Закрыть

Отличие фазы от нуля: Что такое фаза, ноль и земля: объясняем простым языком

Содержание

Что такое ноль и фаза в электричестве и зачем он нужен?

Очень немного людей  понимают суть электричества. Такие понятия как «электрический ток», «напряжение» «фаза» и «ноль» для большинства являются  темным лесом, хотя с ними мы сталкиваемся каждый день. Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве. Для обучения электричеству с «нуля» нам нужно разобраться с фундаментальными понятиями. В первую очередь нас интересуют электрический ток и электрический заряд.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Электрический ток и электрический заряд

Электрический заряд – это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон. Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон.

Заряд электрона — минимальный электрический заряд (квант, порция заряда), который встречается в природе у свободных долгоживущих частиц.

Заряды условно делятся на положительные и отрицательные. Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд (избыток электронов, которые были захвачены атомами палочки при контакте с шерстью).

Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным (волосы теряют электроны).

Кстати, о том, что такое ток, напряжение и сопротивление можно дополнительно почитать в нашей отдельной статье, посвященной закону Ома.

 

Электрический ток – это направленное движение заряженных частиц (носителей заряда) по проводнику. Само движение заряженных частиц возникает под действием электромагнитного поля – одного из фундаментальных физических полей.

Электрический ток может быть постоянным и переменным. При постоянном токе направление и величина тока не меняются. Переменный ток – это ток, изменяющийся во времени.

Источником постоянного тока является, например, батарейка. Но именно переменный ток используется в бытовых розетках, которые стоят в наших домах. Причина в том, что переменные токи гораздо проще получать и передавать на большие расстояния.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Основным видом переменного тока является синусоидальный ток. Это такой ток, который сначала нарастает в одном направлении, достигая максимума (амплитуды) начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении.

 

Непосредственно о таинственных фазе и нуле

Все мы слышали про фазу, три фазы, ноль и заземление.

Простейший случай электрической цепи – однофазная цепь. В ней всего три провода. По одному из проводов ток течет к потребителю (пусть это будет утюг или фен), а по другому – возвращается обратно. Третий провод в однофазной сети – земля (или заземление).

Провод заземления не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или «стекает» в землю.

Провод, по которому ток идет к прибору, называется фазой, а провод, по которому ток возвращается – нулем.

Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому — отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного.

Именно по такой сети ток идет до наших квартир. Подходя непосредственно к потребителю (квартирам), ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ — 50 Гц.

В разных странах действуют разные стандарты напряжений и частот в сети. Например, в обычной домашние розетки в США подается переменный ток напряжением 100-127 Вольт и частотой 60 Герц.

Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи. Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску.

Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза — белого, черного или коричневого. Провод заземления также имеет свой окрас — желто-зеленый.

 

Итак, сегодня мы узнали, что же значат понятия «фаза» и «ноль» в электричестве. Будем просто счастливы, если для кого-то эта информация была новой и интересной. Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, вы уже будете знать, о чем идет речь. Напоследок напоминаем, если вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, вы можете смело обращаться в студенческий сервис. С помощью наших специалистов даже самая дикая и сложная задача станет вам «по зубам».

Фаза и ноль — что такое, как определить фазу и ноль в электричестве

Далеко не всегда хочется вызывать специалистов при необходимости заменить люстру, повесить бра или дополнительный светильник. Но когда электромонтажными работами занимаешься впервые, так или иначе начинаешь задаваться вопросом, что представляют собой такие понятия как

«ноль» и «фаза».

Разбираться в этих обозначениях необходимо хотя бы для того, чтобы правильно подключить провода. Желательно восполнить пробелы в знаниях об электричестве, при отсутствии опыта в данной сфере, перед началом работ.

Выделяют три обозначения проводов:

  • фаза
  • ноль
  • заземление

Определить, какой кабель в розетке или осветительном приборе к чему относится, можно подручными средствами или по цвету. Под понятием «ноль», как правило, подразумевают «рабочий ноль», «фаза» — «фазные провода», а под «заземлением» — «защитный ноль».

Профессиональные электрики могут различать кабели с первого взгляда. А вот для рядового человека различать данные обозначения немного сложно. Тем более что специальные инструменты, позволяющие определить, где фаза и ноль, имеются далеко не у всех.

В реальности способов распознания проводов не так уж и много. А безопасных – еще меньше. Поэтому чаще всего определяют кабели по цвету.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки.

Особенно актуален этот способ для новостроек.

Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Самостоятельное определение фазы и ноля при помощи подручных средств

Специалисты рекомендуют для облегчения определения проводов начинать именно с распознавания фазы. Этот способ можно использовать совместно с предыдущим (по цвету).

