Закрыть

Основные параметры варистора: принцип работы, типы и применение

Содержание

варисторы параметры

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ ВАРИСТОРОВ

Варистор[англ. varistor, от vari (able) — переменный и (resi) stor — резистор], полупроводниковый резистор, отличительной особенностью которых является резко выраженная зависимость электрического сопротивления(проводимости) от приложенного к ним напряжения. Сопротивлене иизменяется нелинейно и одинаково под действием как положительного, так и отрицательного напряжения. Варисторы используются для стабилизации и защиты от перенапряжения, преобразования частоты и напряжения, а также для регулирования усиления в системах автоматики, различных измерительных устройствах, источниках вторичного питания, в телевизионных приемниках для подстройки частоты гетеродинов, в генераторах переменного и импульсного пилообразного напряжения, в схемах размагничивания цветных кинескопов и др.

  • Номинальное напряжение, (Nominal Varistor Voltage), Vn — условный параметр, напряжение на варисторе,
    при котором через него течет некий ток, называемый классификационным.
    Для варисторов, применяемых в радиоэлектронике, классификационный ток обычно принимается равным 1 mA.
    Иногда этот параметр называют классификационным напряжением Uкл. Классификационное напряжение не является рабочим эксплуатационным напряжением варистора. Рабочее напряжение выбирается исходя из допустимой мощности рассеяния и предельного значения амплитуды напряжения.
  • Максимальное непрерывное напряжение длительно подаваемое на варистор при температуре 25°С. Рабочее напряжение (Operating Voltage), В (Vdc - для постоянного тока и Vrms — для переменного) — данное напряжение должно быть превышено только при перенапряжениях.
  • Максимальное напряжение (Maximum Operating Voltage), Vm - напряжение, которое может
    быть приложено к варистору на неопределенно длительное время.
    Указывается среднеквадратическое значение.
  • Максимальное напряжение отсечки (Maximum Clamping Voltage), Vc - максимальное напряжение,
    измеренное на клеммах варистора при воздействии испытательного импульса 8/20 мкс
    стандарта ITU 1Vc-Per IEC 61000-4-2 Level 4, .
  • Рабочий ток (Operating Current), А — диапазон — от 0,1 мА до 1 А
  • Максимальный импульсный ток, (Peak Current или Peak Surge Current) ITM - максимальный импульсный ток,
    не вызывающий повреждения варистора. Измеряется при помощи импульса 8/20 мкс.
  • Максимальная энергия импульса (Max. Energy Capability), WTM - максимальное количество
    энергии, поглощаемое варистором без деградации параметров, выражается в джоулях (Ватт-секундах)
    и может быть выражена следующим образом:
    WTM=VCIT где T время действия импульса.
  • Собственная емкость в неактивном режиме CV - Емкость между выводами варистора,
    измеряется на частоте 1 КГц или 1МГц. Емкостной фактор существенен только в отсутствии тока, проходящего через варистор, т.к. с увеличением приложенного напряжения емкость варистора падает (по нелинейному закону). При максимально допустимом падении напряжения на варисторе, его емкость близка к нулю.
  • Быстродействие (Response Time)
    - время перехода из непроводящего состояния в проводящее.
  • Поглощаемая энергия (Absorption energy), Дж
  • Коэффициент нелинейности — отношение статического сопротивления в данной точке вольтамперной характеристики к динамическому сопротивлению в той же точке.
  • Температурные коэффициенты (статич. сопротивления, напряжения, тока) — для всех типов варисторов не превышают 0,1% на градус

Варисторы маркировка и параметры - Мастер Фломастер

Среди радиолюбителей большой популярностью пользуются варисторы. Они применяются практически во всех электронных устройствах и позволяют усовершенствовать некоторые приборы. Для использования в схемах следует понять принцип работы варистора, а также знать его основные характеристики. Кроме того он, как и любая деталь, обладает своими достоинствами и недостатками, которые нужно учитывать при построении и расчете электрических схем.

Общие сведения

Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.

Рисунок 1 — УГО варистора.

Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.

Виды и принцип работы

Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:

  1. Высоковольтные с рабочим напряжением до 20 кВ.
  2. Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.

Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.

В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.

Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации.

Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.

Маркировка и основные параметры

Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.

Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:

  1. CNR — металлооксидный тип.
  2. 14 — диаметр прибора, равный 14 мм.
  3. D — радиокомпонент в форме диска.
  4. 471 — максимальное значение напряжения, на которое он рассчитан.
  5. К — допустимое отклонения классификационного напряжения, равное 10%.

Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.

Их основные характеристики:

  1. Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
  2. Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
  3. Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
  4. Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
  5. Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
  6. Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
  7. Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).

После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.

Применение приборов

Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.

В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.

Схема 1 — Подключение варистора для сети 220В.

Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.

Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.

Достоинства и недостатки

Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:

  1. Высокое время срабатывания.
  2. Отслеживание перепадов при помощи безинерционного метода.
  3. Широкий диапазон напряжений: от 12 В до 1,8 кВ.
  4. Длительный срок службы.
  5. Низкая стоимость.

У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:

  1. Большая емкость.
  2. Не рассеивают мощность при максимальном значении напряжения.

Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.

При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.

Проверка на исправность

Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:

  1. Отвертка.
  2. Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
  3. Паяльник, олово и канифоль.
  4. Мультиметр для диагностики радиокомпонентов.
  5. Увеличительное стекло для просмотра маркировки.

После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.

Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вольт и его доработка.

Найти варистор и произвести его визуальный осмотр. Корпус должен быть целым и без трещин. Если было обнаружено нарушение целостности корпуса, то его необходимо выпаять и произвести замену на такой же или выбрать аналог. Необходимо отметить, что полярность подключения варистора в цепь не имеет значения. Если механические повреждения не обнаружены, то следует перейти к его диагностике, которая производится двумя способами:

  1. Измерение сопротивления.
  2. Поиск неисправности, исходя из технических характеристик элемента.

В первом случае деталь выпаивается из платы и замеряется значение ее сопротивления при помощи мультиметра. Переключатель ставится в положение максимального диапазона измерений (2 МОм достаточно). При замере не следует касаться руками варистора, поскольку прибор покажет сопротивление тела. Если мультиметр показывает высокие значения, то радиокомпонент исправен, а при других значениях его следует заменить. После замены следует собрать корпус и произвести включение сетевого фильтра.

Существует и другой способ выявления неисправного варистора, основанный на анализе характеристик элемента. Его, как правило, используют в том случае, если замер величины сопротивления не дал необходимых результатов. Для этого следует обратиться к техническим характеристикам варистора, согласно которым можно выявить его неисправность.

Следует проверить силу тока, при которой он работает, поскольку ее значение может быть меньше необходимой. В этом случае он не будет работать. Также нужно проверить величину напряжения, на которую он рассчитан. Если по каким-либо причинам эти показатели меньше допустимых, то полупроводниковый резистор не откроется.

Таким образом, варистор получил широкое применение в различных устройствах защиты от перепадов напряжения и блоках питания, а также статического электричества. Современные технологии позволяют получить низкие показатели времени срабатывания, благодаря которому сферы применения этого радиоэлемента расширяются.

Варистором называется нелинейный резистор, который применяется в радиоэлектронных цепях и обеспечивает защиту включенных в сеть приборов от перенапряжения. Его отличительной чертой является нелинейная вольт-амперная характеристика. В зависимости от величины воздействующего на деталь напряжения ее сопротивление может колебаться в значительных пределах – от нескольких десятков до сотен миллионов Ом. В этой статье мы поговорим о том, для чего нужен варистор, каков его принцип действия и как производится его подключение и проверка детали на исправность.

Как работает варистор?

На схеме варистор обозначается значком резистора, перечеркнутого по диагонали, что указывает на его нелинейность.

Когда нелинейный резистор функционирует в обычном режиме, его сопротивление велико. Однако оно сильно снижается при возрастании напряжения выше номинальной величины, что приводит к значительному повышению тока. Таким образом, разность потенциалов удерживается на уровне, несколько превышающем номинал. Варистор, работающий в этом режиме, выполняет функцию стабилизации напряжения.

Нелинейный резистор, будучи подключенным на входе электроцепи, добавляет к ее емкости собственную. Для устойчивой работы защищаемых приборов это необходимо учесть при проектировании линии.

На рисунке представлена стандартная схема подключения варистора.

Для правильного подбора защитного элемента важно знать мощность импульсов, имеющих место при переходных процессах, а также величину выходного сопротивления источника.

От максимальной силы тока, которую нелинейный резистор способен пропустить через себя, зависит частота повторений выбросов напряжения, а также их длительность. Если она слишком мала для конкретной цепи, защитный элемент быстро придет в негодность из-за перегрева. Поэтому, чтобы варистор работал безотказно в течение длительного времени, он должен обеспечивать эффективное рассеивание импульсной энергии при переходном процессе. Затем деталь должна быстро возвращаться в исходное состояние.

Преимущества и недостатки варисторов

Основными преимуществами нелинейного резистора является:

· возможность работы под значительными нагрузками, а также на высокой частоте;

· большой спектр применения;

Недостатком элемента является низкочастотный шум, создаваемый им при работе. Кроме того, его вольт-амперная характеристика в высокой степени зависит от температуры.

Варисторы: характеристики и параметры

Нелинейные резисторы, как и любые другие радиотехнические детали, обладают рядом отличительных характеристик. Основные параметры варисторов таковы:

· классификационное номинальное напряжение. Это рабочее напряжение элемента, при котором он пропускает ток величиной 1 мА;

· максимальное напряжение ограничения. Так называется напряжение, которое деталь способна выдержать без вреда для себя. Если этот показатель будет превышен, защитный элемент выйдет из строя;

· максимальное постоянное напряжение. Это показатель постоянного напряжения, при достижении которого происходит резкое возрастание проходящего через деталь тока, и она выполняет стабилизирующую функцию;

· максимальное переменное напряжение. Так называется показатель переменного напряжения, по достижении которого включается защитный режим нелинейного резистора;

· допустимое отклонение. Этим термином обозначается выраженное в процентах отклонение разности потенциалов от величины классификационного напряжения.

· время срабатывания. Это время, которое требуется находящемуся в высокоомном состоянии на переход в низкоомное;

· максимальная поглощаемая энергия. Так обозначается максимальная величина импульсной энергии, которая может быть преобразована в тепловую без вреда для варистора.

Разобравшись с принципом работы нелинейного резистора и его основными параметрами, перейдем к заключительному вопросу – как можно проверить его исправность?

Как проверить варистор?

Существует 2 способа проверки работоспособности этого элемента:

· визуальный осмотр корпуса;

· измерение сопротивления специальным прибором.

При внешнем осмотре корпусной части можно увидеть потемнения, трещины или следы подгорания, по которым можно сделать вывод о том, что деталь непригодна к эксплуатации. Если визуально недостатков не заметно, но исправность элемента вызывает сомнения, придется воспользоваться тестером (мультиметром) или омметром. Разберемся, как проверить варистор мультиметром. Главным критерием здесь является сопротивление детали – чем оно больше, тем лучше. Элемент с низким сопротивлением подлежит замене. Стоит отметить, что пробитый варистор, как правило, легко определить путем визуального осмотра, даже не пользуясь тестером. Кроме того, когда поврежденная радиодеталь находится в цепи, предохранитель постоянно выбивает.

Для проверки необходимо:

· отпаять один из выводов проверяемой детали. В противном случае прозвонка, скорее всего, не даст достоверного результата, так как пойдет по другим участкам цепи;

· поставить переключатель тестера в режим замера сопротивления на максимум;

· прикоснуться щупами прибора к выводам проверяемой детали;

· снять показания индикатора (шкалы).

Измерять сопротивление нужно два раза, меняя полярность подключения тестера.

Проверка мультиметром позволяет точно определить, когда варистор находится в обрыве – в ходе измерения прибор будет показывать бесконечное сопротивление.

В интернет-магазине DIP8.RU можно приобрести по доступной цене различные радиодетали и элементы высокого качества, в том числе и варисторы. Весь товар сертифицирован. По всем вопросам, касающимся характеристик деталей и оформления заказа, вы можете обратиться по телефону, указанному в разделе «Контакты».

Варисторы: как работают, основные характеристики и параметры, схема подключения

Варистором называется нелинейный резистор, который применяется в радиоэлектронных цепях и обеспечивает защиту включенных в сеть приборов от перенапряжения. Его отличительной чертой является нелинейная вольт-амперная характеристика. В зависимости от величины воздействующего на деталь напряжения ее сопротивление может колебаться в значительных пределах – от нескольких десятков до сотен миллионов Ом. В этой статье мы поговорим о том, для чего нужен варистор, каков его принцип действия и как производится его подключение и проверка детали на исправность.

Как работает варистор?

На схеме варистор обозначается значком резистора, перечеркнутого по диагонали, что указывает на его нелинейность.

Когда нелинейный резистор функционирует в обычном режиме, его сопротивление велико. Однако оно сильно снижается при возрастании напряжения выше номинальной величины, что приводит к значительному повышению тока. Таким образом, разность потенциалов удерживается на уровне, несколько превышающем номинал. Варистор, работающий в этом режиме, выполняет функцию стабилизации напряжения.

Нелинейный резистор, будучи подключенным на входе электроцепи, добавляет к ее емкости собственную. Для устойчивой работы защищаемых приборов это необходимо учесть при проектировании линии.

На рисунке представлена стандартная схема подключения варистора.

Для правильного подбора защитного элемента важно знать мощность импульсов, имеющих место при переходных процессах, а также величину выходного сопротивления источника.

От максимальной силы тока, которую нелинейный резистор способен пропустить через себя, зависит частота повторений выбросов напряжения, а также их длительность. Если она слишком мала для конкретной цепи, защитный элемент быстро придет в негодность из-за перегрева. Поэтому, чтобы варистор работал безотказно в течение длительного времени, он должен обеспечивать эффективное рассеивание импульсной энергии при переходном процессе. Затем деталь должна быстро возвращаться в исходное состояние.

Преимущества и недостатки варисторов

Основными преимуществами нелинейного резистора является:

· возможность работы под значительными нагрузками, а также на высокой частоте;

· большой спектр применения;

Недостатком элемента является низкочастотный шум, создаваемый им при работе. Кроме того, его вольт-амперная характеристика в высокой степени зависит от температуры.

Варисторы: характеристики и параметры

Нелинейные резисторы, как и любые другие радиотехнические детали, обладают рядом отличительных характеристик. Основные параметры варисторов таковы:

· классификационное номинальное напряжение. Это рабочее напряжение элемента, при котором он пропускает ток величиной 1 мА;

· максимальное напряжение ограничения. Так называется напряжение, которое деталь способна выдержать без вреда для себя. Если этот показатель будет превышен, защитный элемент выйдет из строя;

· максимальное постоянное напряжение. Это показатель постоянного напряжения, при достижении которого происходит резкое возрастание проходящего через деталь тока, и она выполняет стабилизирующую функцию;

· максимальное переменное напряжение. Так называется показатель переменного напряжения, по достижении которого включается защитный режим нелинейного резистора;

· допустимое отклонение. Этим термином обозначается выраженное в процентах отклонение разности потенциалов от величины классификационного напряжения.

· время срабатывания. Это время, которое требуется находящемуся в высокоомном состоянии на переход в низкоомное;

· максимальная поглощаемая энергия. Так обозначается максимальная величина импульсной энергии, которая может быть преобразована в тепловую без вреда для варистора.

Разобравшись с принципом работы нелинейного резистора и его основными параметрами, перейдем к заключительному вопросу – как можно проверить его исправность?

Как проверить варистор?

Существует 2 способа проверки работоспособности этого элемента:

· визуальный осмотр корпуса;

· измерение сопротивления специальным прибором.

При внешнем осмотре корпусной части можно увидеть потемнения, трещины или следы подгорания, по которым можно сделать вывод о том, что деталь непригодна к эксплуатации. Если визуально недостатков не заметно, но исправность элемента вызывает сомнения, придется воспользоваться тестером (мультиметром) или омметром. Разберемся, как проверить варистор мультиметром. Главным критерием здесь является сопротивление детали – чем оно больше, тем лучше. Элемент с низким сопротивлением подлежит замене. Стоит отметить, что пробитый варистор, как правило, легко определить путем визуального осмотра, даже не пользуясь тестером. Кроме того, когда поврежденная радиодеталь находится в цепи, предохранитель постоянно выбивает.

Для проверки необходимо:

· отпаять один из выводов проверяемой детали. В противном случае прозвонка, скорее всего, не даст достоверного результата, так как пойдет по другим участкам цепи;

· поставить переключатель тестера в режим замера сопротивления на максимум;

· прикоснуться щупами прибора к выводам проверяемой детали;

· снять показания индикатора (шкалы).

Измерять сопротивление нужно два раза, меняя полярность подключения тестера.

Проверка мультиметром позволяет точно определить, когда варистор находится в обрыве – в ходе измерения прибор будет показывать бесконечное сопротивление.

В интернет-магазине DIP8.RU можно приобрести по доступной цене различные радиодетали и элементы высокого качества, в том числе и варисторы. Весь товар сертифицирован. По всем вопросам, касающимся характеристик деталей и оформления заказа, вы можете обратиться по телефону, указанному в разделе «Контакты».

Варистор (дословный перевод с английского — резистор с переменным сопротивлением) — полупроводник с нелинейной вольт—амперной характеристикой (вах).

Все электроприборы рассчитаны на свое рабочее напряжение (в домах 220 В или 380В). Если произошел скачок напряжения (вместо 220 В подали 380В) — приборы могут сгореть. Тогда на помощь и придет варистор.

Принцип действия варисторов

В обычном состоянии варистор имеет очень большое сопротивление (по разным источникам от сотен миллионов Ом до миллиардов Ом). Он почти не пропускает через себя ток. Стоит напряжению превысить допустимое значение, как прибор теряет свое сопротивление в тысячи, а то и в миллионы раз. После нормализации напряжения его сопротивление восстанавливается.

Если варистор подключить параллельно электроприбору, то при скачке напряжения вся нагрузка придется на него, а приборы останутся в безопасности.

Принцип работы варистора, если объяснять на пальцах, сводится к следующему. При скачке в электрической сети он выполняет роль клапана, пропуская через себя электрический ток в таком объеме, чтобы снизить потенциал до необходимого уровня. После того как напряжение стабилизируется этот «клапан» закрывается и наша электросхема продолжает работать в штатном расписании. В этом и состоит назначение варистора.

Основные характеристики и параметры

Надо отметить, что это универсальный прибор. Он способен работать сразу со всеми видами тока: постоянным, импульсным и переменным. Это происходит из-за того, что он сам не имеет полярности. При изготовлении используется большая температура, чтобы спаять порошок кремния или цинка.

Параметры, которые необходимо учитывать:

  1. параметр условный, определяется при токе 1мА, В;
  2. максимально допустимое переменное напряжение, В;
  3. максимально допустимое постоянное напряжение, В;
  4. средняя мощность рассеивания, Вт;
  5. максимально импульсная поглощаемая энергия, Дж;
  6. максимальный импульсный ток, А;
  7. емкость прибора в нормальном состоянии, пФ;
  8. время срабатывания, нс;
  9. погрешность.

Чтобы правильно подобрать варистор иногда необходимо учитывать и емкость. Она сильно зависит от размера прибора. Так, tvr10431 имеет 160nF, tvr 14431 370nF. Но даже одинаковые по диаметру детали могут обладать разной емкостью, так S14K275 имеет 440nF.

Виды варисторов

По внешнему виду бывают:

  • пленочные;
  • в виде таблеток;
  • стержневой;
  • дисковый.

Стержневые могут снабжаться подвижным контактом. Выглядеть они будут соответственно названию. Кроме того, бывают низковольтные, 3—200 В и высоковольтные 20 кВ. У первых ток колеблется в пределах 0,0001—1 А. На обозначение по схеме это никак не влияет. В радиоаппаратуре, конечно, применяют низковольтные.

Чтобы проверить работоспособность варистора необходимо обратить внимание на внешний вид. Его можно найти на входе схемы (где подводится питание). Так как через него проходит очень большой ток — по сравнению с защищаемой схемой — это, как правило, сказывается на его корпусе (сколы, обгоревшие места, потемнение лакового покрытия). А также на самой плате: в месте пайки могут отслаиваться монтажные дорожки, потемнение платы. В этом случае его необходимо заменить.

Однако, даже если нет видимых признаков, варистор может быть неисправным. Чтобы проверить его исправность придется отпаять один его вывод, в противном случае будем проверять саму схему. Для прозвонки обычно используется мультиметр (хотя можно, конечно, и мегомметр попробовать, только необходимо учитывать напряжение, которое он создает, чтобы не спалить варистор). Прозвонить его несложно, подключение производится к контактам и измеряется его сопротивление. Тестер ставим на максимально возможный предел и смотрим, чтобы значение было не меньше несколько сотен Мом, при условии, что напряжение мультиметра не превышает напряжение срабатывания варистора.

Впрочем, бесконечно большое сопротивление, при условии, что омметр довольно мощный (если можно это слово использовать), это также говорит о неисправности. При проверке полупроводника необходимо помнить что это всё-таки проводник и он должен показать сопротивление, в противном случае мы имеем полностью сгоревшую деталь.

Справочник и маркировка варисторов

Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.

Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04. При его применении важно соблюдать полярность.

Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

Основные параметры варисторов

  1. Классификационный ток Iкл – ток, при котором определяются основные параметры варистора, соответствует рабочей области ВАХ. У большинства варисторовIкл лежит в пределах 2 … 20 мА, у высоковольтных равен 0,05 мА.

  2. Классификационное напряжение Uкл – это напряжение на варисторе, соответствующее классификационному токуIкл. Разработано множество варисторов сUкл в диапазоне от 5 В до 25 кВ.

  3. Асимметрия ВАХ u[%]. Оценивается на уровне классификационного тока и обычно не превышает(5 … 20)%.

, при заданномIкл.

  1. Статическое сопротивление R– значение сопротивления варистора в заданном режиме при постоянных величинах тока и напряжения:.

  2. Динамическое (дифференциальное) сопротивление r– сопротивление варистора малому переменному току:

.

Динамическое сопротивление r может быть определено по наклону ВАХ варистора в рассматриваемой рабочей точке.

  1. Коэффициент нелинейности – это отношение статического сопротивления к динамическому в рабочем режиме:

,

где Т – температура активных областей,Т0– температура среды, окружающей активные области.

Максимальное значение коэффициента нелинейности определяется по формуле:

.

Из соотношения следует, что при В<4Т0должны наблюдаться нелинейные ВАХ с положительным коэффициентом нелинейности. Максимальный коэффициент нелинейности должен быть равен бесконечности приВ= 4Т0. ЕслиВ>4Т0, то у варистора должно наблюдаться отрицательное дифференциальное сопротивление, коэффициент нелинейности тоже будет отрицательным.

На основе этих расчетов можно заключить, что температура активных областей варистора может превышать температуру окружающей среды на несколько сотен градусов. Следовательно, для изготовления варисторов со стабильными параметрами необходим термостойкий материал. Именно поэтому используют карбид кремния, одновременно он является очень дешевым.

Основными примесями в техническом карбиде кремния являются азот и алюминий. Энергия ионизации этих примесей в карбиде кремния невелика (особенно при большой концентрации основных и компенсирующих примесей), соответственно мала и величина коэффициента температурной чувствительности В.

Увеличение температуры окружающей среды должно привести к уменьшению коэффициента нелинейности и незначительному сдвигу максимума кривой β = f(U) по напряжению (рис. 4).

В справочниках величины приводятся дляUкл. В среднем в рабочей области напряжений у варисторов из карбида кремния=3 … 6, но имеются варисторы с2 (низковольтные) и с= 5 … 10 (высоковольтные).

  1. Диапазон рабочих температур варисторов лежит в пределах от Тmin= -(40 … 60)0 С доТmax= +(70 … 125)0 С.

В связи с нелинейностью ВАХ следует различать температурный коэффициент статического сопротивления, измеренные при постоянном напряжении или токе, а также температурные коэффициенты напряжения и тока варистора.

  1. Температурные коэффициенты статического сопротивления:

,

при малых напряжениях на варисторе, когда β = 1,.

.

  1. Температурные коэффициенты напряжения и тока:

,

.

Из приведенных уравнений следует, что у варисторов с большим значением максимального коэффициента нелинейности должны быть большие по абсолютной величине значения температурных коэффициентов сопротивления, тока и напряжения. Между максимальным коэффициентом нелинейности и температурными коэффициентами должна быть взаимосвязь, т.к. они зависят от коэффициента температурной чувствительности В:

TKI|U=const=.

Экспериментально такая взаимосвязь наблюдается, но расчет дает несколько завышенные результаты. Это можно объяснить наличием добавочных сопротивлений, включенных последовательно и параллельно активным областям варистора, повышенной температурой активных областей варистора по сравнению с температурой всего варистора.

У варисторов, выпускаемых отечественной промышленностью. В диапазоне температур от -40 до +100ºС

,

  1. Допустимая рассеиваемая мощность РРАСС – мощность, при которой варистор сохраняет свои параметры в заданных техническими условиями пределах в течение срока службы. Существуют варисторы сРРАСС от 10 мВт до 3 Вт.

  2. Наибольшая начальная емкость С0имеет величины от единиц до сотен пФ у различных типов варисторов (рис. 5).

Определяется только в области токов утечки, т.к. только там варистор проявляет диэлектрические свойства. Емкость зависит от габаритов варистора и материала.

Рис. 5. Частотная зависимость емкости варистора

  1. Время запаздывания (быстродействие) ограничения перенапряжения при крутых фронтах импульсах напряжения в зависимости от используемых методик колеблется от 0,5 до 50 нс. Эффект запаздывания объясняется индуктивностью выводов.

Определение времени срабатывания варисторов представлено на рис. 6.

Рис. 6. Определение времени срабатывания варисторов

Варистор принцип работы и устройство, проверить варистор

Как работает варистор?

Принцип работы варистора достаточно прост. Рассмотрим ситуацию, когда варистор защищает от перенапряжения. В схему он включается параллельно защищаемой цепи. При нормальном режиме работы он имеет высокое сопротивление и протекающий через него ток очень мал. Он имеется свойства диэлектрика и не оказывает никакого влияния на работу схемы. При возникновении перенапряжения, варистор моментально меняет свое сопротивление с очень высокого, до очень низкого и шунтирует нагрузку. Известно, что ток идет по пути наименьшего сопротивления, поэтому варистор поглощает это перенапряжение и рассеивает эту энергию в атмосферу, в виде тепла. После того, как напряжение стабилизируется, сопротивление снова возрастает и варистор “запирается”. Надеюсь даже чайник понял принцип работы. Если что-то не ясно, рекомендуется ознакомиться с видео.

Если напряжение будет выше того, которое может выдержать и рассеять варистор, то он выйдет из строя. Корпус его треснет либо развалиться на части. В некоторых случаях он может взорваться. Поэтому, в целях защиты основной схемы, рекомендуется ограждать его от основных компонентов защитным экраном либо монтировать его вне корпуса, особенно для высоковольтных схем. Как проверить варистор мультиметром – узнаете тут.

Как говорилось выше, варистор подключается параллельно нагрузке:

  • В цепях переменного тока – фаза – фаза, фаза – ноль;
  • В цепях постоянного тока – плюс и минус.

Так как варистор закорачивает цепь питания, перед ним всегда монтируется плавкий предохранитель. Несколько примеров схем включения варистора:

Назначение и характеристики

Варистор — это электронный прибор, имеющий два контакта и обладающий нелинейно-симметричной вольт-амперной характеристикой. Термин «варистор» произошёл от латинских слов variable — «изменяемый» и resisto — «резистор». По своей сути он является полупроводниковым резистором, способным изменять своё сопротивление в зависимости от приложенного к его выводам напряжения.

Изготавливаются такого типа резисторы путём спекания при высокой температуре полупроводника и связующего материала. В качестве полупроводника используется карбид кремния, находящийся в порошкообразном состоянии, или оксид цинка, а связующего вещества — стекло, лак, смола. Полученный после спекания элемент подвергается металлизации с дальнейшим формированием выводов. По своей конструкции приборы выполняются в форме, похожей на диск, таблетку, цилиндр, или плёночного вида.

Обладая свойством резко уменьшать своё сопротивление при возникновении на его выводах определённого напряжения, варистор применяется в электронных схемах в качестве защитного элемента. При возникновении броска напряжения определённой величины полупроводниковый прибор мгновенно снижает своё внутреннее сопротивление до десятков Ом, тем самым практически закорачивая цепь, не давая импульсу повредить остальные элементы схемы. Поэтому важным параметром варистора является значение напряжения, при котором наступает пробой устройства.

Основные параметры

Перед тем как проверить варистор на исправность, необходимо понимать не только принцип его действия, но и знать, какими характеристиками он обладает. Как и любой электронный элемент, варистор имеет ряд характеристик, которые позволяют его использовать в различных схемах. Основным параметром является вольт-амперная характеристика (ВАХ). Она наглядно показывает, как меняется ток при той или иной величине напряжения. Изучая ВАХ, можно увидеть что варистор, обладая симметрично-двунаправленной характеристикой, работает как в прямой, так и обратной зоне синусоиды, напоминая стабилитрон.

Кроме ВАХ, при исследовании варистора отмечаются следующие характеристики:

  • Um — наибольшее допустимое рабочее напряжение для тока переменной или постоянной величины.
  • P — мощность, которую может рассеять на себе элемент без ухудшения своих параметров.
  • W — допустимая энергия в джоулях, которую может поглотить радиоэлемент при воздействии одиночного импульса.
  • Ipp — наибольшее значение импульсного тока, для которого определена форма импульса.
  • Co — ёмкость, значение которой измеряется у варистора в нормальном состоянии.

Виды устройств

Разнообразие встречаемых видов варисторов обусловлено тем, что производители стремятся в первую очередь повысить их быстродействие. Поэтому и используются SMD технологии безвыводного монтажа, что позволяет добиваться малого времени срабатывания при скачке входного напряжения. Типовое время срабатывания элементов с выводами находится в пределе 15−25 наносекунд, а SMD — 0,5 наносекунд.

Существует класс низковольтных варисторов и высоковольтных. Первые выпускаются с рабочим напряжением до двухсот вольт и силой тока до одного ампера. Вторые же имеют рабочее напряжение до двадцати киловольт. Маломощные элементы используются в качестве защиты от скачка напряжения, возникающего в бытовой сети, а мощные применяются на трансформаторных подстанциях и в системах защиты от грозы.

Маркировка элементов

Независимо от производителя существует стандарт маркировки варисторов. На сам элемент принято наносить цифробуквенный код, в котором зашифровываются основные параметры. Например, для дискового типа это обозначение выглядит как S6K210, где:

  • S — материал, из которого изготовлен варистор;
  • 6 — диаметр корпуса элемента, указывается в миллиметрах;
  • K — величина допуска отклонения;
  • 210 — значение рабочего напряжения, выраженное в вольтах.

На схемах радиоэлемент графически обозначается как перечёркнутый прямоугольник. На перечёркивающей палочке делается полочка, над которой ставится буква U. Подписывается на схемах элемент латинскими буквами RU.

NTC

Терморезисторы NTC — изделия, имеющие отрицательный температурный коэффициент. Их особенность — повышенная чувствительность, высокий температурный коэффициент (на один или два порядка выше, чем у металла), небольшие габариты и широкий температурный диапазон.

Полупроводники NTC удобны в применении, стабильны в работе и способны выдерживать большую перегрузку.

Особенность NTC в том, что их сопротивление увеличивается при снижении температуры. И наоборот, если t снижается, параметр R растет. При изготовлении таких деталей применяются полупроводники.

Принцип действия прост. При повышении температуры число носителей заряда резко растет, и электроны направляются в зону проводимости. При изготовлении детали, кроме полупроводников, могут применяться и переходные металлы.

При анализе NTC нужно учесть бета-коэффициент. Он важен в случае, если изделие применяется при измерении температуры, для усреднения графика и вычислений с помощью микроконтроллеров.

Как правило, термисторы NTC применяются в температурном диапазоне от 25 до 200 градусов. Следовательно, их можно использовать для измерений в указанном пределе.

Отдельного нужно рассмотреть сфера их использования. Такие детали имеют небольшую цену и полезны для ограничения пусковых токов при старте электрических двигателей, для защиты Li аккумуляторов, снижения зарядных токов блока питания.

Терморезистор NTC также используется в автомобиле — датчик, применяемый для определения точки отключения и включения климат-контроля в машине.

Еще один способ применения — контроль температуры двигателя. В случае превышения безопасного предела, подается команда на реле, а дальше двигатель глушится.

Не менее важный элемент — датчик пожара, определяющий рост температуры и запускающий сигнализацию.

Терморезисторы NTC обозначаются буквами или имеют цветную маркировку в виде полос, колец или других обозначений. Варианты маркировки зависят от производителя, типа изделия и других параметров.

Пример обозначения 5D-20, где первая цифра показывает сопротивление терморезистора при 25 градусах Цельсия, а расположенная рядом с ней цифра (20) — диаметр.

Чем выше этот параметр, тем большую мощность рассеивания имеет изделие. Чтобы не ошибиться в маркировке, рекомендуется использовать официальную документацию.

Что такое варистор и где применяется

Варистор –  это выполненный из полупроводникового материала переменный резистор, который способен изменять свое электрическое сопротивление в зависимости от приложенного к нему напряжения.

Принцип действия у такого электронного компонента отличается от обычного резистора и потенциометра. Стандартный резистор имеет постоянное во величине сопротивление в любой промежуток времени вне зависимости от напряжения в цепи, потенциометр позволяет менять сопротивление вручную, поворачивая ручку управления. А вот варистор обладает нелинейной симметричной вольтамперной характеристикой и его сопротивление полностью зависит от напряжения в цепи.

Благодаря этому свойству, варисторы широко и эффективно применяют для защиты электрических сетей, машин и оборудования, а также радиоэлектронных компонентов, плат и микросхем вне зависимости от вида напряжения. Они имеют невысокую цену изготовления, надежны в использовании и способны выдерживать высокие нагрузки.

Варисторы применяются, как в высоковольтных установках до 20 кВ, так и в низковольтных от 3 до 200 В в качестве ограничителя напряжения. При этом они могут работать, как в сетях с переменным, так и с постоянным током. Их используют для регулировки и стабилизации тока и напряжения, а также в защитных устройствах от перенапряжения. Используются в конструкции сетевых фильтров, блоков питания, мобильных телефонов, УЗИП и других ОИН.

Отрицательные стороны

Вместе с таким большим количеством преимуществ перед другими приборами, есть также и существенные недостатки, среди которых можно выделить такие.

  1. Варисторы имеют огромной размер собственной емкости, что сказывается на работе электрической сети. Такой показатель может находиться в пределах от 80 до 3000 пФ. Он зависит от многих моментов: конструкция и вид варистора, а также максимальное значение уровня напряжения. Стоит отметить, что в некоторых случаях такой существенный недостаток может превратиться в главное достоинство. Но такое возможно довольно редко, например, если использовать варистор в фильтрах. В такой ситуации большая емкость будет служить в качестве ограничителя напряжения в сети.
  2. По сравнению с разрядниками, варисторы не способны рассеивать мощность при максимальных показателях напряжения.

Чтобы увеличить показатель рассеянности необходимо увеличивать размер элементов, чем и занимаются многие производители.

Маркировка

Мы уже достаточно внимания уделили изучению того, чем является варистор. Маркировка этого прибора сложна, и поэтому при приобретении устройства о нём нельзя судить по данным, размещенным на корпусе. Рассмотрим на вот таком примере: есть CNR-06D400K. CNR – это название типа, в данном случае перед нами металлооксидный варистор. 06 – он имеет диаметр в 6 миллиметров. D – перед нами дисковый варистор. 400 – напряжение срабатывания. K – эта буква говорит о том, что допуск возможного отклонения имеет погрешность в 10%. Если говорить о компьютерной технике, то у них варисторы рассчитаны на 470В. Согласитесь, немало. Но ведь существует не один варистор! Маркировка этих деталей проводится каждым крупным производителем по-своему, поэтому универсальных и стандартизированных правил распознавания нет. Поэтому нужно пользоваться или помощью продавцов, или прибегать к услугам справочников.

Справочник и маркировка варисторов

Если необходима замена, на помощь придет справочник варисторов. Для начала нам потребуется маркировка варистора, она находится на самом корпусе в виде латинских букв и цифр. Хотя этот элемент производится во многих странах, маркировка не имеет принципиальных отличий.

Разные изготовители и маркировка разная 14d471k и znr v14471u. Однако параметры одни и те же. Первые цифры «14» это диаметр в мм., второе число 471 — напряжение при котором происходит срабатывание (открытие). Отдельно про маркировку. Первые две цифры (47) это напряжение, следующая — коэффициент (1). Он показывает сколько нулей нужно ставить после числа 47, в этом случае 1. Получается что испытуемый прибор будет срабатывать при 470 В, плюс — минус погрешность, которая ставится рядом с этим числом. В нашем случае это буква «к» находится после и обозначает 10% т. е. 47 В.

Другая маркировка s10k275. Показатель погрешности стоит перед напряжением, само напряжение показано без коэффициента — 275 В. Из рассмотренных примеров видим, как можно определить маркировку: измеряем диаметр прибора, находим эти размеры на варисторе, другие цифры покажут напряжение. Если определить маркировку не удается, например, kl472m, нужно будет посмотреть в интернете.

Диаметр. Импортные tvr 10471 можно заменить на 10d471k, но быть осторожным с 7d471k, у последнего размер меньше. Чем больше значение, тем, грубо говоря, больше рассеиваемая мощность. Поставив прибор меньшего диаметра, рискуем его спалить. К примеру, серия 10d имеет рабочий ток 25А, а k1472m 50А.

Чтобы правильно выбрать нужный элемент необходимо учитывать не только напряжение питания. Производят множество расчетов, например, выходя из нужного быстродействия (срабатывания), или малое рабочее напряжение. В этом случае используют так называемые защитные диоды. К ним можно отнести bzw04

При его применении важно соблюдать полярность

Помехоустойчивость. Одним из недостатков является создание помех. Для борьбы с ними используют конденсаторы, например, ac472m Подключают параллельно варистору.

На схеме варистор обозначается как резистор, пустой прямоугольник с перечеркивающей под 45 градусов линией и имеет букву u.

Варисторы: применение

Такие приборы играют важную роль в жизни человека. Из всего вышеперечисленного можно сказать, что варистор, принцип работы которого заключается в защите электроники от высокого напряжения в сети, помогает предотвратить поломку многих электрических приборов и сохранить проводку в целостности. Основным местом являются электрические цепи в различном оборудовании. Например, они встречаются в пусковых элементах освещения, которые еще называются балластами. Также устанавливаются в электрических схемах специальные варисторы, применение которых необходимо для стабилизации напряжения и тока. Такие устройства используются еще в линиях электропередач. Но там они называются разрядниками, рабочее напряжение которых составляет более двадцати тысяч вольт.

Варисторы могут работать в большом диапазоне напряжения, который начинается с совсем маленького значения в 3 В, и заканчивается 200 В. Что касается силы тока элемента, то здесь диапазон составляет от 0,1 до 1 А. Такие показатели тока действительны только для низковольтного технического оборудования.

Урок 1. Назначение и принцип действия ОПН

Ограничители перенапряжений нелинейные (ОПН)-электрические аппараты, предназначенные для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. Основным элементом ОПН является нелинейный резистор – варистор ( varistor, от англ. Vari(able) (Resi)stor – переменное, изменяющееся сопротивление).

Основное отличие материала нелинейных резисторов ограничителей от материала резисторов вентильных разрядников состоит в резко нелинейной вольт-амперной характеристики (ВАХ) и повышенной пропускной способности. Применение в ОПН высоконелинейных резисторов позволило исключить из конструкции аппарата искровые промежутки, что устраняет целый ряд недостатков, присущих вентильным разрядникам.

Основной компонент материала резисторов ОПН – оксид (окись) цинка ZnO. Оксид цинка смешивают с оксидами других металлов – закисью и окисью кобальта, окисью висмута и др. Технология изготовления оксидно-цинковых резисторов весьма сложна и трудоёмка и близка к требованиям при производстве полупроводников – применение химически чистого исходного материала, выполнение требований по чистоте и т. д. Основные операции при изготовлении – перемешивание и измельчение компонентов, формовка ( прессование) и обжиг. Микроструктура варисторов включает в себя кристаллы оксида цинка (полупроводник n – типа) и междукристаллической прослойки ( полупроводник p – типа). Таким образом, варисторы на основе оксида цинка ZnO являются системой последовательно – параллельно включённых p – n переходов. Эти p – n переходы и определяют нелинейные свойства варисторов, то есть нелинейную зависимость величины тока, протекающего через варистор, от приложенного к нему напряжения.

В настоящее время варисторы для ограничителей изготовляются как цилиндрические диски диаметром 28 – 150 мм, высотой 5 – 60 мм (рис 1). На торцевой части дисков методом металлизации наносятся алюминиевые электроды толщиной 0.05-0.30 мм. Боковые поверхности диска покрывают глифталевой эмалью, что повышает пропускную способность при импульсах тока с крутым фронтом.

Рис. 1. Нелинейный резистор – варистор

Диаметр варистора ( точнее — площадь поперечного сечения ) определяет пропускную способность варистора по току, а его высота — параметры по напряжению.

При изготовлении ОПН то или иное количество варисторов соединяют последовательно в так называемую колонку. В зависимости от требуемых характеристик ОПН и его конструкции и имеющихся на предприятии варисторов ограничитель может состоять из одной колонки (состоящей даже из одного варистора) или из ряда колонок, соединённых между собой последовательно/ параллельно.

Для защиты электрооборудования от грозовых или коммутационных перенапряжений ОПН включается параллельно оборудованию (рис. 2 ).

Рис.2

Защитные свойства ОПН объясняются вольт–амперная характеристикой варистора.

Вольт – амперная характеристика конкретного варистора зависит от многих факторов, в том числе от технологии изготовления, рода напряжения — постоянного или переменного, частоты переменного напряжения, параметров импульсов тока, температуры и др.

Типовая вольт- амперная характеристика варистора с наибольшим длительно допустимым напряжением 0.4 кВ в линейном масштабе приведена на рис. 3.

Рис. 3. Вольт – амперная характеристика варистора

На вольт – амперной характеристике варистора можно выделить три характерных участка: 1) область малых токов; 2) средних токов и 3) больших токов. Область малых токов – это работа варистора под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение. В данной области сопротивление варистора весьма значительно. В силу неидеальности варистора сопротивление хотя и велико, но не бесконечно. поэтому через варистор протекает ток, называемый током проводимости. Этот ток мал — десятые доли миллиамперметра.

При возникновении грозовых или коммутационных импульсов перенапряжений в сети варистор переходит в режим средних токов. На границе первой и второй областей происходит перегиб вольт – амперной характеристики, при этом сопротивление варистора резко уменьшается (до долей Ома). Через варистор кратковременно протекает импульс тока, который может достигать десятков тысяч ампер. Варистор поглощает энергию импульса перенапряжения, выделяя затем её в виде тепла, рассеивая в окружающее пространство. Импульс перенапряжения сети “ срезается” (рис. 4).

Рис. 4

В третьей области ( больших токов) сопротивление варистора снова резко увеличивается. Эта область для варистора является аварийной.

Характеристики и параметры варисторов

  • Классификационное напряжение (Varistor Voltage) – это величина напряжения, при котором ток в 1 мА протекает через варистор;
  • Максимально допустимое переменное напряжение (Maximum Allowable Voltage – ACrms) – Это среднеквадратичное значение переменного напряжения (rms) в вольтах. Это та величина, при которой варистор “открывается” и понижается его сопротивление, тем самым он начинает выполнять свою задачу;
  • Максимально допустимое постоянное напряжение (Maximum Allowable Voltage – DC) – Варистор можно использовать в цепях постоянного тока, этот параметр показывает напряжение “открытия”, но уже для постоянного напряжения. Указывается в вольтах. Обычно выше, чем величина для переменных цепей;
  • Максимальное напряжение ограничения (Maximum Clamping Voltage) – максимальное напряжение в вольтах, которое может выдержать корпус варистора без выхода из строя. Обычно указывается для конкретной величины тока;
  • Максимальная поглощаемая энергия – указывается в джоулях (Дж). Величина импульса, которую может рассеять варистор, не выходя из строя;
  • Время срабатывания – обычны указывается в наносекундах (нс). Это время, которое требуется варистору для изменения величины сопротивления от очень высокого, до очень низкого;
  • Допустимое отклонение (Varistor Voltage Tolerance) – это допустимое отклонение квалификационного напряжения варистора, указывается оно в процентах (%). Это фиксированные величины ±5%, ±10%, ±20% и т.д. В импортных варисторах величина отклонения, зашифрованна в определенную букву и указывается в маркировке варистора, каждая фирма может использовать свои маркировки. К примеру, для варисторов фирмы Joyin принято такое обозначение: K – ±10%, L – ±15%, M – ±20%, P – ±25%.

Подбор варисторов осуществляется по специальным справочникам на основе вышеописанных параметров. Узнаем значения своей цепи и защищаемого оборудования. На основе этого выбираем варистор, который нужно ставить.

Теперь, когда мы разобрались с основами, можно перейти к проверке варистора

Определяем работоспособность элемента (пошаговая инструкция)

Для данной операции нам потребуются следующие инструменты:

  • Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
  • Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
  • Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
  • Канифоль и припой.
  • Мультиметр или другой прибор, позволяющий измерить сопротивление.

Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:

  1. Разбираем корпус устройства. В данном случае дать детальную инструкцию как это сделать затруднительно, поскольку конструкции приборов существенно отличаются друг от друга. Эту информацию можно найти в инструкции к оборудованию или на сайте производителя, также поможет поиск на тематических форумах и блогах.
  2. Добравшись до печатной платы БП, следует очистить ее от пыли. Делать это нужно аккуратно, чтобы не повредить радиодетали. Бывали случаи, когда от чрезмерного усилия, в процессе чистки, щетка повреждала транзистор, тиристор или другой компанент.
  3. Когда пыль удалена, находим варистор, он имеет характерный вид, поэтому спутать его можно разве что с конденсатором, но последний отличается маркировкой.

    Варистор в силовой части БП

  4. Найдя элемент, тщательно осматриваем его на предмет повреждений. Это могут быть трещины, сколы и другие нарушения целостности корпуса. В большинстве случаев, определить неисправность можно на этом этапе. При обнаружении повреждений элемент выпаиваем и меняем на такой же или аналог. Подобрать его можно самостоятельно (расшифровка маркировки приводилась выше) или посоветовавшись с продавцом радиодеталей.

    Варистор со следами повреждений

  5. Если визуальный осмотр не дал результатов, следует проверить варистор мультиметром, для этого выпаиваем деталь.
  6. Для проведения измерения подключаем щупы к мультиметру (на рисунке 7 гнезда показаны зеленым цветом) и переводим его в режим измерения максимального сопротивления (красный круг на рис. 7). Если у вас мультиметр другого типа, воспользуйтесь инструкцией к прибору.

    Рисунок 7. Установка режима отмечена красным, гнезда для щупов – зеленым

  7. Касаемся щупами выводов и измеряем сопротивление варистора. Оно должно быть бесконечно большим. Иное значение указывает на неисправность варистора, следовательно, его необходимо заменить.

Использование

Давайте рассмотрим, к примеру, сеть на 220 Вольт. Для неё оптимальными будут устройства, у которых напряжение срабатывания находится в диапазоне 275-420В (но здесь есть некоторые технические нюансы, которые мы трогать не будем). В качестве сетевого фильтра используется три варистора. Они блокируют проникновение импульсов по цепи фазы и нуля. А почему их три? Бывает иногда такое, что в новостях проскакивают сообщения о проблемах, вследствие которых электроники лишились тысячи людей. Такое бывает, когда вместо нуля и фазы по проводам идёт только последняя. Для аппаратуры это почти всегда верная смерть. Но наличие варистора на нуле позволяет успешно защищать от таких ситуаций. В качестве показательного примера можно привести мобильные телефоны. Чтобы они не перегорели, используют миниатюрные многослойные варисторы. Кроме этого, их можно встретить в телекоммуникационном оборудовании и автомобильной электронике.

Варистор маркировка на корпусе - Морской флот

Вари́стор (лат. vari(able) – переменный (resi)stor — резистор) — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Обладает свойством резко уменьшать своё сопротивление с миллиардов до десятков Ом при увеличении приложенного к нему напряжения выше пороговой величины [1] . При дальнейшем увеличении напряжения сопротивление уменьшается ещё сильнее. Благодаря отсутствию сопровождающих токов при скачкообразном изменении приложенного напряжения, варисторы являются основным элементом для производства устройств защиты от импульсных перенапряжений (УЗИП).

Содержание

Изготовление [ править | править код ]

Изготавливают варисторы спеканием при температуре около 1700 °C полупроводника, преимущественно порошкообразного карбида кремния (SiC) или оксида цинка (ZnO), и связующего вещества (например, глина, жидкое стекло, лаки, смолы). Далее две поверхности полученного элемента металлизируют (обычно электроды имеют форму дисков) и припаивают к ним металлические проволочные выводы.

Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом.

Свойства [ править | править код ]

Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов.

Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению Rd:

λ = R R d = U I : d U d I ≈ c o n s t <displaystyle lambda =<frac >>=<frac >:<frac >approx const> ,

где U – напряжение, I – ток варистора

Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO.

Применение [ править | править код ]

Низковольтные варисторы изготавливают на рабочее напряжение от 3 до 200 В и ток от 0,0001 до 1 А; высоковольтные варисторы — на рабочее напряжение до 20 кВ.

Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях — для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений (например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др.

Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения.

Как электронные компоненты, варисторы дёшевы и надёжны, способны выдерживать значительные электрические перегрузки, могут работать на высокой частоте (до 500 кГц). Среди недостатков — значительный низкочастотный шум и старение — изменение параметров со временем и при колебаниях температуры.

Материалы варисторов [ править | править код ]

Тирит, вилит, лэтин, силит — полупроводниковые материалы на основе карбида кремния с разными связками. Оксид цинка — новый материал для варисторов.

Параметры [ править | править код ]

При описании характеристик варисторов в основном используются следующие параметры [1] :

  • Классификационное напряжение Un — напряжение при определённом токе (обычно 1 мА), условный параметр для маркировки изделий;
  • Максимально допустимое напряжение Um для постоянного тока и для переменного тока (среднеквадратичное или действующее значение), диапазон — от нескольких В до нескольких десятков кВ; может быть превышено только при перенапряжениях;
  • Номинальная средняя рассеиваемая мощность P — мощность в ваттах (Вт), которую варистор может рассеивать в течение всего срока службы при сохранении параметров в заданных пределах;
  • Максимальный импульсный ток Ipp (Peak Surge Current) в амперах (А), для которого нормируется время нарастания и длительность импульса;
  • Максимальная допустимая поглощаемая энергия W (Absorption energy) в джоулях (Дж), при воздействии одиночного импульса;
  • Ёмкость Co, измеренная в закрытом состоянии при заданной частоте; зависит от приложенного напряжения — когда варистор пропускает через себя большой ток, она падает до нуля.

Рабочее напряжение варистора выбирается исходя из допустимой энергии рассеяния и максимальной амплитуды напряжения. Рекомендуется, чтобы на переменном напряжении оно не превышало 0,6 Un, а на постоянном — 0,85 Un. Например, в сети с действующим напряжением 220 В (50 Гц) обычно устанавливают варисторы с классификационным напряжением не ниже 380…430 В.

Варистор серии 07K, 10K, 14K, 20K – оксидно-цинковый защитный элемент, обладающий способностью мгновенного изменения собственного сопротивления под воздействием подаваемого напряжения. Характерные резко выраженные нелинейные и симметричные вольтамперные характеристики предоставляют возможность эксплуатации варисторов в цепях постоянного, переменного и импульсного тока.

Принцип работы варистора заключается в его способности в считанные наносекунды (до 25 нс) понижать собственное сопротивление до отметки в несколько Ом при воздействии напряжения, превышающего номинальное значение – напряжения срабатывания, ток срабатывания при этом может достигать 100А.

В обычном состоянии сопротивление варистора достигает нескольких сотен МОм, а поскольку подключают варисторы параллельно цепи, то ток через него не проходит и он выступает в роли диэлектрика. Импульсный скачок приводит варистор в действие, понижая его сопротивление – происходит короткое замыкание и перегорает плавкий предохранитель, который должен устанавливаться в обязательном порядке перед варистором, и цепь размыкается.

В момент срабатывания происходит шунтирование излишней нагрузки, поглощаемая энергия (до 282 Дж при импульсе тока 2,5 мс) рассеивается в виде теплового излучения. Габаритные размеры варистора при этом играют значительную роль – общая площадь поверхности варистора имеет пропорциональное влияние на возможность гашения импульса напряжения без разрушения самого устройства.

Варисторы серии 07K, 10K, 14K, 20K имеют форму диска (дисковые варисторы) различной толщины с однонаправленными проволочными выводами радиального типа. Изготавливаются представленные варисторы методом прессования порошкообразного оксида цинка (ZnO).

На корпусе варисторов нанесена маркировка с указанием номинального классификационного напряжения и соответствующего допуска по напряжению (±10%). На образцах варисторов импортного производства при маркировке допуска используют символьное обозначение, например, буква K обозначает допуск ±10%, буква M – допуск ±20%.

Устанавливаются варисторы параллельно защищаемому устройству с помощью пайки выводов. Для достижения максимального уровня защиты рекомендуется использование двух одинаковых варисторов, подключенных параллельно друг другу, и дополнительного плавкого предохранителя, устанавливаемого последовательно перед варисторами.

Применяются предоставленные варисторы 07K, 10K, 14K, 20K для защиты элементов от перенапряжения в источниках и системах электропитания, бытовой и военной технике, телекоммуникационном и измерительном оборудовании.

Подробные характеристики, расшифровка маркировки, габаритные размеры, общее устройство варисторов 07K, 10K, 14K, 20K указаны ниже. Наша компания гарантирует качество и работу варисторов в течение 2 лет с момента их приобретения; предоставляются сертификаты качества.

Окончательная цена на оксидно-цинковые варисторы 07K, 10K, 14K, 20K зависит от количества, сроков поставки и формы оплаты.

Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.

Скорее всего это произошло из-за скачков напряжения в сети.

При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.

Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт. Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. д.), а также из-за атмосферного электричества.

Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.

Стандартная схема подключения варистора

параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:

Принцип действия варистора

По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения. При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток. Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.

Маркировка варисторов

Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке. Например маркировка варисторов CNR:

CNR-07D390K , где:

  • CNR- серия, полное название CeNtRa металлоксидные варисторы
  • 07- диаметр 7мм
  • D – дисковый
  • 390 – напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
  • K – допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.

Как же найти на плате варистор?

По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.

На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.

VA1- это варистор, а синяя деталь рядом это конденсатор-С70.

Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.

После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание – на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.

Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF – плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.

Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.

Ещё обратите внимание, что большинство плат – двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.

После замены варистора остаётся только поставить новый предохранитель и установить плату на место.

Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.

Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:

Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.

Варистор принцип работы

Варистором называются полупроводниковые резисторы, которые способны уменьшать сопротивление в 10 раз от начальной величины с помощью увеличения напряжения. Например, если резистор имеет сопротивление 1000 МОм, то с применением данного элемента оно составит 1000 Ом. Таким образом, сопротивление уменьшается в том случае, когда увеличивается напряжение.

Принцип действия варистора

Варисторная защита подключается параллельно основному оборудованию, которое необходимо защитить. После возникновения импульса напряжения, благодаря наличию нелинейной характеристики, варистор шунтирует нагрузку и уменьшает величину сопротивления до нескольких долей Ома. Энергия, при перенапряжении, поглощается и рассеивается в виде тепла. Варистор как бы срезает импульс опасного перенапряжения, поэтому защищаемое устройство остается невредимым, что возможно даже с низким уровнем изоляции.

Рис. №1. Конструктивная схема варистора и его характеристика.

Условное обозначение варистора, например, СНI-1-1-1500. СН означает, нелинейное сопротивление, первая цифровое значение – материал, вторая – конструкцию ( 1- стержневой; 2 – дисковый), третья цифра – номер разработки, последняя цифра обозначает значение падения напряжения.

Таблица классификации варисторов

Как выглядит элемент?

Такое приспособление, как варистор, фото которого есть в нашей статье, напоминает обычный резистор, то есть имеет форму прямоугольника. Но все же имеет небольшое отличие.

Посреди него проходит диагональ, конец которой изогнут.

Как маркируется варистор?

На сегодняшний день можно встретить разные обозначения этих приборов. Каждый производитель вправе устанавливать ее самостоятельно. Маркировки различаются, потому что технические характеристики варисторов отличаются друг от друга. Примерами могут служить такие показатели, как допустимое напряжение или необходимый уровень тока.

В настоящее время каждый производитель устанавливает свою маркировку на эти типы приборов. Это объясняется тем, что производимые приборы имеют разные технические характеристики. Например, предельно допустимое напряжение или необходимый для функционирования уровень тока. Наиболее популярная маркировка – CNR, к которой прикрепляется такое обозначение, как 07D390K. Что же это значит? Итак, само обозначение CNR указывает на вид прибора. В этом случае варистор является металлооксидным.

Далее, 07 – это размер устройства в диаметре, то есть равный 7 мм. D – дисковое устройство, и 390 – максимально допустимый показатель напряжения.

Основные параметры варисторов

К таким параметрам относят:

  • норма напряжения;
  • максимально допустимый показатель переменного и постоянного тока;
  • пиковое поглощение энергии;
  • возможные погрешности;
  • время работы элемента.

Конструктивные особенности варисторов

Наиболее технологически востребованные материалы для изготовления варистора оксид цинка или порошок карбида кремния, он позволяет успешно поглощать импульсы напряжения с высокоэнергетическими импульсами. Процесс изготовления строится на основе «керамической» технологии, которая заключается на запрессовке элементов с обжигом, установкой электродов, выводов и покрытие приборов электроизоляцией и влагозащитным слоем. Благодаря стандартной технологии варисторы можно делать по индивидуальному заказу.

Диагностика

Чтобы проверить данное электронное устройство, используют специальное оборудование, которое называется тестером. Итак, для проведения испытания понадобится варистор, принцип работы которого заключается в изменении параметров сопротивления, и тестирующее устройство. Перед его началом необходимо включить устройство и переключить в режим сопротивления. Только тогда аппарат будет отвечать всем необходимым техническим требованиям, и величина сопротивления будет огромной.

Перед началом проведения испытаний необходимо проверить техническое состояние прибора. В первую очередь следует посмотреть на его внешний вид. На приборе не должно быть трещин, а также признаков того, что он сгорел. Не стоит относиться к осмотру аппарата халатно, так как любая небольшая поломка может привести к возникновению неприятных обстоятельств.

Емкость варистора

Поскольку варистор, подключаясь к обоим контактам питания, ведет себя как диэлектрик, то при нормальном напряжении он работает скорее как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет определенную емкость, которая прямо пропорциональна его площади и обратно пропорциональна его толщине.

При применении в цепях постоянного тока, емкость варистора остается более-менее постоянной при условии, что приложенное напряжение не больше номинального, и его емкость резко снижается при превышении номинального значения напряжения. Что касается схем на переменном токе, то его емкость может влиять на стабильность работы устройств.

Варисторы: применение

Такие приборы играют важную роль в жизни человека.

Из всего вышеперечисленного можно сказать, что варистор, принцип работы которого заключается в защите электроники от высокого напряжения в сети, помогает предотвратить поломку многих электрических приборов и сохранить проводку в целостности. Основным местом являются электрические цепи в различном оборудовании. Например, они встречаются в пусковых элементах освещения, которые еще называются балластами. Также устанавливаются в электрических схемах специальные варисторы, применение которых необходимо для стабилизации напряжения и тока.

Такие устройства используются еще в линиях электропередач. Но там они называются разрядниками, рабочее напряжение которых составляет более двадцати тысяч вольт.

Варисторы могут работать в большом диапазоне напряжения, который начинается с совсем маленького значения в 3 В, и заканчивается 200 В. Что касается силы тока элемента, то здесь диапазон составляет от 0,1 до 1 А. Такие показатели тока действительны только для низковольтного технического оборудования.

Отрицательные стороны

К основным отрицательным сторонам относятся:

  • повышение шума на низких частотах;
  • другие недостатки, проявляющиеся в зависимости от индивидуальных характеристик элемента.

Положительные стороны варисторов

Данный вид аппаратов имеет множество положительных качеств, если сравнивать его с другими приборами, например, с разрядником. К таким важным преимуществам можно отнести:

  • высокая скорость работы элемента;
  • возможность отслеживания перепадов тока безинерционным методом;
  • возможность использования на уровне напряжения в пределах от 12 до 1800 В;
  • длительный срок эксплуатации;
  • относительно малая стоимость за счет простоты конструкции.

Подбор варистора

Чтобы правильно подобрать варистор для определенного устройства необходимо знать характеристики его источника питания: сопротивление и мощность импульсов переходных процессов. Максимально допустимое значение тока определяется в том числе длительностью его воздействия и количеством повторений, поэтому при установке варистора с заниженным значением пикового тока, он достаточно быстро выйдет из строя. Если говорить кратко, то для эффективной защиты прибора необходимо выбирать варистор с напряжением, имеющим небольшой запас к номинальному.

Также для безотказной работы такого электронного компонента очень важна скорость рассеивания поглощенной тепловой энергии и возможность быстро возвращаться в состояние нормальной работы.

Как проверить варистор мультиметром - [ Статья ]

Содержание статьи

Варистор является разновидностью полупроводникового резистора с функцией предохранителя защищаемой цепи. Принцип работы варистора основан на резком и быстром уменьшении его электрического сопротивления при повышении напряжения на контактах. Отсюда следует параллельный способ подключения прибора к тому участку схемы, который необходимо шунтировать.

В штатном режиме варистор бездействует – он необходим при пиковых всплесках напряжения, которое может вывести из строя защищаемую схему. Рост разницы потенциалов приводит к протеканию тока через варистор, избыточная энергия выделяется прибором в тепловом виде. Внешне типичный варистор выглядит как таблетка с двумя усиками-выводами и похож на конденсатор, отличаясь от него по нанесенной маркировке.

Основные параметры и маркировка варисторов

Данный тип полупроводниковых приборов выпускается в двух разновидностях. Низковольтные варисторы срабатывают на напряжение в диапазоне от 3 до 200 Вольт, они применяются в бытовой аппаратуре. Высоковольтные способны реагировать на напряжение до 20 000 Вольт и используются в промышленности.

По маркировке прибора можно понять не только его назначение (и отличить от конденсатора), но и получить представление об основных характеристиках.

Например, варистор с надписью 20d421k имеет диаметр 20 миллиметров, пороговое напряжение открытия в 420 Вольт, а буква k обозначает допустимое отклонение данного напряжения, равное 10 %. То есть этот прибор может сработать уже при подаче 378 Вольт на его контакты (420 – 42).

На электрических схемах варистор обозначается аббревиатурой znrX, где X – количество приборов на данном участке схемы.

Проверка варистора – осмотр, омметр и мультиметр

При срабатывании данного полупроводникового прибора происходит значительное выделение тепла и варистор может сгореть. Это происходит при большом значении пикового напряжения, при его длительной подаче либо при сочетании обоих факторов.

Способов проверки варистора на дальнейшую работоспособность существует несколько:

  • Внешний осмотр. Его не стоит отвергать, так как многие современные схемы плотно упакованы, и нарушение целостности внешней оболочки прибора легко не заметить. Любые трещины, вспучивания или потемнения на корпусе варистора сигнализируют о его выходе из строя.
  • Прозвон с помощью мультиметра. Достоверно проверить варистор на исправность мультиметром прямо на плате невозможно — придется выпаивать как минимум один контакт. Важно провести измерение в обоих направлениях, поменяв щупы местами друг с другом. Селектор режимов мультиметра необходимо установить на ячейку «проверка диодов», обычно рядом с ней нарисован символ диода и значок акустической индикации. Целый варистор не прозванивается ввиду своего значительного сопротивления.
  • Измерение омметром либо мегаомметром. Следует установить омметр на максимальное значение, в большинстве бытовых приборов таковым является 2 МегаОма. На шкале они могут быт обозначены как 2000К или 2M. В теории измеренное сопротивление должно быть бесконечным, на практике омметр может показать значение сопротивления исправного варистора в 1,5…2 МегаОма. Если прозванивать варистор мегаомметром, важно установить правильное значение напряжения на его выводах. В мощных измерительных приборах оно может быть выше, чем пороговое напряжение открытия варистора. Проще говоря, полупроводниковый предохранитель можно сжечь в процессе проверки.

На практике использование мультиметра для диагностики исправности варисторов встречается не столь часто, так как в большинстве случаев достаточно внешнего осмотра. При замене сгоревшего предохранителя следует обратить внимание на технические характеристики его предшественника, иначе новый варистор выйдет из строя значительно быстрее либо не выполнит свою шунтирующую функцию и допустит повреждение целого электронного блока.


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Выберите правильные варисторы для защиты цепей от перенапряжения

Варисторы, также называемые металлооксидными варисторами (MOV), используются для защиты чувствительных цепей от различных условий перенапряжения. По сути, эти нелинейные устройства, зависящие от напряжения, имеют электрические характеристики, аналогичные соединенным друг с другом стабилитронам.

Загрузить статью в формате .PDF

Переходные процессы напряжения Варисторы обладают высокой долговечностью, которая необходима для выдерживания повторяющихся импульсных токов с высокой пиковой нагрузкой и переходных процессов с высокими импульсами.Они также предлагают широкий диапазон напряжений, высокое энергопотребление и быструю реакцию на скачки напряжения. Пиковый ток составляет от 20 до 70000 А, а пиковая мощность - от 0,01 до 10000 Дж.

В этом контексте «переходные процессы напряжения» определяются как кратковременные скачки электрической энергии. В электрических или электронных схемах, которые варисторы призваны защищать, эта энергия может выделяться либо предсказуемым образом посредством контролируемых переключающих действий, либо случайным образом индуцироваться в цепи от внешних источников.Общие источники включают:

Молния: Фактически, переходные процессы, вызванные молнией, не являются результатом прямого удара. Удар молнии создает магнитное поле, которое может вызвать переходные процессы большой величины в близлежащих электрических кабелях. Удар из облака в облако может повлиять как на воздушные, так и на подземные кабели. Результат также непредсказуем - удар, который происходит на расстоянии мили, может генерировать 70 В в электрических кабелях, а другой может генерировать 10 кВ на расстоянии 160 ярдов.
Коммутация индуктивной нагрузки: Генераторы, двигатели, реле и трансформаторы представляют собой типичные источники индуктивных переходных процессов.Включение и выключение индуктивных нагрузок может привести к возникновению высокоэнергетических переходных процессов, которые усиливаются по мере увеличения нагрузки. Когда индуктивная нагрузка отключена, коллапсирующее магнитное поле преобразуется в электрическую энергию, которая принимает форму двойного экспоненциального переходного процесса. В зависимости от источника эти переходные процессы могут достигать сотен вольт и сотен ампер с длительностью 400 мс. Из-за различных размеров нагрузки будет различаться форма волны, продолжительность, пиковый ток и пиковое напряжение переходных процессов.После того, как эти переменные будут приближены, разработчики схем смогут выбрать подходящий тип подавителя.
Электростатический разряд (ESD): Эта энергия является результатом дисбаланса положительных и отрицательных зарядов между объектами. Он характеризуется очень коротким временем нарастания и очень высокими пиковыми напряжениями и токами.

Основы варистора

Варисторы в основном состоят из массивов шариков из оксида цинка (ZnO), в которых ZnO был заменен небольшими количествами других оксидов металлов, таких как висмут, кобальт или марганец.В процессе производства MOV эти шарики спекаются (плавятся) в керамический полупроводник. Это создает кристаллическую микроструктуру, которая позволяет этим устройствам рассеивать очень высокие уровни переходной энергии по всей своей массе. После спекания поверхность металлизируется, а выводы крепятся пайкой.

Благодаря высокому рассеиванию энергии MOV, они могут использоваться для подавления молний и других высокоэнергетических переходных процессов, встречающихся в линиях электропередач переменного тока. Они способны выдерживать большие количества энергии и отводить эту потенциально разрушительную энергию от чувствительной электроники, расположенной ниже по потоку.MOV, которые также используются в цепях постоянного тока, имеют различные форм-факторы (рис. 1) .

% {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f227" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = "Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig1 "data-embed-src =" https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_2015_01_0215EE_png? auto = format & fit = max & w = 1440 "data-embed-caption =" "]}%
1. Металлооксидные варисторы (MOV) доступны в различных форм-факторах и размерах для широкого спектра применений. Тип свинцовых дисков является наиболее распространенной версией.

Многослойные варисторы

Многослойные варисторы (MLV) обращаются к определенной части спектра переходных напряжений: среде печатной платы. Несмотря на меньшую энергию, переходные процессы от электростатического разряда, индуктивного переключения нагрузки и даже остатки грозовых перенапряжений в противном случае могут достичь чувствительных интегральных схем на плате.MLV также изготавливаются из материалов ZnO, но они изготавливаются с переплетенными слоями металлических электродов и производятся в керамических корпусах без свинца. Они предназначены для перехода из состояния с высоким импедансом в состояние проводимости при воздействии напряжений, превышающих их номинальное напряжение.

MLV

выпускаются с кристаллами разного размера и способны рассеивать значительную энергию скачков напряжения для своего размера. Таким образом, они подходят как для систем подавления переходных процессов, так и для линий передачи данных и источников питания.

Руководство по применению

При выборе подходящего MOV для конкретного применения защиты от перенапряжения разработчик схемы должен сначала определить рабочие параметры защищаемой цепи, в том числе:

• Условия цепи, такие как пиковое напряжение и ток во время выброса
• Постоянное рабочее напряжение MOV (должно быть на 20% выше максимального напряжения системы при нормальных условиях)
• Количество скачков, которое должен выдержать MOV
• Допустимое допустимое отклонение - сквозное напряжение для защищаемой цепи
• Любые стандарты безопасности, которым цепь должна соответствовать

Для простоты в этом примере предположим, что целью является выбор низковольтного дискового MOV постоянного тока для следующих условий и требований схемы:

• Цепь постоянного тока 24 В
• Форма кривой тока для скачка напряжения 8 × 20 мкс; форма волны напряжения равна 1.2 × 50 мкс (это типичные стандартные формы сигналов)
• Пиковый ток во время скачка = 1000 A
• MOV должен выдерживать 40 скачков
• Другие компоненты схемы (управляющая ИС и т. Д.) Должны быть рассчитаны на выдерживает 300 В максимум

Шаг 1: Чтобы найти номинальное напряжение MOV, учитывайте запас в 20% для учета выбросов напряжения и допусков источника питания: 24 В постоянного тока × 1,2 = 28,8 В постоянного тока. Учитывая, что ни один из варисторов не имеет номинального напряжения ровно 28,8 В, проверьте спецификации для 31-В постоянного тока MOV.

% {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f229" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = "Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Table "data-embed-src =" https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_Table = max & w = 1440 "data-embed-caption =" "]}%

Шаг 2: Чтобы определить, какой размер диска MOV использовать, сначала определите серию MOV, которая минимально соответствует требованиям к перенапряжению 1000-A.Изучив приведенную выше таблицу, можно предположить, что MOV диаметром 20 мм с максимальным номинальным постоянным напряжением 31 В постоянного тока (номер детали V20E25P) является возможным решением, отвечающим требованиям.

Шаг 3: Используйте кривые мощности импульсов (рис. 2) в том же листе данных, чтобы определить импульсные характеристики относительно 40 импульсов при требовании 1000-А.

% {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f22b" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = "Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig2 "data-embed-src =" https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_Fig2.png?auto=format&fit=max&w=1440 %OV "data-embed]-caption =" 900 руб. В таблице данных приведена кривая мощности импульсов; этот пример для 20-мм MOV.

Шаг 4: Используйте кривую V-I (рис. 3) в таблице данных MOV, чтобы убедиться, что напряжение утечки будет меньше предельного значения 300 В.

% {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f22d" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = "Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig3 "data-embed-src =" https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_Fig3.png?auto=format&fit=max&w=1440 %OV %OV_Data-embed]-caption = "900_data_site_caption =" будет 9003. также имеют кривую зависимости напряжения от тока, такую ​​как эта кривая максимального напряжения фиксации для 20-мм устройства на рис. 2.

Защита MOV от теплового разгона

Поглощение варистором переходной энергии во время скачка напряжения вызывает локальный нагрев внутри компонента, что в конечном итоге приводит к его ухудшению.Если оставить без защиты, деградация варистора может увеличить нагрев и тепловой пробой. Таким образом, все большее количество устройств защиты от перенапряжения на основе варисторов предлагает встроенную функцию теплового отключения. Он обеспечивает дополнительную защиту от катастрофических отказов и опасностей пожара, даже в экстремальных обстоятельствах, когда варистор выходит из строя или при длительном перенапряжении.

MOV

рассчитаны на определенные рабочие напряжения сети переменного тока. Превышение этих пределов путем применения устойчивого состояния аномального перенапряжения может привести к перегреву и повреждению MOV.

MOV имеют тенденцию к постепенному ухудшению после большого всплеска или нескольких небольших всплесков. Это ухудшение приводит к увеличению тока утечки MOV; в свою очередь, это повышает температуру MOV даже при нормальных условиях, таких как рабочее напряжение 120 В переменного тока или 240 В переменного тока. Тепловой разъединитель, расположенный рядом с MOV (рис. 4) , можно использовать для определения повышения температуры MOV, пока он продолжает ухудшаться до состояния конца срока службы. В этот момент тепловой разъединитель размыкает цепь, удаляя из нее неисправный MOV и тем самым предотвращая потенциальный катастрофический отказ.

% {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f22f" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = "Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig4 "data-embed-src =" https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_fau&figit=0215EE = max & w = 1440 "data-embed-caption =" "]}%
4. Тепловое отключение может размыкать цепь, предотвращая катастрофический отказ неисправного MOV.

Драйверы светодиодов и освещения

Как правило, большинство источников питания светодиодов являются источниками постоянного тока и часто называются драйверами светодиодов. Их можно приобрести в виде готовых сборок, содержащих MOV, для удовлетворения требований к перенапряжениям более низкого уровня.

Обычно драйверы рассчитаны на перенапряжение в диапазоне от 1 до 4 кВ. Варистор диаметром от 7 до 14 мм обычно располагается после предохранителя в сети переменного тока. Однако, чтобы обеспечить более высокий уровень защиты от перенапряжения для освещения, установленного на открытом воздухе в условиях воздействия перенапряжения, OEM-производители наружного освещения могут захотеть добавить устройства защиты от перенапряжения (SPD) на входных линиях переменного тока своих светильников перед драйвером светодиода.

Пример конструкции MOV: Промышленные двигатели

Одним из аспектов защиты двигателя переменного тока является способность самого двигателя выдерживать импульсные перенапряжения. В параграфе 20.36.4 стандарта NEMA для двигателей-генераторов MG-1 единичное значение перенапряжения определяется следующим образом:

u × V LL (или 0,816 × V LL )

, где VL-L - линия-к- линейное напряжение системы переменного тока.

Для переходного времени нарастания от 0,1 до 0,2 мкс требуется удвоенное значение импульсной способности обмоток статора.Когда время нарастания достигает 1,2 мкс или больше, указывается в 4,5 раза больше единицы. В случае внешних переходных процессов, таких как молния, это будет соответствовать допустимому импульсному напряжению 918 В PEAK для двигателя на 230 В (ток полной нагрузки = 12 А) в условиях высокого напряжения 250 В. (Удары молнии могут превышать эти значения, поэтому обмотки статора также потребуют элемента подавления для защиты.)

Загрузить статью в формате .PDF

Рабочие температуры - еще одно соображение.Предположим, что рабочая температура окружающей среды для этого приложения находится в диапазоне от 0 до + 70 ° C. Это будет в пределах номинала MOV от -40 до + 85 ° C, и не будет необходимости в снижении номинальных значений импульсного тока или энергии в этом диапазоне температур. Принимая во внимание допуск на высокое напряжение, MOV с номиналом 275 В переменного тока может быть выбранным для этого примера. При использовании однофазного двигателя среднего размера мощностью 2 л.с. требуемый импульсный ток MOV будет определяться пиковым током, наведенным в источнике питания двигателя. Предполагая, что электродвигатель обслуживается, а полное сопротивление линии составляет 2 Ом, было определено, что возможен удар молнии 3 кА.
В этом случае в одном техническом описании указано максимальное напряжение фиксации 3 кА при 900 В, что ниже предполагаемой выдерживаемой способности обмотки статора 918 В. Если бы срок службы двигателя был оценен в 20 лет и определен как способный выдержать 80 переходных процессов молнии в течение срока службы, кривые номинальных импульсов в таблице данных подтвердили бы рейтинг 100+ скачков напряжения.

Для более подробного объяснения того, как согласовать MOV с приложениями, ознакомьтесь с «Руководством по проектированию варисторов постоянного тока».”

Варистор: определение, работа, работа и тестирование

Варистор - это устройство с нелинейной вольт-амперной характеристикой. Когда напряжение, приложенное к варистору, ниже его порогового значения, ток, протекающий через него, чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением, наоборот. Самый распространенный варистор - это металлооксидный варистор (MOV).

Варистор - это устройство с нелинейной вольт-амперной характеристикой. Когда напряжение, приложенное к варистору, ниже его порогового значения, ток, протекающий через него, чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением, наоборот.Самый распространенный варистор - это металлооксидный варистор (MOV).

Каталог

Ⅰ Что такое варистор?

Варистор - это устройство с нелинейной вольт-амперной характеристикой. Он в основном используется для ограничения напряжения, когда цепь подвергается перенапряжению, и поглощения избыточного тока для защиты чувствительных устройств. Его также называют «резистор, зависимый от напряжения », сокращенно « VDR ». Материал корпуса резистора варистора - полупроводник, поэтому это разновидность полупроводниковых резисторов.Варистор «оксид цинка» (ZnO), который сейчас широко используется, имеет основной материал, состоящий из двухвалентного элемента цинка (Zn) и шестивалентного элемента кислорода (O). Таким образом, с точки зрения материалов, варистор из оксида цинка - это своего рода «оксидный полупроводник II-VI».

Варистор

Варистор - это устройство защиты с ограничением напряжения. Используя нелинейные характеристики варистора, когда между двумя полюсами варистора возникает перенапряжение, варистор может ограничивать напряжение до относительно фиксированного значения напряжения, тем самым обеспечивая защиту последующей цепи.Основными параметрами варистора являются напряжение варистора, токовая нагрузка, емкость перехода, время отклика и т. Д.

Ⅱ Как работают варисторы?

Время отклика варистора составляет нс, что быстрее, чем у газоразрядной трубки, и немного медленнее, чем у трубки TVS. Как правило, скорость срабатывания защиты от перенапряжения для электронных схем может соответствовать требованиям. Емкость перехода варистора обычно составляет от сотен до тысяч ПФ.Во многих случаях его не следует напрямую применять для защиты высокочастотных сигнальных линий. При применении для защиты цепей переменного тока большая емкость перехода увеличивает утечку. При проектировании схемы защиты необходимо полностью учитывать ток. Варистор имеет большую пропускную способность, но меньше газоразрядной трубки.

Когда напряжение, подаваемое на варистор ниже его порогового значения, ток, протекающий через него, чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением.То есть, когда приложенное к нему напряжение ниже его порогового значения, это эквивалентно переключателю в выключенном состоянии.

Когда напряжение, приложенное к варистору, превышает его пороговое значение, ток, протекающий через него, резко увеличивается, что эквивалентно бесконечно малому сопротивлению. Другими словами, когда приложенное к нему напряжение превышает его пороговое значение, это эквивалентно переключателю в замкнутом состоянии.

Ⅲ Основные параметры варистора

Основными параметрами варистора являются номинальное напряжение, коэффициент напряжения, максимальное управляющее напряжение, коэффициент остаточного напряжения, ток утечки, ток утечки, температурный коэффициент напряжения, текущий температурный коэффициент, коэффициент нелинейности напряжения, изоляция сопротивление, статическая емкость и т. д..

1. Номинальное напряжение относится к значению напряжения на варисторе при прохождении постоянного тока 1 мА.

2. Отношение напряжений относится к соотношению значения напряжения, генерируемого, когда ток варистора составляет 1 мА, и значения напряжения, генерируемого, когда ток варистора составляет 0,1 мА.

3. Максимальное ограничивающее напряжение относится к максимальному значению напряжения, которое могут выдержать два конца варистора.

4. Отношение остаточных напряжений : Когда ток, протекающий через варистор, имеет определенное значение, генерируемое на нем напряжение называется этим значением тока как остаточным напряжением.Коэффициент остаточного напряжения - это отношение остаточного напряжения к номинальному напряжению.

5. Пропускная способность по току также называется пропускной способностью, которая относится к максимальному импульсному (пиковому) току, разрешенному для прохождения через варистор при определенных условиях (с указанным интервалом времени и количеством раз, применяется стандартный пусковой ток).

6. Thw ток утечки и ток ожидания относятся к току, протекающему через варистор при указанной температуре и максимальном постоянном напряжении.

7. Температурный коэффициент напряжения относится к скорости изменения номинального напряжения варистора в заданном температурном диапазоне (температура 20 ~ 70 ° C), то есть, когда ток через варистор остается постоянным, относительное изменение обоих концов варистора при изменении температуры на 1 ℃.

8. Температурный коэффициент тока относится к относительному изменению тока, протекающего через варистор, когда температура на варисторе остается постоянной, а температура изменяется на 1 ° C.

9. Коэффициент нелинейности напряжения относится к отношению значения статического сопротивления к значению динамического сопротивления варистора при заданном приложенном напряжении.

10. Сопротивление изоляции относится к значению сопротивления между выводом (выводом) варистора и изолирующей поверхностью корпуса резистора.

11. Статическая емкость относится к внутренней емкости самого варистора.

Ⅳ Функция варистора

Основная функция варистора - защита переходного напряжения в цепи.По принципу работы, описанному выше, варистор эквивалентен переключателю. Только когда напряжение выше порогового значения, а переключатель замкнут, ток, протекающий через него, резко возрастает, и влияние на другие цепи не сильно меняется, тем самым уменьшая влияние перенапряжения на последующие чувствительные цепи. Эта функция защиты варистора может использоваться многократно, а также может быть преобразована в одноразовое защитное устройство, подобное токовому предохранителю.

Функция защиты варистора получила широкое распространение.Например, в цепи питания домашнего цветного телевизора используется варистор для выполнения функции защиты от перенапряжения. Когда напряжение превышает пороговое значение, варистор отражает его характеристики фиксации. Чрезмерное напряжение понижается, так что последующая цепь работает в безопасном диапазоне напряжений.

Варистор в основном используется для защиты от переходных перенапряжений в цепи, но из-за его вольт-амперных характеристик, аналогичных полупроводниковому стабилитрону, он также имеет множество функций элементов схемы.Например, варистор представляет собой своего рода высоковольтный стабилизирующий элемент постоянного тока с малым током-напряжением со стабильным напряжением в тысячи вольт или более, чего нельзя достичь с помощью кремниевого стабилитрона. Варистор можно использовать в качестве элемента обнаружения флуктуации напряжения, битового элемента сдвига уровня постоянного тока, флуоресцентного пускового элемента, элемента выравнивания напряжения и так далее.

Ⅴ Варистор из оксида металла

Наиболее распространенным варистором является варистор из оксида металла (MOV), который содержит керамический блок, состоящий из частиц оксида цинка и небольшого количества других оксидов металлов или полимеров, зажатых между двумя металлическими листами.На стыке частиц и соседних оксидов образуется диодный эффект. Из-за большого количества грязных частиц это эквивалентно большому количеству диодов с обратным подключением. При низком напряжении наблюдается лишь небольшая обратная утечка тока. Когда встречается высокое напряжение, происходит обратный коллапс диода из-за горячих электронов и туннельного эффекта, и течет большой ток. Следовательно, кривая вольт-амперной характеристики варистора очень нелинейна: высокое сопротивление при низком напряжении и низкое сопротивление при высоком напряжении.

Металлооксидные варисторы в настоящее время являются наиболее распространенными устройствами ограничения напряжения и могут использоваться для различных напряжений и токов. Использование оксидов металлов в его структуре означает, что MOV очень эффективны в поглощении кратковременных скачков напряжения и имеют более высокие возможности управления энергией.

Как и обычные варисторы, металлооксидные варисторы начинают проводить при определенном напряжении и перестают проводить, когда напряжение ниже порогового. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV заключается в том, что ток утечки материала из оксида цинка через MOV очень мал при нормальных рабочих условиях, а его рабочая скорость намного выше в переходном режиме зажима.

MOV обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах и ​​печатных платах аналогичным образом. Типичный металлооксидный варистор имеет следующую структуру:

Металлооксидный варистор

Чтобы выбрать правильный MOV для конкретного применения, необходимо понимать полное сопротивление источника и возможную импульсную мощность переходного процесса.Для входных линейных или фазовых переходных процессов выбор правильного MOV немного сложнее, потому что характеристики источника питания, как правило, неизвестны. Вообще говоря, электрическая защита от переходных процессов и всплесков мощности схемы выбора MOV обычно является просто обоснованным предположением.

Однако металлооксидные варисторы могут использоваться для различных варисторных напряжений, от примерно 10 вольт до более 1000 вольт переменного или постоянного тока, поэтому он может помочь вам сделать выбор, зная напряжение питания.Например, выберите MOV или кремниевый варистор. Для напряжения его максимальное непрерывное среднеквадратичное значение напряжения должно быть немного выше, чем максимальное ожидаемое напряжение источника питания. Например, источник питания на 120 вольт соответствует среднеквадратичному значению 130 вольт, а 230 вольт - среднеквадратичному напряжению 260 вольт.

Максимальное значение импульсного тока, которое будет использовать варистор, зависит от ширины переходного импульса и количества повторений импульсов. Можно сделать предположение о ширине переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс).Если пикового значения импульсного тока недостаточно, варистор может перегреться и выйти из строя. Следовательно, если варистор работает без сбоев или деградации, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно возвращаться в свое предимпульсное состояние.

Ⅵ Характеристики поврежденного варистора

Резистор - это самый многочисленный компонент в электрооборудовании, но он не является компонентом с самой высокой степенью повреждения. Обрыв цепи - наиболее распространенный тип повреждения сопротивления.Редко сопротивление становится большим, и очень редко сопротивление становится маленьким. Распространенными типами являются резисторы с углеродной пленкой, резисторы с металлической пленкой, резисторы с проволочной обмоткой и резисторы с плавкими предохранителями. Наиболее широко используются первые два типа резисторов. Их характеристики повреждения - низкое сопротивление (ниже 100 Ом;) и высокое сопротивление (выше 100 Ом;). Во-вторых, при повреждении резистора с низким сопротивлением он часто сгорает и почернеет, что легко найти, а при повреждении резистора с высоким сопротивлением остается мало следов.Резисторы с проволочной обмоткой обычно используются для ограничения высокого тока, а сопротивление невелико. Когда цилиндрический резистор с проволочной обмоткой сгорит, часть его станет черным или поверхность взорвется, треснет. Цементное сопротивление - это разновидность проволочного сопротивления намотки, которое может сломаться при выгорании, иначе не останется видимых следов. Когда предохранитель перегорит, некоторые поверхности оторвутся, а на некоторых не останется следов, но они никогда не сгорят и не станут черными.

Ⅶ Как проверить варисторы?

1.Подготовка перед измерением варистора

Подключите два измерительных провода (независимо от положительного и отрицательного) к двум концам резистора, чтобы измерить фактическое значение сопротивления. Для повышения точности измерения диапазон выбран в соответствии с номиналом измеряемого сопротивления. Из-за нелинейной зависимости шкалы Ом средняя часть шкалы в порядке. Следовательно, значение указателя должно упасть, насколько это возможно, до середины шкалы, то есть в диапазоне от 20% до 80% радиана полной шкалы.В зависимости от уровня погрешности сопротивления допускается погрешность ± 5%, ± 10% или ± 20% между показанием и номинальным сопротивлением, соответственно. Если диапазон ошибок превышен, резистор изменил стандартное значение.

2. Как измерить качество варистора?

Для определения варистора обычно требуется источник питания с широким диапазоном регулируемого напряжения, и он имеет хороший эффект ограничения тока. При измерении параллельно варистору подключают вольтметр с хорошей точностью.Подключите регулируемый провод питания к обоим концам варистора.

Вольтметр показывает напряжение питания. Вам следует медленно регулировать напряжение и вы увидите, что напряжение внезапно падает после достижения определенного напряжения. Напряжение в последний момент перед понижением является значением защиты варистора.

При постоянном напряжении, подаваемом на варистор, значение его сопротивления может изменяться от МОм (МОм) до МОм (Миллиом). Когда напряжение низкое, варистор работает в области тока утечки, показывая большое сопротивление, а ток утечки невелик; когда напряжение возрастает до нелинейной области, ток изменяется в относительно большом диапазоне, и напряжение не изменяется сильно, показывая хорошую характеристику ограничения напряжения; когда напряжение снова повышается, варистор входит в область насыщения и имеет очень маленькое линейное сопротивление.Из-за большого тока варистор со временем перегреется и сгорит или даже лопнет.

Мультиметр

3. Выбор варистора

При выборе варистора необходимо учитывать особые условия схемы и, как правило, соблюдать следующие принципы:

(1) Выбор напряжения варистора V1mA

В соответствии с выбором напряжения источника питания, напряжение источника питания, непрерывно подаваемое на варистор, не должно превышать значение «максимального продолжительного рабочего напряжения», указанное в спецификации.То есть максимальное рабочее напряжение постоянного тока варистора должно быть больше, чем рабочее напряжение постоянного тока VIN линии питания (сигнальной линии), то есть VDC ≥ VIN; При выборе источника питания 220 В переменного тока необходимо полностью учитывать диапазон колебаний рабочего напряжения электросети. Общий диапазон колебаний внутренней электросети составляет 25%. Следует выбрать варистор с напряжением варистора от 470 В до 620 В. Выбор варистора с более высоким напряжением варистора может снизить частоту отказов и продлить срок службы, но остаточное напряжение немного увеличивается.

(2) Выбор трафика

Номинальный ток разряда варистора должен быть больше, чем импульсный ток, необходимый для выдерживания, или максимальный импульсный ток, который может возникнуть во время работы оборудования. Номинальный ток разряда должен быть рассчитан путем нажатия значения более 10 разрядов на кривой номинальных значений времени работы от перенапряжения, что составляет около 30% от максимального потока разряда (т. Е. 0,3IP).

(3) Выбор напряжения фиксации

Напряжение фиксации варистора должно быть меньше максимального напряжения (т. Е. Безопасного напряжения), которое может выдержать защищаемый компонент или оборудование.

(4) Выбор конденсатора Cp

Для сигналов высокочастотной передачи емкость Cp должна быть меньше, и наоборот

(5) Согласование внутреннего сопротивления (согласование сопротивления)

Взаимосвязь между внутреннее сопротивление R (R≥2Ω) защищаемого компонента (линии) и переходное внутреннее сопротивление Rv варистора: R≥5Rv; для защищаемого компонента с малым внутренним сопротивлением, не влияющим на скорость передачи сигнала, следует попробовать использовать большой варистор конденсатора.

Статьи по теме:

SMD-резисторы: коды, размер, тестирование, допуски и выбор

В чем разница между подтягивающими и понижающими резисторами?

Варистор на основе оксида металла (MOV), основы, работа, характеристики, характеристики, характеристики

Варистор оксида металла (MOV)

Основы варистора

Варистор / резистор, зависимый от напряжения (VDR) - это компонент, который имеет вольт-амперные характеристики, которые очень похожи на характеристики диода.Этот компонент используется для защиты электрических устройств от высоких переходных напряжений. Они вставлены в устройства таким образом, чтобы они замыкались при возникновении большого тока из-за высокого напряжения. Таким образом, компоненты устройства, зависящие от тока, будут защищены от внезапного скачка напряжения.

Я уже подробно объяснил работу и применение переменного резистора [варистора]. Чтобы узнать больше об этом, перейдите по ссылке ниже.

СМОТРЕТЬ: ПЕРЕМЕННЫЕ РЕЗИСТОРЫ - РАБОТА И ПРИМЕНЕНИЕ

Следует также отметить, что VDR в основном представляют собой неомические переменные резисторы.В случае омических переменных резисторов обычно используются потенциометры и реостат.

Чтобы узнать больше, пройдите по ссылке ниже.

ПОСМОТРЕТЬ: ПОТЕНЦИОМЕТР И РЕОСТАТ - РАБОТА И СРАВНЕНИЕ

Металлооксидный варистор - основные сведения

MOV - наиболее часто используемый тип варистора. Он называется так, потому что компонент изготовлен из смеси оксида цинка и оксидов других металлов, таких как кобальт, марганец и т. Д., И остается неповрежденным между двумя электродами, которые в основном представляют собой металлические пластины.MOV - это наиболее часто используемый компонент для защиты тяжелых устройств от переходных напряжений. Между каждой границей зерна и его ближайшим соседом образуется диодный переход. Таким образом, MOV - это, по сути, огромное количество диодов, подключенных параллельно друг другу. Они предназначены для работы в параллельном режиме, так как он будет лучше справляться с энергопотреблением. Но если компонент предназначен для обеспечения лучшего номинального напряжения, лучше соединить их последовательно.

Обратный ток утечки появляется через диодные переходы каждой границы, когда к электродам прикладывается внешнее крошечное напряжение.Производимый ток также будет очень небольшим. Но когда на электроды подается большое напряжение, пограничный переход диода выходит из строя в результате сочетания туннелирования электронов и лавинного пробоя. Таким образом, устройство демонстрирует высокий уровень нелинейных вольт-амперных характеристик. Из характеристик следует также отметить, что компонент будет иметь низкое сопротивление при высоких напряжениях и высокое сопротивление при низких напряжениях.

Единственная проблема с этим компонентом заключается в том, что они не могут выдерживать переходное напряжение, превышающее превышенное номинальное.Они имеют тенденцию к ухудшению после определенного уровня. В таком случае их придется время от времени заменять. Когда они поглощают переходное напряжение, они склонны рассеивать его в виде тепла. Когда этот процесс повторяется в течение некоторого времени, устройство начинает изнашиваться из-за чрезмерного нагрева.

Их можно подключать параллельно для повышения энергоэффективности. MOV также могут быть подключены последовательно, чтобы обеспечить более высокое номинальное напряжение или обеспечить номинальное напряжение между стандартными приращениями.

MOV Технические характеристики
  • Максимальное рабочее напряжение - это максимальное установившееся постоянное напряжение. В этом случае значение типичного тока утечки будет меньше заданного значения.
  • Напряжение варистора
  • Максимальное напряжение фиксации получается, когда к компоненту прикладывается определенный импульсный ток для получения максимального пикового напряжения.
  • Импульсный ток
  • Импульсный сдвиг относится к изменению напряжения после подачи импульсного тока.
  • Поглощение энергии означает максимальную энергию, которая рассеивается для определенной формы сигнала без особых проблем.
  • Емкость
  • Ток утечки
  • Время ответа
  • Максимальное среднеквадратичное напряжение переменного тока означает максимальное значение среднеквадратичного напряжения, которое может подаваться на компонент.

Работа металлооксидного варистора (MOV)
Работа металлооксидного варистора (MOV)

Работа MOV показана на рисунке выше.

Сопротивление MOV очень высокое. Во-первых, давайте рассмотрим, что компонент имеет разомкнутую цепь, как показано на рисунке 1 (а). Компонент начинает проводить ток, как только напряжение на нем достигает порогового значения. Когда оно превышает пороговое напряжение, сопротивление в MOV сильно падает и достигает нуля. Это показано на рисунке 1 (b). Поскольку в это время устройство имеет очень малый импеданс из-за высокого напряжения на нем, весь ток будет проходить через сам металлооксидный варистор.Компонент должен быть подключен параллельно нагрузке. Максимальное напряжение, которое будет проходить через нагрузку, будет суммой напряжения, которое появляется на проводке и отключении, заданном для устройства. Также будет добавлено напряжение фиксации на MOV. После того, как переходное напряжение пройдет через компонент, MOV снова будет ждать следующего переходного напряжения. Это показано на рисунке 1 (c).

MOV Производительность

Варистор в основном используется в качестве ограничителя скачков напряжения в сети.Устройство не проводит ток, когда напряжение на нем ниже напряжения ограничения. Но, если через него проходит сильный выброс (молния), который более высок, чем может выдержать варистор, компонент не будет работать. Результирующий ток будет настолько высоким, что повредит MOV.

Производительность варистора со временем снижается, даже если через него проходят небольшие скачки. Срок службы MOV будет объяснен в таблице производителей. Диаграмма будет иметь графики и показания между током, временем, а также количеством переходных импульсов, которые проходят через варистор.

Другая основная причина, которая влияет на производительность MOV, - это класс энергопотребления. При увеличении номинального значения энергии произойдет экспоненциальное изменение срока службы варистора. Таким образом, произойдет изменение переходных импульсов, которыми может управлять устройство. Это увеличивает фиксирующее напряжение при выходе из строя каждого переходного процесса.

Производительность можно увеличить, подключив несколько варисторов параллельно. Поможет и повышение рейтинга.

Одна из лучших особенностей MOV - время отклика.Шипы закорачиваются через устройство за наносекунды. Но на время отклика могут влиять способ монтажа и индуктивность выводов компонентов.

Варисторы

- обзор | ScienceDirect Topics

b Варисторы на основе оксида цинка.

Металлооксидные варисторы - это класс полупроводниковых устройств, которые демонстрируют очень нелинейные вольт-амперные характеристики и которые нашли широкое применение в качестве защитных устройств электрических цепей от переходных скачков напряжения (Matsuoka, 1971; Harnder et al., 1972). Коммерчески доступные варисторы изготавливаются путем спекания порошка оксида цинка с оксидом висмута и рядом других добавок, точный состав которых является частной информацией.

Обычно чистый оксид цинка ведет себя как изолятор, и его можно сделать проводящим, только изменив стехиометрию, например, добавив избыток цинка (Heiland et al., 1959). Однако, например, при добавлении небольших количеств оксида висмута материал демонстрирует неомическую электрическую проводимость.Это необычное поведение побудило нескольких исследователей исследовать его происхождение, чтобы оптимизировать его (Моррис, 1973; Левинсон и Филипп, 1975; Бернаскони и др., 1976; Моррис и Кан, 1975). Большинство из них постулировали наличие непрерывного межкристаллитного слоя с высоким сопротивлением, разделяющего зерна оксида цинка и действующего как электрический барьер. Основываясь на наличии слоя, Левинсон и Филипп (1975) смогли объяснить нелинейные ВАХ с точки зрения тока Шоттки и туннелирования Фаулера-Нордхейма.

Однако эксперименты Морриса и Кана (1975), исследующие систему ZnO – Bi 2 O 3 , прототип коммерческого материала, показывают, что непрерывная межзеренная пленка не образуется вокруг зерен оксида цинка и, следовательно, не может учитывать варисторное поведение материала. Во-первых, при использовании всего лишь 0,008 м / о Bi 2 O 3 , чего едва хватило для покрытия зерен, было продемонстрировано варисторное поведение. Во-вторых, они обнаружили, что фаза Bi 2 O 3 появляется на стыках трех и четырех зерен с двугранным углом примерно 60 ° - явно слишком большим углом, чтобы она могла смачивать зерна оксида цинка и образовывать сплошное зерно. пограничная пленка.В-третьих, как Оже-спектроскопический анализ, так и спектроскопический анализ ионного рассеяния на поверхностях изломов показывают, что, хотя граница зерен сильно обогащена Bi, она быстро спадает на расстоянии не более 2 нм. Это расстояние соответствует оценке верхнего предела поглощения Гиббса для чистого Bi 2 O 3 на оксиде цинка, тем самым показывая, что на зернах присутствует поглощенный слой, а не пленка.

Ситуация была дополнительно прояснена путем получения электронного изображения с высоким разрешением (Clarke, 1978) коммерчески доступного варистора ZnO, включающего Bi 2 O 3 , CoO, MnO, Cr 2 O 3 и Sb 2 О 3 .Эти наблюдения показывают, что фаза, обогащенная Bi 2 O 3 , локализуется на стыках трех и четырех зерен и во многих случаях можно увидеть, что она резко обрывается, как на рис.16 и как обнаружено (Morris and Cahn, 1975). в материале прототипа. В этих случаях двугранный угол, образованный контактом с зернами оксида цинка, отличен от нуля и находится в диапазоне 12–85 °. Изменение объясняется как возможным изменением состава в богатой фазе Bi 2 O 3 от одного места к другому, так и любой анизотропией поверхностной энергии оксида цинка.Кроме того, на многих из этих границ зернограничные дислокации могут наблюдаться по их контрасту деформации вдали от стыка трех зерен. Их присутствие снова указывает на отсутствие межзеренной пленки, вывод, который подтверждается изображением границы решеткой.

Рис. 16. Тройной переход зерна в коммерческом варисторе ZnO. Темная область на стыке - это богатая фаза Bi 2 O 3 , которая не распространяется вдоль границы, о чем свидетельствует наличие зернограничных дислокаций (указано стрелкой).

Относительно толстая пленка видна на некоторых границах зерен, как было показано на изображении полос решетки на рис. 17, но это необычно. Предварительная работа предполагает, что образование межзеренной пленки имеет кристаллографическое происхождение, поскольку оно происходит только на границах, которые являются как прямыми, так и очерченными базисной плоскостью в одном из соседних зерен (Clarke, 1977). Это явно область, заслуживающая дальнейшего изучения, поскольку она позволяет впервые изучить микроскопические аспекты смачивания.

Рис. 17. Изображение решетки из того же материала варистора, что и на рис. 16, демонстрирующее необычно толстую межзерновую пленку P.

Варистор на основе оксида металла (MOV) Характеристики, работа и техническое описание

Варистор на основе оксида металла (MOV)

Металлооксидный варистор (MOV)

Металлооксидный варистор (MOV)

Распиновка MOV

нажмите на изображение, чтобы увеличить

A Металлооксидный варистор ( MOV ) - это защитный компонент, используемый в цепях питания, которые питаются непосредственно от сети переменного тока.Он используется для защиты схемы от скачков высокого напряжения путем изменения ее сопротивления.

Описание штифта

Металлооксидные варисторы похожи на резисторы и имеют только два вывода. Эти выводы не имеют полярности, поэтому их можно подключать в обоих направлениях.

Характеристики
  • Диапазон напряжения переменного тока: от 130 до 1000 В
  • Диапазон напряжения постоянного тока: от 175 до 1200 В
  • Сопротивление изоляции: 1000 МОм
  • Рабочая температура: от -55 до +85 ° C

Примечание: Вышеуказанные функции применимы ко всей серии LA Varistor компании Littlefuse.Обратитесь к таблице данных, приведенной ниже, чтобы выбрать соответствующий номер модели в соответствии с вашим приложением.

Как работает MOV?

Термин MOV означает « Металлооксидный варистор ». Как следует из названия варистор, это переменный резистор. Но в отличие от потенциометра сопротивление MOV изменяется автоматически в зависимости от напряжения на нем. Если напряжение на нем увеличивается, сопротивление уменьшается, и наоборот.Это свойство полезно для защиты цепей от скачков высокого напряжения.

Как использовать MOV в вашей цепи?

MOV обычно используется вместе с предохранителем параллельно цепи, которая должна быть защищена, как показано на изображении ниже.

Когда напряжение находится в пределах номинальных значений, сопротивление MOV будет очень высоким, и, следовательно, весь ток течет через цепь, а ток через MOV не течет.

Но когда в главном напряжении возникает скачок напряжения, он появляется непосредственно на MOV, поскольку он размещен параллельно сети переменного тока.Это высокое напряжение снизит значение сопротивления MOV до очень низкого значения, что сделает его похожим на короткое замыкание.

Это заставляет большой ток течь через MOV, который протекает через предохранитель и отключит цепь от сетевого напряжения. Во время скачков напряжения неисправное высокое напряжение очень скоро вернется к нормальным значениям, в этих случаях продолжительность протекания тока будет недостаточно высокой, чтобы перегореть предохранитель, и схема вернется в нормальный режим работы, когда напряжение станет нормальным.Но каждый раз, когда обнаруживается всплеск, MOV на мгновение отключает цепь, закорачивая себя и повреждая себя каждый раз большим током. Так что, если вы обнаружите, что MOV поврежден в какой-либо силовой цепи, возможно, это связано с тем, что в цепи было много скачков напряжения.

Приложения
  • Защита от перенапряжения
  • Защита от скачков напряжения
  • Линия защиты
  • Защита от переключения
  • Защита свода.

2D Модель

MOV бывают разных размеров и форм. Стандартные обозначения - 7 мм, 10 мм, 14 мм и 20 мм. Размеры всех можно найти в таблице ниже.

Параметр емкости в техпаспорте варистора

Металлооксидные варисторы (MOV) ведут себя во многом как конденсатор, за исключением того, что диэлектрический изолятор между двумя оловянными пластинами имеет фиксированное «мягкое» фиксирующее напряжение, выше которого MOV начинает проводить ток в любом направлении.По мере роста напряжения течет и ток.

При двойном номинальном напряжении MOV они могут поглощать (на короткое время) несколько десятков тысяч ампер. Вот почему они так популярны в ограничителях перенапряжения для источников питания переменного или постоянного тока. Из-за своей высокой емкости они не используются для защиты каналов данных. Транзорбы, сидаки и газовые трубки лучше подходят для этих целей.

Емкость MOV не зависит от изменения напряжения (то же самое для Tranzorbs, Sidacs и газовых трубок) до тех пор, пока напряжение не превысит напряжение фиксации MOV.Часто максимально допустимое безопасное напряжение переменного / постоянного тока печатается на MOV. Его размер и таблицы содержат подробную информацию о максимальном импульсном токе, который он может выдержать за один раз, и о том, что он может выдержать с 5000 или около того «небольшими» скачками, поэтому срок его службы можно предсказать в реальных условиях.

Поскольку MOV представляет собой две металлические пластины, разделенные диэлектриком, он действует как конденсатор в диапазоне нФ. Чем больше размер, тем больше емкость, но этого недостаточно, чтобы повлиять на подачу питания переменного или постоянного тока, поскольку они имеют низкий импеданс привода, поэтому MOV «игнорируются» до тех пор, пока не произойдет скачок напряжения. .По этой причине MOV должны быть снабжены предохранителями или иметь автоматический выключатель, включенный последовательно с ними, на случай, если скачок настолько велик, что MOV откажет (закорачивает).

Для получения более подробной информации и графиков перейдите по следующей ссылке: https: //en.wikipedia.org/wiki/Varistor
Это несколько абзацев из ссылки Wiki, в которых резюмируются некоторые важные детали.

Состав и работа
Вольт-амперные характеристики варистора для приборов из оксида цинка (ZnO) и карбида кремния (SiC) :
Наиболее распространенный тип Варистор - это металлооксидный варистор (MOV).Этот тип содержит керамическая масса из зерен оксида цинка в матрице из оксидов других металлов (например, небольшое количество висмута, кобальта, марганца) в прослоках между двумя металлическими пластинами (электродами). Граница между каждым зерно и его сосед образует диодный переход, который пропускает ток течь только в одном направлении. Масса случайно ориентированных зерен составляет электрически эквивалентен сети пар встречных диодов, каждая пара параллельно со многими другими парами.

Когда маленький или на электроды подается умеренное напряжение, только крошечный ток потоки, вызванные обратной утечкой через диодные переходы.Когда подается большое напряжение, диодный переход выходит из строя из-за сочетание термоэлектронной эмиссии и электронного туннелирования, а также большой текущие потоки. Результатом такого поведения является сильно нелинейный вольт-амперная характеристика, при которой МОВ имеет высокое сопротивление при низких напряжениях и низкое сопротивление при высоких напряжениях.

Электрические характеристики :
Варистор остается непроводящим в качестве шунтирующего устройства во время нормальной работы, когда напряжение на нем остается значительно ниже допустимого. «ограничивающее напряжение», поэтому варисторы обычно используются для подавления скачки напряжения в сети.Варисторы почти всегда в конечном итоге выходят из строя. по любой из двух причин.

Катастрофический отказ происходит из-за неудачного ограничения очень большой всплеск от такого события, как удар молнии, когда энергия задействованный на много порядков больше, чем может варистор ручка. Последующий ток в результате удара может расплавиться, загореться, или даже испарить варистор. Этот тепловой разгон происходит из-за отсутствия соответствия в отдельных межзеренных стыках, что приводит к отказ основных путей тока при тепловом напряжении, когда энергия в переходном импульсе (обычно измеряется в джоулях) слишком высока (я.е. значительно превышает «Абсолютный максимум» производителя Рейтинги »). Вероятность катастрофического отказа можно снизить за счет повышение рейтинга, либо за счет использования одного варистора более высокого рейтинг или подключив несколько устройств параллельно.

Кумулятивная деградация происходит по мере возникновения меньших скачков напряжения. По историческим причинам многие MOV были указаны неправильно, что позволяло частые вздутия, которые также снижают емкость. В этом состоянии варистор не имеет видимых повреждений и внешне выглядит исправным (нет катастрофический отказ), но он больше не предлагает защиты.В конце концов, он переходит в состояние короткого замыкания, поскольку энергия разряжается создают токопроводящий канал через оксиды.

Основным параметром, влияющим на срок службы варистора, является его энергия. (Джоуль) рейтинг. Повышение энергетического рейтинга увеличивает количество (определенный максимальный размер) переходные импульсы, которые он может выдержать экспоненциально, а также кумулятивная сумма энергии от зажима меньшие импульсы. Когда возникают эти импульсы, "напряжение зажима" обеспечивает уменьшение во время каждого события, и варистор обычно считается функционально ухудшенным, когда его "ограничивающее напряжение" изменилось на 10%.Графики ожидаемого срока службы производителя относятся к текущему, серьезность и количество переходных процессов для прогнозирования отказов на основе общая энергия, рассеиваемая в течение срока службы детали.

В чем разница между характеристиками варистора и обычных резисторов?

20 августа 2020 г.

1. Введение варистора

«Варистор » - резистивное устройство с нелинейными вольт-амперными характеристиками.Он в основном используется для ограничения напряжения, когда цепь подвергается перенапряжению, и поглощения избыточного тока для защиты чувствительных устройств. Материал корпуса резистора варистора - полупроводник, который представляет собой устройство защиты с ограничением напряжения. Используя нелинейные характеристики варистора, когда между двумя полюсами варистора возникает перенапряжение, варистор может ограничивать напряжение до относительно фиксированного значения напряжения, тем самым обеспечивая защиту последующей цепи.Основными параметрами варистора являются напряжение варистора, токовая нагрузка, емкость перехода, время отклика и т. Д.

2. Принцип работы варистора

Когда напряжение, приложенное к варистору ниже его порогового значения, ток, протекающий через он чрезвычайно мал, что эквивалентно резистору с бесконечным сопротивлением. Другими словами, когда приложенное к нему напряжение ниже его порогового значения, это эквивалентно переключателю в выключенном состоянии.

Когда напряжение, приложенное к варистору, превышает его пороговое значение, ток, протекающий через него, резко увеличивается, что эквивалентно резистору с бесконечным сопротивлением.Другими словами, когда приложенное к нему напряжение превышает его пороговое значение, он эквивалентен замкнутому переключателю.

3. Меры предосторожности для варистора

(1) Необходимо убедиться, что непрерывное рабочее напряжение не превышает максимально допустимого значения при максимальных колебаниях напряжения, в противном случае срок службы варистора будет сокращен;

(2) Когда между линией питания и землей используется варистор, иногда напряжение между линией и землей повышается из-за плохого заземления.Поэтому обычно используется варистор с более высоким номинальным напряжением, чем при линейном использовании.

4. Функция варистора

Какая польза от варистора? Самая большая особенность варисторного генератора заключается в том, что когда приложенное к нему напряжение ниже его порогового значения «UN», ток, протекающий через него, чрезвычайно мал, что эквивалентно закрытому клапану. Когда оно превышает UN, его значение сопротивления становится меньше, так что ток, протекающий через него, резко увеличивается и влияние на другие цепи не изменяется, тем самым уменьшая влияние перенапряжения на последующие чувствительные цепи.Используя эту функцию, вы можете подавить ненормальное перенапряжение, которое часто возникает в цепи, и защитить цепь от повреждения из-за перенапряжения.

5. Тип применения варистора

Различные случаи использования, цель применения варистора, напряжение / ток, действующие на варистор, должны быть разными.

Поэтому требования к варисторам тоже разные. Для правильного использования очень важно различать эту разницу.

В зависимости от назначения варисторы можно разделить на две категории:

① Варистор для защиты

② Варистор для функции схемы

6.Типы варисторов

Тип подавления перенапряжения: относится к варистору, используемому для подавления переходных перенапряжений, таких как грозовые перенапряжения и рабочие перенапряжения. Возникновение таких переходных перенапряжений является случайным и непериодическим. Пиковый ток и напряжение могут быть очень высокими. Большинство варисторов попадают в эту категорию.

Мощный тип: относится к варистору, используемому для поглощения непрерывных групп импульсов, которые появляются периодически, например, варистор, подключенный к импульсному преобразователю мощности, где импульсное напряжение появляется периодически, и период известен, а значение энергии может как правило, рассчитывать Пиковое значение напряжения невелико, но из-за высокой частоты его появления средняя мощность довольно велика.

Высокоэнергетический тип: относится к варистору, используемому для поглощения магнитной энергии в больших катушках индуктивности, таких как катушки возбуждения генератора и катушки подъемного электромагнита. Для этого типа применения основным техническим показателем является способность поглощать энергию.

Функция защиты варистора может многократно повторяться в большинстве приложений, но иногда она также превращается в «одноразовое» защитное устройство, такое как предохранитель. Например, варистор с короткозамыкающими контактами, подключенный параллельно некоторым нагрузкам трансформатора тока.

7. Базовое исполнение варистора

(1) Характеристики защиты. Когда ударная вязкость источника удара не превышает заданное значение, предельное напряжение варистора не должно превышать выдерживаемое ударное напряжение, которое может выдержать защищаемый объект.

(2) Характеристики ударопрочности, т. Е. Сам варистор должен выдерживать указанный ударный ток, энергию удара и среднюю мощность при последовательных множественных ударах.

(3) Имеются две характеристики срока службы: первая - это срок службы при непрерывном рабочем напряжении, то есть варистор должен надежно работать в течение указанного времени (часов) при указанной температуре окружающей среды и условиях напряжения системы; второй - ударопрочность, то есть он может надежно выдержать заданное количество ударов.

(4) После того, как варистор вмешивается в систему, помимо защиты предохранительного клапана, он также вызывает некоторые дополнительные эффекты, так называемый «вторичный эффект», который не должен снижать нормальные рабочие характеристики. системы.Необходимо учитывать три основных фактора: один - это емкость самого варистора (от десятков до десятков тысяч PF), второй - ток утечки под системным напряжением, а третий - связь нелинейного тока варистор через сопротивление источника. Влияние на другие схемы.

8. Основные параметры варистора

Номинальное напряжение варистора (В)

Относится к значению напряжения на варисторе при прохождении импульсного тока с заданной длительностью (обычно длительность 1 мА обычно меньше 400 мс).

Коэффициент напряжения

Это относится к отношению значения напряжения, генерируемого, когда ток варистора составляет 1 мА, к значению напряжения, генерируемому, когда ток варистора составляет 0,1 мА.

Максимальное предельное напряжение (В)

Пиковое значение напряжения на варисторе при максимальном пиковом токе импульса Ip, которое варистор может выдержать, и заданной форме волны.

Степень остаточного давления

Когда ток через варистор имеет определенное значение, напряжение, генерируемое на двух его концах, называется остаточным напряжением этого значения тока.Коэффициент остаточного напряжения - это отношение остаточного напряжения к номинальному напряжению.

Пропускная способность (кА)

Пропускная способность также называется расходом, который относится к максимальному значению импульсного (пикового) тока, который может проходить через варистор при определенных условиях (указанный интервал времени и количество раз , применяя стандартный импульсный ток).

Ток утечки (мА)

Ток утечки также называется током ожидания, который относится к току, протекающему через варистор при указанной температуре и максимальном постоянном напряжении.

Температурный коэффициент напряжения

Относится к скорости изменения номинального напряжения варистора в заданном температурном диапазоне (температура 20 ° C ~ 70 ° C), то есть когда ток через варистор остается постоянным, а температура изменяется на 1 ° C, варистор Относительное изменение напряжения на устройстве.

Текущий температурный коэффициент

Это относится к относительному изменению тока, протекающего через варистор, когда температура изменяется на 1 ° C, когда напряжение на варисторе остается постоянным.

Коэффициент нелинейности напряжения

Относится к отношению значения статического сопротивления к значению динамического сопротивления варистора при заданном приложенном напряжении.

Сопротивление изоляции: относится к значению сопротивления между выводным проводом (выводом) варистора и изолирующей поверхностью резистора.

Статическая емкость (PF)

Относится к внутренней емкости самого варистора.

номинальная мощность

Работа в течение 1000 часов при определенной температуре окружающей среды 85 ° C, чтобы изменение напряжения варистора составляло менее 10% от максимальной мощности.

Максимальный ударный ток (8/20 мкс)

Импульсируйте варистор определенным импульсным током (форма волны 8/20 мкс) один или два раза (каждый интервал 5 минут), чтобы изменение напряжения варистора оставалось в пределах 10% от максимальный импульсный ток.

9. Принцип работы варистора

Принцип защиты поглотителя перенапряжения: когда варистор находится в состоянии готовности, по сравнению с защищаемым электронным компонентом, он имеет очень высокий импеданс (несколько мегаом) и не влияет на характеристики схемы оригинального дизайна.Но когда появляется мгновенное импульсное напряжение (когда оно превышает напряжение пробоя поглотителя перенапряжения), полное сопротивление поглотителя перенапряжения становится низким (всего несколько Ом) и вызывает короткое замыкание.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *