Закрыть

Переменный электрический ток: Переменный электрический ток

Содержание

Переменный электрический ток

Переменный электрический токПеременный электрический ток

В данной статье расскажем что такое переменный электрический ток и трехфазный переменный переменный ток.

Понятие переменного электрического тока даётся в учебнике физики общеобразовательного учебного заведения — школы. Переменный электрический ток — ток имеющий форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота, с течением времени изменяется по направлению и величине.

Частота – это количество полных изменений полярности переменного электрического тока за одну секунду. Это означает, что ток, в обычной бытовой розетке частотой 50 Герц за одну секунду меняет своё направление с положительного значения на отрицательное и обратно ровно пятьдесят раз. Одно полное изменение направления (полярности) электрического тока с положительного значения на отрицательное и снова на положительное называют — периодом колебания электрического тока. В течение периода Т переменный электрический ток меняет своё направление дважды.

Для визуального наблюдения синусоидальной формы переменного тока обычно используют осциллограф. Для исключения поражения электрическим током и защиты осциллографа от сетевого напряжения по входу, используют разделительные трансформаторы. Для измерения периода нет разницы, по каким равнозначным (равноамплитудным) точкам его измерять. Можно по максимальным положительным, или отрицательным вершинам, а можно и по нулевому значению. Это поясняется на рисунке.

Синусоидальная форма переменного токаСинусоидальная форма переменного токаСинусоидальная форма переменного тока

Из учебника физики мы знаем, что переменный электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.

Представим себе прямоугольную проволочную рамку с несколькими витками, равномерно вращающуюся в однородном магнитном поле. Возникающая в этой рамке э.д.с. индукции меняется по синусоидальному закону. Период колебания Т переменного электрического тока – это один полный оборот магнитной рамки вокруг своей оси.

картинка-схема магнитной рамки картинка-схема магнитной рамки магнитная рамка

Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.

Максимальное значение напряжения электрического тока Umax — это величина напряжения, соответствующая максимальному значению синусоиды.

Среднее значение напряжения электрического тока Uср — это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:

Uср = 2 * Umax / π = 0,636 Umax

Синусоиду максимального напряжения можно проконтролировать на экране осциллографа. Понять, что такое среднее значение переменного электрического напряжения можно проведя эксперимент по рисунку и описанию ниже.

Осциллограмма полуволныОсциллограмма полуволныОсциллограмма полуволны

Используя осциллограф, подключите к его входу синусоидальное напряжение. Ручкой вертикального смещения развёртки переместите «ноль» развёртки на самую нижнюю линию шкалы экрана осциллографа. Растяните и сместите горизонтальную развёртку так, чтобы одна полуволна синусоидального напряжения поместилась в десять (пять) клеток экрана осциллографа. Ручкой вертикальной развёртки (усилением) растяните развёртку так, чтобы максимальная амплитуда полуволны поместилась ровно в десять (пять) клеток экрана осциллографа. Определите амплитуду синусоиды на десяти участках. Суммируйте все десять значений и поделите на десять – найдите его «средний балл». В результате Вы получите значение напряжения, приблизительно равное 6,36 от его максимального значения — 10.

Измерительные приборы – вольтметры, цешки, мультиметры для измерения переменного напряжения имеют в своей схеме выпрямитель и сглаживающий конденсатор. Эта цепочка «округляет» множитель разницы максимального и измеряемого напряжения до числа 0,7. Поэтому, если Вы будете наблюдать на экране осциллографа синусоиду напряжения амплитудой 10 вольт, то вольтметр (цешка, мультиметр) покажет не 10, а около 7 вольт. Вы думаете что в Вашей домашней розетке – 220 вольт? Так и есть, но не совсем так! 220 вольт – это среднее значение напряжения бытовой розетки, усреднённое измерительным прибором — вольтметром. Максимальное же напряжение следует из формулы:

Umax = Uизм / 0,7 = 220 / 0,7 = 314,3 вольт

Именно поэтому, когда Вас «бъёт» током от электрической розетки 220 вольт, знайте, что это Ваша иллюзия. На самом деле, Вас трясёт напряжение около 315 вольт.

Трехфазный ток

Трехфазный переменный токТрехфазный переменный токНаряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток. Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.

Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).

Трехфазный электрический токТрехфазный электрический токТрехфазный электрический ток

Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.

Генератор трехфазного электрического токаГенератор трехфазного электрического токаГенератор трехфазного электрического тока

Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.

картинка-схема питания по независимым линиямкартинка-схема питания по независимым линиямсхема питания по независимым линиям

Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.

картинка-схема питания по общим линиямкартинка-схема питания по общим линиямсхема питания по общим линиям

По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».

картинка-схема питания по треугольникукартинка-схема питания по треугольникусхема питания по треугольнику

В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.

«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.

Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.

Урок 8. переменный электрический ток — Физика — 11 класс

Физика, 11 класс

Урок 8. Переменный электрический ток

Перечень вопросов, рассматриваемых на уроке:

1) Свойства переменного тока;

2) Понятия активного сопротивления, индуктивного и ёмкостного сопротивления;

3) Особенности переменного электрического тока на участке цепи с резистором;

4) Определение понятий: переменный электрический ток, активное сопротивление, индуктивное сопротивление, ёмкостное сопротивление.

Глоссарий по теме

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю называют активным сопротивлением.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Величину ХC,

обратную произведению ωC циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 86 – 95.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2014. – С. 128 – 132.

Степанова. Г.Н. Сборник задач по физике. 10-11 класс. М., Просвещение 1999 г.

Е.А. Марон, А.Е. Марон. Контрольные работы по физике. М., Просвещение, 2004

Основное содержание урока

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного? Об этом мы поговорим на данном уроке.

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Электрический ток, периодически меняющийся со временем по модулю и направлению, называется переменным током.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Сила тока и напряжение меняются со временем по гармоническому закону, такой ток называется синусоидальным. В основном используется синусоидальный ток. Колебания тока можно наблюдать с помощью осциллографа.

Если напряжение на концах цепи будет меняться по гармоническому закону, то и напряженность внутри проводника будет так же меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь вызывают гармонические колебания упорядоченного движения свободных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи, в ней с очень большой скоростью распространяется электрическое поле. Сила переменного тока практически во всех сечениях проводника одинакова потому, что время распространения электромагнитного поля превышает период колебаний.

Рассмотрим процессы, происходящие в проводнике, включенном в цепь переменного тока. Сопротивление проводника, в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным. При изменении напряжения на концах цепи по гармоническому закону, точно так же меняется напряженность электрического поля и в цепи появляется переменный ток.

При наличии такого сопротивления колебания силы тока и напряжения совпадают по фазе в любой момент времени.

𝒾 — мгновенное значение силы тока;

m— амплитудное значение силы тока.

– колебания напряжения на концах цепи.

Колебания ЭДС индукции определяются формулами:

При совпадении фазы колебаний силы тока и напряжения мгновенная мощность равна произведению мгновенных значений силы тока и напряжения. Среднее значение мощности равно половине произведения квадрата амплитуды силы тока и активного сопротивления.

Часто к параметрам и характеристикам переменного тока относят действующие значения. Напряжение, ток или ЭДС, которая действует в цепи в каждый момент времени — мгновенное значение (помечают строчными буквами — і, u, e). Однако оценивать переменный ток, совершенную им работу, создаваемое тепло сложно рассчитывать по мгновенному значению, так как оно постоянно меняется. Поэтому применяют действующее, которое характеризует силу постоянного тока, выделяющего за время прохождения по проводнику столько же тепла, сколько это делает переменный.

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Um — амплитудное значение напряжения.

Действующие значения силы тока и напряжения:

Электрическая аппаратура в цепях переменного тока показывает именно действующие значения измеряемых величин.

Конденсатор включенный в электрическую цепь оказывает сопротивление прохождению тока. Это сопротивление называют ёмкостным.

Величину ХC, обратную произведению циклической частоты на электрическую ёмкость конденсатора, называют ёмкостным сопротивлением.

Ёмкостное сопротивление не является постоянной величиной. Мы видим, что конденсатор оказывает бесконечно большое сопротивление постоянному току.

Если включить в электрическую цепь катушку индуктивности, то она будет влиять на прохождение тока в цепи, т.е. оказывать сопротивление току. Это можно объяснить явлением самоиндукции.

Величину ХL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.

XL= ωL

Если частота равна нулю, то индуктивное сопротивление тоже равно нулю.

При увеличении напряжения в цепи переменного тока сила тока будет увеличиваться так же, как и при постоянном токе. В цепи переменного тока содержащем активное сопротивление, конденсатор и катушка индуктивности будет оказываться сопротивление току. Сопротивление оказывает и катушка индуктивности, и конденсатор, и резистор. При расчёте общего сопротивления всё это надо учитывать. Основываясь на этом закон Ома для переменного тока формулируется следующим образом: значение тока в цепи переменного тока прямо пропорционально напряжению в цепи и обратно пропорционально полному сопротивлению цепи.

Если цепь содержит активное сопротивление, катушку и конденсатор соединенные последовательно, то полное сопротивление равно

Закон Ома для электрической цепи переменного тока записывается имеет вид:

Преимущество применения переменного тока заключается в том, что он передаётся потребителю с меньшими потерями.

В электрической цепи постоянного тока зная напряжение на зажимах потребителя и протекающий ток можем легко определить потребляемую мощность, умножив величину тока на напряжение.   В цепи переменного тока мощность равна произведению напряжения на силу тока и на коэффициент мощности.

Мощность цепи переменного тока

P=IU cosφ

Величина cosφ – называется коэффициентом мощности

Коэффициент мощности показывает какая часть энергии преобразуется в другие виды. Коэффициент мощности находят с помощью фазометров. Уменьшение коэффициента мощности приводит к увеличению тепловых потерь. Для повышения коэффициента мощности электродвигателей параллельно им подключают конденсаторы. Конденсатор и катушка индуктивности в цепи переменного тока создают противоположные сдвиги фаз. При одновременном включении конденсатора и катушки индуктивности происходит взаимная компенсация сдвига фаз и повышение коэффициента мощности. Повышение коэффициента мощности является важной народнохозяйственной задачей.

Разбор типовых тренировочных заданий

1. Рамка вращается в однородном магнитном поле. ЭДС индукции, возникающая в рамке, изменяется по закону e=80 sin 25πt. Определите время одного оборота рамки.

Дано: e=80 sin 25πt.

Найти: T.

Решение:

Колебания ЭДС индукции в цепи переменного тока происходят по гармоническому закону

Согласно данным нашей задачи:

Время одного оборота, т.е. период связан с циклической частотой формулой:

Подставляем числовые данные:

Ответ: T = 0,08 c.

2. Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?

Дано:

ν=50 Гц,

R=1 кОм=1000 Ом,

C=1 мкФ=10-6 Ф,

U=220 В.

Найти: Im

Решение:

Напишем закон Ома для переменного тока:

I=U/Z

Для амплитудных значений силы тока и напряжения, мы можем записать Im=Um/Z?

Полное сопротивление цепи равно:

Подставляя числовые данные находим полное сопротивление Z≈3300 Ом. Так как действующее значение напряжения равно:

то после вычислений получаем Im ≈0,09 Ом.

Ответ: Im ≈0,09 Ом.

2. Установите соответствие между физической величиной и прибором для измерения.

 Физические величины

    Физические приборы

Сила тока

Омметр

Напряжение

Вольтметр

Сопротивление

Амперметр

Мощность

Ваттметр

Правильный ответ:

 Физические величины

    Физические приборы

Сила тока

Амперметр

Напряжение

Вольтметр

Сопротивление

Омметр

Мощность

Ваттметр

Применение переменного электрического тока. Переменный электрический ток

Нажать Класс

Рассказать ВК

Уважаемые посетители сайта!!!

Все изложенное в рубрике «электротехника», — дается для Вас в более простой, доступной форме обучения. Если вникать в теоретические основы электротехники , то переходить на такое обучение нужно не спонтанно, а постепенно.

Допустим, читаем формулировку правила: «Магнитный поток сквозь поверхность S равен линейному интегралу векторного потенциала по замкнутому контуру, ограничивающему эту поверхность». Данное правило дает понятие об углубленном познании магнитного поля постоянных токов , такой курс обучения проходят в высших технических учебных заведениях. Конечно-же, нужно стремиться к высшему познанию таких вещей, но для человека, которому допустим нужно починить электроплиту либо какой нибудь электроприбор, такие познания в общем-то просто ни к чему.

Полагаю, что если человек зашел на сайт, — ему нужно получить конечный результат такого продукта — полезной информации. В частности, для данной темы речь пойдет о способах получения электрического тока .

Получение переменного тока

Переменный ток вырабатывают генераторы, электрические машины , — как их принято называть в электротехнике. Следует не забывать и о том, что в зависимости от их применения генераторы бывают как переменного так и постоянного тока. В зависимости от их устройства, генераторы вырабатывают:

  • трехфазный ток с выходным напряжением 380 Вольт;
  • однофазный ток с выходным напряжением 220 Вольт.

Где именно могут применяться трехфазные генераторы? Да допустим для питания трехфазной тепловой пушки на 6 кВт 380 В для обогрева складского помещения.

Тогда где-же могут применяться однофазные генераторы? Однофазные генераторы как и трехфазные, применяются допустим в больнице — при аварийном отключении электроэнергии.

Генератору, как нам известно, необходимо придать механическое вращение якоря. Каким образом можно придать якорю генератора механическое вращение? Такими источниками служат двигатели внутреннего сгорания:

  • газовые;
  • бензиновые;
  • дизельные

и другие источники, чтобы привести якорь генератора в движение. Другими источниками получения электрической энергии являются:

  • ветряные электростанции;
  • водяные электростанции;
  • турбинные электростанции.

На рисунке показано схематическое изображение устройства генератора переменного тока \рис.1\. Рамку в этом примере можно представить как якорь, состоящий из одного витка провода. Рамка обозначена сторонами А, Б, В, Г. Два проводника \А и Б\ при вращении рамки, пересекают магнитные силовые линии постоянного магнита С, Ю. При пересечении проводниками силовых линий, в проводниках наводится электродвижущая сила — ЭДС. ЭДС двух проводников по своему значению противоположны друг другу в тот момент, когда они пересекают эти силовые линии.

Величина ЭДС \ри.3\, протекающего тока в рамке, будет зависить:

    от векличины магнитной индукции постоянного магнита \ N, S\;

    длины проводника;

    скорости пересечения проводником магнитных силовых линий

и угла наклона проводника \рис.4\ по отношению к силовым линиям постоянного магнита \sin угла альфа между направлением движения проводника и направлением магнитных силовых линий поля\.


При вращении рамки в магнитном поле, в ней наводится ЭДС двух противоположных значений и ток, как мы можем заметить на графике \рис.5\ получается пульсирующим. Один период Т состоит из двух противоположных пульсаций тока, верхний полупериод — положительный и нижний полупериод — отрицательный. Полупериод обозначен на графике как 1/2 Т.

Поэтому, ток в этом примере рассматривается как:

    пульсирующий;

    синусоидальный

либо как еще его называют — переменный ток .

Получение постоянного тока

Постоянный ток мы получаем от следующих источников, это:

  • первичные источники \обыкновенные, простые батарейки\;
  • электрохимические аккумуляторы;
  • генераторы постоянного тока.

Принцип устройства электрохимических аккумуляторов изображен на рисунке 6. Электрохимические аккумуляторы могут быть возвращены в первоначальное свое состояние под воздействием электрического тока — в процессе их зарядки либо подзарядки.

Первичные источники \элементы\, разнообразные типы батареек \рис.7\, — не могут быть возвращены в свое первоначальное состояние в процессе их зарядки электрическим током, то-есть, такие источники по истечению своего срока эксплуатации подлежат только утилизации.

Различие между генератором переменного тока и генератором постоянного тока состоит в том, что в генераторе постоянного тока размещено большее количество витков в пазах якоря \по сравнению с генератором переменного тока\, а так-же, укреплено четное количество главных и добавочных полюсов на внутренней станине генератора.

Следующий рисунок из себя представляет схему подключения нагрузки к генератору постоянного тока \рис.8\, ток в данной цепи замыкается через нагрузку.


На графике \рис.9\ показаны пульсации тока, выдаваемые генератором постоянного тока. По сравнению с генератором переменного тока, данные пульсации выглядят более сглаженно.

Применение постоянного тока


автомобильный генератор

устройство автомобильного генератора

электростанция для сварки постоянным током

Электроэнергия в современном мире существует в двух видах. Одна её ипостась – постоянный ток, а вторая – переменный. Разница между ними принципиальная и то, что доступно одному виду электричества, недоступно другому. Так, постоянный ток известен людям очень давно, а переменный был поставлен человеком на службу цивилизации буквально сегодня по историческим меркам. Данная статья посвящена рассмотрению различий и мест применения электроэнергии с постоянной и переменной составляющей.

Постоянный ток, его происхождение и применение

С источниками постоянного тока мы сталкиваемся ежесекундно. Когда вы читаете эту статью с экрана своего монитора, в том, что вы различаете буквы, есть заслуга постоянного тока. Именно от источников постоянного тока запитан компьютер и все его микросхемы. Именно перепадами между уровнями сигнала, соответствующим нулю и единице, мы обязаны существованию цифровой вселенной. Постоянный ток протекает в фонарике и мобильном телефоне, в автомобиле и множестве других устройств бытового и специального назначения, где есть хоть один транзистор или диод.

Вместе с тем, способы получения и применение постоянного тока были известны еще во времена Древнего Мира. Археологами, производящими раскопки в долине Евфрата, были найдены странные керамические сосуды в жилище некоторых ювелиров. Сосуды имели устройство, схожее с гальванической батареей и соединялись между собой медной проволокой. Каково же было удивление археологов, когда они ради эксперимента заполнили один из сосудов кислотой и получили на его полюсах потенциал, равный полутора вольтам! Оказалось, что блоки батарей древние ювелиры применяли для гальванического покрытия ювелирных изделий различными металлами, что и подтвердили готовые образцы изделий, которые часто попадались ученым ранее.

Есть гипотезы, говорящие в пользу того, что при строительстве пирамид в Египте использовали электричество для освещения залов и коридоров в тех местах, где наносили росписи барельефы. Ученые спорят до сих пор по этому поводу, так как есть предположение о том, что свет подавали при помощи системы зеркал с поверхности. Как бы то ни было, но следов копоти на стенах древних залов с росписями не обнаружено и это факт, кот

Лекция по теме: » Переменный ток»

Учебная дисциплина ОП.03 Электротехника и электроника

«ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА. НЕРАЗВЕТВЛЁННАЯ ЦЕПЬ ПЕРЕМЕННОГО ТОКА С АКТИВНО-ИНДУКТИВНЫМ, ЕМКОСТНЫМ СОПРОТИВЛЕНИЕМ. ВЕКТОРНЫЕ ДИАГРАММЫ. МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА. КОЭФФИЦИЕНТ МОЩНОСТИ».

План лекции:

1.Переменный ток и его значение.

2. Характеристики переменного тока.

3.Максимакльное (амплитудное) и действующее (мгновенное) значение напряжения и силы тока.

4. Преобразование переменного тока в постоянный.

5.Основные элементы цепи переменного тока.

6. Резистор в цепи переменного тока.

7.Конденсатор в цепи переменного тока.

8.Катушка индуктивности в цепи переменного тока.

9. Мощность переменного тока. Коэффициент мощности.

10. Полное сопротивление в цепи переменного тока, содержащей резистор, конденсатор и катушку.

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным.

А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного?

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Переменный токэлектрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя свое направление в электрической цепи неизменным.

Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.

Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный?

Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов.

Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.

На рисунке обратное направление – это область графика ниже нуля.

hello_html_m1924ce78.jpg

Характеристики переменного тока:

Период — это время одного полного колебания.

Т – период, с

Амплитуда – это наибольшее положительное или отрицательное значение силы тока или напряжения.

 Частота — это времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц).

В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. В США частота промышленного тока 60 Гц.

Эта величина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока.

Амплитуда – характеризует состояние переменного тока с течением времени.

Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Еm, напряжения — Um, тока — Im.

Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.

Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в hello_html_m16692f20.jpg раз.

hello_html_5a4e029c.jpg

hello_html_m8bbad8d.jpg

hello_html_m41c499.jpg

 Преобразование переменного тока в постоянный.

Из переменного тока, можно получить постоянный ток, для этого достаточно  подключить сети переменного тока диодный мост или как его еще называют “выпрямитель”

Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

 

hello_html_m7e8c9f90.jpg

 

hello_html_23aab47a.jpg

hello_html_m1f5c0fe7.jpg

hello_html_620361b1.jpgКолебания силы тока в цепи резистора совпадают по фазе с колебаниями напряжения.

hello_html_m4795a48e.jpg

hello_html_m6817a23b.jpg

hello_html_m4b53575c.jpg

hello_html_m10080772.jpg

hello_html_m6e03a215.jpg

hello_html_7faa1aaf.jpghello_html_51f415cc.jpg

hello_html_abfd77f.jpg

Видео по теме:«Переменный электрический ток. Получение переменного тока» см. по ссылке:

Вопросы для самоконтроля:

1.Что такое переменный электрический ток?
2. Почему переменный ток получил такое широкое распространение?
3. Поясните, почему передача электроэнергии осуществляется с использованием переменного тока?
4.Что такое период, частота и фаза переменного тока?

5.Что называется действующим значением переменного тока? Какова связь действующих значений ЭДС, напряжения и тока с их амплитудными значениями?

6.По какой формуле определяется индуктивное сопротивление цепи переменному току?

7.По какой формуле определяется емкостное сопротивление цепи переменному току?

8.По какой формуле определяется сдвиг фаз между током и напряжением в цепях переменного тока?

9.По какой формуле вычисляется мощность переменного тока? Что называется коэффициентом мощности?

10.Как используется диод для выпрямления переменного тока?

Рассмотрим примеры решения задач:

Примеры решения расчетных задач

Задача 1. Определите сдвиг фаз колебаний напряжения hello_html_332cbf72.gif и силы тока hello_html_79144a6c.gif для электрической цепи, состоящей из последовательно включенных проводников с активным сопротивлением R = 1000 Ом, катушки индуктивностью L = 0,5 Гн и конденсатора емкостью С = 1 мкФ. Определите мощность, которая выделяется в цепи, если амплитуда напряжения U0 = 100 В, а частота hello_html_mcc1d317.gif = 50 Гц.

Решение:

Сдвиг фаз между током и напряжением в цепях переменного тока определяется соотношением

hello_html_m63f3198e.gif(1)

здесь hello_html_5d55a9e8.gif = 2hello_html_479b7d60.gifhello_html_mcc1d317.gif — циклическая частота. Следовательно,

hello_html_m39db0870.gif

Мощность, которая выделяется в цепи, определится по формуле

hello_html_6056345f.gif

Для цепи переменного тока справедливо соотношение

hello_html_ma3594a2.gif

где Z — полное сопротивление (импеданс) цепи:

hello_html_m4b27488f.gif

Следовательно, мощность, которая выделяется в цепи

hello_html_m1487d024.gif    (2)

Подставив численные значения в (1), получим hello_html_73334f91.gif (минус означает, что напряжение отстает по фазе). Тогда hello_html_m16c1e3da.gif . Подставив численные значения в (2), получим P = 0,5 Вт.

Ответ: hello_html_m5e4d8a25.gif


hello_html_m5db7cea2.gif

Задача 2. Конденсатор неизвестной емкости, катушка с индуктивностью L и сопротивлением R подключены к источнику переменного напряжения hello_html_4b6742d0.gif(рис. 1). Сила тока в цепи равна hello_html_m365ecd1.gif. Определите амплитуду напряжения между обкладками конденсатора.

Решение:

Из условия задачи видно, что сила тока и напряжение в цепи меняются синфазно. Это означает, что совпадают индуктивное и емкостное сопротивления.

hello_html_7ff8f691.gif    (3)

Напряжение на конденсаторе будет равно

hello_html_23c0c285.gif    (4)

Поскольку hello_html_6f65c910.gif, то

hello_html_m459eb20d.gif    (5)

Подставляя (5) в (4), получим:

hello_html_m68536793.gif    (6)

С учетом (3) соотношение (6) примет вид:

hello_html_m383ae453.gif

Поэтому амплитудное значение напряжения между обкладками конденсатора будет равно

hello_html_e82a090.gif

Ответ: hello_html_e82a090.gif


hello_html_18cfbcce.gif

Задача 3. В электрической цепи из двух одинаковых конденсаторов емкости С и катушки с индуктивностью L, соединенных последовательно, в начальный момент времени один конденсатор имеет заряд q0, а второй не заряжен (рис. 2). Как будут изменяться со временем заряды конденсаторов и сила тока в контуре после замыкания ключа К?

Решение:

Цепь, приведенная на рис. 2, представляет собой колебательный контур. Сила тока в нем будет меняться по закону

hello_html_255699df.gif    (7)

Чтобы ответить на вопрос задачи, нужно найти максимальное значение силы тока I0 и частоту колебаний hello_html_5d55a9e8.gif. Частоту колебаний можно определить по формуле

hello_html_m4942fecf.gif    (8)

где Сэкв — емкость системы из двух последовательно соединенных конденсаторов емкостью С:

hello_html_m4555acdf.gif

Подставляя значение Сэкв в (8), получим, что частота колебаний в контуре будет равна

hello_html_m7aa340cc.gif    (9)

Подставим значение частоты (9) в выражение для силы тока (7), тогда получим, что сила тока в цепи будет меняться по закону

hello_html_m2732193e.gif    (10)

Для определения I0 можно воспользоваться законом сохранения энергии. Пусть в некоторый момент времени заряд одного из конденсаторов равен q1 , тогда заряд второго конденсатора будет q2 = q0 — q1 . В начальный момент времени энергия контура сосредоточена в электрическом поле заряженного конденсатора, в произвольный момент времени она перераспределяется между энергией электрического поля двух заряженных конденсаторов и энергией магнитного поля, сосредоточенного в катушке индуктивности. Следовательно, согласно закону сохранения энергии,

hello_html_m55338107.gif

Отсюда можно найти зависимость силы тока от заряда q1.

hello_html_7b313675.gif

Чтобы найти максимальное значение силы тока, нужно взять производную от I по q1 и приравнять ее к нулю.

hello_html_c367ec3.gif

Из последнего выражения видно, что максимальное значение силы тока достигается при hello_html_m6d85e890.gif. Следовательно,

hello_html_208f5236.gif

Подставляя полученное значение для максимального значения силы тока в (10), получим, что сила тока в цепи будет меняться по закону

hello_html_m56d3d607.gif

Чтобы найти закон изменения зарядов на пластинах конденсатора, воспользуемся выражением hello_html_m2a442a1a.gif. Преобразовав его, получим квадратное уравнение для q1:

hello_html_m38d580dd.gif

Решая уравнение, получим:

hello_html_m4dab574b.gif

Разные знаки означают, что в начальный момент времени любой конденсатор может либо иметь заряд q0, либо быть незаряженным. Пусть

hello_html_m5bab4a48.gif

Тогда

hello_html_3062207f.gif

Ответ: hello_html_m1a3e4e88.gif

Задача 4. Имеются два колебательных контура с одинаковыми катушками и конденсаторами. В катушку одного из контуров вставили железный сердечник, увеличивший ее индуктивность в n = 4 раза. Найдите отношение резонансных частот контуров и их энергий, если максимальные заряды на конденсаторах одинаковы.

Решение:

Резонансные частоты контуров могут быть определены по формуле Томсона:

hello_html_m5f7db18c.gif

Отсюда

hello_html_67b4dcd5.gif

Ответ: hello_html_5172f30a.gif


hello_html_m4d0103d5.gif

Задача 5. Два сопротивления R1 и R2 и два диода подключены к источнику переменного тока с напряжением U так, как показано на рис. 3. Найдите среднюю мощность, выделяющуюся в цепи.

Решение:

Ток половину периода идет через один диод (например, 1). За это время на сопротивлении R1 выделяется средняя мощность

hello_html_6b8c7acc.gif

В течение второго полупериода ток идет через диод 2, выделяя на нем среднюю мощность

hello_html_6b4c9eb2.gif

Таким образом, за полный период выделяется средняя мощность

hello_html_40810792.gif

Ответ: hello_html_727a3830.gif

Задачи для самостоятельного решения:

№ 1. В ц.п.т. с напряжением 220 В включена активная нагрузка сопротивлением 40 Ом. Определите ток цепи.

№ 2. Определите сопротивление конденсатора емкостью 5 мкФ при частоте 50 Гц.

№3. Определите сопротивление катушки индуктивностью 0,01 Гн при частоте 50 Гц.

№ 4. Определите ток, проходящий через катушку, индуктивное сопротивление которой 5 Ом, а активное сопротивление 1 Ом, если напряжение сети переменного тока 12 В.

№ 5. В ц.п.т. с напряжением 220 В включена эл.лампа, по спирали которой течет ток 5 А. Вычислите активную мощность этой лампы.

№ 6. В электрическую цепь напряжением 220 В последовательно включены реостат сопротивлением 5 Ом, катушка с активным сопротивлением 6 Ом и индуктивным сопротивлением 4 Ом, конденсатор с емкостным сопротивлением 3 Ом. Определите ток в цепи. Постройте векторную диаграмму токов и напряжений.

№ 7. В ц.п.т. с напряжением 220 В включены конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите реактивную мощность цепи.

Постройте векторную диаграмму токов и напряжений.

№ 8. В ц.п.т. с напряжением 380 В включены активное сопротивление 50 Ом и конденсатор емкостью 1000 мкФ. Определите полную мощность цепи.

Постройте векторную диаграмму токов, напряжений и мощностей.

№ 9. В ц.п.т. напряжением 110 В последовательно включены активное сопротивление 30 Ом, емкостное – 45 Ом и индуктивное — 50 Ом. Определите полное сопротивление этой цепи.

№ 10. В ц.п.т. с напряжением 220 В включены активное сопротивление 20 Ом, конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите полную мощность цепи. Постройте векторную диаграмму токов, напряжений, мощностей.

Домашнее задание:

1.Выучить и законспектировать лекцию.

2. Разобрать и записать в тетрадь примеры решения задач, которые приведены в конце лекции.

3. Ответить на вопросы для самоконтроля.

4. Выполнить на оценку задания в тестовой форме:

hello_html_61a97888.pnghello_html_39ad8b4f.png

hello_html_5e842b30.pnghello_html_m6007d484.png

Ответы (указав фамилию, имя, название теста и группу) прислать по следующему адресу в контакте: http://vk.com/id216653613

Как получают переменный электрический ток

Узнайте, как получают переменный ток в быту и на производстве. Из чего состоит генератор переменного тока и как он работает.


Переменный ток – единственный на сегодняшний день способ дешевой передачи электроэнергии на расстояния. Он превосходит постоянный ток по ряду параметров, в том числе и по простоте трансформации. В этой статье мы расскажем, как получают переменный электрический ток в быту и на производстве. Содержание:

Электромагнитная индукция и закон Фарадея

Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки. Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась. Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.

Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.

Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.

Как получают переменный электрический ток

Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.

На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.

e = B*l*v*sinα

Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.

Ф=B*S*cosα

Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.

Способы получения переменного тока

Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.

Как получают переменный электрический ток

Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше. При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков. Таким образом получается не рамка, а катушка.

Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.

По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.

В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.

Как получают переменный электрический ток

На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока — ГПТ) или от полупроводникового возбудителя через щеточный аппарат. Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя. Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.

Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз. Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи. Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.

Электронные преобразователи

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Как получают переменный электрический ток

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Как получают переменный электрический ток

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В. Его можно использовать для питания различных нагревателей и ламп накаливания.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX — первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

Наверняка вы не знаете:

  • Чем отличается переменный ток от постоянного
  • Способы понижения напряжения
  • Как получить электричество из земли
НравитсяКак получают переменный электрический ток0)Не нравитсяКак получают переменный электрический ток0)

Referat. Переменный ток — PhysBook

Переменный ток

Как известно, сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток.

Однако в современной технике широко применяются не только источники постоянного тока, но и различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания или переменный ток.

Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника

или

Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:

\(~u = U_m \cdot \sin \omega t\) или \(~u = U_m \cdot \cos \omega t\) ,

где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

\(~i = I_m \cdot \sin (\omega t + \varphi_c)\) ,

где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Резистор в цепи переменного тока

Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Например, такой цепью может быть нить накаливания электрической лампы и подводящие провода. Величину R, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. В цепи переменного тока могут быть и другие сопротивления, зависящие от индуктивности цепи и ее емкости. Сопротивление R называется активным потому, что, только на нем выделяется энергия, т.е.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.

Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).

Рис. 1

Пусть напряжение на концах цепи меняется по гармоническому закону

\(~u = U_m \cdot \sin \omega t\) .

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:

\(~i = \frac{U}{R} = \frac{U_m \cdot \sin \omega t}{R} = I_m \cdot \sin \omega t\) .

Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:

Рис. 2

При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.

Катушка в цепи переменного тока

Индуктивность влияет на силу переменного тока в цепи. Это можно обнаружить с помощью простого опыта. Составим цепь из катушки большой индуктивности и лампы накаливания (рис. 3). С помощью переключателя можно присоединять эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть одинаковы. Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы тока в рассматриваемой цепи меньше силы постоянного тока.

Рис. 3

Объясняется это самоиндукцией. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь по прошествии некоторого времени сила тока достигает наибольшего (установившегося) значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех установившихся значений, которые она приобрела бы с течением времени при постоянном напряжении, равном максимальному значению переменного напряжения. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью L цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.

Докажем это математически. Пусть в цепь переменного тока включена идеальная катушка с электрическим сопротивлением провода, равным нулю (рис. 4). При изменениях силы тока по гармоническому закону

\(~i = I_m \cdot \cos \omega t\) .

в катушке возникает ЭДС самоиндукции

\(~e = -L \cdot i’ = I_m \cdot L \cdot \omega \cdot \sin \omega t\) ,

где L – индуктивность катушки, ω – циклическая частота переменного тока.

Рис. 4

Так как электрическое сопротивление катушки равно нулю, то ЭДС самоиндукции в ней в любой момент времени равна по модулю и противоположна по знаку напряжению на концах катушки, созданному внешним генератором:

\(~u = -e = -I_m \cdot L \cdot \omega \cdot \sin \omega t\) .

Следовательно, при изменении силы тока в катушке по гармоническому закону напряжение на ее концах изменяется тоже по гармоническому закону, но со сдвигом фазы:

\(~u = I_m \cdot L \cdot \omega \cdot \cos (\omega t + \frac{\pi}{2})\) .

Следовательно, колебания напряжения на катушке индуктивности опережают колебания силы тока на π/2, или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на π/2.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (рис. 5). В момент, когда напряжение становится равным нулю, сила тока максимальна по модулю.

Рис. 5

Произведение \(I_m \cdot L \cdot \omega\) является амплитудой колебаний напряжения на катушке:

\(~U_m = I_m \cdot L \cdot \omega\) .

Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний силы тока в ней называется индуктивным сопротивлением (обозначается XL):

\(~X_L = \frac{U_m}{I_m} = L \cdot \omega\) .

Связь амплитуды колебаний напряжения на концах катушки с амплитудой колебаний силы тока в ней совпадает по форме с выражением закона Ома для участка цепи постоянного тока:

\(~I_m = \frac{U_m}{X_L}\) .

В отличие от электрического сопротивления проводника в цепи посто-янного тока, индуктивное сопротивление не является постоянной величиной, характеризующей данную катушку. Оно прямо пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в катушке при постоянном значении амплитуды колебаний напряжения должна убывать обратно пропорционально частоте. Постоянный ток вообще «не замечает» индуктивности катушки. При ω = 0 индуктивное сопротивление равно нулю (XL = 0).

Зависимость амплитуды колебаний силы тока в катушке от частоты приложенного напряжения можно наблюдать в опыте с генератором пере-менного напряжения, частоту которого можно изменять. Опыт показывает, что увеличение в два раза частоты переменного напряжения приводит к уменьшению в два раза амплитуды колебаний силы тока через катушку.

Конденсатор в цепи переменного тока

Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Если подключить конденсатор к источнику постоянного тока, то в цепи возникнет кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Если заряженный конденсатор отключить от источника постоянного тока и соединить его обкладки с выводами лампы накаливания, то конденсатор будет разряжаться, при этом наблюдается кратковременная вспышка лампы.

При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения.

Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора по проводам, соединенным с его выводами, течет переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока (рис. 6), кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.

Рис. 6

Установим связь между амплитудой колебаний напряжения на обкладках конденсатора и амплитудой колебаний силы тока. При изменениях напряжения на обкладках конденсатора по гармоническому закону

\(~u = U_m \cdot \cos \omega t\) ,

заряд на его обкладках изменяется по закону:

\(~q = C \cdot u = U_m \cdot C \cdot \cos \omega t\) .

Электрический ток в цепи возникает в результате изменения заряда конденсатора: i = q’. Поэтому колебания силы тока в цепи происходят по закону:

\(~i = -U_m \cdot \omega \cdot C \cdot \sin \omega t = U_m \cdot \omega \cdot C \cdot \cos (\omega t + \frac{\pi}{2})\) .

Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на π/2 или колебания силы тока опережают по фазе колебания напряжения на π/2 (рис. 7). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т.д.

Рис. 7

Произведение \(U_m \cdot \omega \cdot C\) является амплитудой колебаний силы тока:

\(~I_m = U_m \cdot \omega \cdot C\) .

Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается ХC):

\(~X_C = \frac{U_m}{I_m} = \frac{1}{\omega \cdot C}\) .

Связь между амплитудным значением силы тока и амплитудным значением напряжения по форме совпадает с выражением закона Ома для участка цепи постоянного тока, в котором вместо электрического сопротивления фигурирует емкостное сопротивление конденсатора:

\(~I_m = \frac{U_m}{X_C}\) .

Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в цепи конденсатора при постоянной амплитуде колебаний напряжения на конденсаторе возрастает прямо пропорционально частоте.

Закон Ома для электрической цепи переменного тока

Рассмотрим электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки (рис. 8). Если к выводам этой электрической цепи приложить электрическое напряжение, изменяющееся по гармоническому закону с частотой ω и амплитудой Um, то в цепи возникнут вынужденные колебания силы тока с той же частотой и некоторой амплитудой Im. Установим связь между амплитудами колебаний силы тока и напряжения.

Рис. 8

В любой момент времени сумма мгновенных значений напряжений на последовательно включенных элементах цепи равна мгновенному значению приложенного напряжения:

\(~u = u_R + u_L + u_C\) . (1)

Во всех последовательно включенных элементах цепи изменения силы тока происходят практически одновременно, так как электромагнитные взаимодействия распространяются со скоростью света. Поэтому можно считать, что колебания силы тока во всех элементах последовательной цепи происходят по закону:

\(~i = I_m \cdot \cos \omega t\) . (2)

Колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на π/2 от колебаний силы тока, а колебания напряжения на катушке опережают по фазе колебания силы тока на π/2. Поэтому уравнение (1) можно записать так:

\(~u = U_{Rm} \cdot \cos \omega t + U_{Lm} \cdot \cos (\omega t + \frac{\pi}{2}) + U_{Cm} \cdot \cos (\omega t — \frac{\pi}{2})\) , (3)

где URm, UCm и ULm – амплитуды колебаний напряжения на резисторе, конденсаторе и катушке.

Амплитуду колебаний напряжения в цепи переменного тока можно выразить через амплитудные значения напряжения на отдельных ее элементах, воспользовавшись методом векторных диаграмм.

При построении векторной диаграммы необходимо учитывать, что колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, поэтому вектор, изображающий амплитуду напряжения URm, совпадает по направлению с вектором, изображающим амплитуду силы тока Im. Колебания напряжения на конденсаторе отстают по фазе на π/2 от колебаний силы тока, поэтому вектор \(~\vec U_{Cm}\) отстает от вектора \(~\vec I_{m}\) на угол 90°. Колебания напряжения на катушке опережают колебания силы тока по фазе на π/2, поэтому вектор \(~\vec U_{Lm}\) опережает вектор \(~\vec I_{m}\) на угол 90° (рис. 9).

Рис. 9

На векторной диаграмме мгновенные значения напряжения на резисторе, конденсаторе и катушке определяются проекциями на горизонтальную ось векторов \(~\vec U_{Rm}\) , \(~\vec U_{Cm}\) и \(~\vec U_{Lm}\) , вращающихся с одинаковой угловой скоростью ω против часовой стрелки. Мгновенное значение напряжения во всей цепи равно сумме мгновенных напряжений uR, uC и uL на отдельных элементах цепи, т. е. сумме проекций векторов \(~\vec U_{Rm}\) , \(~\vec U_{Cm}\) и \(~\vec U_{Lm}\) на горизонтальную ось. Так как сумма проекций векторов на произвольную ось равна проекции суммы этих векторов на ту же ось, то амплитуду полного напряжения можно найти как модуль суммы векторов:

\(~\vec U_m = \vec U_{Rm} + \vec U_{Cm} + \vec U_{Lm}\) .

Из рисунка 9 видно, что амплитуда напряжений на всей цепи равна

\(~U_m = \sqrt{U^2_{Rm} + (U_{Lm} — U_{Cm})^2}\) , (4)

или

\(~U_{m} = \sqrt{(I_m R)^2 + (I_m X_L — I_m X_C)^2} = I_m \cdot \sqrt{R^2 + (X_L — X_C)^2} = I_m \cdot \sqrt{R^2 + (L \omega — \frac{1}{C \omega})^2}\) .

Отсюда

\(~I_m = \frac{U_m}{\sqrt{R^2 + (L \omega — \frac{1}{C \omega})^2}}\) . (5)

Введя обозначение для полного сопротивления цепи переменного тока

\(~Z = \sqrt{R^2 + (L \omega — \frac{1}{C \omega})^2}\) , (6)

выразим связь между амплитудными значениями силы тока и напряжения в цепи переменного тока следующим образом:

\(~I_m = \frac{U_m}{Z}\) . (7)

Это выражение называют законом Ома для цепи переменного тока.

Из векторной диаграммы, приведенной на рисунке 9, видно, что фаза колебаний полного напряжения равна ω∙t + φ. Поэтому мгновенное значение полного напряжения определяется формулой:

\(~u = U_m \cdot \cos (\omega t + \varphi)\) . (8)

Начальную фазу φ можно найти из векторной диаграммы:

\(~\cos \varphi = \frac{U_{Rm}}{U_m} = \frac{I_m \cdot R}{I_m \cdot \sqrt{R^2 + (L \omega — \frac{1}{C \omega})^2}} = \frac{R}{Z}\) . (9)

Величина cos φ играет важную роль при вычислении мощности в электрической цепи переменного тока.

Мощность в цепи переменного тока

Мощность в цепи постоянного тока определяется произведением напряжения на силу тока:

\(~P = U \cdot I\) .

Физический смысл этой формулы прост: так как напряжение U численно равно работе электрического поля по перемещению единичного заряда, то произведение U∙I характеризует работу по перемещению заряда за единицу времени, протекающего через поперечное сечение проводника, т.е. является мощностью. Мощность электрического тока на данном участке цепи положительна, если энергия поступает к этому участку из остальной сети, и отрицательна, если энергия с этого участка возвращается в сеть. На протяжении очень малого интервала времени переменный ток можно считать неизменным. Поэтому мгновенная мощность в цепи переменного тока определяется такой же формулой:

\(~p = u \cdot i\) .

Пусть напряжение на концах цепи меняется по гармоническому закону

\(~u = U_m \cdot \cos \omega t\)

(с тем же успехом, разумеется, вместо \(~u = U_m \cdot \cos \omega t\) можно было бы записать \(~u = U_m \cdot \sin \omega t\)), то и сила тока будет меняться со временем гармонически с той же частотой, но в общем случае будет сдвинута по фазе относительно напряжения:

\(~i = I_m \cdot \cos (\omega t + \varphi_c)\) ,

где φc – сдвиг фаз между силой тока и напряжением. Поэтому для мгновенной мощности можно записать:

\(~p = u \cdot i = U_m \cdot I_m \cdot \cos \omega t \cdot \cos (\omega t + \varphi_c)\) .

При этом мощность меняется со временем как по модулю, так и по знаку. В течение одной части периода энергия поступает к данному участку цепи (р > 0), но в течение другой части периода некоторая доля энергии вновь возвращается в сеть (р < 0). Как правило, во всех случаях нам надо знать среднюю мощность на участке цепи за достаточно большой промежуток времени, включающий много периодов. Для этого достаточно определить среднюю мощность за один период.

Чтобы найти среднюю мощность за период, преобразуем полученную формулу таким образом, чтобы выделить в ней член, не зависящий от времени. С этой целью воспользуемся известной формулой для произведения двух косинусов:

\(~\cos \alpha \cdot \cos \beta = \frac{\cos (\alpha — \beta) + \cos (\alpha + \beta)}{2}\) .

В рассматриваемом случае α = ω∙t и β = ω∙t + φc. Поэтому

\(~p = \frac{U_m \cdot I_m}{2} [\cos \varphi_c + \cos (2 \omega t + \varphi_c)] = \frac{U_m \cdot I_m}{2} \cos \varphi_c + \frac{U_m \cdot I_m}{2} \cos (2 \omega t + \varphi_c)\) .

Выражение для мгновенное мощности состоит из двух слагаемых. Первое не зависит от времени, а второе дважды за каждый период изменения напряжения изменяет знак: в течение какой-то части периода энергия поступает в цепь от источника переменного напряжения, а в течении другой части возвращается обратно. Поэтому среднее значение второго слагаемого за период равно нулю. Следовательно, средняя мощность Р за период равна первому члену, не зависящему от времени:

\(~P = \frac{U_m \cdot I_m}{2} \cos \varphi_c\) . (10)

При совпадении фазы колебаний силы тока и напряжения (для активного сопротивления R) среднее значение мощности равно:

\(~P = \frac{U_m \cdot I_m}{2} = \frac{I^2_m \cdot R}{2}\) .

Для того чтобы формула для расчета мощности переменного тока совпадала по форме с аналогичной формулой для постоянного тока (Р = I∙U = I2R), вводятся понятия действующих значений силы тока и напряжения. Из равенства мощностей получим

\(~P = \frac{I^2_m \cdot R}{2} =I^2 \cdot R\) или \(~\frac{I^2_m}{2} =I^2\) .

Действующим значением силы тока называют величину, в \(~\sqrt{2}\) раз меньшую ее амплитудного значения:

\(~I = \frac{I_m}{\sqrt{2}}\) .

Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.

Аналогично можно доказать, что

действующее значение переменного напряжения в \(~\sqrt{2}\) раз меньше его амплитудного значения:

\(~U = \frac{U_m}{\sqrt{2}}\) .

Заметим, что обычно электрическая аппаратура в цепях переменного тока показывает действующие значения измеряемых величин. Переходя к действующим значениям силы тока и напряжения, уравнение (10) можно переписать:

\(~P = \frac{U_m}{\sqrt{2}} \cdot \frac{I_m}{\sqrt{2}} \cos \varphi_c = U \cdot I \cos \varphi_c\) . (10)

Таким образом, мощность переменного тока на участке цепи определяется именно действующими значениями силы тока и напряжения. Она зависит также от сдвига фаз φc между напряжением и током. Множитель cos φc в формуле называется коэффициентом мощности.

В случае, когда φc = ± π/2 , энергия, поступающая к участку цепи за период, равна нулю, хотя в цепи и существует ток. Так будет, в частности, если цепь содержит только катушку индуктивности или только конденсатор. Как же средняя мощность может оказаться равной нулю при наличии тока в цепи? Это поясняют приведенные на рисунке 10 графики изменения со временем мгновенных значений напряжения, силы тока и мощности при φc = — π/2 (чисто индуктивное сопротивление участка цепи). График зависимости мгновенной мощности от времени можно получить, перемножая значения силы тока и напряжения в каждый момент времени. Из этого графика видно, что в течение одной четверти периода мощность положительна и энергия поступает к данному участку цепи; но в течение следующей четверти периода мощность отрицательна, и данный участок отдает без потерь обратно в сеть полученную ранее энергию. Поступающая в течение четверти периода энергия запасается в магнитном поле тока, а затем без потерь возвращается в сеть.

Рис. 10

Лишь при наличии проводника с активным сопротивлением в цепи, не содержащей движущихся проводников, электромагнитная энергия превращается во внутреннюю энергию проводника, который нагревается. Обратного превращения внутренней энергии в электромагнитную на участке с активным сопротивлением уже не происходит.

При проектировании цепей переменного тока нужно добиваться, чтобы cos φc не был мал. Иначе значительная часть энергии будет циркулировать по проводам от генератора к потребителям и обратно. Так как провода обладают активным сопротивлением, то при этом энергия расходуется на нагревание проводов.

Неблагоприятные условия для потребления энергии возникают при включении в сеть электродвигателей, так как их обмотка имеет малое активное сопротивление и большую индуктивность. Для увеличения cos φc в сетях питания предприятий с большим числом электродвигателей включают специальные компенсирующие конденсаторы. Нужно также следить, чтобы электродвигатели не работали вхолостую или с недогрузкой. Это уменьшает коэффициент мощности всей цепи. Повышение cos φc является важной народнохозяйственной задачей, так как позволяет с максимальной отдачей использовать генераторы электростанций и снизить потери энергии. Это достигается правильным проектированием электрических цепей. Запрещается использовать устройства с cos φc < 0,85.

Литература

  1. Мякишев Г.Я., Синяков А.З. Физика: Колебания и волны. 11 кл.: Учеб. для углубленного изучения физики. – М.: Дрофа, 2002. – 288 с.
  2. Физика: Учеб. пособие для 11 кл. шк. и классов с углубл. изуч. физики / А.Т. Глазунов, О.Ф. Кабардин, А.Н. Малинин и др.; Под ред. А.А. Пинского. – М.: Просвещение, 1995.– 432 с.
Получение переменного тока: теория, основные способы

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала; 
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и  потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

Формула электродвижущая сила

где n – это количество витков обмоток

а соотношение B/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рамкой и магнитамиРис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Устройство асинхронного генератораРис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Напряжение в трехфазной сетиРис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

схема синхронного генератораРис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Схема инвертораРис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

электричество | Определение, факты и типы

Электростатика — это изучение электромагнитных явлений, которые возникают, когда нет движущихся зарядов, то есть после установления статического равновесия. Заряды быстро достигают своих положений равновесия, потому что электрическая сила чрезвычайно велика. Математические методы электростатики позволяют рассчитывать распределения электрического поля и электрического потенциала по известной конфигурации зарядов, проводников и изоляторов.И наоборот, при наличии набора проводников с известными потенциалами можно рассчитать электрические поля в областях между проводниками и определить распределение заряда на поверхности проводников. Электрическая энергия набора зарядов в состоянии покоя может рассматриваться с точки зрения работы, необходимой для сборки зарядов; альтернативно, можно также считать, что энергия находится в электрическом поле, создаваемом этой сборкой зарядов. Наконец, энергия может храниться в конденсаторе; энергия, необходимая для зарядки такого устройства, накапливается в нем как электростатическая энергия электрического поля.

Изучите, что происходит с электронами двух нейтральных объектов, соприкасающихся в сухой среде. Объяснение статического электричества и его проявлений в повседневной жизни. Encyclopædia Britannica, Inc. Просмотреть все видео этой статьи

Статическое электричество — это знакомое электрическое явление, при котором заряженные частицы переносятся из одного тела в другое. Например, если два объекта притираются друг к другу, особенно если объекты являются изоляторами, а окружающий воздух сухой, объекты приобретают равные и противоположные заряды, и между ними развивается сила притяжения.Объект, который теряет электроны, становится положительно заряженным, а другой — отрицательно заряженным. Сила — это просто притяжение между зарядами противоположного знака. Свойства этой силы были описаны выше; они включены в математические отношения, известные как закон Кулона. Электрическая сила на заряде Q 1 в этих условиях, обусловленная зарядом Q 2 на расстоянии r , определяется законом Кулона,

Жирные символы в уравнении указывают вектор Характер силы и единичный вектор r — это вектор, размер которого равен единице и который указывает от заряда Q 2 до заряда Q 1 .Константа пропорциональности k равна 10 −7 c 2 , где c — скорость света в вакууме; k имеет числовое значение 8,99 × 10 9 квадратных метров на квадратный кулон (Нм 2 / C 2 ). На рисунке 1 показано усилие на Q 1 из-за Q 2 . Численный пример поможет проиллюстрировать эту силу. И Q 1 , и Q 2 выбраны произвольно в качестве положительных зарядов, каждый из которых имеет величину 10 -60036 кулонов.Заряд Q 1 находится в координатах x , y , z со значениями 0,03, 0, 0 соответственно, а Q 2 имеет координаты 0, 0,04, 0. Все координаты даны в метрах. Таким образом, расстояние между Q 1 и Q 2 составляет 0,05 метра.

электрическая сила между двумя зарядами Рисунок 1: электрическая сила между двумя зарядами. Предоставлено факультетом физики и астрономии Мичиганского государственного университета. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской.Подпишитесь сегодня

Величина силы F на заряде Q 1 , рассчитанная по уравнению (1), составляет 3,6 ньютона; его направление показано на рисунке 1. Сила на Q 2 из-за Q 1 составляет — F , которая также имеет величину 3,6 ньютона; однако его направление противоположно направлению F . Сила F может быть выражена через ее компоненты вдоль осей x и y , поскольку вектор силы лежит в плоскости x y .Это делается с помощью элементарной тригонометрии из геометрии на рисунке 1, а результаты показаны на рисунке 2. Таким образом, в ньютонах. Закон Кулона математически описывает свойства электрической силы между зарядами в покое. Если обвинения имеют противоположные знаки, сила будет привлекательной; притяжение будет указано в уравнении (1) отрицательным коэффициентом единичного вектора r̂. Таким образом, электрическая сила на Q 1 будет иметь направление, противоположное единичному вектору r и будет указывать от Q 1 до Q 2 .В декартовых координатах это приведет к изменению знаков как x , так и y компонентов силы в уравнении (2).

составляющих кулоновской силы Рисунок 2: x и y составляющих силы F на рисунке 4 (см. Текст). Предоставлено факультетом физики и астрономии Мичиганского государственного университета.

Как можно понять эту электрическую силу на Q 1 ? По сути, сила обусловлена ​​наличием электрического поля в позиции Q 1 .Поле вызвано вторым зарядом Q 2 и имеет величину, пропорциональную величине Q 2 . При взаимодействии с этим полем первый заряд на некотором расстоянии либо притягивается, либо отталкивается от второго заряда, в зависимости от знака первого заряда.

,

переменного тока | Определение и факты

Переменный ток , аббревиатура AC , поток электрического заряда, который периодически меняется. Он начинается, скажем, с нуля, растет до максимума, уменьшается до нуля, переворачивается, достигает максимума в обратном направлении, снова возвращается к исходному значению и повторяет этот цикл бесконечно. Интервал времени между достижением определенного значения в двух последовательных циклах называется периодом, число циклов или периодов в секунду является частотой, а максимальное значение в любом направлении является амплитудой переменного тока.Низкие частоты, такие как 50 и 60 циклов в секунду (герц), используются для бытового и коммерческого питания, но переменные токи с частотой около 100 000 000 циклов в секунду (100 мегагерц) используются в телевидении, а частоты в несколько тысяч мегагерц в радаре или СВЧ связь. Сотовые телефоны работают на частотах около 1000 мегагерц (1 гигагерц).

Подробнее на эту тему

электричество: переменные электрические токи

Во многих приложениях электричества и магнетизма используются напряжения, которые меняются во времени.Электроэнергия, передаваемая на большие расстояния от …

Переменный ток (AC) имеет явное преимущество перед постоянным током (DC; постоянный поток электрического заряда в одном направлении), поскольку он способен передавать энергию на большие расстояния без большой потери энергии на сопротивление. Передаваемая мощность равна току, умноженному на напряжение; однако потеря мощности равна сопротивлению, умноженному на квадрат тока. Изменение напряжения было очень трудным с появлением первых электрических сетей постоянного тока в конце 19-го века.Из-за потери мощности эти сети использовали низкие напряжения для поддержания высокого тока и, следовательно, могли передавать полезную мощность только на короткие расстояния. Передача энергии постоянного тока была вскоре вытеснена системами переменного тока, которые передают энергию при очень высоком напряжении (и соответственно низком токе) и легко используют трансформаторы для изменения напряжения. Современные системы передают энергию от генераторов на сотни тысяч вольт и используют трансформаторы для снижения напряжения до 220 вольт (как в большинстве стран мира) или до 120 вольт (как в Северной Америке) для отдельных потребителей. См. Также электрический ток.

электрический ток | Формула и определение

Электрический ток , любое движение носителей электрического заряда, таких как субатомные заряженные частицы (например, электроны, имеющие отрицательный заряд, протоны, имеющие положительный заряд), ионы (атомы, которые потеряли или получили один или несколько электронов), или дыры (электронные дефекты, которые можно рассматривать как положительные частицы).

Подробнее на эту тему

электромагнетизм: принцип сохранения заряда

Электрический ток является мерой потока заряда, как, например, заряда, протекающего через провод.Размер текущего …

Электрический ток в проводе, где носителями заряда являются электроны, является мерой количества заряда, проходящего через любую точку провода в единицу времени. В переменном токе движение электрических зарядов периодически меняется; в постоянном токе это не так. Во многих контекстах направление тока в электрических цепях принимается за направление потока положительного заряда, направление, противоположное фактическому дрейфу электронов. Когда это определено, ток называется условным током.

Узнайте, почему медное низкое сопротивление делает его отличным проводником электрических токов. Соотношение между током и сопротивлением в электрической цепи. Encyclopædia Britannica, Inc. Просмотреть все видео этой статьи

Ток обычно обозначается символом I . Закон Ома связывает ток, протекающий через проводник, с напряжением В, и сопротивлением R ; то есть В = I R . Альтернативное утверждение закона Ома: I = V / R .

Ток в газах и жидкостях обычно состоит из потока положительных ионов в одном направлении вместе с потоком отрицательных ионов в противоположном направлении. Чтобы рассматривать общее влияние тока, его направление обычно принимается за направление положительного носителя заряда. Ток отрицательного заряда, движущийся в противоположном направлении, эквивалентен положительному заряду той же величины, движущемуся в обычном направлении, и должен учитываться как вклад в общий ток.Ток в полупроводниках состоит из движения дырок в обычном направлении и электронов в противоположном направлении.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской. Подпишитесь сегодня

Существуют токи многих других видов, такие как пучки протонов, позитронов или заряженных пионов и мюонов в ускорителях частиц.

Электрический ток генерирует сопутствующее магнитное поле, как в электромагнитах. Когда электрический ток течет во внешнем магнитном поле, он испытывает магнитную силу, как в электродвигателях.Потеря тепла или энергия, рассеиваемая электрическим током в проводнике, пропорциональна квадрату тока.

Магнитное поле , создаваемое электрическим током Магнитное поле, создаваемое небольшим сечением провода с электрическим током i . Предоставлено Департаментом физики и астрономии Мичиганского государственного университета.

Общей единицей электрического тока является ампера, который определяется как поток одного кулона заряда в секунду, или 6,2 × 10 18 электронов в секунду.Единицы измерения сантиметр-грамм-секунда — это электростатическая единица заряда (esu) в секунду. Один ампер равен 3 × 10 9 esu в секунду.

Коммерческие линии электропередач обеспечивают около 100 ампер для типичного дома; лампочка мощностью 60 Вт потребляет около 0,5 А тока, а однокомнатный кондиционер — около 15 А. (Подробнее об электрическом токе см. электричество: постоянный электрический ток и электричество: переменный электрический ток.) ​​

.

Nikola Tesla, патент США 447 921

Перейти к основному содержанию Вселенная ТеслаКвест для понимания загадки Николы Теслы

Главная навигация

  • Никола Тесла Показать / Скрыть Подлинки
  • Около
  • Сложение Показать / Скрыть Подлинки
  • заниматься Показать / Скрыть Подлинки
  • Магазин Показать / Скрыть Подлинки
  • /
  • Присоединиться
  • Авторизоваться
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *