • e. постоянный резистор
  • ф. конденсатор
  • г. Транзистор NPN
  • ч. переменный резистор
  • и. отрицательный источник питания
  • Дж. цепь заземления
  • к.потенциометр

2. Какая стоимость R13? (Включите единицы).

3. Будет ли транзистор токопроводящим или непроводящим, если на входе Q1 находится напряжение -15 В? Почему?

4. Каково значение C1? (Включая единицы)

Ответы:

Ответы на вопросы по рисунку 16

  1. а. 10 д. 7 b.2 e.4 c.3 f.9 g.1 j. 11 ч. 6 к. 5 i.8
  2. 3,3 кОм, или 3300 Ом.
  3. Непроводящий, потому что потенциал базы (-15 В) не является положительным относительно эмиттера (-15 В).
  4. 50 мкФ или 0,000050 фарад.
Пример 2

Рисунок 17 Пример 2

Обратитесь к Рисунку 17, чтобы ответить на следующие вопросы:

а. Сколько резисторов в цепи?

г. Сколько там транзисторов? , а это транзисторы PNP или NPN?

г. Что такое CR 4?

г. Сколько блоков питания питает схему и ее компоненты?

e. Сколько конденсаторов в цепи?

ф.Q2 будет проводить, когда на выходе U 2 будет положительное или отрицательное напряжение?

Ответы:

Ответы на вопросы по рисунку 17

а. Семь резисторов, R11, R13, R14, R20, R12, Rl, RL

г. Два, оба являются транзисторами типа NPN.

г. Диод

г. Два источника питания, 1-5 В постоянного тока для усилителя U2 и батарея 24 В постоянного тока в цепи.

e. Один, C7

ф. Транзисторы NPN проводят, когда их базовый переход положительный

Обозначения компонентов | моблочный.ninja

Обзор

Обозначения компонентов и условные обозначения используются для быстрой идентификации компонентов как на схемах, так и на печатных платах. Обычно они состоят из короткой аббревиатуры, обозначающей тип компонента, за которой следует уникальный номер, чтобы отличить его от других компонентов того же типа (например, R3 , R4 , C3 ).

За прошедшие годы было выпущено множество стандартов, определяющих конкретные префиксы обозначений для типов компонентов.К ним относятся:

  • Австралийский стандарт AS1102: 1995 (Графические символы для электротехники)
  • IEC 60617
  • IEEE 315-1975.

Однако многие схемы и печатные платы шелкографии не строго следуют никаким стандартам (хотя сходство обычно довольно велико). В следующем списке показаны нестандартные, часто используемые сокращения и тип компонента, который они представляют.

Список общих обозначений и символов компонентов

Сортировка по алфавиту.

Некоторые символы ниже созданы с помощью InkScape и сохранены в файл SVG, который можно посмотреть / скачать здесь.

Антенны (ANT)

Существует ряд различных схематических обозначений антенн, но все они выглядят одинаково и должны быть легко узнаваемы. Также используется обозначение E , однако я предпочитаю ANT .

Рекомендуемые обозначения:

Рекомендуемые условные обозначения:

Схематический символ антенны.

Еще один схематический символ антенны.

Сборки (A)

Отдельный узел или подузел (например, дочерняя плата). Я не вижу, чтобы это обозначение часто использовалось на практике (и я сам никогда не использовал его, для таких вещей, как модули GPS с посадочным местом LGA, я всегда использовал обозначение U).

Рекомендуемые обозначения:

Батареи (BT)

Обозначение BT обычно используется для обозначения батарей. Показанный ниже схематический символ является типичным для батареи, хотя иногда делается различие между одноклеточной и многоклеточной батареей.Если батарея одноклеточная, это может быть представлено символом только с одной парой длинных / коротких линий (представляющих два электрода ячейки). Если батарея многоклеточная, можно использовать две пары длинных / коротких линий с соединяющей их пунктирной линией (представляющей множество пластин). Я предпочитаю использовать приведенный ниже символ для любого типа батареи.

Рекомендуемые обозначения:

Рекомендуемый схематический символ (и):

Схематический символ батареи.

Конденсаторы (C)

C - рекомендованное обозначение для конденсаторов (как поляризованных, так и неполяризованных).Иногда вы увидите, что VC используется для переменного конденсатора (они не распространены). Я рекомендую использовать два разных схематических символа: плоские пластины для неполяризованного конденсатора и одну изогнутую пластину для поляризованного конденсатора.

Рекомендуемое обозначение (и):

Рекомендуемый схематический символ (ы):

Схематический символ для неполяризованного конденсатора.

Схематическое изображение поляризованного конденсатора.

Диоды (D)

Обозначение D можно использовать для большинства диодов.Иногда Z используется для стабилитрона, а LED для светодиода, однако TVS, диоды Шоттки и диоды общего назначения по-прежнему просто D .

Рекомендуемые обозначения:

Рекомендуемые символы:

Рекомендуемый схематический символ для диодов общего назначения.

Рекомендуемый схематический символ для светодиода.

Рекомендуемый схематический символ стабилитрона.

Предохранители / держатели предохранителей (F, XF)

F - это обозначение, используемое для предохранителей (проводных, электрических, напр.т.к). XF обычно используется для держателя предохранителя.

Рекомендуемые обозначения:

Рекомендуемые обозначения:

Ферритовые шарики (FB, FEB)

FB - обозначение, используемое для ферритовых шариков. Иногда вместо него используется обозначение FEB . Чтобы узнать больше, см. Страницу «Ферритовые шарики».

Рекомендуемые обозначения:

Рекомендуемый схематический символ (и):

Схематический символ для ферритовой бусины.

Контрольные точки (FID)

Рекомендуемые обозначения:

Рекомендуемые схематические символы:

Схематические обозначения контрольных точек.

Земля (GND, AGND, DGND)

Иногда GND используется для всех точек заземления, а иногда земли разделяются на основе границ шума, таких как AGND и DGND (это часто встречается в высокочастотных цепях ).

Рекомендуемые обозначения:

  • GND : Для общего использования.
  • AGND : Специализированная аналоговая земля.
  • DGND : специализированное цифровое заземление.

Рекомендуемый схематический символ (символы):

Схематический символ общего заземления.

Схематический символ аналоговой земли (AGND).

Схематический символ цифрового заземления (DGND).

Интегральные схемы (U)

U - обозначение интегральных схем. ИС включают микроконтроллеры, линейные регуляторы напряжения, операционные усилители и т. Д.

Почему U ? Одна из теорий состоит в том, что U был обозначением чего-либо «Не указано». Логично предположить, что когда микросхемы впервые вошли в употребление, они были обозначены как таковые.Название прижилось, и теперь U используется для микросхем (и больше не для чего-либо «неопределенного»). Другая теория состоит в том, что U обозначает «Не подлежит ремонту» .

На старых схемах вы также можете увидеть IC или Z , используемые для интегральных схем.

Рекомендуемое обозначение (и):

Рекомендуемый схематический символ (ы):

Рекомендуемый схематический символ для интегральной схемы (IC).

Гнездо (J)

Гнездо / гнездо / гнездо.Также определяется в IEEE 315 как наименее подвижная часть набора разъемов (который также включает вилку, P ).

Рекомендуемые обозначения:

Перемычка (JP)

Перемычка или перемычка (L для индуктора, а не перемычки). Это может быть простой кусок провода, физическая перемычка или резистор \ (0 \ Omega \) ).

Рекомендуемые обозначения:

Индуктор (L)

L используется как обозначение для индукторов. Вероятно, это честь физика Генриха Ленца, который был пионером в открытии электромагнетизма (и потому, что I обычно используется для обозначения тока).

Рекомендуемые обозначения:

Двигатель (M)

Рекомендуемые обозначения:

Механическая часть (MP)

Механическая часть. Это общий термин для множества разных вещей, таких как винты, стойки, кронштейны и т. Д.

Рекомендуемые обозначения:

Штекер (P)

Штекер / штекер. Также определяется в IEEE 315 как наиболее подвижная часть набора разъемов (который также включает разъем J ).

Рекомендуемые обозначения:

Фотоэлектрические / солнечные панели (PV)

PV - обозначение фотоэлектрических элементов (также называемых солнечными панелями).

Рекомендуемые обозначения:

Резисторы (R, VR)

Иногда вы увидите LDR для светозависимых резисторов. Для получения дополнительной информации см. Страницу Резисторы

Рекомендуемые обозначения:

  • R : Стандартные 2-контактные резисторы
  • RN : Сети резисторов (более одного резистора в одном корпусе, иногда с общим подключением ).
  • VR : переменные резисторы (также известные как потенциометры или реостаты).Я видел обратное, RV использовался раньше вместе с POT .

Рекомендуемый схематический символ (ы):

Схематический символ для стандартного резистора.

Условное обозначение переменного резистора (потенциометра).

Переключатели (S, SW)

S - это обозначение переключателя. SW также широко используется. Иногда вы увидите переключатели, помеченные в соответствии с их типом (например, PB для кнопочных переключателей, DPDT для двухполюсных переключателей с двойным направлением), , но это не рекомендуется .

Рекомендуемые обозначения:

Искровой разрядник (SG)

Рекомендуемые обозначения:

Рекомендуемые условные обозначения:

Схематические обозначения искровых промежутков. Этот искровой разрядник образован двумя медными треугольниками на печатной плате с зазором 200 мкм между ними. Поскольку это сделано исключительно из печатной платы, компонент спецификации не требуется.

Трансформатор (T)

T - обозначение трансформаторов.

Рекомендуемые обозначения:

Транзисторы (Q)

Q - обозначение, используемое для транзисторов (BJT, MOSFETs, JFETs, e.т.к). Иногда Q также используется для интегральной схемы, но я предпочитаю использовать U .

Рекомендованные обозначения:

Рекомендуемые условные обозначения:

Условные обозначения для N-канального MOSFET.

Условное обозначение P-канального MOSFET.

Контрольная точка (TP)

Контрольная точка. и $ , чтобы обеспечить отсутствие текста до или после обозначения.При желании их можно удалить. Подробнее об использовании регулярных выражений с обозначениями компонентов можно прочитать на Страница сценариев Altium.

Справочные документы

IEEE 315 - Графические символы для электрических и электронных схем (включая буквы обозначения класса условного обозначения)

Объем:

Этот американский национальный стандарт представляет собой пересмотр и расширение графических символов американского национального стандарта для электрических и электронных схем, Y32.2-1970 (IEEE Std 315-1971).

Чтобы сделать этот стандарт более всеобъемлющим, были добавлены различные специальные символы, изначально использовавшиеся для авиационных приложений. Для улучшения согласованности с публикацией 117 МЭК одобренные МЭК версии конденсатора, трансформатора, задержки, соответствующих проводников и специальных символов заземления были добавлены в качестве альтернативы тем, которые давно используются и стандартизированы в США. Ряд небольших изменений сделали существующий материал более близким к публикации 117 МЭК. Были добавлены символы для обозначения дополнительных устройств в области фоточувствительных полупроводников и специализированных полупроводниковых приборов, а также для электронных импульсных ламп.Исправлены известные ошибки и уточнены некоторые пункты.

Буквы класса условного обозначения были пересмотрены с целью включения добавленных новых символов устройств и уточнения категорий DS и LS. «D» теперь указан как альтернатива общепринятому «CR» для общего семейства полупроводниковых диодов.

Все символы спроектированы таким образом, что их точки соединения попадают в модульную сетку. Это должно помочь тем, кто использует сеточную основу для составления схем.При соответствующем увеличении символов можно согласовать обычные размеры координатной сетки. Большинство символов, представленных в этом стандарте, были воспроизведены с оригинальных рисунков, подготовленных для Mergenthaler Diagrammer.

Были предприняты значительные усилия для того, чтобы этот американский национальный стандарт был совместим с утвержденными Рекомендациями Международной электронной комиссии (МЭК) (Публикация 117 МЭК, в различных частях). Электрические схемы играют важную роль в международной торговле; Использование одного общего символьного языка обеспечивает четкое представление и экономичную подготовку диаграмм для различных пользователей.Члены подготовительного комитета активно передавали точку зрения США компетентному Техническому комитету МЭК.

Альтернативные символы показаны только в тех случаях, когда в настоящее время достичь согласия по общему символу не удалось. Есть надежда, что количество альтернативных символов будет сокращено в будущих выпусках.

Символы в этом стандарте представляют собой лучший консенсус, который может быть достигнут в настоящее время. Однако стандартизация должна быть динамической, а не статической, и любое решение проблемы следует проверять на практике и при необходимости пересматривать.Ожидается, что содержание этого стандарта будет изменено в соответствии с будущими потребностями; такие модификации будут доступны через выпуск утвержденных дополнений. Предложения по улучшению приветствуются. Их следует направлять по адресу:

Секретарь Совета по стандартам IEEE

Институт инженеров по электротехнике и радиоэлектронике, Inc.

ул. 345 Восточная 47,

Нью-Йорк, Нью-Йорк 10017

Этот стандарт был подготовлен Координационным комитетом по стандартам для буквенных и графических символов (SCC 11) Института инженеров по электротехнике и радиоэлектронике (IEEE), действующим для Y32.2 Целевая группа по графическим символам для электрических и электронных схем Американского национального комитета по стандартам Y32, графические символы и обозначения. Между отраслью и представителями Министерства обороны США существует тесное сотрудничество, чтобы предоставить единый стандарт, который можно было бы использовать повсеместно, а не отдельные документы, которые имеют тенденцию отличаться в различных отношениях. Хотя за это достижение следует отдать должное всем участникам и организациям, которые они представляют, особое внимание уделяется U.Министерство обороны США, без твердой поддержки которого в достижении цели - стандартных символов, приемлемых как для промышленности, так и для военных ведомств, - усилия не увенчались бы успехом.

Этот стандарт дополняется рядом связанных стандартов, перечисленных в Разделе 23.

Этот стандарт предоставляет список графических символов и букв обозначения класса для использования на электрических и электронных схемах.

Графические символы для электротехники - это сокращение, используемое для графического отображения функционирования или взаимосвязей цепи.Графический символ представляет функцию части схемы. 1 Графические символы используются на однолинейных (однолинейных) схемах, схематических или элементарных схемах или, если применимо, на схемах соединений или электрических соединений. Графические символы соотносятся со списками деталей, описаниями или инструкциями посредством обозначений.

Буква обозначения класса в условном обозначении предназначена для идентификации изделия по категории или классу с использованием буквы класса, как определено в Разделе 22 настоящего стандарта.Назначение условного обозначения должно соответствовать американским национальным стандартным условным обозначениям для электрических и электронных деталей и оборудования, Y32.16-1975 (IEEE Std 200-1975).

Идентификация электронных компонентов - uCHobby

Как определить и найти информацию о компонентах электроники, которые можно утилизировать из выброшенных гаджетов. Брэндон дает нам примеры изображений и описаний большинства типов электронных компонентов, чтобы помочь вам заполнить запасы домашней электроники.Это обязательное чтение для начинающих любителей электроники.

Эта статья была представлена ​​Брэндоном Улигом в рамках программы «Хобби для статей». За эту фантастическую статью Брэндон получает комплект Bare Bones Arduino компании Modern Device Company. Сообщите Брэндону, что вы цените такие статьи, разместив комментарий. Я надеюсь увидеть еще много подобных статей здесь, в uC Hobby.

Поиск запчастей - отличный способ для любителей сэкономить. Вы можете получить массу деталей из выброшенной или неиспользованной электроники.Но как определить все эти части? Эта статья даст вам несколько идей, с чего начать.

Основное внимание будет уделяться распространенным многоразовым компонентам, которые любители будут искать и использовать повторно.

Очевидно, что это далеко не полный список, существует множество различных электронных компонентов, которые можно поместить в краткое руководство, но, возможно, это даст вам некоторые идеи, чтобы сузить область поиска до неуловимого компонента.

Резисторы

- один из наиболее часто используемых компонентов схемы.Большинство из них имеют цветовую маркировку, но на некоторых указано их значение в Ом и допустимое отклонение. Чтобы определить значения, вы можете проверить программное обеспечение Electronic Assistant, которое можно найти в статье о Free Electronics Hobby Software здесь, на сайте uC Hobby, или найти один из многих онлайн-инструментов. Некоторые из них можно найти на http://www.electronics2000.co.uk/ в разделе «Калькуляторы». Мультиметр, который может проверять сопротивление, также может быть полезен при условии, что резистор уже снят с платы (измерение его, пока оно еще припаяно, может дать неточные результаты из-за соединений с остальной схемой).Обычно они помечены буквой «R» на печатной плате.

Потенциометры - это переменные резисторы. Обычно на них указывается их значение, обычно указывается максимальное значение в Ом. Меньшие тримпоты могут использовать трехзначный код, где первые две цифры значимы, а третья - множитель (в основном это количество нулей после первых двух цифр). Например, код 104 = 10, за которым следуют четыре нуля = 100000 Ом = 100 кОм. На них также может быть буквенный код, обозначающий конус (то есть, как сопротивление изменяется в зависимости от того, насколько далеко повернут потенциометр).Обычно они имеют маркировку «VR» на печатной плате.

Конденсаторы также очень часто используются. На многих напечатаны их значения, некоторые помечены трехзначным кодом, а некоторые - цветом. Те же ресурсы, перечисленные выше для резисторов, также могут помочь вам определить номиналы конденсаторов. Обычно они помечены буквой «C» на печатной плате.

Индукторы

, также называемые катушками, могут быть немного сложнее определить их значения. Если они имеют цветовую кодировку, ресурсы, перечисленные для резисторов, могут помочь, в противном случае потребуется хороший измеритель, который может измерять индуктивность.Обычно они помечены буквой «L» на печатной плате.

Кристаллы и осцилляторы

также довольно легко идентифицировать визуально. Большинство из них имеют четкую маркировку с напечатанной на них рабочей частотой. Обычно они отмечены на печатной плате буквой «X» или «Y».

Реле

обычно заключены в пластик, и на многих из них напечатаны их спецификации. Обычно они помечены буквой «K» на печатной плате.

Трансформаторы

обычно довольно легко идентифицировать визуально, и на многих из них напечатаны их спецификации.Обычно они помечены буквой «T» на печатной плате.

Батареи

также довольно легко идентифицировать, и они хорошо помечены своими характеристиками.

Предохранители

легко идентифицировать, и обычно на них указаны их номинальное напряжение и сила тока.

Полупроводники, например диоды (обычно помечены буквой «D» на печатной плате).

Транзисторы (обычно отмечены буквой Q на печатной плате),

Мостовые выпрямители (обычно помечены буквой BR на печатной плате)

Интегральные схемы

(обычно отмеченные буквами «U» или «IC» на печатной плате) могут потребовать немного больше работы, чтобы выяснить, что они собой представляют.Многие типы могут использовать одну и ту же упаковку, поэтому все они не могут быть идентифицированы по внешнему виду. В большинстве случаев необходимую информацию можно найти в техническом описании устройства. Техническое описание - это документ, содержащий спецификации устройства, и многие из них будут включать примеры схем, ссылки на примечания к приложениям и другую ценную информацию. Обычно они имеют формат .PDF. Если вы никогда раньше не использовали PDF-файл, вам понадобится программа для чтения PDF-файлов, чтобы открыть его. Пару бесплатных можно найти ниже.

http: // www.adobe.com/products/acrobat/readstep2.html (Adobe Reader)

http://www.foxitsoftware.com/pdf/rd_intro.php (Foxit Reader)

Чтобы найти техническое описание, вам сначала нужно найти некоторую информацию о детали. К счастью, у них есть номера деталей, которые можно использовать для их идентификации. На них также может быть логотип производителя. Поиск производителя может быть чрезвычайно полезным, поскольку самая последняя информация обычно доступна на их веб-сайтах. Чтобы найти производителя по его логотипу, посетите следующие сайты.Они также содержат ссылки на веб-сайты производителя. Таблицы данных обычно можно найти в разделе поддержки / загрузки, или вы можете указать номер детали в строке поиска.

http://www.classiccmp.org/rtellason/logos/semiconductorlogos.html

http://www.dialelec.com/semiconductorlogos.html

http://freespace.virgin.net/matt.waite/resource/logos/index.htm

http://hallaweb.jlab.org/tech/jackjack/public_html/manuals/chip_specs/Manufacturers%20of%20ICs%20and%20their%20logos%20-%202.htm

http://www.chipdocs.com/logos/logotypes.html?ReR=GG&ReR=GG

Если вы не можете найти какую-либо информацию о производителе или не можете найти техническое описание на его веб-сайте, у вас есть еще несколько вариантов. В Интернете есть несколько поисковых систем, которые помогают находить таблицы данных. Некоторые бесплатные перечислены ниже. Вы можете искать по номеру детали или даже по частичному номеру детали.

http://sdw.bgs.nu/a.html

http://www.datasheetcatalog.com/

http: // www.alldatasheet.com/

http://www.datasheetarchive.com/

Если это не помогло, вы можете попробовать использовать поисковую систему, такую ​​как Google. Добавление «pdf» в строку поиска может уменьшить результаты, уменьшив количество сайтов, которые просто продают часть без другой полезной информации. Также есть шанс не найти никакой информации о той или иной части. Некоторые производители будут производить детали по специальному заказу с «домашними» номерами, которые не могут ничего значить, кроме компании, которая их фактически купила.

Есть также много других компонентов, которые вы можете удалить с платы, но может быть трудно найти конкретную информацию. Они могут не быть отмечены, но вы можете найти полезную общую информацию в Интернете, которая поможет вам.

А теперь небольшой тест 🙂 Посмотрите, сколько компонентов вы можете определить на следующей плате. Ответы можно найти, прокрутив страницу под доской - Никакого обмана!

Ответы ——————

1 Диоды
2 Пьезозуммер
3 Транзистор
4 Трансформатор
5 Реле
6 Катушки индуктивности
7 Интегральные схемы (ИС)
8 Конденсаторы
9 Кристалл
10 Резисторы

Схематические символы, электронные символы, символы цепей

.
Схематические обозначения - чертежи
Схема Условные обозначения на схемах Обозначения на схемах для большинства основных электрических компоненты можно найти в этой таблице.Однако каждый компонент может иметь множество возможные представления
Схема условные обозначения 2 Провода и соединения, Источники питания, Резисторы, Конденсаторы, индукторы, взаимные индукторы, переключатели с ручным управлением, переключатели, с технологическим управлением, переключатели с электрическим управлением (реле), соединители, диоды, Транзисторы, биполярные, Транзисторы, полевые переходы (JFET), Транзисторы, полевой эффект с изолированным затвором (IGFET или MOSFET), транзисторы, гибридные, тиристоры, Интегральные схемы, электронные лампы
Схема условные обозначения 3 условных обозначения электронных схем, zip-файл
Обозначения и пояснения схем символы цепей используются в принципиальных схемах, которые показывают, как цепь электрически соединена вместе.Они используются при проектировании и тестировании схем, и для понимания того, как они работают
Условные обозначения схем символы схем, символы электронных схем
Электрические символы электрические символы, электронные графические символы, используемые в принципиальных схемах электронные графические символы
Электрические и электронные символы Символы проводки, символы переключателей, символы заземления, Символы резисторов, символы конденсаторов, символы индуктивности, символы ламп, диоды Символы, символы транзисторов, символы антенн, символы логического затвора
Электронный библиотеки символов для библиотек дискретных компонентов Autocad для Autocad версии 12.Содержит символы компонентов от резисторов до транзисторов, библиотеки механических компонентов для AutoCad версии 12. Содержит схемы механических компонентов для использования в печатных платах поколения
Обозначения электронных схем pdf файл
Электронные символы электронные символы, усилители, антенны, структурные схемы, конденсаторы, катушки, декодеры, диоды, триггеры, вентили, правила IEC, линии, мультиплексоры, демультиплексоры, регистры, SCR, TRIAC, трансформаторы, транзисторы, проводка
Электронные символы doc файл
Графические символы условные обозначения
Графические символы условные обозначения
Символ gEDA Библиотека
IC логотипы IC логотипы, идентификация производителя ИС по логотипу
Электромонтажные работы Moeller Руководство
Schakelschemaboek schakelschemaboek, Automatiseringssystemen, Elektronische motorstarters ru приводы, Bedienings- en signaleringsapparatuur, Nokkenschakelaar, Magneetschakelaars en relais, Motorbeveiligingsschakelaar, Vermogensautomaat, Normen, formules, tabellen, на голландском языке
Схема Ссылка на условное обозначение Схема условного обозначения
Схематические символы электронные символы, электрические символы
Наука символы электронные символы, греческий алфавит, математические символы, символы Далтона таблица элементов, наука константы
Символы лектричности на французском языке
Символы электрического тока et electronicique en Franais, pdf файл
Телекоммуникационные символы телекоммуникационные символы, pdf файл
Терминология и символы в Техническая информация по технике управления, представленная в этом документе, основана на определениях в соответствии с DIN, немецкой организацией стандартизация (Deutsches Institut fr Normung), файл pdf
Horizontaal

Дом | Карта сайта | Электронная почта: support [at] karadimov.инфо

Последнее обновление: 2011-01-02 | Авторские права © 2011-2021 Educypedia.

http://educypedia.karadimov.info

10 лучших руководств и советов по проектированию электронных схем

Как инженер, схемы и схемы должны быть аккуратными и правильно нарисованными для заданной цели, предпочтительно с помощью электронного компьютерного проектирования (ECAD), также известного как средство автоматизации проектирования электроники (EDA). ).Вот наши 10 лучших советов и рекомендаций по проектированию электроники и схемотехники.

Используйте блок-схемы и основную надпись

Блок-схема в дизайне электроники рассматривается как лучший справочный материал, который показывает обзор и архитектуру вашей схемы и помогает читателю быстро понять и представить функцию схемы, резюмируя системы и подсистемы проекта. Использование блок-схемы источника питания постоянного тока, представленного на рисунке 1, для ознакомления с конструкцией вашего оборудования всем, кто смотрит и исследует вашу схему, является успешным методом, которым большинство разработчиков пренебрегают.

Рисунок 1: Блок-схема источника питания постоянного тока

Еще одно важное правило - дать имя вашей схеме и добавить свое имя в схему в блоке заголовка, чтобы схема выглядела более профессионально. и опытный. На рисунке 2 представлена ​​7-сегментная схема BCD, которая включает необходимые и требуемые детали и примечания для тех, кто может реализовать эту схему на макетной плате или построить макет печатной платы (PCB).

Рисунок 2: Схематический дизайн BCD на 7 сегментов

С другой стороны, желательно разработать схему для бумаги обычного размера, потому что почти читатели имеют доступ только к стандартным принтерам размера страницы, таким как A4 который является наиболее часто используемым размером бумаги. Если вашему проекту требуется больше места, вы можете разделить схему на несколько листов дизайна, чтобы повысить удобочитаемость.

Размещение сигналов компонентов и ввода / вывода

Схема должна быть нарисована так, чтобы электрические сигналы начинали течь слева направо.На рисунке 3 показана схема усилителя, в которой входы расположены слева, а выходы - справа. Обычно линия электропередачи должна располагаться вверху, а уровень земли - внизу схемы, чтобы улучшить читаемость.

Рисунок 3: Схема операционного усилителя

Схематический дизайн рассматривается как художественный процесс, потому что каждый дизайнер должен проявлять должную любовь и заботу во время размещения компонентов, группируя похожие компоненты в одном и том же направлении, в основном поляризованном компонентов в одну строку или столбец, как показано на рисунке 4, чтобы сократить пути подключения и дать другим вашим компонентам, таким как интегральные схемы (ИС), пространство, чтобы дышать при переходе к дизайну компоновки печатной платы.

Рисунок 4: Группирование похожих резисторов и светодиодов в один столбец

Все хорошие ECAD предлагают возможность редактировать сетки в редакторе схем, чтобы упростить размещение компонентов и контактов. Как правило, настоятельно рекомендуется использовать сетку 100 мил / 2,54 мм для нормального проектирования и сетку 50 мил / 1,27 мм для плотных схем, которые позволяют разместить любой объект на линии сетки, включая его штыри, чтобы избежать разъединения частей.

Рисунок 5: Настройка размера сетки с помощью бесплатного инструмента KiCAD

Уточните свои соединения

Важно показать и различить, какие цепи связаны, а какие пересекаются. Чтобы решить эту проблему, вы должны использовать точечное соглашение, чтобы прояснить ваши связи. На рис. 6 показаны предпочтительные методы соединения или скрещивания цепей, даже если точка исчезает из-за проблемы с фотокопированием.

Рисунок 6: Правила пересечения или соединения цепей

При подключении вывода символа рекомендуется передвигать по крайней мере одну точку сетки прямо перед изменением направления, как показано на рисунке 7.Этот совет гарантирует, что все цепи в вашей схеме появятся в списке соединений при создании разводки печатной платы.

Рисунок 7: Подключение цепей к контактам

Вы можете использовать шины для группировки сигналов, когда это возможно и необходимо, чтобы повысить читаемость и сделать вашу схему более лаконичной. Например, полезно использовать шину для подключения 10-канального АЦП (аналого-цифрового преобразователя) к аналоговым датчикам в качестве. Эта функция поддерживается всеми хорошими инструментами ECAD, имеющими возможность группировки сигналов.

Вы также можете использовать глобальный соединитель или символ для создания соединения между разными проводами с общими сигналами для скрытых выводов питания, таких как земля и питание, как показано на рисунке 8, через иерархию (подсхемы, иерархические блоки и многостраничные ) и сделать схему более лаконичной и не загроможденной. Ссылаясь на рисунок 9, сигналы + V и –V, а также VIN и VOUT являются глобальными разъемами, которые используются для того, чтобы скрыть шунтирующие конденсаторы от тракта прохождения сигнала, чтобы минимизировать беспорядок.

Рисунок 8: Способ подключения скрытых выводов питания с помощью глобальных разъемов

Рисунок 9: Использование глобальных разъемов в схеме

Используйте сетевые метки и краткие ссылочные обозначения

Ваша схема должна иметь все сети помечены в основном для важных сигналов. Эта задача поможет вам во время отладки или при запуске моделирования и даже при проектировании компоновки печатной платы. Даже маркировка цепей является необязательной и необязательной, но это сэкономит много времени, в основном при проектировании компоновки печатной платы.На рисунке 10 сигналы сброса и светодиода обозначены сетками. Еще одним важным ключом маркировки цепей является повышение читаемости путем подключения удаленных клемм, даже если они физически не соединены проводом, как показано на рисунке 11.

Рисунок 10: Использование имени цепей для важных сигналов

Рисунок 11: Использование меток Nets для удаленного соединения

Еще один очень важный ключ, о котором вы должны позаботиться, - это позиционные обозначения и правильные значения, которые представляют собой комбинации цифр / букв для отображения и идентификации типа компонента в соответствии с таблицей 1 в вашем дизайне.Эти ссылки обычно печатаются на печатной плате в виде этикеток, которые позволяют легко найти расположение компонентов. На схеме ссылки должны быть расположены рядом с компонентом в соответствии с шаблоном, который вы выбираете для всего проекта над или под горизонтальными компонентами и слева или справа от вертикальных компонентов, как показано на рисунке 12.

Таблица 1: Общие условные обозначения

Рисунок 12: Размещение позиционных обозначений

Если вы хотите записать поверх диаграммы для заметок или других целей, убедитесь, что ваша задача по присвоению имен будет последовательной, краткой и лаконичной.Старайтесь использовать пробелы между именами, чтобы свести к минимуму беспорядок смешивания схемы с вашим письмом, что может запутать читателей.

Отфильтруйте входные и выходные сигналы с помощью конденсаторов связи и развязки

Мы поговорим о конденсаторах, которые известны своей функцией фильтрации, которая используется разработчиками схем.

Обычно источники питания нестабильны и выдают выходное напряжение, которое будет колебаться, что может повредить схему, в основном, при питании плат микроконтроллера.По этой причине вам следует добавить конденсатор параллельно и рядом с источником питания при проектировании вашей схемы для обеспечения чистого постоянного тока. В данном случае этот конденсатор называется РАЗЪЕМНЫЙ КОНДЕНСАТОР. Этот развязывающий конденсатор начинает заряжаться от источника, и когда достигается уровень напряжения Vcc, ток через конденсатор не течет. Разделительный конденсатор будет поддерживать и удерживать этот заряд до тех пор, пока не произойдет падение уровня напряжения от источника.

Еще один важный момент, о котором вы должны помнить при работе со схемой усилителя, - это использование разделительных конденсаторов.Эти конденсаторы связи позволяют сглаживать и блокировать как низкочастотный шум, так и элемент постоянного тока в выходном сигнале схемы усилителя.

Таким образом, байпасный конденсатор используется для устранения внутренних и внутренних шумов в системе путем обхода его на землю, в основном в цепях усилителя и громкоговорителей для получения чистого звука. Величина этого конденсатора выбирается по известной формуле C = 1 / (2πfX C ) и при условии, что реактивное сопротивление конденсатора (X c ) должно быть 1/10 или меньше, чем сопротивление параллельно.

Подводя итог, имейте в виду, что развязывающие конденсаторы полезны для входящих сигналов для развязки сигналов переменного и постоянного тока, где их значения должны быть от 1 до 100 мкФ при низкочастотном шуме и от 0,01 до 0,1 мкФ при низкочастотном шуме. высокочастотный шум. Однако для исходящих сигналов используются конденсаторы связи. Шунтирующие конденсаторы полезны для удаления шума переменного тока из сигнала постоянного тока, чтобы получить чистый и чистый сигнал постоянного тока. Три различных типа упомянутых конденсаторов для целей фильтрации сгруппированы на рисунке 13.

Рисунок 13: Использование конденсаторов для фильтрации

Используйте подтягивающие и понижающие резисторы

Это золотое правило следует помнить автоматически при работе с микроконтроллерами и цифровыми микросхемами, чтобы избежать и преодолеть плавающее состояние или третье состояние, как оно известно в литературе по цифровой электронике.

Как вы знаете, каждая цифровая ИС работает с логическими уровнями, которые имеют прямое отношение к входному напряжению.Например, входное напряжение от +5 до +2,8 В в цифровой ИС будет интерпретироваться как высокое состояние или логическая 1 и 0 вольт до +0,8 В будут интерпретироваться как низкое состояние или логический 0. В противном случае это входное напряжение между От +0,9 до +2,7 вольт будет неопределенным состоянием или плавающим состоянием, и в этом случае логическое состояние будет либо низким (0), либо высоким (1).

Вы можете обойти вышеупомянутый сценарий, используя компонент резисторов, чтобы установить желаемое напряжение на входных выводах микросхемы.В этом случае вы должны использовать подтягивающие резисторы (обычно 4,7 кОм), которые представлены на рисунке 14, чтобы приложить и поднять напряжение, близкое к Vcc (+5 В или 3,3 В), и подтягивающие резисторы (обычно 10 кОм), которые как показано на рисунке 15, чтобы установить напряжение, близкое к уровню напряжения земли (0 вольт). Неизвестного состояния на входах микросхемы или микроконтроллера можно легко избежать, и теперь вы уверены, что ваши цифровые ИС будут вести себя правильно.

Рисунок 14: Использование подтягивающего резистора на входе IC

Рисунок 15: Использование подтягивающего резистора на входе IC

Используйте микроконтроллеры

Этот совет сэкономит вам много времени и уменьшит размер вашей схемы за счет исключения множества компонентов, например, для простого аналогово-цифрового преобразования, которое вы легко найдете в одном чипе микроконтроллера (MCU) с другими красивыми функциями, но вы должны запрограммировать свой MCU и прочитать его техническое описание.

Современные микроконтроллеры разных производителей (ATMEL, Microchip, STMicroelectronics…) предлагают расширенные функции по низкой цене для решения многих задач, таких как последовательная / I2C / SPI-связь, аналого-цифровое преобразование, таймеры и многое другое. в небольших упаковках, которые занимают меньше места и повышают эффективность и производительность вашего дизайна.

Используйте ШИМ-сигналы для экономии энергопотребления

Создание схемы, которая экономит энергию, очень важно, в основном, когда ваш конечный продукт не может быть заряжен или вы не можете заменить его аккумуляторные элементы, потому что, например, он развернут в лесу.По этой причине вы всегда должны думать об использовании схемы широтно-импульсной модуляции (PWM) с использованием NE555 или специального микроконтроллера, который может повысить энергоэффективность вашего приложения. Этот метод можно использовать для экономии энергии на простых схемах светодиодов или двигателей.

Чтобы прояснить этот совет, мы возьмем, например, сигнал PWM 50 Гц с рабочим циклом 75%. При этих параметрах импульс включения остается на 75% там, где течет ток, а импульс выключения (в это время ток не течет) остается на 25% в течение всего периода времени.Во время отключения светодиоды или двигатели медленно реагируют на этот переход тока, что создает впечатление, что они все еще остаются включенными. На рис. 16 показаны часто используемые рабочие циклы, которые можно использовать в соответствии с вашим приложением для экономии энергии.

Рисунок 16: Метод ШИМ для экономии энергопотребления

Выберите правильный стандарт для обозначений компонентов

Перед тем, как приступить к проектированию схемы, подумайте, какие символы компонентов вы хотите использовать при рисовании .Даже символы используются во всем мире, но они различаются в некоторых частях мира, в основном в США. Например, обозначение резистора, используемое многими разработчиками в США, отличается от европейского, как показано на рисунке 17.

Рисунок 17: Обычно используемые символы резисторов

Институт инженеров по электротехнике и электронике (IEEE) разработал для проектировщиков множество стандартов для часто используемых символов компонентов, таких как графические символы логических функций IEEE Standard 91, IEEE Standard 315, который включает графические символы и обозначение для электрических и электронных схем и стандарта IEEE 991 для схем логических цепей.

Еще один момент, о котором вы должны позаботиться, - это символы конденсаторов, чтобы избежать катастрофической аварии, включая пожар, дым и взрыв, во время реализации при работе с поляризованными конденсаторами. По этой причине предпочтительно использовать символы, показанные на рисунке 18, как для поляризованных, так и для неполяризованных конденсаторов. Этот символ поляризованного конденсатора с маленьким знаком «+» очень полезен, даже если этот знак пропадает из-за проблемы с копированием, вы и читатели быстро узнаете этот компонент.

Рисунок 18: Предпочтительные символы для конденсатора

Выберите правильный инструмент САПР

Вы можете легко нарисовать вручную базовые схематические проекты, даже если вы не такой опытный дизайнер, как Боб Пиз. Однако очень полезно создавать сложные конструкции, в которых может использоваться множество деталей и интегральных схем, с использованием подходящего программного обеспечения для электронного компьютерного проектирования (ECAD), также известного как автоматизация электронного проектирования (EDA).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *