Расчет сопротивления цепи
Расчет сопротивления цепи необходим при решении различных задач по электротехнике. Суть заключается в приведении сложной разветвленной электрической цепи к цепи с единственным эквивалентным сопротивлением, которую называют простой электрической цепью.
Пример 1
Цепь в данном примере состоит из двух последовательно соединенных сопротивлений, следовательно, их общее сопротивление будет равно сумме их сопротивлений. Подробнее о видах соединений тут.
Допустим, что R1=10 Ом R2=20 Ом, тогда
Пример 2
Два сопротивления соединены параллельно, значит при сворачивании схемы, общее сопротивление будет равно (значения R1,R2 такие же как и в примере 1)
Можно заметить, что при параллельном соединении общее сопротивление меньше, чем при последовательном в несколько раз.
Пример 3
В данном примере ситуация аналогична примеру 2, за тем лишь исключением, что сопротивлений три. Тогда общее сопротивление будет равно (R1,R2 прежние, R3=105 Ом)
Пример 4
Чтобы рассчитать общее сопротивление смешанного соединения проводников, необходимо для начала найти общее сопротивление резисторов R1 и R2 соединенных параллельно, а затем общее сопротивление, как сумму R12 и R3 соединенных последовательно.
Пример 5
Данная электрическая цепь сложнее, чем предыдущие, но как можно увидеть, она также состоит из последовательно или параллельно соединенных сопротивлений, которые можно постепенно сворачивать, приводя цепь к единственному эквивалентному сопротивлению R.
R4=20 Ом, R5=40 Ом, R 6=15 Ом
Путем сворачивания цепи с помощью преобразований последовательно и параллельно соединенных проводников, можно максимально упростить для дальнейшего расчета сколь угодно сложную схему. Исключением служат цепи содержащие сопротивления, соединенные по схеме звезда и треугольник.
как посчитать и определить формулой
Сопротивление – это физическая электротехническая величина, отражающая противодействие движению электрического тока в проводнике или в цепи. Впервые она была обоснована и закреплена в фундаментальной связи с напряжением и силой тока в законе Ома – немецкого физика, который изучал эту взаимосвязь. В честь него и названа единица измерения сопротивления – Ом. Часто при выполнении монтажа какой-либо электросети необходимо найти общее сопротивление цепи при различных способах подключения. О том, как это правильно сделать и расскажет этот материал.
Что такое общее сопротивление цепи
Если говорить простыми словами, общее сопротивление электрической цепи – это такое R, которое она оказывает на напряжение в ее проводниках и приборах. Существует два типа напряжения (исходя из силы тока) – постоянное и переменное. Так же и сопротивление делится на активное и реактивное, которое, в свою очередь, подразделяется на индуктивное и емкостное. Активный тип не зависит от частот сети. Также для него абсолютно не важно, какой ток протекает по проводникам. Реактивный же, наоборот, зависит от частоты, причем емкостная характеристика в конденсаторах и индуктивная в трансформаторах ведут себя по-разному.
Помимо сопротивления подключенных в сеть электроприборов, на общее состояние оказывают влияние даже промежуточные провода, также имеющие сопротивляемость напряжению.
Резистор – основной элемент сопротивляемости цепиКак правильно найти и посчитать формулой сопротивление цепи
Сперва следует разобрать понятия и формулы. Индуктивный тип считается так: XL= ωL, где L – индуктивность цепи, а ω – круговая частота переменного тока, равная 2πf (f – частота переменного тока). Чем больше частота сети, тем большим R для нее становится какая-либо катушка индуктивности.
Емкостный тип можно рассчитать по формуле: Xc = 1/ ωC, где С – емкость радиоэлемента. Здесь все наоборот. Если происходит увеличение частоты, то сопротивляемость конденсатора напряжению уменьшается. Из этого исходит то, что для сети постоянного тока конденсатор – бесконечно большое R.
Высчитать характеристику можно и с помощи других величинНо не только вид сопротивления и радиоэлементы, обеспечивающие его, влияют на общее значение цепи. Особую роль играет также и способ соединения элементов в электроцепь. Существует два варианта:
- Последовательный;
- Параллельный.
В последовательном подключении
Это самый простой тип для практического и теоретического рассмотрения. В нем элементы резисторного типа соединяются, очевидно, последовательно, образуя подобие «змейки» после чего электрическая цепь замыкается. Посчитать общее значение в таком случае довольно просто: требуется последовательно сложить все значения, выдаваемые каждым из резисторов. Например, если подключено 5 резисторов по 5 Ом каждый, то общий параметр будет равен 5 на 5 – 25 Ом.
В параллельном подключении
Немного сложнее все устроено в параллельных сетях. Если при последовательном способе току нужно пройти все резисторы, то тут он вправе выбрать любой. На самом деле он просто будет разделен между ними. Суть в том, что есть характеристика, схожая для всех радиоэлементов, например, величина в 5 Ом означает, что для нахождения общего R необходимо разделить его на количество всех подключенных резисторов: 5/5 = 1 Ом.
Важно! Из-за того, что напряжение на параллельных участках одинаково, а токи складываются, то есть сумма токов в участках равна неразветвленному току, то Rобщ будет высчитываться формуле: 1/R = 1/R1 + 1/R2 + … + 1/Rn.
Формула параллельной сетиКак определить формулой общее сопротивление цепи
Из закона Ома исходит то, что общее сопротивление равно общему напряжению, деленному на общую силу тока в цепи. При параллельном подключении напряжение, как уже было сказано, равно везде, поэтому необходимо узнать его значение на любом участке цепи. С током все сложнее, так как на каждой ветке его значение свое и зависит от конкретного R.
Также необходимо помнить, что могут быть параллельные подключения с нулевым значением R. Если в какой-либо ветке нет резистора или другого подобного элемента, но весь ток будет течь через нее и все общее значение для цепи станет нулевым. На практике это случается при выходе резистора из строя или при замыкании. Такая ситуация может навредить другим элементам из-за большой силы тока.
Таблица удельной величины для различных проводниковОнлайн-калькулятор расчета сопротивление цепи
Для того чтобы сэкономить свое время и не заниматься скучными пересчетами, рекомендуется пользоваться калькуляторами по расчету сопротивления и многих других величин в режиме онлайн. Большинство из них бесплатные:
- Сalc.ru (https://www.calc.ru/raschet-elektricheskikh-tsepey.html). Возможен расчет закона Ома для участка цепи, реактивного и активного сопротивления при последовательном и параллельном соединении резисторов;
- Asutpp.ru (https://www.asutpp.ru/kalkulyator-rascheta-parallelnogo-soedineniya-rezistorov.html). Калькулятор для параллельного соединения. Достаточно указать количество элементов и Ом-характеристику каждого из них;
- Cxem.net (https://cxem.net/calc/calc.php). Обладает таким же количеством калькуляторов, как и первый вариант, что позволяет радиолюбителю выполнить вычисление любых интересующих параметров сети.
В статье подробно рассказано, как вычислить общее сопротивление цепи. При разных типах подключения элементов она считается по-разному, но благодаря давно выведенным формулам в любом случае нет ничего сложного.
Как определить сопротивление тэна | Санкт-Петербург
В каких случаях нужно определять сопротивление ТЭНа, технология проверки трубчатого электронагревателя. Как использовать мультиметр, способы проверки работоспособности нагревательного элемента без тестера.
Причин неполадок электроприборов, в которых установлены трубчатые электронагреватели, довольно много. И не всегда это выход из строя ТЭНа. Чтобы исключить этот вариант, может потребоваться его тестирование при помощи специального прибора – мультиметра.
Когда может потребоваться определение сопротивления ТЭНа
Знать, как измерить сопротивление ТЭНа, потребуется во многих случаях. Обычно – если бытовое устройство, которое использует ТЭН, начало функционировать неверно. В частности, тревожными симптомами могут быть:
- Отказ устройства включаться;
- Нарушение температурного режима работы устройства;
- Слишком сильное и быстрое нагревание;
- Появление искр или даже дыма;
- Так называемый «пробой» на корпус, а также неисправности иного рода.
Не обязательно они связаны с выходом из строя ТЭНа: причины могут быть самыми разными. Поэтому не будет лишним знать, как проверить сопротивление ТЭНа.
Если вдруг бытовое оборудование стало вести себя подозрительно, необходимо немедленно отключить его от электросети и приступить к диагностике возможных неполадок.
Что нужно выполнить перед проверкой
Перед тем, как измерить сопротивление ТЭНа мультиметром, можно рассчитать значение его сопротивления на бумаге. Для этого потребуется определить мощность устройства. Как правило, данный параметр указан в эксплуатационном паспорте. В крайнем случае можно всегда просмотреть нужную информацию на сайте производителя или поискать данные в Интернете.
Зная значение мощности, нужно сначала рассчитать протекающий через нагреватель ток. Любой, кто знаком со школьным курсом физики за 8 класс, ответит, что сила тока в данном случае будет равна отношению мощности к напряжению (обычно это 220 вольт):
I=P/U, Ампер
После этого можно будет по Закону Ома (все тот же 8 класс физики) высчитать и значение сопротивления – разделив напряжение на силу тока:
R=U/I, Ом
Как вариант – воспользоваться другой формулой:
R=U²/P, Ом
В качестве примера: перед тем, как определить сопротивление ТЭНа рассчитывается его теоретический показатель при мощности в 2 киловатта (2 000 ватт) при стандартном напряжении в 220 вольт:
R=(220 В)²/2 000 Вт = 24.2 Ом.
Это и будет искомое теоретическое сопротивление. Часто мастера и электрики, тестируя ТЭН мультиметром, просто придерживаются показателей в промежутке между 20 и 30 омами. Это будет не совсем верно: все-таки, чем точнее измеренный показатель будет совпадать с теоретическим, тем лучше.
Технология проверки ТЭНа
Перед тем как проверить сопротивление ТЭНа, устройство необходимо отключить от электропитания. Это обязательно! При необходимости, пользуясь специальными инструкциями, ТЭН извлекается из своего посадочного гнезда в приборе. Как это сделать – зависит от каждого конкретного устройства и его модели, а также от производителя.
После того как ТЭН извлечен и отсоединен от проводов, нужно включить мультиметр в режиме замера сопротивления и выставить диапазон до 200 Ом. Щупами устройства нужно прикоснуться к выводным контактам ТЭНа.
Использование измерительного прибора
Собственно, это и есть проверка сопротивления ТЭНа. Мультиметр может показать разные значения. Возможно три варианта развития событий:
- На дисплее показывается точно такое же значение, какое было рассчитано выше, по формуле. Если это так – ТЭН исправен, причина неполадки бытового прибора кроется в чем-то ином;
- Дисплей показывает нулевое значение. Пользоваться таким ТЭНом категорически запрещается! Ноль свидетельствует о наличии короткого замыкания. Поможет лишь замена нагревателя;
- Если высвечивается значение – единица или знак бесконечности, то где-то в цепи имеет место разрыв. Например, произошло механическое разрушение ТЭНа. Соответственно, его также потребуется заменить.
Кроме как измерить сопротивление ТЭНа мультиметром, можно проверить, нет ли утечки тока. Чтобы это сделать, мультиметр переводится в режим зуммирования, после чего один из его щупов подводится к контакту вывода, а другой – к корпусу ТЭНа. Если зуммер издал сигнал – имеет место пробой. В этом случае нагреватель также подлежит замене.
Можно провести проверку сопротивления изоляционного слоя ТЭНа при помощи мегаомметра. Чтобы это сделать, на приборе выставляется диапазон до 500 В. Один из щупов подводится к выводному контакту ТЭНа, а другой – к корпусу прибора. Считается нормальным показание от 0.5 Ома.
Перед тем, как определить сопротивление ТЭНа посредством прозвона, нужно его внимательно осмотреть. На нем не должно присутствовать механических повреждений. Причиной неисправности может стать накипь. В случае с явными повреждениями – вздутие, трещины (пусть и самые незначительные), сколы и т.д. – ТЭН просто подлежит замене. Можно даже не проводить никаких замеров. Накипь устраняется через вымачивание в течение двух суток элемента в растворе уксуса или лимонной кислоты.
Утечка тока на корпус
Бывает и так, что с течением времени изоляционный слой ТЭНа изнашивается. При этом наблюдается так называемая утечка тока на корпус оборудования. Определить это можно уже описанным выше способом – посредством мегаомметра.
Если в доме стоит УЗО, то из-за износа изоляционного слоя автоматика может отключаться. Происходит это при достижении половины значения от номинального отключающего дифференциального тока. Мультиметром определить этот факт будет невозможно, поскольку у него отсутствует короткое замыкание на корпус.
Проверка ТЭНа без мультиметра
Если под рукой нет мультиметра, бывалый мастер может провести проверку нагревателя на предмет обрыва и без него. Для этого потребуется контрольная лампа электрика. Ее можно изготовить самому, но лучше приобрести заводской прибор.
Для проверки нужно один контакт ТЭНа подать на ноль от сети, а другой – фазу через контрольную лампу. Если лампочка загорелась – обрыва в цепи нет. Минус этого способа в том, что полноценная проверка сопротивления ТЭНа таким образом невозможна, однако проконтролировать целостность цепи все-таки получится.
Аналогичными способами можно выполнять проверку ТЭНа во многих электроприборах – начиная от посудомоечной машины, заканчивая обогревателями и электрическими чайниками.
Советы по поводу того, как продлить срок службы ТЭНа
В заключение – немного о том, как продлить срок работы ТЭНа. Нет ничего приятного в том, когда выходит из строя водонагревательное устройство в бытовой технике. Однако существуют некоторые рекомендации, которые позволят отодвинуть это неприятное событие:
- Необходимо своевременно проводить замену магниевого анода, который защищает ТЭН;
- Самым главным требованием является использование как можно более качественной воды. При необходимости следует установить на водопровод фильтрующие устройства;
- Не повредит минимум один раз в год осматривать ТЭН на предмет целостности и образования на нем накипи;
- Если требуется проводить замену деталей, лучше всего использовать оригинальные комплектующие.
Не нужно без крайней необходимости задавать максимальный нагрев воды в устройстве. Обычно производитель указывает оптимальный температурный режим его работы. Это позволит сэкономить электричество и продлить срок работы ТЭНа.
Ничего особенно сложного в том, как измерить сопротивление ТЭНа, нет. Но только в том случае, если есть полная уверенность в правильности проводимых операций. В противном случае лучшим выходом будет обратиться за помощью к специалисту.
Как определить сопротивление резистора? Измерение омметром и чтение цветовой маркировки.
Постоянные резисторы — это элементы, без которых не обходится ни одна электронная система. Резисторы различаются между собой по мощности и сопротивлению.
Мощность резистора можно определить визуально по его размерам. Резисторы большой мощности обладают большим размером, чем маломощные резисторы.
Сопротивление же резистора не влияет на его размер. Резисторы одной мощности с разным сопротивлением имеют одинаковый размер. Поэтому для определения сопротивления резистора используются другие способы.
Способ первый.
Определить сопротивление резистора по схеме. Если у вас есть схема электронного устройства и вы умеете ее читать, вам не составит труда определить на ней искомый резистор, возле которого будет нанесен его номинал.
Способ второй.
При отсутствии схемы электронного устройства сопротивление резистора можно замерить специальным прибором. Для этого у вас должен быть Омметр или Мультиметр.
Вам нужно, с помощью щупов, подсоединить прибор к концам резистора и снять его показания. Мультиметр при этом надо перевести в режим Омметра.
Если прибор стрелочный и стрелка отклоняется незначительно, или наоборот, зашкаливает, надо изменить диапазон измерения на шкале прибора.
Основным недостатком такого способа является то, что встроенный в схему резистор нужно будет выпаять для проведения измерения, иначе результаты замера будут недостоверными.
Способ третий.
Сопротивление резистора достаточно просто определяется по его маркировке. Для этого способа нужна будет хорошая лупа. На каждом резисторе присутствует заводская маркировка его параметров.
На резисторах старого образца она была буквенно-цифровой. Это было не очень удобно, так как часто резисторы впаивались в схему маркировкой вниз, что делало невозможным считывание их номиналов.
Кроме того на резисторах малой мощности маркировка оказывалась настолько мелкой, что без лупы тут не обойтись.
На современных резисторах наносится маркировка в виде разноцветных колец. Каждому кольцу соответствует цифра, или множитель.
Поскольку разные производители в разное время использовали разные системы кодировки (четырех и пятизначные), скажем только, что таблицы перевода комбинаций колец в цифровые значения можно найти в специальной литературе .
Если вы постоянно работаете с электронной аппаратурой, будет разумно распечатать их и всегда иметь под рукой.
Смотрите также:
Итак, чтобы иметь возможность определить сопротивление резистора в любой ситуации, необходимо иметь:
- Прибор для измерения сопротивления — Омметр (Мультиметр)
- Паяльник
- Лупу
- Таблицы кольцевой маркировки резисторов
Также смотрите видео с практическими примерами определения сопротивления резисторов с помощью омметра и цифровой маркировки.
Как по вах определить сопротивление цепи
В линейной электрической цепи сопротивления ее элементов не зависят от величины или направления тока или напряжения. Вольтамперные характеристики линейных элементов (зависимость напряжения на элементе от тока) являются прямыми линиями.
В нелинейной электрической цепи сопротивления ее элементов зависят от величины или направления тока или напряжения.
Нелинейные элементы имеют криволинейные вольтамперные характеристики, симметричные или несимметричные относительно осей координат.
Сопротивления нелинейных элементов с симметричной характеристикой не зависят от направления тока.
Сопротивления нелинейных элементов с несимметричной характеристикой зависят от направления тока. Например, электролампы, термисторы имеют симметричные вольтамперные характеристики (рис. 5.1), а полупроводниковые диоды — несимметричные характеристики (рис. 5.2).
Статическим или интегральным сопротивлением нелинейного элемента называется отношение напряжения на элементе к величине тока. Это сопротивление пропорционально тангенсу угла наклона α между осью тока и прямой, проведенной из начала координат в точку а характеристики (рис. 5.3)
.
Дифференциальное или динамическое сопротивление нелинейного элемента — это величина, равная отношению бесконечно малого приращения напряжения на нелинейном сопротивлении к соответствующему приращению тока.
Это сопротивление пропорционально тангенсу угла наклона β между осью тока и касательной к точке a характеристики (рис. 5.4).
.
При переходе от одной точки вольтамперной характеристики к соседней статическое и динамическое сопротивления нелинейного элемента меняются.
Статическое и динамическое сопротивления линейного элемента одинаковы и не зависят от тока или напряжения.
5.2. Графический метод расчета нелинейных цепей
постоянного тока
Известные аналитические методы непригодны для расчета нелинейных электрических цепей, так как сопротивления нелинейных элементов зависят от направления и значения тока или напряжения. Применяются графоаналитические методы, основанные на применении законов Кирхгофа и использовании заданных вольтамперных характеристик (ВАХ) этих элементов. Рассмотрим электрическую цепь, состоящую из двух последовательно соединенных нелинейных сопротивлений н.с.1 и н.с.2 (рис. 5.5). ВАХ 1 и ВАХ 2 приведены на рис. 5.6.
К цепи подведено напряжение U, и оно равно сумме падений напряжений на н.с.1 и н.с.2:
(5.1)
По всей цепи протекает один и тот же ток I, так как н.с.1 и н.с.2 соединены между собой последовательно. Для определения тока в электрической цепи нужно построить результирующую ВАХ цепи. Для построения этой характеристики следует суммировать абсциссы кривых 1 и 2 (аг = аб + ав), соответствующие одним и те же значениям тока. Далее, задаваясь произвольным значением тока (например, больше I’ и меньше I’ ) можно построить ВАХ всей цепи (рис. 5.6, кривая 3).
При параллельном соединении двух нелинейных элементов (рис. 5.7) ток в неразветвленной части электрической цепи равен сумме токов в параллельных определенных ветвях. Поэтому при построении результирующей ВАХ всей цепи следует суммировать ординаты графиков 1 и 2 (рис. 5.8), соответствующие одним и те же значениям напряжения, так как к этим нелинейным элементам приложено одно и то же напряжение, равное напряжению внешней сети, т.е. источника питания. Например, для произвольного значения напряжения находим ординату аг точки для результирующей кривой 3.
(аг = ав + аб)
Далее задаваясь произвольным значением напряжения больше и меньше U’, можно построить ВАХ всей цепи (кривая 3). Затем, пользуясь ВАХ, можно при любом значении приложенного напряжения U (отрезок ор) найти величину общего тока I (pn = oк). Это напряжение также определяет значения токов I1 и I2 в отдельных ветвях с учетом масштаба тока mI.
В случае смешанного (рис. 5.9) соединения расчет цепи производят в следующем порядке: сначала заменяют два параллельно соединенных нелинейных элемента одним эквивалентным; схема со смешанным соединением приводится к рассмотренной ранее схеме последовательного соединения двух нелинейных элементов.
6. Электрические цепи однофазного
переменного тока
Не нашли то, что искали? Воспользуйтесь поиском:
В линейной электрической цепи сопротивления ее элементов не зависят от величины или направления тока или напряжения. Вольтамперные характеристики линейных элементов (зависимость напряжения на элементе от тока) являются прямыми линиями.
В нелинейной электрической цепи сопротивления ее элементов зависят от величины или направления тока или напряжения.
Нелинейные элементы имеют криволинейные вольтамперные характеристики, симметричные или несимметричные относительно осей координат.
Сопротивления нелинейных элементов с симметричной характеристикой не зависят от направления тока.
Сопротивления нелинейных элементов с несимметричной характеристикой зависят от направления тока. Например, электролампы, термисторы имеют симметричные вольтамперные характеристики (рис. 5.1), а полупроводниковые диоды — несимметричные характеристики (рис. 5.2).
Статическим или интегральным сопротивлением нелинейного элемента называется отношение напряжения на элементе к величине тока. Это сопротивление пропорционально тангенсу угла наклона α между осью тока и прямой, проведенной из начала координат в точку а характеристики (рис. 5.3)
.
Дифференциальное или динамическое сопротивление нелинейного элемента — это величина, равная отношению бесконечно малого приращения напряжения на нелинейном сопротивлении к соответствующему приращению тока.
Это сопротивление пропорционально тангенсу угла наклона β между осью тока и касательной к точке a характеристики (рис. 5.4).
.
При переходе от одной точки вольтамперной характеристики к соседней статическое и динамическое сопротивления нелинейного элемента меняются.
Статическое и динамическое сопротивления линейного элемента одинаковы и не зависят от тока или напряжения.
5.2. Графический метод расчета нелинейных цепей
постоянного тока
Известные аналитические методы непригодны для расчета нелинейных электрических цепей, так как сопротивления нелинейных элементов зависят от направления и значения тока или напряжения. Применяются графоаналитические методы, основанные на применении законов Кирхгофа и использовании заданных вольтамперных характеристик (ВАХ) этих элементов. Рассмотрим электрическую цепь, состоящую из двух последовательно соединенных нелинейных сопротивлений н.с.1 и н.с.2 (рис. 5.5). ВАХ 1 и ВАХ 2 приведены на рис. 5.6.
К цепи подведено напряжение U, и оно равно сумме падений напряжений на н.с.1 и н.с.2:
(5.1)
По всей цепи протекает один и тот же ток I, так как н.с.1 и н.с.2 соединены между собой последовательно. Для определения тока в электрической цепи нужно построить результирующую ВАХ цепи. Для построения этой характеристики следует суммировать абсциссы кривых 1 и 2 (аг = аб + ав), соответствующие одним и те же значениям тока. Далее, задаваясь произвольным значением тока (например, больше I’ и меньше I’ ) можно построить ВАХ всей цепи (рис. 5.6, кривая 3).
При параллельном соединении двух нелинейных элементов (рис. 5.7) ток в неразветвленной части электрической цепи равен сумме токов в параллельных определенных ветвях. Поэтому при построении результирующей ВАХ всей цепи следует суммировать ординаты графиков 1 и 2 (рис. 5.8), соответствующие одним и те же значениям напряжения, так как к этим нелинейным элементам приложено одно и то же напряжение, равное напряжению внешней сети, т.е. источника питания. Например, для произвольного значения напряжения находим ординату аг точки для результирующей кривой 3.
(аг = ав + аб)
Далее задаваясь произвольным значением напряжения больше и меньше U’, можно построить ВАХ всей цепи (кривая 3). Затем, пользуясь ВАХ, можно при любом значении приложенного напряжения U (отрезок ор) найти величину общего тока I (pn = oк). Это напряжение также определяет значения токов I1 и I2 в отдельных ветвях с учетом масштаба тока mI.
В случае смешанного (рис. 5.9) соединения расчет цепи производят в следующем порядке: сначала заменяют два параллельно соединенных нелинейных элемента одним эквивалентным; схема со смешанным соединением приводится к рассмотренной ранее схеме последовательного соединения двух нелинейных элементов.
6. Электрические цепи однофазного
переменного тока
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8832 — | 7545 — или читать все.
78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Те элементы электрической цепи, для которых зависимость тока от напряжения I(U) или напряжения от тока U(I), а также сопротивление R, постоянны, называются линейными элементами электрической цепи. Соответственно и цепь, состоящая из таких элементов, именуется линейной электрической цепью.
Для линейных элементов характерна линейная симметричная вольт-амперная характеристика (ВАХ), выглядящая как прямая линия, проходящая через начало координат под определенным углом к координатным осям. Это свидетельствует о том, что для линейных элементов и для линейных электрических цепей закон Ома строго выполняется.
Кроме того речь может идти не только об элементах, обладающих чисто активными сопротивлениями R, но и о линейных индуктивностях L и емкостях C, где постоянными будут зависимость магнитного потока от тока — Ф(I) и зависимость заряда конденсатора от напряжения между его обкладками — q(U).
Яркий пример линейного элемента — проволочный резистор. Ток через такой резистор в определенном диапазоне рабочих напряжений линейно зависит от величины сопротивления и от приложенного к резистору напряжения.
Если же для элемента электрической цепи зависимость тока от напряжения или напряжения от тока, а также сопротивление R, непостоянны, то есть изменяются в зависимости от тока или от приложенного напряжения, то такие элементы называются нелинейными, и соответственно электрическая цепь, содержащая минимум один нелинейный элемент, окажется нелинейной электрической цепью.
Вольт-амперная характеристика нелинейного элемента уже не является прямой линией на графике, она непрямолинейна и часто несимметрична, как например у полупроводникового диода. Для нелинейных элементов электрической цепи закон Ома не выполняется.
В данном контексте речь может идти не только о лампе накаливания или о полупроводниковом приборе, но и о нелинейных индуктивностях и емкостях, у которых магнитный поток Ф и заряд q нелинейно связаны с током катушки или с напряжением между обкладками конденсатора. Поэтому для них вебер-амперные характеристики и кулон-вольтные характеристики будут нелинейными, они задаются таблицами, графиками или аналитическими функциями.
Пример нелинейного элемента — лампа накаливания. С ростом тока через нить накаливания лампы, ее температура увеличивается и сопротивление возрастает, а значит оно непостоянно, и следовательно данный элемент электрической цепи нелинеен.
Для нелинейных элементов свойственно определенное статическое сопротивление в каждой точке их ВАХ, то есть каждому отношению напряжения к току, в каждой точке на графике, — ставится в соответствие определенное значение сопротивления. Оно может быть посчитано как тангенс угла альфа наклона графика к горизонтальной оси I, как если бы эта точка лежала на линейном графике.
Еще у нелинейных элементов есть так называемое дифференциальное сопротивление, которое выражается как отношение бесконечно малого приращения напряжения — к соответствующему изменению тока. Данное сопротивление можно посчитать как тангенс угла между касательной к ВАХ в данной точке и горизонтальной осью.
Такой подход делает возможным простейший анализ и расчет простых нелинейных цепей.
На рисунке выше показана ВАХ типичного диода. Она располагается в первом и в третьем квадрантах координатной плоскости, это говорит нам о том, что при положительном или отрицательном приложенном к p-n-переходу диода напряжении (в том или ином направлении) будет иметь место прямое либо обратное смещение p-n-перехода диода. С ростом напряжения на диоде в любом из направлений ток сначала слабо увеличивается, а после резко возрастает. По этой причине диод относится к неуправляемым нелинейным двухполюсникам.
На этом рисунке показано семейство типичных ВАХ фотодиода в разных условиях освещенности. Основной режимом работы фотодиода — режим обратного смещения, когда при постоянном световом потоке Ф ток практически неизменен в довольно широком диапазоне рабочих напряжений. В данных условиях модуляция освещающего фотодиод светового потока, приведет к одновременной модуляции тока через фотодиод. Таким образом, фотодиод — это управляемый нелинейный двухполюсник.
Это ВАХ тиристора, здесь видна ее явная зависимость от величины тока управляющего электрода. В первом квадранте — рабочий участок тиристора. В третьем квадранте начало ВАХ — малый ток и большое приложенное напряжение (в запертом состоянии сопротивление тиристора очень велико). В первом квадранте ток велик, падение напряжения мало — тиристор в данный момент открыт.
Момент перехода из закрытого — в открытое состояние наступает тогда, когда на управляющий электрод подан определенный ток. Переключение из открытого состояния — в закрытое происходит при снижении тока через тиристор. Таким образом, тиристор — это управляемый нелинейный трехполюсник (как и транзистор, у которого ток коллектора зависит от тока базы).
Что такое сопротивление | Самое простое объяснение
Что такое сопротивление?
Сопротивление (электрическое сопротивление) – это свойство какого-либо проводника оказывать сопротивление электрическому току, проходящему через него. Вот так все просто!
Давайте проведем аналогию с гидравликой. В нашем случае получается, что проводник электрического тока – это шланг или труба. Теперь давайте подумаем, какой из предметов будет оказывать бОльшее сопротивление потоку воды: садовый шланг или нефтяная труба?
Понятное дело, что садовый шланг, так как его диаметр в разы меньше, чем диаметр нефтяной трубы.
Тогда другой вопрос. Какой шланг будет обладать бОльшим сопротивлением потоку воды с учетом того, что их длины и диаметры равны?
Разумеется, гофрированный. Вода будет “цепляться” за его стенки, что приведет к тому, что они будут мешать потоку воды.
Тогда еще вот такая задачка. Есть два абсолютно одинаковых шланга, но один длиннее, а другой короче. Какой из шлангов будет оказывать бОльшее сопротивление потоку воды?
Думаю тот, который длиннее. Ответ очевиден.
Сопротивление проводника
Так почему бы все эти свойства не применить также к проводнику? Чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен.
Поэтому, окончательная формула будет принимать вид
В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом × мм2 /м. Чтобы перевести в Ом × м, достаточно умножить на 10-6, так как 1 мм2=10-6 м2.
удельное сопротивление веществКак вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником. Ну а самым распространенными и дешевыми проводниками являются медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.
Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс полупроводников.
Что такое сопротивление 1 Ом?
Проводник обладает сопротивлением 1 Ом, если на его концах напряжение составляет 1 Вольт при силе тока, проходящей через него в 1 Ампер.
сопротивление 1 ОмЭто самое простое объяснение, что такое 1 Ом. В электротехнике и электронике сопротивление обозначается буквой R .
Как найти сопротивление в цепи?
Его можно узнать из закона Ома, который связывает силу тока, напряжение и сопротивление. В этом случае, оно рассчитывается по формуле
формула сопротивления через закон Омагде
R – сопротивление, Ом
U – напряжение на концах проводника, Вольты
I – сила тока, текущая через проводник, Амперы
То есть нам достаточно замерить напряжение на концах какого-либо проводника и измерить силу тока, проходящую через него. После применить формулу и рассчитать сопротивление проводника. Давайте для закрепления решим простую задачу.
Задача
Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 Вольт и сила тока, проходящая через него 0,1 Ампер.
Решение
Используем формулу
В электронике и электротехнике используют специальные радиоэлементы, которые обладают сопротивлением электрическому току – резисторы. Более подробно про них можно прочитать в этой статье.
постоянные резисторы
Также вот вам видео, где очень умный преподаватель объясняет, что такое сопротивление
Близкие темы к этой статье
Электрический проводник
Напряжение
Сила тока
Резисторы
Закон Ома
Входное и выходное сопротивление
Как найти сопротивление тока. Сопротивление тока: формула
Одним из физических свойств вещества является способность проводить электрический ток. Электропроводимость (сопротивление проводника) зависит от некоторых факторов: длины электрической цепи, особенностей строения, наличия свободных электронов, температуры, тока, напряжения, материала и площади поперечного сечения.
Протекание электрического тока через проводник приводит к направленному движению свободных электронов. Наличие свободных электронов зависит от самого вещества и берется из таблицы Д. И. Менделеева, а именно из электронной конфигурации элемента. Электроны начинают ударяться о кристаллическую решетку элемента и передают энергию последней. В этом случае возникает тепловой эффект при действии тока на проводник.
При этом взаимодействии они замедляются, но затем под действием электрического поля, которое их ускоряет, начинают двигаться с той же скоростью. Электроны сталкиваются огромное количество раз. Этот процесс и называется сопротивлением проводника.
Следовательно, электрическим сопротивлением проводника считается физическая величина, характеризующая отношение напряжения к силе тока.
Что такое электрическое сопротивление: величина, указывающая на свойство физического тела преобразовывать энергию электрическую в тепловую, благодаря взаимодействию энергии электронов с кристаллической решеткой вещества. По характеру проводимости различаются:
- Проводники (способны проводить электрический ток, так как присутствуют свободные электроны).
- Полупроводники (могут проводить электрический ток, но при определенных условиях).
- Диэлектрики или изоляторы (обладают огромным сопротивлением, отсутствуют свободные электроны, что делает их неспособными проводить ток).
Обозначается эта характеристика буквой R и измеряется в Омах (Ом) . Применение этих групп веществ является очень значимым для разработки электрических принципиальных схем приборов.
Для полного понимания зависимости R от чего-либо нужно обратить особое внимание на расчет этой величины.
Расчет электрической проводимости
Для расчета R проводника применяется закон Ома, который гласит: сила тока (I) прямо пропорциональна напряжению (U) и обратно пропорциональна сопротивлению.
Формула нахождения характеристики проводимости материала R (следствие из закона Ома для участка цепи): R = U / I.
Для полного участка цепи эта формула принимает следующий вид: R = (U / I) — Rвн, где Rвн — внутреннее R источника питания.
Способность проводника к пропусканию электрического тока зависит от многих факторов: напряжения, тока, длины, площади поперечного сечения и материала проводника, а также от температуры окружающей среды.
В электротехнике для произведения расчетов и изготовления резисторов учитывается и геометрическая составляющая проводника.
От чего зависит сопротивление: от длины проводника — l, удельного сопротивления — p и от площади сечения (с радиусом r) — S = Пи * r * r.
Формула R проводника: R = p * l / S.
Из формулы видно, от чего зависит удельное сопротивление проводника: R, l, S. Нет необходимости его таким способом рассчитывать, потому что есть способ намного лучше. Удельное сопротивление можно найти в соответствующих справочниках для каждого типа проводника (p — это физическая величина равная R материала длиною в 1 метр и площадью сечения равной 1 м².
Однако этой формулы мало для точного расчета резистора, поэтому используют зависимость от температуры.
Влияние температуры окружающей среды
Доказано, что каждое вещество обладает удельным сопротивлением, зависящим от температуры.
Для демонстрации это можно произвести следующий опыт. Возьмите спираль из нихрома или любого проводника (обозначена на схеме в виде резистора), источник питания и обычный амперметр (его можно заменить на лампу накаливания). Соберите цепь согласно схеме 1.
Схема 1 — Электрическая цепь для проведения опыта
Необходимо запитать потребитель и внимательно следить за показаниями амперметра. Далее следует нагревать R, не отключая, и показания амперметра начнут падать при росте температуры. Прослеживается зависимость по закону Ома для участка цепи: I = U / R. В данном случае внутренним сопротивлением источника питания можно пренебречь: это не отразится на демонстрации зависимости R от температуры. Отсюда следует, что зависимость R от температуры присутствует.
Физический смысл роста значения R обусловлен влиянием температуры на амплитуду колебаний (увеличение) ионов в кристаллической решетке. В результате этого электроны чаще сталкиваются и это вызывает рост R.
Согласно формуле: R = p * l / S, находим показатель, который зависит от температуры (S и l — не зависят от температуры). Остается p проводника. Исходя из это получается формула зависимости от температуры: (R — Ro) / R = a * t, где Ro при температуре 0 градусов по Цельсию, t — температура окружающей среды и a — коэффициент пропорциональности (температурный коэффициент).
Для металлов «a» всегда больше нуля, а для растворов электролитов температурный коэффициент меньше 0.
Формула нахождения p, применяемая при расчетах: p = (1 + a * t) * po, где ро — удельное значение сопротивления, взятое из справочника для конкретного проводника. В этом случае температурный коэффициент можно считать постоянным. Зависимость мощности (P) от R вытекает из формулы мощности: P = U * I = U * U / R = I * I * R. Удельное значение сопротивления еще зависит и от деформаций материала, при котором нарушается кристаллическая решетка.
При обработке металла в холодной среде при некотором давлении происходит пластическая деформация. При этом кристаллическая решетка искажается и растет R течения электронов. В этом случае удельное сопротивление также увеличивается. Этот процесс является обратимым и называется рекристаллическим отжигом, благодаря которому часть дефектов уменьшается.
При действии на металл сил растяжения и сжатия последний подвергается деформациям, которые называются упругими. Удельное сопротивление уменьшается при сжатии, так как происходит уменьшение амплитуды тепловых колебаний. Направленным заряженным частицам становится легче двигаться . При растяжении удельное сопротивление увеличивается из-за роста амплитуды тепловых колебаний.
Еще одним фактором, влияющим на проводимость, является вид тока, проходящего по проводнику.
Сопротивление в сетях с переменным током ведет себя несколько иначе, ведь закон Ома применим только для схем с постоянным напряжением. Следовательно, расчеты следует производить иначе.
Полное сопротивление обозначается буквой Z и состоит из алгебраической суммы активного, емкостного и индуктивного сопротивлений.
При подключении активного R в цепь переменного тока под воздействием разницы потенциалов начинает течь ток синусоидального вида. В этом случае формула выглядит: Iм = Uм / R, где Iм и Uм — амплитудные значения силы тока и напряжения. Формула сопротивления принимает следующий вид: Iм = Uм / ((1 + a * t) * po * l / 2 * Пи * r * r).
Емкостное сопротивление (Xc) обусловлено наличием в схемах конденсаторов. Необходимо отметить, что через конденсаторы проходит переменный ток и, следовательно, он выступает в роли проводника с емкостью.
Вычисляется Xc следующим образом: Xc = 1 / (w * C), где w — угловая частота и C — емкость конденсатора или группы конденсаторов. Угловая частота определяется следующим образом:
- Измеряется частота переменного тока (как правило, 50 Гц).
- Умножается на 6,283.
Индуктивное сопротивление (Xl) — подразумевает наличие индуктивности в схеме (дроссель, реле, контур, трансформатор и так далее). Рассчитывается следующим образом: Xl = wL, где L — индуктивность и w — угловая частота. Для расчета индуктивности необходимо воспользоваться специализированными онлайн-калькуляторами или справочником по физике. Итак, все величины рассчитаны по формулам и остается всего лишь записать Z: Z * Z = R * R + (Xc — Xl) * (Xc — Xl).
Для определения окончательного значения необходимо извлечь квадратный корень из выражения: R * R + (Xc — Xl) * (Xc — Xl). Из формул следует, что частота переменного тока играет большую роль, например, в схеме одного и того же исполнения при повышении частоты увеличивается и ее Z. Необходимо добавить, что в цепях с переменным напряжением Z зависит от таких показателей:
- Длины проводника.
- Площади сечения — S.
- Температуры.
- Типа материала.
- Емкости.
- Индуктивности.
- Частоты.
Следовательно и закон Ома для участка цепи имеет совершенно другой вид: I = U / Z . Меняется и закон для полной цепи.
Расчеты сопротивлений требуют определенного количества времени, поэтому для измерений их величин применяются специальные электроизмерительные приборы, которые называются омметрами. Измерительный прибор состоит из стрелочного индикатора, к которому последовательно включен источник питания.
Измеряют R все комбинированные приборы , такие как тестеры и мультиметры. Обособленные приборы для измерения только этой характеристики применяются крайне редко (мегаомметр для проверки изоляции силового кабеля).
Прибор применяется для прозвонки электрических цепей на предмет повреждения и исправности радиодеталей, а также для прозвонки изоляции кабелей.
При измерении R необходимо полностью обесточить участок цепи во избежание выхода прибора из строя. Для это необходимо предпринять следующие меры предосторожности:
В дорогих мультиметрах есть функция прозвонки цепи, дублируемая звуковым сигналом, благодаря чему нет необходимости смотреть на табло прибора.
Таким образом, электрическое сопротивление играет важную роль в электротехнике. Оно зависит в постоянных цепях от температуры, силы тока, длины, типа материала и площади поперечного сечения проводника . В цепях переменного тока эта зависимость дополняется такими величинами, как частота, емкость и индуктивность. Благодаря этой зависимости существует возможность изменять характеристики электричества: напряжение и силу тока. Для измерений величины сопротивления применяются омметры, которые используются также и при выявлении неполадок проводки, прозвонки различных цепей и радиодеталей.
Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени. Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций. В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.
Если известна мощность и напряжение
Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:
После несложных мы получаем формулу для вычислений
Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:
Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:
Р1 = Р2/η
Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.
Находим полную мощность с учетом cosФ (он также указывается на шильдике):
S = P1/cosφ
Определяем потребляемый ток по формуле:
Iном = S/(1,73·U)
Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.
Если известно напряжение или мощность и сопротивление
Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь , с его помощью проводим расчёт силы тока через сопротивление и напряжение.
Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:
При этом согласно тому же закону Ома:
P=I 2 *R
Значит расчёт проводим по формуле:
I 2 =P/R
Или возьмем выражение в правой части выражения под корень:
I=(P/R) 1/2
Если известно ЭДС, внутреннее сопротивление и нагрузка
Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:
I=E/(R+r)
Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.
Закон Джоуля-Ленца
Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним .
Его формула выглядит так:
Q=I 2 Rt
Тогда расчет проводите так:
I 2 =QRt
Или внесите правую часть уравнения под корень:
I=(Q/Rt) 1/2
Несколько примеров
В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.
Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.
I=U/R=12/3=4 Ампера
При параллельном соединении двух элементов Rобщее можно рассчитать так:
Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67
Тогда дальнейшие вычисления можно проводить так:
В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.
В своей работе электрик часто сталкивается с вычислением различных величин и преобразований. Так для корректного подбора кабеля приходится подбирать нужное сечение. Логика выбора сечения основана на зависимости сопротивления от длины линии и площади сечения проводника. В этой статье мы рассмотрим, как выполняется расчет сопротивления провода по его геометрическим размерам.
Формула для расчета
Любые вычисления начинаются с формулы. Основной формулой для расчета сопротивления проводника является:
R=(ρ*l)/S
Где R – сопротивление в Омах, ρ – удельное сопротивление, l – длина в м, S – площадь поперечного сечения провода в мм 2 .
Эта формула подходит для расчета сопротивления провода по сечению и длине. Из неё следует, что в зависимости от длины изменяется сопротивление, чем длиннее – тем больше. И от площади сечения – наоборот, чем толще провод (большое сечение), тем меньше сопротивление. Однако непонятной остаётся величина, обозначенная буквой ρ (Ро).
Удельное сопротивление
Удельное сопротивление – это табличная величина, для каждого металла она своя. Она нужна для расчета и зависит от кристаллической решетки металла и структуры атомов.
Из таблицы видно, что самое меньшее сопротивление у серебра, для медного кабеля оно равняется 0,017 Ом*мм 2 /м. Такая размерность говорит нам, сколько приходится Ом при сечении в 1 миллиметр квадратный и длине в 1 метр.
Кстати, серебряное покрытие используется в контактах коммутационных аппаратов, автоматических выключателей, реле и прочего. Это снижает , повышает срок службы и уменьшает . При этом в контактах измерительной и точной аппаратуры используют позолоченные контакты из-за того, что они слабо окисляются или вообще не окисляются.
У алюминия, который часто использовался в электропроводке раньше, сопротивление в 1,8 раза больше чем у меди, равняется 2,82*10 -8 Ом*мм 2 /м. Чем больше сопротивление проводника, тем сильнее он греется. Поэтому при одинаковом сечении алюминиевый кабель может передать меньший ток, чем медный, это и стало основной причиной почему все современные электрики используют . У нихрома, который используется в нагревательных приборах оно в 100 раз больше чем у меди 1,1*10 -6 Ом*мм 2 /м.
Расчет по диаметру
На практике часто бывает так, что площадь поперечного сечения жилы не известна. Без этого значения ничего рассчитать не получится. Чтобы узнать её, нужно измерить диаметр. Если жила тонка, можно взять гвоздь или любой другой стержень, намотать на него 10 витков провода, обычной линейкой измерить длину получившейся спирали и разделить на 10, так вы узнаете диаметр.
Ну, или просто замерить штангенциркулем. Расчет сечения выполняется по формуле:
Обязательны ли расчеты?
Как мы уже сказали, сечение провода выбирают исходя из предполагаемого тока и сопротивления металла, из которого изготовлены жилы. Логика выбора заключается в следующем: сечение подбирают таким способом, чтобы сопротивление при заданной длине не приводило к значительным просадкам напряжения. Чтобы не проводить ряд расчетов, для коротких линий (до 10-20 метров) есть достаточно точные таблицы:
В этой таблице указаны типовые значения сечения медных и алюминиевых жил и номинальные токи через них. Для удобства указана мощность нагрузки, которую выдержит эта линия. Обратите внимание на разницу в токах и мощности при напряжении 380В, естественно, что это предполагается трёхфазная электросеть.
Расчет сопротивления провода сводится к использованию пары формул, при этом вы можете скачать готовые калькуляторы из Плэй Маркета для своего смартфона, например, «Electrodroid» или «Мобильный электрик». Эти знания пригодятся для расчетов нагревательных приборов, кабельных линий, предохранителей и даже популярных на сегодняшний день спиралей для электронных сигарет.
Материалы
Ом экспериментально установил закон, согласно которому сила тока, текущего по однородному (в смысле отсутствия сторонних сил) металлическому проводнику, пропорциональна падению напряжения V на проводнике:
Напомним, что в случае однородного проводника напряжение U совпадает с разностью потенциалов (см. (33.6)).
Обозначенная в формуле (34.1) буквой R величина называется электрическим сопротивлением проводника. Единицей сопротивления служит равный сопротивлению такого проводника, в котором при напряжении в 1 В течет ток силой 1 А.
Величина сопротивления зависит от формы и размеров проводника, а также от свойств материала, из которого он сделан. Для однородного цилиндрического проводника
где l — длина проводника, S — площадь его поперечного сечения, — зависящий от свойств материала коэффициент, называемый удельным электрическим сопротивлением вещества. Если то R численно равно . В СИ измеряется в ом-метрах (Ом-м).
Найдем связь между векторами j и Е в одной и той же точке проводника. В изотропном проводнике упорядоченное движение носителей тока происходит в направлении вектора Е.
Поэтому на правления векторов j и Е совпадают Выделим мысленно в окрестности некоторой точки элементарный цилиндрический объем с образующими, параллельными векторам j и Е (рис. 34.1). Через поперечное сечение цилиндра течет ток силой . Напряжение, приложенное к цилиндру, равно , где Е — напряженность поля в данном месте. Наконец, сопротивление цилиндра, согласно формуле (34.2), равно . Подставив эти значения в формулу (34.1), придем к соотношению
Воспользовавшись тем, что векторы j и Е имеют одинаковое направление, можно написать
Эта формула выражает закон Ома в дифференциальной форме.
Фигурирующая в (34.3) обратная величина называется удельной электрической проводимостью материала. Единица, обратная ому, называется сименсом (См). Соответственно единицей о является сименс на метр (См/м).
Допустим для простоты, что в проводнике имеются носители лишь одного знака. Согласно формуле (31.5) плотность тока в этом случае равна
Сравнение этого выражения с формулой (34.3) приводит к выводу, что скорость упорядоченного движения носителей тока пропорциональна напряженности поля Е, т. е. силе, сообщающей носителям упорядоченное движение. Пропорциональность скорости приложенной к телу силе наблюдается в тех случаях, когда кроме силы, вызвавшей движение, на тело действует сила сопротивления среды. Эта сила вызывается взаимодействием носителей тока с частицами, из которых построено вещество проводника. Наличие силы сопротивления упорядоченному движению носителей тока обусловливает электрическое сопротивление проводника.
Способность вещества проводить электрический ток характеризуется его удельным сопротивлением либо удельной проводимостью .
Их величина определяется химической природой вещества и условиями, в частности температурой, при которых оно находится.
Для большинства металлов при температурах, близких к комнатной, изменяется пропорционально абсолютной температуре Т:
При низких температурах наблюдаются отступления от этой закономерности (рис. 34.2). В большинстве случаев зависимость от Т следует кривой. Величина остаточного сопротивления рост в сильной степени зависит от чистоты материала и наличия остаточных механических напряжений в образце. Поэтому после отжига рост заметно уменьшается. У абсолютно чистого металла с идеально правильной кристаллической решеткой при абсолютном нуле
У большой группы металлов и сплавов при температуре порядка нескольких кельвинов сопротивление скачков обращается в нуль (кривая 2 на рис. 34.2). Впервые это явление, названное сверхпроводимостью, было обнаружено в 1911 г. Камерлинг-Оннесом для ртути. В дальнейшем сверхпроводимость была обнаружена у свинца, олова, цинка, алюминия и других металлов, а также у ряда сплавов. Для каждого сверхпроводника имеется своя критическая температура Т при которой он переходит в сверхпроводящее состояние. При действии на сверхпроводник магнитного поля сверхпроводящее состояние нарушается. Величина критического поля разрушающего сверхпроводимость, равна нулю при и растет с понижением температуры.
Полное теоретическое объяснение сверхпроводимости было дано академиком Н. Н. Боголюбовым и независимо от него Дж. Бардином, Л. Купером и Дж. Шриффером (см. § 56 тома 3).
Зависимость электрического сопротивления от температуры положена в основу термометров сопротивления. Такой термометр представляет собой металлическую (обычно платиновую) проволочку, намотанную на фарфоровый или слюдяной каркас. Проградуированный по постоянным температурным точкам термометр сопротивления позволяет измерять с погрешностью порядка несколько сотых градуса как низкие, так и высокие температуры. В последнее время все большее применение находят термометры сопротивления из полупроводников.
Мы начинаем публикацию материалов новой рубрики “” и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление 😉 Кроме того, мы не обойдем стороной закон, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.
Итак, давайте начнем с понятия напряжения .
Напряжение.
По определению напряжение – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля – это скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:
В пространстве действует постоянное электрическое поле, напряженность которого равна E . Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:
В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:
И в итоге получаем формулу, связывающую напряжение и напряженность:
В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи – это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, “напряжение в резисторе” – не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и “землей” . Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию “земля” 🙂 Так вот “землей” в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).
Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения . Единицей измерения является Вольт (В) . Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт , необходимо совершить работу, равную 1 Джоулю . С этим вроде бы все понятно и можно двигаться дальше 😉
А на очереди у нас еще одно понятие, а именно ток .
Ток, сила тока в цепи.
Что же такое электрический ток ?
Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны…Рассмотрим проводник, к которому приложено определенное напряжение :
Из направления напряженности электрического поля (E ) мы можем сделать вывод о том, что title=»Rendered by QuickLaTeX.com»> (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:
Где e – это заряд электрона.
И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток 🙂
Ток – это упорядоченное движение заряженных частиц под воздействием электрического поля.
Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.
Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E . И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂
Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I ) – это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер . Сила тока в проводнике равна 1 Амперу , если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон .
Мы уже рассмотрели понятия силы тока и напряжения , теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника .
Сопротивление проводника/цепи.
Термин “сопротивление ” уже говорит сам за себя 😉
Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться ) прохождению электрического тока.
Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S :
Сопротивление проводника зависит от нескольких факторов:
Удельное сопротивление – это табличная величина.
Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:
Для нашего случая будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м , а площадь поперечного сечения равна 0.2 кв. мм . Тогда:
Как вы уже поняли из примера, единицей измерения сопротивления является Ом 😉
С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи .
И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:
Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.
Рассмотрим простейшую электрическую цепь:
Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:
Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:
Как видите, все несложно 🙂
Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч! 🙂
Вконтакте
Одноклассники
Google+
Расчет сопротивления — Закон Ома — Ток, напряжение и сопротивление — GCSE Physics (Single Science) Revision — Другое
Сопротивление электрического компонента можно определить путем измерения электрического тока, протекающего через него, и разности потенциалов на нем.
Это уравнение, называемое законом Ома , показывает взаимосвязь между разностью потенциалов, током и сопротивлением:
напряжение = ток × сопротивление
В = I × R
где:
В — разность потенциалов в вольт, В
I — ток в амперах (амперах), A
R — сопротивление в омах, Ом
Уравнение можно переставить, чтобы найти сопротивление:
R = V ÷ I
- Вопрос
Через лампу на 240 В проходит 3 А.Какое сопротивление лампы?
- Выявить ответ
Сопротивление = 240 ÷ 3 = 80 Ом
Для расчета сопротивления электрического компонента используется амперметр для измерения тока и вольтметр для измерения потенциала разница. Затем сопротивление можно рассчитать по закону Ома.
Учебное пособие по физике: электрическое сопротивление
Электрон, движущийся по проводам и нагрузкам внешней цепи, встречает сопротивление. Сопротивление — это помеха прохождению заряда. Для электрона путешествие от терминала к терминалу не является прямым маршрутом. Скорее, это зигзагообразный путь, который возникает в результате бесчисленных столкновений с неподвижными атомами в проводящем материале. Электроны сталкиваются с сопротивлением — препятствием для их движения. В то время как разность электрических потенциалов, установленная между двумя выводами , способствует перемещению заряда , а препятствует перемещению заряда .Скорость, с которой заряд проходит от терминала к терминалу, является результатом совместного действия этих двух величин.
Переменные, влияющие на электрическое сопротивлениеПоток заряда по проводам часто сравнивают с потоком воды по трубам. Сопротивление потоку заряда в электрической цепи аналогично эффектам трения между водой и поверхностями трубы, а также сопротивлению, создаваемому препятствиями на пути.Именно это сопротивление препятствует потоку воды и снижает как скорость потока, так и скорость дрейфа . Подобно сопротивлению потоку воды, общее сопротивление потоку заряда в проводе электрической цепи зависит от некоторых четко идентифицируемых переменных.
Во-первых, общая длина проводов влияет на величину сопротивления. Чем длиннее провод, тем большее сопротивление будет. Существует прямая зависимость между величиной сопротивления, с которым сталкивается заряд, и длиной провода, который он должен пройти.В конце концов, если сопротивление возникает в результате столкновений между носителями заряда и атомами провода, то, вероятно, столкновений будет больше в более длинном проводе. Больше столкновений означает большее сопротивление.
Во-вторых, на величину сопротивления влияет площадь поперечного сечения проводов. Более широкие провода имеют большую площадь поперечного сечения. Вода будет течь по более широкой трубе с большей скоростью, чем по узкой. Это можно объяснить меньшим сопротивлением, которое присутствует в более широкой трубе.Таким же образом, чем шире провод, тем меньше будет сопротивление прохождению электрического заряда. Когда все другие переменные одинаковы, заряд будет течь с большей скоростью через более широкие провода с большей площадью поперечного сечения, чем через более тонкие провода.
Третья переменная, которая, как известно, влияет на сопротивление потоку заряда, — это материал, из которого сделан провод. Не все материалы одинаковы с точки зрения их проводящей способности. Некоторые материалы являются лучшими проводниками, чем другие, и обладают меньшим сопротивлением потоку заряда.Серебро — один из лучших проводников, но никогда не используется в проводах бытовых цепей из-за своей стоимости. Медь и алюминий являются одними из наименее дорогих материалов с подходящей проводящей способностью, позволяющей использовать их в проводах бытовых цепей. На проводящую способность материала часто указывает его удельное сопротивление . Удельное сопротивление материала зависит от электронной структуры материала и его температуры. Для большинства (но не для всех) материалов удельное сопротивление увеличивается с повышением температуры.В таблице ниже приведены значения удельного сопротивления для различных материалов при температуре 20 градусов Цельсия.
Материал | Удельное сопротивление (Ом • метр) |
Серебро | 1,59 х 10 -8 |
Медь | 1.7 х 10 -8 |
Золото | 2,2 х 10 -8 |
Алюминий | 2,8 х 10 -8 |
Вольфрам | 5,6 х 10 -8 |
Утюг | 10 х 10 -8 |
Платина | 11 х 10 -8 |
Свинец | 22 х 10 -8 |
Нихром | 150 х 10 -8 |
Углерод | 3.5 х 10 -5 |
Полистирол | 10 7 — 10 11 |
Полиэтилен | 10 8 — 10 9 |
Стекло | 10 10 — 10 14 |
Твердая резина | 10 13 |
Как видно из таблицы, существует широкий диапазон значений удельного сопротивления для различных материалов.Материалы с более низким сопротивлением обладают меньшим сопротивлением потоку заряда; они лучшие дирижеры. Материалы, показанные в последних четырех строках вышеприведенной таблицы, обладают таким высоким удельным сопротивлением, что их даже нельзя рассматривать как проводники.
Посмотри! Используйте виджет Resistivity of a Material , чтобы найти удельное сопротивление данного материала. Введите название материала и нажмите кнопку Submit , чтобы узнать его удельное сопротивление. Математическая природа сопротивленияСопротивление — это числовая величина, которую можно измерить и выразить математически. Стандартной метрической единицей измерения сопротивления является ом, представленный греческой буквой омега -. Электрическое устройство с сопротивлением 5 Ом будет представлено как R = 5 . Уравнение, представляющее зависимость сопротивления ( R ) проводника цилиндрической формы (например,, провод) от влияющих на него переменных равно
, где L представляет длину провода (в метрах), A представляет площадь поперечного сечения провода (в метрах 2 ) и представляет удельное сопротивление материала (в Ом • метр). В соответствии с вышеизложенным, это уравнение показывает, что сопротивление провода прямо пропорционально длине провода и обратно пропорционально площади поперечного сечения провода.Как показано в уравнении, знание длины, площади поперечного сечения и материала, из которого изготовлен провод (и, следовательно, его удельного сопротивления), позволяет определить сопротивление провода.
Расследовать! Резисторы — один из наиболее распространенных компонентов электрических цепей. На большинстве резисторов нанесены цветные полосы или полосы. Цвета отображают информацию о значении сопротивления.Возможно, вы работаете в лаборатории и вам нужно знать сопротивление резистора, используемого в лаборатории. Используйте виджет ниже, чтобы определить значение сопротивления по цветным полосам.
1. В бытовых цепях часто используются провода двух разной ширины: 12-го и 14-го калибра. Проволока 12-го калибра имеет диаметр 1/12 дюйма, а проволока 14-го калибра — 1/14 дюйма.Таким образом, провод 12-го калибра имеет более широкое сечение, чем провод 14-го калибра. Цепь на 20 А, используемая для настенных розеток, должна быть подключена с использованием провода 12 калибра, а цепь на 15 А, используемая для цепей освещения и вентиляторов, должна быть подключена с помощью провода 14 калибра. Объясните физику, лежащую в основе такого электрического кода.
2. Основываясь на информации, изложенной в вопросе выше, объясните риск, связанный с использованием провода 14-го калибра в цепи, которая будет использоваться для питания 16-амперной пилы.
3. Определите сопротивление медного провода 12 калибра длиной 1 милю. Дано: 1 миля = 1609 метров и диаметр = 0,2117 см.
4. Два провода — A и B — круглого сечения имеют одинаковую длину и изготовлены из одного материала. Тем не менее, сопротивление провода A в четыре раза больше, чем у провода B.Во сколько раз диаметр проволоки B больше диаметра проволоки A?
Калькулятор параллельного сопротивления— Инструменты для электротехники и электроники
Как рассчитать полное сопротивление резисторов, включенных параллельно
Расчет эквивалентного сопротивления (R EQ ) параллельно включенных резисторов вручную может быть утомительным.Этот инструмент был разработан, чтобы помочь вам быстро рассчитать эквивалентное сопротивление, независимо от того, подключены ли у вас два или десять резисторов параллельно. Чтобы использовать его, просто укажите количество параллельных резисторов и значение сопротивления для каждого из них.
Вы можете легко вычислить эквивалентное сопротивление, если у вас есть два идентичных резистора, подключенных параллельно: это половина отдельного сопротивления. Это удобно, когда вам нужно определенное значение сопротивления, а подходящей детали нет в наличии. Например, если вы знаете, что вам нужно около 500 Ом, чтобы получить желаемую яркость светодиодной цепи, вы можете использовать два резистора 1 кОм параллельно.
Имейте в виду, что ток через отдельный резистор не изменяется, когда вы добавляете резисторы параллельно, потому что добавление резисторов параллельно не влияет на напряжение на выводах резисторов. Изменяется общий ток, подаваемый источником питания, а не ток через один конкретный резистор.
Уравнения
$$ \ frac {1} {R_ {EQ}} = \ frac {1} {R_ {1}} + \ frac {1} {R_ {2}} + \ frac {1} {R_ {3}} + … + \ frac {1} {R_ {N}} $$
Когда у вас есть только два параллельно подключенных резистора: $$ R_ {EQ} = \ frac {R_1 \ times R_2} {R_1 + R_2} $$
Приложения
Последовательные резисторы эквивалентны одному резистору, сопротивление которого является суммой каждого отдельного резистора.С другой стороны, параллельное соединение резисторов дает эквивалентное сопротивление, которое всегда ниже, чем у каждого отдельного резистора. Если подумать, это имеет смысл: если вы подаете напряжение на резистор, протекает определенное количество тока. Если вы добавите еще один резистор параллельно первому, вы, по сути, откроете новый канал, по которому может течь больше тока. Независимо от того, насколько велик второй резистор, общий ток, протекающий от источника питания, будет, по крайней мере, немного выше, чем ток через единственный резистор.А если общий ток выше, общее сопротивление должно быть ниже.
Дополнительная литература
Удельное сопротивление | Физика проводников и изоляторов
Расчет сопротивления проводов
Номинальная допустимая нагрузка проводника — это грубая оценка сопротивления, основанная на потенциальной опасности возникновения пожара по току. Однако мы можем столкнуться с ситуациями, когда падение напряжения, вызванное сопротивлением проводов в цепи, вызывает другие проблемы, кроме предотвращения возгорания.Например, мы можем проектировать схему, в которой напряжение на компоненте является критическим и не должно опускаться ниже определенного предела. В этом случае падение напряжения из-за сопротивления провода может вызвать техническую проблему, хотя оно находится в безопасных (пожарных) пределах допустимой нагрузки:
Если нагрузка в приведенной выше схеме не выдерживает напряжения ниже 220 В при напряжении источника 230 В, тогда нам лучше убедиться, что проводка не упадет более чем на 10 вольт по пути.Если подсчитать как питающие, так и обратные проводники этой цепи, это оставляет максимально допустимое падение в 5 вольт по длине каждого провода. Используя закон Ома (R = E / I), мы можем определить максимально допустимое сопротивление для каждого отрезка провода:
Мы знаем, что длина каждого куска провода составляет 2300 футов, но как определить величину сопротивления для определенного размера и длины провода? Для этого нам понадобится другая формула:
Эта формула связывает сопротивление проводника с его удельным сопротивлением (греческая буква «ро» (ρ), которая похожа на строчную букву «p»), его длиной («l») и поперечным сечением. площадь сечения («А»).Обратите внимание, что с переменной длины в верхней части дроби значение сопротивления увеличивается по мере увеличения длины (аналогия: труднее протолкнуть жидкость через длинную трубу, чем через короткую) и уменьшается по мере увеличения площади поперечного сечения ( аналогия: жидкость легче течет по толстой трубе, чем по тонкой). Удельное сопротивление является константой для типа рассчитываемого материала проводника.
Удельное сопротивление нескольких проводящих материалов можно найти в следующей таблице.Внизу таблицы мы находим медь, уступающую только серебру по низкому удельному сопротивлению (хорошей проводимости):
Удельное сопротивление при 20 градусах Цельсия
Материал | Элемент / Сплав | (Ом-смил / фут) | (мкОм-см) |
---|---|---|---|
нихром | Сплав | 675 | 112,2 |
Нихром V | Сплав | 650 | 108,1 |
Манганин | Сплав | 290 | 48.21 |
Константан | Сплав | 272,97 | 45,38 |
Сталь * | Сплав | 100 | 16,62 |
Платина | Элемент | 63,16 | 10,5 |
Утюг | Элемент | 57,81 | 9,61 |
Никель | Элемент | 41,69 | 6,93 |
цинк | Элемент | 35.49 | 5,90 |
Молибден | Элемент | 32,12 | 5,34 |
Вольфрам | Элемент | 31,76 | 5,28 |
Алюминий | Элемент | 15,94 | 2,650 |
Золото | Элемент | 13,32 | 2,214 |
Медь | Элемент | 10,09 | 1.678 |
Серебро | Элемент | 9,546 | 1,587 |
* = Стальной сплав с содержанием железа 99,5%, углерода 0,5%
Обратите внимание, что значения удельного сопротивления в приведенной выше таблице даны в очень странной единице «Ом-см-мил / фут» (Ом-см-мил / фут). Эта единица указывает, какие единицы мы должны использовать в формуле сопротивления ( R = ρl / A). В этом случае эти значения удельного сопротивления предназначены для использования, когда длина измеряется в футах, а площадь поперечного сечения измеряется в круглых милах.
Метрической единицей измерения удельного сопротивления является ом-метр (Ом-м) или ом-сантиметр (Ом-см), с 1,66243 x 10 -9 Ом-метра на Ом-см-мил / фут (1,66243 x 10 -7 Ом-см на Ом-см-дюйм). В столбце таблицы Ом-см цифры фактически масштабированы в мкОм-см из-за их очень малых величин. Например, железо указано как 9,61 мкОм-см, что может быть представлено как 9,61 x 10 -6 Ом-см.
При использовании единицы измерения удельного сопротивления Ом-метр в формуле R = ρl / A длина должна быть в метрах, а площадь — в квадратных метрах.При использовании единицы Ω-сантиметр (Ω-см) в той же формуле длина должна быть в сантиметрах, а площадь — в квадратных сантиметрах.
Все эти единицы измерения удельного сопротивления действительны для любого материала (Ом-см / фут, Ом-м или Ом-см). Однако можно предпочесть использовать Ом-см-мил / фут при работе с круглым проводом, площадь поперечного сечения которого уже известна в круглых милах. И наоборот, при работе с шиной нестандартной формы или изготовленной по индивидуальному заказу шиной, вырезанной из металлической заготовки, где известны только линейные размеры длины, ширины и высоты, более подходящими могут быть единицы измерения удельного сопротивления Ом-метр или Ом-см.
Решение
Возвращаясь к нашей примерной схеме, мы искали провод с сопротивлением 0,2 Ом или меньше на длине 2300 футов. Предполагая, что мы собираемся использовать медный провод (самый распространенный тип производимого электрического провода), мы можем настроить нашу формулу следующим образом:
Алгебраически решая относительно A, мы получаем значение 116 035 круговых милов. Ссылаясь на нашу таблицу размеров сплошных проводов, мы обнаруживаем, что проволока «двойной длины» (2/0) с длиной 133 100 см является достаточной, в то время как следующий меньший размер, «одинарная проводка» (1/0) с длиной 105 500 см слишком мала. .Имейте в виду, что ток в нашей цепи составляет скромные 25 ампер. Согласно нашей таблице допустимой токовой нагрузки для медных проводов на открытом воздухе, достаточно было бы провода калибра 14 (если речь идет о , а не о , вызывающем возгорание). Однако с точки зрения падения напряжения провод 14-го калибра был бы совершенно неприемлемым.
Ради интереса, давайте посмотрим, как провод 14 калибра повлияет на характеристики нашей силовой цепи. Глядя на нашу таблицу размеров проводов, мы обнаруживаем, что проволока калибра 14 имеет площадь поперечного сечения 4 107 круглых милов.Если мы по-прежнему используем медь в качестве материала для проволоки (хороший выбор, если только мы не на действительно богаты на и не можем позволить себе 4600 футов серебряной проволоки 14-го калибра!), То наше удельное сопротивление все равно будет 10,09 Ом-см / фут. :
Помните, что это 5,651 Ом на 2300 футов медного провода калибра 14, и что у нас есть два участка по 2300 футов во всей цепи, поэтому каждый участок провода в цепи имеет сопротивление 5,651 Ом:
Общее сопротивление проводов нашей схемы равно 2 умноженным на 5.651 или 11,301 Ом. К сожалению, это сопротивление , что на слишком много, чтобы обеспечить ток в 25 ампер при напряжении источника 230 вольт. Даже если бы сопротивление нагрузки было 0 Ом, сопротивление нашей проводки 11,301 Ом ограничило бы ток цепи до 20,352 ампер! Как видите, «небольшое» сопротивление провода может иметь большое значение в характеристиках схемы, особенно в силовых цепях, где токи намного выше, чем обычно встречаются в электронных схемах.
Давайте рассмотрим пример проблемы сопротивления для отрезка сборной шины, изготовленной по индивидуальному заказу.Предположим, у нас есть кусок сплошного алюминиевого стержня шириной 4 см, высотой 3 см и длиной 125 см, и мы хотим рассчитать сквозное сопротивление по длине (125 см). Во-первых, нам нужно определить площадь поперечного сечения стержня:
Нам также необходимо знать удельное сопротивление алюминия в единицах измерения, соответствующих данному применению (Ом-см). Из нашей таблицы удельных сопротивлений мы видим, что это 2,65 x 10 -6 Ом-см. Установив нашу формулу R = ρl / A, мы имеем:
Как видите, из-за большой толщины шины имеет очень низкое сопротивление по сравнению со стандартными сечениями проводов, даже при использовании материала с большим удельным сопротивлением.
Процедура определения сопротивления шины принципиально не отличается от определения сопротивления круглого провода. Нам просто нужно убедиться, что площадь поперечного сечения рассчитана правильно и что все единицы соответствуют друг другу, как должны.
ОБЗОР:
- Сопротивление проводника увеличивается с увеличением длины и уменьшается с увеличением площади поперечного сечения, при прочих равных условиях.
- Удельное сопротивление («ρ») — это свойство любого проводящего материала, показатель, используемый для определения сквозного сопротивления проводника данной длины и площади в этой формуле: R = ρl / A
- Удельное сопротивление материалов указывается в единицах Ом-смил / фут или Ом-метр (метрическая система).Коэффициент преобразования между этими двумя единицами составляет 1,66243 x 10 -9 Ом-метров на Ом-см-дюйм / фут или 1,66243 x 10 -7 Ом-см на Ом-см-дюйм / фут.
- Если падение напряжения в цепи критично, необходимо произвести точный расчет сопротивления проводов до выбора сечения проводов.
СВЯЗАННЫЕ ТАБЛИЦЫ:
Что такое сопротивление? | Fluke
Сопротивление — это мера сопротивления току в электрической цепи.
Сопротивление измеряется в омах и обозначается греческой буквой омега (Ом).Ом назван в честь Георга Симона Ома (1784-1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением. Ему приписывают формулировку закона Ома.
Все материалы в некоторой степени сопротивляются току. Они попадают в одну из двух широких категорий:
- Проводники: Материалы с очень низким сопротивлением, в которых электроны могут легко перемещаться. Примеры: серебро, медь, золото и алюминий.
- Изоляторы: Материалы, обладающие высоким сопротивлением и ограничивающие поток электронов.Примеры: резина, бумага, стекло, дерево и пластик.
Измерения сопротивления обычно проводятся для определения состояния компонента или цепи.
- Чем выше сопротивление, тем меньше ток. Если он слишком высокий, одной из возможных причин (среди многих) может быть повреждение проводов из-за горения или коррозии. Все проводники выделяют определенное количество тепла, поэтому перегрев часто связан с сопротивлением.
- Чем меньше сопротивление, тем выше ток. Возможные причины: повреждение изоляторов из-за влаги или перегрева.
Многие компоненты, такие как нагревательные элементы и резисторы, имеют фиксированное значение сопротивления. Эти значения часто печатаются на паспортных табличках компонентов или в руководствах для справки.
Когда указывается допуск, измеренное значение сопротивления должно находиться в пределах указанного диапазона сопротивления. Любое значительное изменение значения фиксированного сопротивления обычно указывает на проблему.
«Сопротивление» может звучать отрицательно, но в электричестве его можно использовать с пользой.
Примеры: Ток должен с трудом проходить через маленькие катушки тостера, достаточный для выработки тепла, которое подрумянивает хлеб. Лампы накаливания старого образца заставляют ток течь через такие тонкие нити, что возникает свет.
Невозможно измерить сопротивление в рабочей цепи. Соответственно, специалисты по поиску и устранению неисправностей часто определяют сопротивление, измеряя напряжение и ток и применяя закон Ома:
E = I x R
То есть, вольт = амперы x Ом.R в этой формуле означает сопротивление. Если сопротивление неизвестно, формулу можно преобразовать в R = E / I (Ом = вольт, деленный на амперы).
Примеры: В цепи электрического нагревателя, как показано на двух рисунках ниже, сопротивление определяется путем измерения напряжения и тока цепи с последующим применением закона Ома.
Пример нормального сопротивления цепи Пример повышенного сопротивления цепиВ первом примере полное нормальное сопротивление цепи, известное опорное значение, составляет 60 Ом (240 ÷ 4 = 60 Ом).Сопротивление 60 Ом может помочь определить состояние цепи.
Во втором примере, если ток в цепи составляет 3 А вместо 4, сопротивление цепи увеличилось с 60 Ом до 80 Ом (240 ÷ 3 = 80 Ом). Увеличение общего сопротивления на 20 Ом может быть вызвано неплотным или грязным соединением или обрывом катушки. Секции с разомкнутой катушкой увеличивают общее сопротивление цепи, что снижает ток.
Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.
Сопротивление резистора | Основы резистора
Сопротивление резистора
Назначение резистора — противодействовать прохождению через него электрического тока. Это называется электрическим сопротивлением и измеряется в омах. Сопротивление можно рассчитать по закону Ома, когда известен ток и измерено падение напряжения:
Сопротивление резистора зависит от его материала и формы. Некоторые материалы имеют более высокое удельное сопротивление, что приводит к более высокому значению сопротивления.Значение часто печатается на резисторе с номером или в виде цветового кода.
Что такое сопротивление?
Понятия тока, напряжения и сопротивления можно объяснить с помощью гидравлической аналогии. Поток воды по трубе ограничен сужением. Это вызывает падение давления после сужения. Течение воды эквивалентно электрическому току. Падение давления равно падению напряжения. Перетяжка эквивалентна резистору и имеет определенное сопротивление.Сопротивление пропорционально падению напряжения или давления для данного тока.
В гидравлическом примере сопротивление может быть увеличено, например, за счет уменьшения диаметра сужения. Для резистора или провода сопротивление обычно зависит от материала и геометрической формы. Влияние геометрической формы легко объяснить на примере гидравлики. Длинная и узкая трубка будет иметь более высокое сопротивление, чем короткая и широкая трубка.
Сопротивление резистора прямоугольного сечения площадью сечения А и длиной L.Сопротивление материала называется удельным сопротивлением. Электрическое сопротивление резистора пропорционально удельному сопротивлению материала. Для резистора прямоугольного сечения сопротивление R определяется по формуле:
, где ρ — удельное сопротивление материала резистора (Ом · м), l — длина резистора вдоль направления тока (м), а A — площадь поперечного сечения, перпендикулярного току. (м 2 ).Удельное сопротивление — это свойство материалов. Для многих материалов удельное сопротивление постоянно, а V и I прямо пропорциональны друг другу. Материалы, отвечающие этой характеристике, называются омическими материалами. Хорошие материалы для резисторов имеют удельное сопротивление от 2 · 10 -8 до 200 · 10 -8 Ом · м.
Последовательное сопротивление
Эквивалентное сопротивление резисторов, включенных последовательно, равно сумме каждого резистора:
Ток через все последовательно включенные резисторы одинаков, а напряжение — нет.Для более подробного объяснения и практических примеров, обратитесь к статье резисторов в серии. Иногда желаемое значение недоступно со стандартными предпочтительными значениями. Вместо этого, чтобы создать желаемое значение сопротивления, два резистора можно соединить последовательно или параллельно.
Сопротивление параллельно
Эквивалентное сопротивление параллельно включенных резисторов можно рассчитать по следующей формуле:
Напряжение на каждом резисторе, включенном параллельно, равно, а ток — нет.Для более подробного объяснения и практических примеров обратитесь к статье резисторов параллельно.
Как найти сопротивление резистора
Сопротивление резистора либо напечатано на корпусе резистора, либо обозначено цветовым кодом. Комбинация цветов указывала номинал и допуск резистора. Чтобы получить калькулятор или полное объяснение, обратитесь к разделу кода резистора.
Сопротивление резистора— стенограмма видео и урока
Расчет сопротивления
Поскольку сопротивление резистора зависит от материала, из которого он сделан, это учитывается в формуле для расчета сопротивления, которая математически может быть прочитана как:
В этом уравнении R обозначает сопротивление.Греческая буква ρ, похожая на букву p , обозначает удельное сопротивление материала, из которого изготовлен резистор. L обозначает длину резистора. А A обозначает площадь поперечного сечения резистора. Сопротивление измеряется в Ом.
Возможно использование двух резисторов одинакового размера из разных материалов с разным сопротивлением. Но не думайте, что сопротивление есть только у резисторов. Провода, которые сами проводят электричество, также имеют определенное сопротивление.Все, что проводит электричество, имеет определенное сопротивление. Провода обычно имеют гораздо меньшее сопротивление, чем резистор, предназначенный для защиты от электричества. Вы можете иметь сопротивление от нескольких Ом до миллионов Ом.
Вот пример расчета сопротивления углеродного резистора длиной 0,005 метра (5 миллиметров) и диаметром 0,001 метра (1 миллиметр). Этот конкретный углеродный резистор имеет удельное сопротивление 45 x 10-5 Ом-метр.Таким образом, мы умножаем это удельное сопротивление на 0,005 метра и делим его на π, умноженный на 0,0005 метра в квадрате.
Как мы видим, этот угольный резистор имеет сопротивление примерно 2,86 Ом. Обратите внимание, что символ ома — большая греческая буква омега (Ω).
Закон Ома
Все цепи, проводящие электричество, подчиняются так называемому закону Ома. Этот закон говорит вам, как ваше напряжение и ток связаны с вашим сопротивлением.
R обозначает сопротивление, V обозначает напряжение, а I обозначает ток. Единицами измерения являются омы для сопротивления, вольт для напряжения и амперы для тока. Эта формула говорит вам, что ваше сопротивление всегда равно напряжению, деленному на ток. Вы также можете сказать, что ваше напряжение равно вашему току, умноженному на ваше сопротивление, или В = IR в форме уравнения, где R = В / I .
Итак, если ваш резистор в вашей цепи имеет сопротивление 100 Ом, а ток, протекающий по цепи, составляет 0,5 А, тогда напряжение вашей цепи рассчитывается следующим образом:
Напряжение в вашей цепи составляет 50 В.
Расположение резисторов
Способ размещения резисторов также может по-разному изменить значение сопротивления.
Если ваши резисторы расположены последовательно, так что они соединены друг с другом, как в ожерелье, то полное или эквивалентное сопротивление является суммой значений ваших резисторов.Ток, протекающий через каждый резистор, будет одинаковым, но напряжение, протекающее через каждый резистор, разное.
Например, у вас есть резисторы на 200, 50 и 25 Ом, включенные последовательно. Общее сопротивление вашей цепи составляет 200 + 50 + 25 = 275 Ом.
Если ваши резисторы размещены параллельно, то есть каждый резистор подключен к одному источнику напряжения, то эквивалентное сопротивление находится по следующей формуле:
Напряжение для каждого резистора будет одинаковым, но ток, протекающий через каждый резистор, будет разным.
Например, у вас есть те же резисторы на 200, 50 и 25 Ом, подключенные параллельно. Общее сопротивление можно найти следующим образом:
1/200 + 1/50 + 1/25 = 1/200 + 4/200 + 8/200 = 13/200 = 1 / 15,38
Обратите внимание, как последний шаг делит числитель и знаменатель на числитель. Это дает вам единицу по общему сопротивлению. Как только вы это сделаете, ваше полное сопротивление окажется 15,38 Ом.
Итоги урока
Хорошо, давайте рассмотрим.Резистор — это кусок материала, препятствующий прохождению электрического тока. Сопротивление резистора рассчитывается по следующей формуле:
Как мы узнали, в случае этой формулы R означает сопротивление. Греческая буква ρ, похожая на букву p , обозначает удельное сопротивление материала, из которого изготовлен резистор. L обозначает длину резистора. И, наконец, A обозначает площадь поперечного сечения резистора.Сопротивление измеряется в омах, а ваша длина и площадь — в метрах.
Все цепи следуют закону Ома, который говорит вам, что напряжение в цепи равно току, умноженному на сопротивление, или В = IR в форме уравнения, где R = В / I .