Индикаторная отвертка непременно найдется в арсенале каждого домашнего мастера. Она необходима как для проведения комплекса работ по электромонтажу, так и при элементарной замене ламп либо установке осветительных приборов.

Метод до смешного прост. При касании жалом индикаторной отвертки провода определенного цвета, находящегося под напряжением, и одномоментного прикосновения контакта на инструменте, должен загореться индикатор. Он сигнализирует о наличии сопротивления. Значит, проверяемый провод является фазным.

Определение при помощи этого метода строится на том, что внутри инструмента располагается лампочка и резистор (сопротивление). Когда электрическая цепь замыкается, загорается сигнал. Именно наличие в индикаторной отвертке сопротивления и позволяет производить процедуру совершенно безопасно для человека, способствуя снижению тока до минимальных значений.

Метод определения фазы и ноля при помощи контрольной лампы

Этот способ подразумевает использование контрольной лампы для определения проводов определенного цвета в трехпроводной сети. Применять данный метод следует с особой осторожностью.

Применение этого метода подразумевает создание контрольной лампы. Для этого в патрон вкручивается обычная лампочка. В клеммах патрона размещаются провода, на концах которых отсутствует изоляция. При отсутствии возможности создать такую конструкцию допустимо использовать традиционную настольную лампу, оснащенную электрической вилкой. Теперь для определения необходимо поочередно, по цветам присоединять провода.

Стоит отметить, что использование данного метода позволяет определить, присутствует ли среди пары проверяемых проводов фазный. А какой именно из этих двух – фаза, распознать будет непросто. Загорание контрольной лампы означает, что с высокой долей вероятности одни провод – фаза, а другой – ноль.

Отсутствие света говорит о том, что фазный провод среди проверяемых отсутствует. Хотя возможен вариант, что нет именно нуля. Поэтому применение этого метода целесообразно, скорее всего, для определения правильности монтажа и работоспособности проводки.

Определение сопротивления петли фаза-ноль

Для обеспечения нормального функционирования электрических приборов и проверки автоматов необходимо периодически проводить замеры сопротивления петли фаза-ноль. Потому как первоочередными причинами поломок осветительных приборов являются перегрузки сети и короткое замыкание. Измерение сопротивления позволяет в кратчайшие сроки выявить неисправность и предотвратить подобную ситуацию.

Далеко не все знают, что представляет собой понятие «петля фаза-ноль». Под этой фразой скрывается контур, образованный в результате соединения нулевого провода, находящегося в заземленной нейтрали. Замыкание этой электрической сети образует петлю фаза-ноль.

Измеряют сопротивление в этом контуре следующими методами:

  • падением уровня напряжения в отключенной цепи
  • падением уровня напряжения в результате сопротивления возрастающей нагрузки
  • использованием профессионального инструмента, интерпретирующего короткое замыкание в цепи

Второй способ используется чаще всего, так как отличается удобством, возможностью быстро измерить сопротивление, а также безопасностью.

Центр электроники разности фаз и фазового сдвига

Положение волновой частицы периодической формы волны известно как «Фаза» волны. Полная фаза полного цикла сигнала равна 360 0 .

[адсенс1]

Когда две или более волны одной частоты интерферируют в среде или движутся по одному и тому же пути, «фаза» волн играет важную роль для получения желаемого результата без возникновения шума.

Фазу также можно определить как «относительное смещение двух волн относительно друг друга».

 

Фаза также может быть выражена в радианах и градусах. Один радиан = 57,3 градуса.

Схема

Разность фаз

Разность фаз синусоидальной волны можно определить как «интервал времени, на который волна опережает другую волну или отстает от нее», и разность фаз не является свойством только одной волны, это относительное свойство двух или более волн. Это также называется «фазовым углом» или «фазовым смещением».

Разность фаз, представленная греческой буквой фи (Φ). Полная фаза сигнала может быть определена как 2π радиан или 360 градусов.

Опережающая фаза означает, что волна опережает другую волну с той же частотой, а Отстающая фаза означает, что волна отстает от другой волны с той же частотой.

Фазовая квадратура: когда разность фаз между двумя волнами составляет 90 0 (это может быть = + 90 0 или – 90 0 ), говорят, что волны находятся в «фазовой квадратуре».

Противофаза: когда разность фаз между двумя волнами составляет 180 0 (может быть = + 180 0 или – 180 0 ), то говорят, что волны находятся в «фазовой оппозиции».

Чтобы лучше понять эту концепцию, обратите внимание на рисунок ниже.

Временной интервал и фаза сигнала обратно пропорциональны друг другу. Это означает, что

t град = 1 / (360 f ) (градусы)

t рад = 1 / (6,28 f ) (радиан)

Где f — частота сигнала, а t — период времени.

Например, если две синусоидальные волны имеют одинаковую частоту и фазовый сдвиг π/2 радиан, то фазы волн можно определить как (nπ + 1) и nπ радиан.

Фазовый сдвиг сигналов также может быть представлен в виде периода времени (T). Например, + 6 мс и – 7 мс и т. д.

Вернуться к началу

[adsense2]

Уравнение разности фаз

Разность фаз синусоидальных сигналов может быть выражена приведенным ниже уравнением, используя максимальное напряжение или амплитуду сигналов: )

                  Где

Amax – амплитуда синусоиды измерения

ωt — угловая скорость (радиан/сек)

Φ — фазовый угол. (Радианы или градусы)

Если Φ < 0, то говорят, что фазовый угол волны находится в отрицательной фазе. Точно так же, если Φ > 0, то говорят, что фазовый угол волны находится в положительной фазе.

Соотношение фаз синусоидального сигнала

Каждый сигнал переменного тока будет иметь свой ток, напряжение и частоту. Если напряжение и угловые скорости двух сигналов одинаковы, то их фаза также одинакова в любой момент времени.

На приведенном выше рисунке мы видим три волны, которые начинаются в начале координат, ведут в начале координат и отстают в начале координат соответственно.

Вернуться к началу

Разность фаз сигналов

Не в фазе

Когда чередующиеся сигналы имеют одинаковую частоту, но разные фазы, говорят, что они «не в фазе». Разность фаз не равна нулю для расфазированных волн. Обратите внимание на приведенный ниже рисунок, который описывает несовпадающую по фазе концепцию двух синусоидальных волн. Для синфазных сигналов запаздывание составляет доли длины волны, такие как 1/2, 2/3, 3/5… и т. д.

На приведенном выше рисунке волна «B» опережает на 90 0 (Φ = 90 0 ) волну «A». Таким образом, мы можем сказать, что две волны не совпадают по фазе.

Для волн, не совпадающих по фазе, есть два условия. Это

1. Опережающая фаза

2. Отстающая фаза

Опережающая фаза

Когда два сигнала одной и той же частоты движутся вдоль одной и той же оси, и один сигнал опережает другой, тогда это называется опережающим фазовым сигналом. .

Уравнения тока и напряжения для опережающих фазированных сигналов:

Напряжение (Vt) = Vm sin ωt

Ток (it) = Im sin (ωt – Φ)

Где Φ — опережающий фазовый угол.

Отставание по фазе

Когда два сигнала одной частоты движутся вдоль одной и той же оси, и один сигнал отстает от другого, это называется «Отставание по фазе».

Уравнения напряжения и тока для опережающих фазированных сигналов:

Напряжение (Vt) = Vm sin ωt

Ток (it) = Im sin (ωt + Φ)

Где Φ — фазовый угол отставания.

Синфазные синусоидальные волны

Когда разница между фазами двух чередующихся волн равна нулю, волны называются синфазными. Это может произойти, когда два сигнала имеют одинаковую частоту и одинаковую фазу. Для синфазных сигналов запаздывание представляет собой целое число длин волн, например 0, 1, 2, 3… Синфазные сигналы показаны на рисунке ниже.

Сигналы на приведенном выше рисунке имеют разную амплитуду (максимальное напряжение), но имеют одинаковую частоту.

Пример: Если две синусоидальные волны A и B не совпадают по фазе, а разность фаз составляет 25 0 , тогда мы можем объяснить соотношение между волнами как

Волна «A» опережает волну «B» на 25 0 или волна ‘B’ отстает от волны ‘A’ на 25 0 . Таким образом, ток и напряжение этих сигналов также изменяются в зависимости от фазового сдвига нефазированных сигналов.

Вернуться к началу

Соотношение фаз напряжения и тока к R, L, C

Цепь RLC также называется «резонансной схемой». Ниже поясняется поведение напряжения и тока резистора, конденсатора и катушек индуктивности по отношению к фазе.

  • Резистор: В резисторе ток и напряжение находятся в одной фазе. Таким образом, разность фаз между ними измеряется как 0,
  • .
  • Конденсатор: в конденсаторе ток и напряжение не совпадают по фазе, и ток опережает напряжение на 90 0 . Таким образом, разность фаз между током и напряжением в конденсаторе измеряется как 90 0 .
  • Катушка индуктивности: в катушке индуктивности ток и напряжение не совпадают по фазе. Напряжение опережает ток на 90 0 . Таким образом, разность фаз между напряжением и током в конденсаторе измеряется как 90 0 . Это прямо противоположно природе конденсатора.
ПРИМЕЧАНИЕ:

Существует простой способ запомнить соотношение между напряжением и током без какой-либо путаницы. Этот метод C I V I L

Первые 3 буквы C I V означают, что в конденсаторе I (ток) опережает V (напряжение).

 

Наверх

Резюме

  • Мы можем обобщить эту общую концепцию как
  • Фаза: Положение движущейся частицы формы волны называется «Фазой» и измеряется в «Радианах или градусах».
  • Разность фаз: Интервал времени, на который волна опережает другую волну или отстает от нее, называется «Разностью фаз» или «Угол фаз». Он определяется буквой «Ф».
  • Фазовый угол измеряется в «радианах/с» или «градусах/с», а фаза полного цикла указывается как «360 0 ».
  • Не в фазе: когда чередующиеся сигналы имеют одинаковую частоту, но разные фазы, говорят, что они «вне фазы».
  • В фазе: Когда разница между фазами двух чередующихся волн равна нулю, говорят, что они находятся в фазе.
  • Опережающая фаза: сигнал опережает другой сигнал с той же частотой.
  • Отставание фазы: сигнал отстает от другого сигнала с той же частотой.
  • В цепях LRC соотношение фаз между напряжением и током будет
  • В резисторах: фазы напряжения и тока совпадают. Таким образом, разность фаз равна 0,
  • .
  • В конденсаторах: Ток опережает напряжение на 90 градусов. Таким образом, разность фаз равна 90 0 .
  • В индукторах: напряжение опережает ток на 90 градусов. Таким образом, разность фаз равна 90 0 .

Вернуться к началу

Как рассчитать фазовый сдвиг

••• benjaminec/iStock/GettyImages

Обновлено 13 марта 2018 г.

Автор John Papiewski

Фазовый сдвиг — небольшая разница между двумя волнами; в математике и электронике это задержка между двумя волнами, имеющими одинаковый период или частоту. Обычно фазовый сдвиг выражается в виде угла, который может измеряться в градусах или радианах, причем угол может быть положительным или отрицательным. Например, фазовый сдвиг +90 градусов составляет четверть полного цикла; в этом случае вторая волна опережает первую на 90 градусов. Вы можете рассчитать фазовый сдвиг, используя частоту волн и временную задержку между ними.

Синусоидальная функция и фаза

В математике тригонометрическая синусоидальная функция создает плавный волнообразный график, который циклически переключается между максимальным и минимальным значением, повторяясь каждые 360 градусов или 2 пи радиана. При нулевых градусах функция имеет нулевое значение. При 90 градусах она достигает своего максимального положительного значения. На 180 градусов он изгибается обратно к нулю. При 270 градусах функция имеет максимальное отрицательное значение, а при 360 возвращается к нулю, совершая один полный цикл. Углы больше 360 просто повторяют предыдущий цикл. Синусоида со сдвигом фазы начинается и заканчивается при значении, отличном от нуля, хотя во всех других отношениях она напоминает «стандартную» синусоиду.

Выбор порядка волн

Вычисление фазового сдвига включает сравнение двух волн, и частью этого сравнения является выбор, какая волна является «первой», а какая «второй». В электронике вторая волна обычно является выходом усилителя или другого устройства, а первая волна — входом. В математике первая волна может быть исходной функцией, а вторая — последующей или вторичной функцией. Например, первой функцией может быть y = sin(x), а второй функцией может быть y = cos(x). Порядок волн не влияет на абсолютное значение фазового сдвига, но определяет, будет сдвиг положительным или отрицательным.

Сравнение волн

При сравнении двух волн расположите их так, чтобы они читались слева направо с использованием одного и того же угла оси X или единиц измерения времени. Например, график для обоих может начинаться с 0 секунд. Найдите пик на второй волне и найдите соответствующий пик на первой. При поиске соответствующего пика оставайтесь в пределах одного полного цикла, иначе результат разности фаз будет неправильным. Обратите внимание на значения по оси X для обоих пиков, затем вычтите их, чтобы найти разницу. Например, если пик второй волны приходится на 0,002 секунды, а пик первой волны приходится на 0,001 секунды, тогда разница составляет 0,001 — 0,002 = -0,001 секунды.

Вычисление фазового сдвига

Чтобы вычислить фазовый сдвиг, вам нужны частота и период волн. Например, электронный осциллятор может генерировать синусоидальные волны с частотой 100 Гц. Разделение частоты на 1 дает период или продолжительность каждого цикла, поэтому 1/100 дает период 0,01 секунды. Уравнение фазового сдвига: ps = 360 * td / p, где ps — фазовый сдвиг в градусах, td — разница во времени между волнами, а p — период волны. Продолжая пример, 360*-0,001/0,01 дает фазовый сдвиг в -36 градусов. Поскольку результатом является отрицательное число, фазовый сдвиг также отрицателен; вторая волна отстает от первой на 36 градусов. Для разности фаз в радианах используйте 2 * pi * td / p; в нашем примере это будет 6,28 * -0,001/0,01 или -0,628 радиан.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *