Закрыть

Понятие об электрическом токе: Понятие об электрическом токе

Содержание

Понятие об электрическом токе

Электрическим током называется упорядоченный поток отрицательно заряженных элементарных частиц – электронов. Электрический ток необходим для освещения домов и улиц, обеспечения работоспособности бытовой и производственной техники, движения городского и магистрального электротранспорта и.т.п.

Электрический ток

 

 

 

  • Rн – сопротивление нагрузки
  • A – индикатор
  • К – коммутатор цепи

Ток – количество зарядов прошедших в единицу времени через поперечное сечение проводника.

Исторически принято считать, что ток в замкнутой цепи, движется от положительного, к отрицательному полюсу источника питания.

  • I – сила тока
  • q – количество электричества
  • t – время

Единицу силы тока называют амперам А, по имени французского учёного Ампера.

1А = 103мА = 106мкА

Плотность электрического тока

Электрическому току присущ ряд физических характеристик, имеющих количественные значения, выражаемые в определенных единицах. Основными физическими характеристиками электротока являются его сила и мощность. Сила тока количественно выражается в амперах, а мощность тока – в ваттах. Не менее важной физической величиной считается векторная характеристика электрического тока, или плотность тока. В частности, понятием плотности тока пользуются при проектировании линий электропередач.

  • J – плотность электрического тока А / ММ2
  • S – площадь поперечного сечения
  • I – ток

Постоянный и переменный ток

Электропитание всех электрических устройств осуществляется

постоянным либо переменным током.

Электрический ток, направление и значение которого не меняются, называется постоянным.

Электрический ток, направление и значение которого способны изменяться называется переменным.

Электропитание многих электротехнических устройств осуществляется переменным током, изменение которого графически представлено в виде синусоиды.

Использование электрического тока

Можно с уверенностью констатировать, что самым великим достижением человечества является открытие электрического тока и его использование. От электрического тока зависят тепло и свет в домах, поступление информации из внешнего мира, общение людей, находящихся в различных точках планеты, и многое другое.

Современную жизнь невозможно представить без повсеместного наличия электричества. Электричество присутствует абсолютно во всех сферах жизнедеятельности людей: в промышленности и сельском хозяйстве, в науке и космосе.

Электричество также является неизменной составляющей повседневного быта человека. Такое повсеместное распространение электричества стало возможным благодаря его уникальным свойствам. Электрическая энергия может мгновенно передаваться на огромные расстояния и преобразовываться в различные виды энергий иного генезиса.

Основными потребителями электрической энергии являются промышленная и производственная сферы. При помощи электроэнергии приводятся в действие различные механизмы и устройства, осуществляются многоэтапные технологические процессы.

Невозможно переоценить роль электроэнергии в обеспечении работы транспорта. Практически полностью электрифицирован железнодорожный транспорт. Электрификация железнодорожного транспорта сыграла значительную роль в обеспечении пропускной способности дорог, увеличении скорости передвижения, снижении себестоимости пассажироперевозок, решении проблемы экономии топлива.

Наличие электричества является непременным условием обеспечения комфортных условий жизни людей. Вся бытовая техника: телевизоры, стиральные машины, микроволновые печи, нагревательные приборы – нашла свое место в жизни человека только благодаря развитию электротехнического производства.

Главенствующая роль электроэнергии в развитии цивилизации неоспорима. Нет такой области в жизни человечества, которая обходилась бы без потребления электрической энергии и альтернативу которой могла бы составить мускульная сила.

Что такое электрический ток? Основные понятия, характеристики и действия.

Что такое электрический ток?Что такое электрический ток?

Что такое электрический ток? В учебнике физики есть определение:

ЭЛЕКТРИЧЕСКИЙ ТОК — это упорядоченное (направленное) движение заряженных частиц под действием электрического поля. Частицами могут быть: электроны, протоны, ионы, дырки.

В академических учебниках определение описывается так:

ЭЛЕКТРИЧЕСКИЙ ТОК — это скорость изменения электрического заряда во времени.

    • Заряд электронов отрицателен.
    • протоны — частицы с положительным зарядом;
  • нейтроны — с нейтральным зарядом.

СИЛА ТОКА – это количество заряженных частиц (электроны, протоны, ионы, дырки), протекающих через поперечное сечение проводника.

Все физические вещества, в том числе металлы состоят из молекул, состоящих из атомов, которые в свою очередь состоят из ядер и вращающихся вокруг них электронов. Во время химических реакций электроны переходят от одних атомов к другим, поэтому, атомы одного вещества испытывают недостаток в электронах, а атомы другого вещества имеют их избыток. Это означает, что вещества имеют разноименные заряды. В случае их контакта, электроны будут стремиться перейти из одного вещества в другое. Именно это перемещение электронов и есть

ЭЛЕКТРИЧЕСКИЙ ТОК. Ток, который будет течь, до тех пор, пока заряды этих двух веществ не уравняются. Взамен ушедшего электрона приходит другой. Откуда? От соседнего атома, к нему — от его соседа, так до крайнего, к крайнему — от отрицательного полюса источника тока (например — батарейки). С другого конца проводника электроны уходят на положительный полюс источника тока. Когда все электроны на отрицательном полюсе закончатся, ток прекратится (батарея «села»).

НАПРЯЖЕНИЕ — это характеристика электрического поля и представляет собой разность потенциалов двух точек внутри электрического поля.

Вроде как то не понятно.

Проводник – это в простейшем случае — проволока, сделанная из металла (чаще применяется медь и алюминий). Масса электрона равна 9,10938215(45)×10-31 кг. Если электрон имеет массу, то это означает, что он материален. Но проводник сделан из металла, а металл то, твёрдый, как по нему текут какие то, электроны?

Число электронов в веществе, равное числу протонов лишь обеспечивает его нейтральность, а сам химический элемент определяется количеством протонов и нейтронов исходя из периодического закона Менделеева. Если чисто теоретически отнять от массы любого химического элемента все его электроны, он практически не приблизится к массе ближайшего химического элемента. Слишком большая разница между массами электрона и ядра (масса только 1-го протона примерно в 1836 больше массы электрона). А уменьшение или увеличение числа электронов должно приводить лишь к изменению общего заряда атома. Число электронов у отдельно взятого атома всегда переменно. Они, то покидают его, вследствие теплового движения, то возвращаются обратно, потеряв энергию.

Если электроны движутся направленно, значит, они «покидают» свой атом, а не будет теряться атомарная масса и как следствие, меняться и химический состав проводника? Нет. Химический элемент определяется не атомарной массой, а количеством ПРОТОНОВ в ядре атома, и ничем другим. При этом наличие или отсутствие электронов или нейтронов у атома роли не играет. Добавим — убавим электроны — получим ион, добавим — убавим нейтроны — получим изотоп. При этом химический элемент останется тем же.

С протонами другая история: один протон — это водород, два протона — это гелий, три протона — литий и.т.д (см. таблицу Менделеева). Поэтому, сколько ни пропускай ток через проводник, химический состав его не изменится.

Другое дело электролиты. Здесь как раз ХИМИЧЕСКИЙ СОСТАВ МЕНЯЕТСЯ. Из раствора под действием тока выделяются элементы электролита. Когда все выделятся, ток прекратится. Всё потому, что носители заряда в электролитах — ионы.

Бывают химические элементы без электронов:

1.  Атомарный космический водород.

2. Газы в верхних слоях атмосферы Земли и других планет с атмосферой.

2. Все вещества в состоянии плазмы.

3. В ускорителях, коллайдерах.

Под действием электрического тока химические вещества (проводники) могут «рассыпаться». Например, плавкий предохранитель. Движущиеся электроны на своем пути расталкивают атомы, если ток сильный — кристаллическая решетка проводника разрушается и проводник расплавляется.

Рассмотрим работу электровакуумных приборов.

процесс движения электроновпроцесс движения электронов

Напомню, что во время действия электрического тока в обычном проводнике, электрон, покидая своё место, оставляет там «дырку», которая затем заполняется электроном от другого атома, где в свою очередь так же образуется дырка, в последствии заполняемая другим электроном. Весь процесс движения электронов происходит в одну сторону, а движение «дыр», в противоположную. То есть дырка – явление временное, она заполняется всё равно. Заполнение необходимо для сохранения равновесия заряда в атоме.

А теперь рассмотрим работу электровакуумного прибора. Для примера возьмём простейший диод – кенотрон. Электроны в диоде во время действия электрического тока испускаются катодом в направлении анода. Катод покрыт специальными окислами металлов, которые облегчают выход электронов из катода в вакуум (малая работа выхода). Никакого запаса электронов в этой тоненькой пленке нет. Для обеспечения выхода электронов катод сильно разогревают нитью накала. Со временем раскаленная пленка испаряется, оседает на стенках колбы, и эмиссионная способность катода уменьшается. И такой электронно-вакуумный прибор попросту выкидывают. А если прибор дорогой, его восстанавливают. Для его восстановления колбу распаивают, заменяют катод на новый, после чего колбу обратно запаивают.

Электроны в проводнике двигаются «перенося на себе» электрический ток, а катод пополняется электронами от проводника, подключенного к катоду. На замену электронам, покинувшим катод, приходят электроны от источника тока.

Понятие «скорость движения электрического тока» не существует. Со скоростью, близкой к скорости света (300 000 км/с), по проводнику распространяется электрическое поле, под действием которого все электроны начинают движение с малой скоростью, которая приблизительно равна 0,007 мм/с, не забывая ещё и хаотически метаться в тепловом движении.


Давайте теперь разберёмся в основных характеристиках тока

Представим картину: У вас имеется стандартная картонная коробка с горячительным напитком на 12 бутылок. А вы пытаетесь засунуть туда ещё бутылку. Предположим вам это удалось, но коробка едва выдержала. Вы засовываете туда ещё одну, и вдруг коробка рвётся и бутылки вываливаются.

Коробку с бутылками можно сравнить с поперечным сечением проводника:

Чем шире коробка (толще провод), тем большее количество бутылок (СИЛУ ТОКА), она может в себя поместить (обеспечить).

В коробке (в проводнике) можно поместить от одной до 12 бутылок – она не развалится (проводник не сгорит), а большее число бутылок (большую силу тока) она не вмещает (представляет сопротивление).
Если сверху на коробку, мы поставим ещё одну коробку, то на одной единице площади (сечении проводника) мы разместим не 12, а 24 бутылки, ещё одну сверху — 36 бутылок. Одну из коробок (один этаж) можно принять за единицу аналогичную НАПРЯЖЕНИЮ электрического тока.

Чем шире коробка (меньше сопротивление), тем большее количество бутылок (СИЛУ ТОКА) она может обеспечить.

Увеличив высоту коробок (напряжение), мы можем увеличить общее количество бутылок (МОЩНОСТЬ) без разрушения коробок (проводника).

По нашей аналогии получилось:

Общее количество бутылок это — МОЩНОСТЬ

Количество бутылок в одной коробке (слое) это — СИЛА ТОКА

Количество ящиков в высоту (этажей) это — НАПРЯЖЕНИЕ

Ширина коробки (вместимость) это — СОПРОТИВЛЕНИЕ участка электрической цепи

Путём перечисленных аналогий, мы пришли к «ЗАКОНУ ОМА«, который ещё называется Законом Ома для участка цепи. Изобразим его в виде формулы:

Закон ОмаЗакон ОмаЗакон Ома

где I – сила тока, U – напряжение (разность потенциалов), R – сопротивление.

По-простому, это звучит так: Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Кроме того, мы пришли и к «ЗАКОНУ ВАТТА«. Так же изобразим его в виде формулы:

Закон ВаттаЗакон ВаттаЗакон Ватта

где I – сила тока, U – напряжение (разность потенциалов), Р – мощность.

По-простому, это звучит так: Мощность равна произведению силы тока на напряжение.

Сила электрического тока измеряется прибором называемым Амперметром. Как вы догадались, величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. Например: Говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в обычной жизни не реальны. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.

Электрическое напряжение (электрический потенциал) измеряется прибором называемым Вольтметром, как вы догадались, напряжение, т. е. разность потенциалов, которая заставляет течь ток, измеряется в Вольтах (В). Так же, как для тока, для увеличения диапазона обозначений, существуют кратные приставки: (микро — микровольт (мкВ), мили – милливольт (мВ), кило – киловольт (кВ), мега – мегавольт (МВ). Напряжение ещё называют ЭДС – электродвижущей силой.

Электрическое сопротивление измеряется прибором называемым Омметром, как вы догадались, единица измерения сопротивления – Ом (Ом). Так же, как для тока и напряжения, существуют приставки кратности: кило – килоом (кОм), мега – мегаом (МОм). Другие значения в обычной жизни не реальны.

Ранее, Вы узнали, что сопротивление проводника напрямую зависит от диаметра проводника. К этому можно добавить, что если к тонкому проводнику приложить большой электрический ток, то он будет не способен его пропустить, из-за чего будет сильно греться и, в конце концов, может расплавиться. На этом принципе основана работа плавких предохранителей.

Атомы любого вещества располагаются на некотором расстоянии друг от друга. В металлах расстояния между атомами настолько малы, что электронные оболочки практически соприкасаются. Это дает возможность электронам свободно блуждать от ядра к ядру, создавая при этом электрический ток, поэтому металлы, а также некоторые другие вещества являются ПРОВОДНИКАМИ электричества. Другие вещества – наоборот, имеют далеко расставленные атомы, электроны, прочно связанные с ядром, которые не могут свободно перемещаться. Такие вещества не являются проводниками и их принято называть ДИЭЛЕКТРИКАМИ, самым известным из которых является резина. Это и есть ответ на вопрос, почему электрические провода делают из металла.

О наличии электрического тока говорят следующие действия или явления, которые его сопровождают:

;1. Проводник, по которому течет ток, может нагреваться;

2. Электрический ток может изменять химический состав проводника;

3. Ток оказывает силовое воздействие на соседние токи и намагниченные тела.

При отделении электронов от ядер освобождается некоторое количество энергии, которое нагревает проводник. «Нагревательную» способность тока принято называть рассеиваемой мощностью и измерять в ваттах. Такой же единицей принято измерять и механическую энергию, преобразованную из электрической энергии.

Опасность электрического тока и другие опасные свойства электричества и техника безопасности

Опасность электрического токаОпасность электрического тока

Электрический ток нагревает проводник, по которому течёт. Поэтому:

1. Если бытовая электрическая сеть испытывает перегрузку, изоляция постепенно обугливается и осыпается. Возникает возможность короткого замыкания, которое очень опасно.

2. Электрический ток, протекая по проводам и бытовым приборам, встречает сопротивление, поэтому «выбирает» путь с наименьшим сопротивлением.

3. Если происходит короткое замыкание, сила тока резко возрастает. При этом выделяется большое количество тепла, способное расплавить металл.

4. Короткое замыкание может произойти и из-за влаги. Если в случае с коротким замыканием происходит пожар, то в случае с воздействием влаги на электроприборы в первую очередь страдает человек.

5. Удар электричеством очень опасен, вероятен смертельный исход. При протекании электрического тока через организм человека, сопротивление тканей резко уменьшается. В организме происходят процессы нагревания тканей, разрушения клеток, отмирания нервных окончаний.

Как обезопасить себя от поражения электрическим током

Чтобы обезопасить себя от воздействия электрического тока, используют средства защиты от поражения электрическим током: работают в резиновых перчатках, используют резиновый коврик, разрядные штанги, устройства заземления аппаратуры, рабочих мест. Автоматические выключатели с тепловой защитой и защитой по току, так же являются не плохим средством защиты от поражения током, способным сохранить жизнь человека. Когда я не уверен в отсутствии опасности поражения электрическим током, при выполнении не сложных операций в электрощитовых, блоках аппаратуры, я как правило работаю одной рукой, а другую руку ложу в карман. Тем самым исключается возможность поражения током по пути рука-рука, в случае случайного прикосновения к корпусу щита, или другим массивным заземлённым предметам.

Для тушения пожара, возникшего на электрооборудовании используют только порошковые или углекислотные огнетушители. Порошковые тушат лучше, но после засыпания аппаратуры пылью из огнетушителя, эту аппаратуру не всегда возможно восстановить.

Видео по теме: что такое электрический ток

Что такое электрический ток: определение, характеристики, виды

Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование. Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго. Даже трудно назвать отрасль, где можно обойтись без электроэнергии.

В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

Электрическую энергию можно доставить практически везде:

  • к производственному цеху;
  • квартире;
  • на поле;
  • в шахту, под воду и т. д.

Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений. А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами. Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Опыт с заряженными теламиРис. 1. Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами. На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно. То есть электрофорная машина является источником электричества.

Электрофорная машинаРисунок 2. Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Характеристики

Электрический ток характеризуется величинами, которые описывают его свойства.

Сила и плотность тока

Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

Плотность тока  –  векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м2. Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.

Мощность

Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U. Единица измерения мощности – ватт (Вт).

Частота

Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

Ток смещения

Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

Виды тока

По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону. Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного. Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

Классификация переменного тока

Классифицировать изменяющиеся во времени токи можно следующим образом:

  1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
  2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
  3. Высокочастотный – частота которого превышает десятки кГц.
  4. Пульсирующий – импульс которого периодически изменяется.

Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Блуждающие токи Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.

Дрейфовая скорость электронов

Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью. Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду. Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.

Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Электрический ток в различных средах

В металлах

Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.

Электрический ток в металлахРис. 3. Электрический ток в металлах

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

В полупроводниках

В обычном состоянии у полупроводника нет свободных носителей зарядов.  Но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. Происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

Под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. Возникает упорядоченное движение свободных зарядов. Такую проводимость называют электронно-дырочной.

В вакууме и газе

Электрический ток возможен и в ионизированном газе. Заряд переносится положительными и отрицательными ионами. Ионизация газов возможна под действием излучения или вследствие сильного нагревания. Под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).

Электрический ток в газахРис 4. Электрический ток в газах

В вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. Носителями зарядов являются электроны. Для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

Примером может служить работа вакуумной лампы или электронно-лучевая трубка.

В жидкостях

Оговоримся сразу – не все жидкости являются проводниками. Электрический ток возможен в кислотных, щёлочных и соляных растворах. Иначе говоря – в средах, где имеются заряженные ионы.

Если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). Под действием ЭДС катионы устремятся к катоду (минусу), а анионы к аноду. При этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. Такое явление называют электролизом.

Электроток в жидкостяхРис. 5. Электроток в жидкостях

Для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. Обратите внимание на вольтамперные характеристики (4 столбец).

Электрический ток в средахРис. 6. Электрический ток в средах

Проводники электрического тока

Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.

Небольшое сопротивление имеют:

  • все благородные металлы;
  • медь;
  • алюминий;
  • олово;
  • свинец.

На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.

Электробезопасность

Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.

Что такое электрический ток: основные понятия и характеристики

Электрический ток – это движение заряженных частиц в определенном направлении. Происходит подобное явление под влиянием поля. Частицами являются электроны, которые двигаются по проводнику и ионы, передвигающиеся в электролитной среде. Ионы бывают анионами и катионами. Проявляется ток в следующем:

  • нагрев проводника по которому он протекает, кроме сверхпроводников;
  • меняется химический состав, например, такое явление как электролиз;
  • появление магнитного поля. Ток считается направленным движением заряда с токопроводящей среде.

В статье будет рассказано все о таком  явлении, как ток. Подробнее будет рассказано об этом в двух видеороликах.

Электрический ток в проводах

Электрический ток в проводах

Классификация

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток. Различают переменный (англ. alternating current, AC), постоянный (англ. direct current, DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают. Постоянный ток — ток, направление и величина которого слабо меняются во времени.

Переменный ток — ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону.

Ток течет по проводам высоковольтных линий электропередач, ток вращает стартер и заряжает аккумулятор в нашем автомобиле, молния во время грозы — это тоже электрический ток.

Электрические разряды

Электрические разряды

В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал).

В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

электрический ток и его единицы измерения

Таблица электрический ток и его единицы измерения.

Квазистационарный ток

Это «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Что такое электрический ток, виды и условия его существования

Переменный ток высокой частоты — ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Пульсирующий ток

Ток, у которого изменяется только величина, а направление остаётся постоянным.

Вихревые токи (токи Фуко)

Замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Вихревой ток

Вихревой ток

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока.

Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов.

П

Что такое электрический ток, виды и условия его существования

ри очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц. Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света.

Интересно почитать! Что такое варистор и где его применяют.

За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Разряд молнии - пример природного электричества

Разряд молнии – пример природного электричества

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

электрический ток в средах

Таблица электрический ток в различных средах.

  • Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.
  • Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.
  • Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Передача тока по проводам

Передача тока по проводам

Что такое ток, напряжение и сопротивление

Электрический ток ( I ) – это упорядоченное движение заряженных частиц. Первая мысль, которая приходит в голову из школьного курса физики – движение электронов. Безусловно. Однако электрический заряд могут переносить не только они, а, например, еще ионы, определяющие возникновение электрического тока в жидкостях и газах. Хочу предостеречь также от сравнения тока с протеканием воды по шлангу. (Хотя при рассмотрении Закона Кирхгофа такая аналогия будет уместна). Если каждая конкретная частица воды проделывает путь от начала до конца, то носитель электрического тока так не поступает.

Материал по теме: Что такое реле контроля.

Если уж нужна наглядность, то я бы привел пример переполненного автобуса, когда на остановке некто, втискиваясь в заднюю дверь, становится причиной выпадения из передней менее удачливого пассажира. Условиями возникновения и существования электрического тока являются:

  • Наличие свободных носителей заряда
  • Наличие электрического поля, создающего и поддерживающего ток.

Будем считать, что теперь про электрический ток Вы знаете все. Это, конечно, шутка. Тем более что еще ничего не сказано про электрическое поле, которое у многих ассоциируется с напряжением, что не верно. Электрическое поле – это вид материи, существующей вокруг электрически заряженных тел и оказывающее на них силовое воздействие. Опять же, обращаясь к знакомому со школы “одноименные заряды отталкиваются, а разноименные притягиваются” можно представить электрическое поле как нечто это воздействие передающее.

Что такое электрический ток, виды и условия его существования

Это поле, равно как любое другое непосредственно ощутить нельзя, но существует его количественная характеристика – напряженность электрического поля.

Существует множество формул, описывающих взаимосвязь электрического поля с другими электрическими величинами и параметрами. Я ограничусь одной, сведенной к примитиву: E=Δφ. Здесь:

  • E – напряженность электрического поля. Вообще это величина векторная, но я упростил все до скаляра.
  • Δφ=φ1-φ2 – разность потенциалов (рисунок 1).

Поскольку условием существования тока является наличие электрического поля, то его (поле) надо каким либо образом создать. Хорошо знакомые опыты электризации расчески, натирания тканью эбонитовой палочки, верчения ручки электростатической машины по вполне очевидным причинам на практике неприемлимы.

Электролиз в домашних условиях

Электролиз в домашних условиях

Поэтому были изобретены устройства, способные обеспечивать разность потенциалов за счет сил неэлектростатического происхождения (одно из них – хорошо всем известная батарейка), получившие название источник электродвижущей силы (ЭДС), которая обозначается так: ε. Физический смысл ЭДС определяется работой, которую совершают сторонние силы, перемещая единичный заряд, но для того, чтобы получить первоначальное понятие что такое электрический ток, напряжение и сопротивление нам не нужно подробное рассмотрение этих процессов в интегральной и иных не менее сложных формах.

Напряжение ( U )

Наотрез отказываюсь продолжать заморачивать Вам голову сугубо теоретическими выкладками и даю определение напряжения как разности потенциалов на участке цепи: U=Δφ=φ1-φ2, а для замкнутой цепи будем считать напряжение равным ЭДС источника тока: U=ε. Это не совсем корректно, но на практике вполне достаточно. Сопротивление ( R ) – название говорит само за себя – физическая величина, характеризующая противодействие проводника электрическому току. Формула, определяющая зависимость напряжения, тока и сопротивления называется закон Ома. Этот закон рассматривается на отдельной странице этого раздела.

Кроме того, сопротивление зависит от ряда факторов, например, материала проводника. Данные эти справочные, приводятся в виде значения удельного сопротивления ρ, определяемого как сопротивление 1 метра проводника/сечение. Чем меньше удельное сопротивление, тем меньше потери тока в проводнике.

Источники электрической энергии

Источники электрической энергии

Соответственно сопротивление проводника длиной L и площадью сечения S, будет составлять R=ρ*L/S. Непосредственно из приведенной формулы видно, что сопротивление проводника также зависит от его длины и сечения. Температура тоже оказывает влияние на сопротивление. Несколько слов про единицы измерения тока, напряжения, сопротивления. Основные единицы измерения этих величин следующие:

  • Ток – Ампер (А)
  • Напряжение – Вольт (В)
  • Сопротивление – Ом (Ом).

Это единицы измерения интернациональной системы (СИ) не всегда удобны. На практике применяются из производные (милиампер, килоом и пр.). При расчетах следует учитывать размерность всех величин, содержащихся в формуле. Так, если Вы, в законе Ома умножите ампер на килоом, то напряжение получите совсем не вольтах.

Интересно по теме: Как проверить стабилитрон.

Терминология

Когда мы произносим словосочетание «электрический ток», то обычно имеем ввиду самые разные проявления электричества. Ток течет по проводам высоковольтных линий электропередач, ток вращает стартер и заряжает аккумулятор в нашем автомобиле, молния во время грозы — это тоже электрический ток. Электролиз, электросварка, искры статического электричества на расческе, по спирали лампы накаливания течет ток, и даже в крохотном карманном фонарике через светодиод течет крохотный ток. Что и говорить о нашем сердце, которое также генерирует небольшой электрический ток, особенно это заметно во время прохождения процедуры ЭКГ.

Переменное магнитное поле

Переменное магнитное поле

В физике электрическим током принято называть упорядоченное движение заряженных частиц и в принципе любых носителей электрического заряда. Движущийся вокруг атомного ядра электрон — это тоже ток. И заряженная эбонитовая палочка, если держать ее в руке и двигать из стороны в сторону — также станет источником тока: не равный нулю заряд есть и он движется.

Физические аналогии между течением воды в системе водоснабжения и электрическим током: Электропроводка и трубопровод. Ток течет по проводам бытовых электроприборов питающихся от розетки — электроны перемещаются туда-сюда 50 раз за секунду — это называется переменным током. Высокочастотные сигналы внутри электронных приборов — это тоже электрический ток, поскольку электроны и дырки (носители положительного заряда) перемещаются внутри схемы. Любой электрический ток порождает своим существованием магнитное поле. Вокруг проводника с током оно обязательно присутствует. Не существует магнитного поля без тока и тока без магнитного поля.

Даже если магнитного поля вокруг тока не наблюдается, это лишь значит что магнитные поля двух токов в момент наблюдения взаимно скомпенсированы, как в двужильном проводе любого электрического чайника — переменные токи в каждый момент направлены в противоположные стороны и текут параллельно друг другу — их магнитные поля друг друга нейтрализуют. Это называется принципом наложения (суперпозиции) магнитных полей.

Практически для существования электрического тока необходимо наличие электрического поля, потенциального или вихревого. Исключительно редко заряды перемещаются чисто механическим образом (как например в генераторе Ван Де Граафа — наэлектризованной резиновой лентой). В электрическом поле заряженная частица испытывает действие электрической силы, которая у источников тока называется ЭДС — электродвижущая сила. ЭДС измеряется в вольтах как и напряжение между двумя точками электрической цепи. Чем больше напряжение приложенное к потребителю — тем больший электрический ток это напряжение способно вызвать.

Магнитное поле от электрического разряда

Магнитное поле от электрического разряда

Переменное напряжение порождает в проводнике, к которому оно приложено, переменный ток, поскольку электрическое поле, приложенное к носителям заряда, будет в этом случае также переменным. Постоянное напряжение — условие существования в проводнике тока постоянного. Высокочастотное напряжение (изменяющее свое направление сотни тысяч раз за секунду) также способствует переменному току в проводниках, но чем выше частота — тем меньше носителей заряда участвуют в создании тока в толще проводника, поскольку электрическое поле действующее на заряженные частицы вытесняется ближе к поверхности, и получается что ток течет не в проводнике, а по его поверхности. Это называется скин-эффект.

Электрический ток может существовать в вакууме, в проводниках, в электролитах, в полупроводниках и даже в диэлектриках (ток смещения). Правда в диэлектриках постоянного тока быть не может, поскольку в них заряды не имеют возможности к свободному перемещению, а способны лишь смещаться в пределах внутримолекулярного расстояния от своего первоначального положения под действием приложенного электрического поля.

Что такое электрический ток, виды и условия его существования

Настоящий электрический ток всегда предполагает возможность свободного перемещения электрических зарядов под действием электрического поля. Смотрите – условия существования электрического тока. В металлических проводниках электрический ток представляет собой движение «свободных» электронов, причем электроны движутся в направлении, противоположном условному направлению тока (т. к. за направление тока условно принято направления движения зарядов).

Электрический ток  в газах представляет собой движение положительных ионов в одном направлении, а электронов (и отрицательных ионов) в другом направлении. Наконец, электрический ток в электролитах представляет собой движение существующих в жидкости положительных и отрицательных ионов в противоположных направлениях. Сила электрического тока — количество электричества, прошедшее через все поперечное сечение тока за 1 сек., зависит, с одной стороны, от количества движущихся зарядов, а с другой — от средней скорости их регулярного движения. В металлических проводниках количество движущихся зарядов (свободных электронов) чрезвычайно велико (порядка 1023 в 1 см3), но зато средняя скорость регулярного движения очень мала (при самых сильных токах, которые может выдержать проводник, эта средняя скорость имеет величину порядка сантиметра в секунду). Обычно несколько меньше количество движущихся зарядов в жидкостях и соответственно их средние скорости несколько больше.

В газах же вследствие их гораздо меньшей плотности и вследствие того, что только небольшая доля всех молекул газа оказывается ионизированной, количество движущихся зарядов гораздо меньше, но зато средние скорости движения электронов и ионов гораздо больше, чем в металлических проводниках, и достигают сотен и даже тысяч километров в секунду. Понятие “электрический ток” ввел итальянский физик Алессандро Вольта. Электрический ток, или по его версии “электрический флюид” протекал в замкнутой цепи, соединяющей металлическим проводником крайние кружки вольтова столба.

“Вотльтов столб” (1800 г.) был первый источник электричества неэлектростатического типа (источник постоянного электрического тока), который состоял из чередующихся между собой медных и цинковых кружков, разделенных суконными прокладками, смоченными подкисленной водой или кислотой. Существование неизменного высокого потенциала на вольтовом столбе было явлением для того времени совершенно новым. Это был первый химический источник электричества, потенциал которого был постоянен во времени и не требовал каких-либо приемов электризации для его возобновления.

Вольтов столб, составленный из большого количества кружков, имел на концах достаточно высокий потенциал, который можно было обнаружить не только измерительными приборами (в частности электроскопом), но и прикоснувшись к крайним кружкам руками. При этом ощущался сильный электрический удар, как от лейденской банки.  Открытие Вольты очень быстро распространилось в физике, стало предметом дальнейших исследований. В 1800 г. ученые-физики с помощью вольтова столба обнаружили электрохимическое действие тока, и в частности разложение под действием тока воды на кислород и водород. Опыты с гальваническими элементами позволили обнаружить, кроме химических, и другие новые свойства тока, в том числе его тепловое и магнитное действие.

Важное по теме. Как проверить конденсатор.

Французский физик А. М. Ампер посвятил ряд своих работ изучению связи электрического тока и магнетизма. Он обнаружил, что два проводника с током испытывают взаимное воздействие — притяжение или отталкивание в зависимости от направления в них токов. Своими работами он заложил основы электродинамики. Он предложил термин “электрический ток” и ввел понятие о его направлении, совпадающем с движением положительного электричества. В честь А. М. Ампера названа единица измерения электрического тока.  Ампер является одной из семи основных единиц системы СИ.

Электрический ток обладает рядом свойств, которые могут быть эффективно использованы во многих практических случаях. К таким свойствам относятся трансформация простыми техническими средствами энергии электрического тока в энергию других видов (тепловую, световую, механическую, химическую) и возможность передачи ее на большие расстояния, быстрота распространения.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробно о том, что такое ток, рассказано в статье Что такое электрический ток. Если у вас остались вопросы, можно задать их в комментариях на сайте. Если у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение статьи хотелось бы выразить благодарность источникам информации для подготовки материала:

www.electricalschool.info

www.electrik.info

www.elektal.com.ua

www.allatra-science.org

www.eltechbook.ru

www.meanders.ru

Предыдущая

ТеорияЗаконы Кирхгофа простыми словами: определение для электрической цепи

Следующая

ТеорияКак работает выпрямитель напряжения

Электричество. Основные понятия

2013-05-13 Теория  

В этой статье предлагаю вам вспомнить базовые понятия в электрике, без которых любая работа, связанная с электричеством становится проблематичной.

Итак, любая электрическая цепь представляет собой совокупность различных устройств, образующих путь для прохождения электрического тока. Простейшая электрическая цепь может состоять из источника энергии, нагрузки и проводников.

Простейшая электрическая цепь

Проводники — вещества, проводящие электрический ток. Они обладают малым удельным сопротивлением( т.е оказывают наименьшее сопротивление прохождению тока) и способны проводить электрический ток практически без потерь. Лучшими проводниками являются золото, серебро, медь и алюминий. Наибольшее распространение, вследствии дороговизны золота и серебра, получили медь и алюминий. Медь наиболее часто встречающийся проводник, в отличии от алюминия, обладающий большей устойчивостью к окислению и физическим воздействиям: изгибу, скручеванию. Недостатком меди, по сравнению с алюминием, является более высокая стоимость.

Помимо проводников существуют также диэлектрики — вещества которые обладают большим удельным сопротивлением электрическому току (т.е являются непроводящими электрический ток). К ним относятся пластмассы, дерево, текстолит и т.д

Также надо отметить и еще один тип — полупроводники. По своему удельному сопротивлению они занимают промежуточное положение между проводниками и диэлектриками. Проводимость этих материалов существенно меняется под влиянием внешних факторов. К числу полупроводников относятся многие химические элементы, но наибольшее распространение получили кремний и германий.

Источник энергии — это устройство, преобразующее механическую, химическую, тепловую и другие виды энергии в электрическую.

Нагрузка — потребитель электрической энергии, т.е любой электроприбор, который преобразовывает электрическую энергию в механическую, тепловую, химическую и т.д

Прохождение электрического тока возможно только при замкнутой цепи.

Электрическим током в электротехнике называют направленное движение заряженных частиц под действием электрического поля, создаваемого источником питания. Величина, характеризующая ток называется сила тока. Сила тока измеряется в Амперах и обозначается буквой А. Различают постоянный и переменный токи.

Постоянный ток ( DC, по-английски Direct Current) — это ток, свойства которого  и направление не меняются с течением времени. Обозначается постоянный ток и напряжение в виде короткой горизонтальной черточки или двух параллельных, одна из которых штриховая.

Обозначение постоянного тока

Переменный ток (AC по-английски Alternating Current) — это ток, который изменяется по величине и направлению с течением времени. На электроприборах обозначается отрезком синусоиды « ~ ». Основными параметрами переменного тока являются период, амплитуда и частота.

Обозначение переменного тока

 

Период — промежуток времени, в течение которого ток совершает одно полное колебание.

Частота — величина, обратная периоду, число периодов в секунду, измеряется в герцах (Гц).

Ток и напряжение в нагрузке увеличиваются и уменьшаются, а разница между минимальным и максимальным их значением называется амплитудой.

график переменного тока

Измерение тока проводится амперметром, который подключается последовательно нагрузке.

Любой проводник в цепи, в зависимости от сечения, длины, материала, оказывает сопротивление прохождению электрического тока. Свойство проводника препятствовать прохождению электрического тока называют сопротивлением. Сопротивление измеряется в Омах (Ом).

Разность потенциалов на концах источника питания называется напряжением. Напряжение измеряют в Вольтах и обозначают буквой В (V). В трехфазной электрической сети различают такие понятия, как линейное и фазное напряжения. Линейное напряжение ( или иначе межфазное) — это напряжение между двумя фазными проводами (380V). Фазное напряжение — это напряжение между нулевым проводом и одним из фазных (220V). Измеряется напряжение вольтметром, который подключается параллельно нагрузке.

Еще одним важным понятием в электротехнике является понятие мощности. Мощность источника характеризует скорость передачи или преобразования электроэнергии. Мощность измеряется в Ваттах (Вт, W).

Суммарная мощность всех подключенных потребителей равна сумме потребляемых мощностей каждым потребителем. Робщ = Р1+Р2+…Рn

Различают понятия активной и реактивной мощности. P – активная мощность (эффективная), связана с той электрической энергией, которая может быть преобразована в другие виды энергии – тепловую, световую, механическую и др., измеряется в ваттах (Вт), представляет собой полезную мощность, которую можно использовать для выполнения работы.

P = IUcosф – для однофазной цепи, P = √3IUcosф – для трехфазной цепи, P = U*I — в цепи, где есть только активное сопротивление.

Q – реактивная мощность, связана с обменом электрической энергией между источником и потребителем, измеряется в вольт-амперах реактивных (вар), когда среднее значение мощности за период равно нулю, активная мощность равна нулю, энергия накопленная магнитным полем индуктивности, возвращается назад к источнику, ток в цепи не совершает работы, реактивный ток бесполезно загружает источники энергии и провода линии передач. Источниками реактивной энергии могут являться элементы, обладающие индуктивностью — электродвигатели, трансформаторы. Для того, чтобы уменьшить реактивную мощность на зажимах потребителей подключают конденсаторы (последовательно или параллельно).

Q = IUsinф – для однофазной цепи, Q = √3IUsinф – для трехфазной цепи

Сдвиг по фазе между током и напряжением обозначается углом φ. Коэффициент мощности — это соотношение активной мощности к полной, величина cosф равная углу сдвига фаз между напряжением и током. Чем выше cos φ, тем меньше тока требуется для преобразования электроэнергии в другие виды энергии. Это приводит к уменьшению потерь электроэнергии, ее экономии.

На этом пока все, а в следующей части познакомимся с основными законами электротехники, которые необходимо знать любому человеку, связанному с электричеством.

виды и применение электротока, основные понятия, движение носителей заряда, формулы

Электрический токПрименение электрического тока разнообразно, поскольку невозможно представить без него жизнь человечества. Следует понимать его природу возникновения, чтобы направить энергию во благо, а не во вред. Электрический ток подчиняется законам физики, которые используются для изготовления различных устройств. Для его грамотного использования нужно знать основные электрические величины.

Основные понятия

Электрическим током называется упорядоченное движение заряженных частиц, благодаря которым может порождаться электромагнитное поле. К заряженным частицам можно отнести следующие: электроны, протоны, нейтроны, дырки и ионы. В научной литературе нейтрон не имеет заряда, однако участвует в образовании электромагнитного поля.

Кроме того, некоторые не знают, почему электроток является векторной величиной. Это утверждение следует из его определения, поскольку он имеет направление. В некоторых источниках можно встретить такое определение: электроток — скорость, с которой происходит изменение зарядов элементарных частиц в определенный момент времени. Ток характеризуется силой и напряжением (разность потенциалов). Свойства, которыми обладает электроток: тепловое, механическое, химическое и создание электромагнитного поля.

Сила и тип тока

Сила тока — количество заряженных частиц, проходящих через проводник за единицу времени, равную одной секунде. Материалы по проводимости делятся на три группы: проводники, полупроводники и диэлектрики. Проводники — вещества, которые способны проводить ток, поскольку в них есть свободные электроны. Их наличие можно выяснить по таблице Д. И. Менделеева, воспользовавшись электронной конфигурацией химического элемента.

Что называется электрическим токомПолупроводники могут проводить поток заряженных частиц при определенных условиях. Простым примером является полупроводниковый диод, проводящий ток только в одном направлении. Носителями заряда являются электроны и дырки. В диэлектриках нет вообще носителей заряда, следовательно, этот факт исключает проводимость электричества вообще.

Сила тока обозначается буквой I и измеряется в амперах (А). 1 А — единица измерения силы неизменяющегося тока, который проходит по двум проводникам бесконечной длины и очень малой площади поперечного сечения, являющимися параллельными между собой и расположенными в вакуумном пространстве на расстоянии одного метра друг от друга, причем каждый метр такого проводника может вызывать силу взаимодействия, равную 2*10^(-7) Н.

Упрощенный вариант формулировки следующий: сила электротока, при которой через площадь поперечного сечения проводника за единицу времени t проходит количество электричества Q, называется ампером. Определение записывается в виде формулы и имеет следующий вид: I = Q / t.

Бывают вспомогательные единицы измерения, к которым относят мА (0,001 А), кА (1000 А) и т. д.

Значение силы тока измеряется при помощи амперметра, который подключается в цепь последовательно. Видов электрического тока всего два: постоянный и переменный. Если ток остается постоянным или изменяется по величине, не меняя направления, то он называется постоянным.

 применение электрического токаПеременный ток изменяется по амплитудному значению и направлению протекания по какому-либо закону. Его основной характеристикой является частота. По закону изменения амплитуды их можно разделить на следующие виды: синусоидальные и несинусоидальные. Первые изменяются по гармоническому закону и его графиком является синусоида. Формула синусоидального тока включает в себя максимальное значение силовой характеристики Iм, время t и угловую частоту w = 2 * 3,1416 * f (частота тока источника питания): i = Iм * sin (w * t). Еще одной величиной, характеризующей электроток, является напряжение или разность потенциалов.

Разность потенциалов

Любое вещество состоит из атомов, состоящих из элементарных частиц. Ядро обладает положительным зарядом, а вокруг него по своим орбитам вращаются электроны, имеющие отрицательный заряд. Атомы являются нейтральными, поскольку число электронов равно количеству протонов в ядре.

Понятие электрического тока При потерях электронов атомами образуется электромагнитное поле, создаваемое протонами, поскольку они стремятся вернуть недостающие отрицательно заряженные частицы. Если по какой-то причине произошел избыток электронов, то формируется электромагнитное поле с отрицательной составляющей. В первом и во втором случаях формируются положительные и отрицательные потенциалы соответственно. Различие между ними называется напряжением или разностью потенциалов.

Величина различия прямо пропорциональна значению напряжения: при увеличении разницы возрастает значение напряжения. При соединении потенциалов с различными знаками возникает электроток, который стремится устранить причину разности и вернуть атом в исходное состояние.

Электрическое напряжение — работа, совершаемая электромагнитным полем по перемещению точечного заряда. Единица измерения напряжения является вольт (В), а его значение можно измерять с помощью вольтметра. Он подключается параллельно участку или электроприбору, на котором необходимо измерить разность потенциалов. 1 В является разностью потенциалов между двумя точками с зарядом 1 Кл, при котором сила электромагнитного поля совершает работу, равную 1 Дж.

Условия получения и законы

Электроток возникает при воздействии электромагнитного поля на проводник. Но также справедливо и обратное утверждение, доказывающее возникновение электрического поля в результате протекания тока. Важными условиями его получения являются такие факторы: наличие свободных электронов и источника напряжения. Наличие носителей заряда влияет на проводимость, а напряжение является внешней силой, которая способствует «вырыванию» из кристаллической решетки этих частиц.

Проводимость веществ

Носителями заряда в металлах являются электроны. При высокой температуре проводника возникает движение атомов, некоторые из них распадаются и образуются новые свободные электроны. Заряженные частицы взаимодействует с атомами и узлами кристаллической решетки, и часть энергии превращается в тепловую. Этот процесс называется электрическим сопротивлением проводника. Оно зависит от следующих составляющих:

  • Ток электрический в средахТемпературы.
  • Типа вещества.
  • Длины проводника.
  • Площади поперечного сечения.

При уменьшении температуры вещества происходит снижение его сопротивления. Зависимость от типа вещества объясняется тем, что каждое вещество состоит из атомов. Они образуют между собой кристаллическую решетку, причем у каждого вещества она разная. Каждый атом имеет определенную электронную конфигурацию, а следовательно, отличается от других наличием носителей заряда.

Кроме того, потоку заряженных частиц сложнее пройти через длинный проводник с маленьким значением его площади поперечного сечения.

Проводником является и электролит или жидкость, проводящая электрический ток. Носителями заряда в жидкостях являются ионы, которые бывают положительно (анионы) и отрицательно (катионы) заряжены. Электрод с положительным потенциалом называется анодом, а с отрицательным — катодом. Перемещение происходит при подаче напряжения на электроды. Катионы перемещаются к аноду, а анионы — к катоду.

При протекании тока через электролит происходит его нагревание, в результате которого увеличивается сопротивление жидкости. Некоторые газы способны проводить электроток тоже. Носителями заряда в них являются ионы и электроны, а сам «заряженный газ» называется плазмой.

Электричество в полупроводниках подчиняется тем же законам, что и в проводниках, но есть некоторые отличия. Представлять носители заряда в них могут электроны и дырки. При уменьшении температуры сопротивление его возрастает. При внешнем воздействии на полупроводник связи в кристаллической решетке ослабевают и появляются свободные электроны, а в месте, где они были, происходит образование дырки. Однако она притягивает другой электрон, который находится рядом. Так и происходит движение дырок. Следовательно, сумма дырочного и электронного электромагнитных полей образует электроток.

Основные соотношения

Все явления подчиняются физическим законам, и электричество не является исключением. Основные соотношения зависимости одной величины от других описаны в законах, которые применяются для расчета различных схем для простых и сложных устройств. Кроме того, правила помогают избежать различных аварийных ситуаций, поскольку электричество может служить и во вред человечеству, вызывая пожары, травмы и даже смерть.

Что называют электрическим током

Основным законом, используемым в электротехнике, является закон Ома для участка и полной цепи. Для участка цепи он показывает зависимость силы тока I от напряжения U и электрического сопротивления R и его формулировка следующая: ток, протекающий на участке цепи, прямо пропорционален значению напряжения и обратно пропорционален сопротивлению этого участка (I = U / R).

Для полной цепи, в которой существует электродвижущая сила (e) и внутреннее сопротивление источника питания: формулировка выглядит следующим образом: ток, протекающий в полной цепи, прямо пропорционален электродвижущей силе (ЭДС) и обратно пропорционален полному сопротивлению цепи с учетом внутреннего сопротивления источника питания (i = e / (R + Rвн)).

Из этих законов можно получить следствия, которые нужны для нахождения величин напряжения, ЭДС и сопротивлений. Следствия из законов Ома:

  • Виды электрического тока R = U / I.
  • U = I * R.
  • e = i * (R + Rвн).
  • R = (e / i) — Rвн.
  • Rвн = (e / i) — R.

Электроток, при прохождении через проводник или полупроводник, совершает работу, при которой выделяется тепловая энергия. Это одно из его свойств. Ее численное значение определяется с помощью закона Джоуля-Ленца.

Закон показывает зависимость количества теплоты от величин напряжения и силы тока, а также времени протекания электротока.

Его формулировка следующая: количество теплоты Q, выделяемое током при протекании через проводник за единицу времени, прямо пропорционально зависит от напряжения и силы тока (Q = U * I * t). Следствия из этого закона следующие:

    • Q = sqr (I) * R * t.
    • Q = (sqr (U) * t) / R.
    •  электроток I = Q / (U * t).
    • I = sqrt ((Q / (R * t)).
    • U = Q / (I * t).
    • U = sqrt (Q * R * t).
    • t = Q / (U * I).
    • t = Q / (sqr (I) * R).
  • Q = P * t.
  • P = Q / t.
  • t = Q / P.

Величина Р является мощностью и вычисляется по формуле: Р = U * I. Если электрический ток в цепи не совершает механическую работу и не производит никакого действия, то все электрическая энергия преобразуется в тепловую, т. е. A = Q.

Опытным путем было установлено, что при пересечении линий электромагнитной индукции проводником замкнутого типа в нем появляется электроток. Закон о влиянии электромагнитного поля на возникновение тока называется законом Фарадея. Он гласит: отрицательное значение ЭДС электромагнитной индукции в контуре, который является замкнутым, равно изменению магнитного потока с течением времени. Из закона Фарадея следует, что при движении проводника в постоянном магнитном поле на концах первого возникает разность потенциалов. Этот принцип используется для изготовления генераторов, трансформаторов и т. д.

Таким образом, электрический ток, как все явления и процессы, подчиняется определенным законам, которые позволяют не только контролировать, но и избегать негативных последствий, связанных с его работой. Производить расчеты нужно и для экономии времени, поскольку подбор номинала какого-либо элемента схемы может привести к выходу из строя устройства.

Электрический ток основные понятия. Общие понятия об электрическом токе

Электрическим током называется упорядоченный поток отрицательно заряженных элементарных частиц – электронов. Электрический ток необходим для освещения домов и улиц, обеспечения работоспособности бытовой и производственной техники, движения городского и магистрального электротранспорта и.т.п.

Электрический ток

  • R н – сопротивление нагрузки
  • A – индикатор
  • К – коммутатор цепи

Ток – количество зарядов прошедших в единицу времени через поперечное сечение проводника.

  • I – сила тока
  • q – количество электричества
  • t – время

Единицу силы тока называют амперам А, по имени французского учёного Ампера .

1А = 10 3 мА = 10 6 мкА

Плотность электрического тока

Электрическому току присущ ряд физических характеристик, имеющих количественные значения, выражаемые в определенных единицах. Основными физическими характеристиками электротока являются его сила и мощность. Сила тока количественно выражается в амперах, а мощность тока – в ваттах. Не менее важной физической величиной считается векторная характеристика электрического тока, или плотность тока. В частности, понятием плотности тока пользуются при проектировании линий электропередач.

  • J – плотность электрического тока А / ММ 2
  • S – площадь поперечного сечения
  • I – ток
Постоянный и переменный ток

Электропитание всех электрических устройств осуществляется постоянным либо переменным током .

Электрический ток , направление и значение которого не меняются, называется постоянным .

Электрический ток , направление и значение которого способны изменяться называется переменным .

Электропитание многих электротехнических устройств осуществляется переменным током , изменение которого графически представлено в виде синусоиды.

Использование электрического тока

Можно с уверенностью констатировать, что самым великим достижением человечества является открытие электрического тока и его использование. От электрического тока зависят тепло и свет в домах, поступление информации из внешнего мира, общение людей, находящихся в различных точках планеты, и многое другое.

Современную жизнь невозможно представить без повсеместного наличия электричества. Электричество присутствует абсолютно во всех сферах жизнедеятельности людей: в промышленности и сельском хозяйстве, в науке и космосе.

Электричество также является неизменной составляющей повседневного быта человека. Такое повсеместное распространение электричества стало возможным благодаря его уникальным свойствам. Электрическая энергия может мгновенно передаваться на огромные расстояния и преобразовываться в различные виды энергий иного генезиса.

Основными потребителями электрической энергии являются промышленная и производственная сферы. При помощи электроэнергии приводятся в действие различные механизмы и устройства, осуществляются многоэтапные технологические процессы.

Невозможно переоценить роль электроэнергии в обеспечении работы транспорта. Практически полностью электрифицирован железнодорожный транспорт. Электрификация железнодорожного транспорта сыграла значительную роль в обеспечении пропускной способности дорог, увеличении скорости передвижения, снижении себестоимости пассажироперевозок, решении проблемы экономии топлива.

Наличие электричества является непременным условием обеспечения комфортных условий жизни людей. Вся бытовая техника: телевизоры, стиральные машины, микроволновые печи, нагревательные приборы – нашла свое место в жизни человека только благодаря развитию электротехнического производства.

Главенствующая роль электроэнергии в развитии цивилизации неоспорима. Нет такой области в жизни человечества, которая обходилась бы без потребления электрической энергии и альтернативу которой могла бы составить мускульная сила.

ЭКСПЛУАТАЦИЯ ЭЛЕКТРИЧЕСКИХ УСТРОЙСТВ И СЕТЕЙ

Сейчас невозможно себе представить жизнь человека без широчайшего применения электрического тока. Электрические сети и приборы не просто окружают нас — они освобождают нас от значительной части физического труда, рутинного умственного труда, делают нашу жизнь комфортной, стремительной, насыщенной, плодотворной.

Электрическая энергия обладает весьма ценными свойствами:

1. электрическая энергия с небольшими потерями и достаточно просто преобразуется из других видов энергии – механической, ядерной, тепловой, химической и др. Это лежит в основе получения, накопления и сохранения электрической энергии;

2. в свою очередь она сама легко преобразуется в другие виды энергии – механическую, тепловую, химическую и т.д. На этом основано широчайшее применение электрической энергии;

3. электрическая энергия сравнительно простыми средствами передаётся на большие расстояния с помощью разветвлённых сетей;

4. она легко дробится, регулируется и распределяется по потребителям практически любой мощности;

5. электрическая энергия хорошо контролируется и учитывается.

Эксплуатация электрических сетей, приборов, оборудования, систем на предприятиях (объектах) социально-культурной сферы и туризма связана с решением следующих проблем:

· грамотная эксплуатация, максимизирующая срок службы, как электрических сетей, так и приборов, оборудования, систем и т.д.;

· создание безопасных условий для персонала и клиентов;

· минимизация затрат на приобретение, ремонт и эксплуатацию электрооборудования.

Основные представления и понятия об электрическом токе

Электрический ток — это поток заряженных частиц. Определение не оговаривает среду, в которой движутся заряженные частицы (она может быть твёрдой, жидкой и газообразной), ни происхождения, ни конкретных характеристик заряженных частиц. Определение, с одной стороны, необыкновенно ёмко – оно относится ко всем вообразимым случаям протекания электрического тока, а, с другой – позволяет конкретизировать это протекание в определённых, интересующих нас условиях. В обыденной жизни мы встречаемся с ситуациями, когда носителями электрического тока оказываются электроны и ионы (положительно или отрицательно заряженные атомы или молекулы). В некоторых веществах отсутствуют заряженные частицы или они простыми средствами не могут быть освобождены для движения – они не могут проводить электрический ток, следовательно, они – диэлектрики, изоляторы.

Электронной проводимостью обладают металлы, сплавы и многие полупроводники. Растворы и расплавы электролитов (веществ, содержащих в своём составе или образующих в водном растворе, ионы) обладают ионной проводимостью.

Металлы и сплавы, используемые в качестве электрических проводников, в основе своей тонкой структуры имеют кристаллическую решётку, в узлах которой находятся атомы металла или элементов, составляющих сплав. Электроны (в совокупности своей уподобленные электронному газу) движутся под действием электрического поля в пустотах кристаллической решётки, практически не встречая при своём движении механического сопротивления (в силу ничтожности своих размеров по сравнению с ра

90000 What is Electric Current | Electronics Notes 90001 90002 Electric current results when electric charges move — these may be negatively charged electrons or positive charge carriers — positive ions. 90003 90004 90005 90006 Electric Current Tutorial Includes: 90007 90008 What is electric current Current unit — Ampere AC & DC 90009 90004 90005 Electric current is one of the most basic concepts that exists within electrical and electronic science — electric current is at the core of the science of electricity.90009 90005 Whether it is an electrical heater, a large electrical grid system, a mobile phone, computer, remote sensor node or whatever, the concept of electrical current is central to its operation. 90009 90005 However current as such can not normally be seen, although its effects can be seen, heard and felt all the time, and as a result it is sometimes difficult to gain a view of what it really is. 90009 90017 Lightning strike is an impressive show of electrical current flow 90008 90019 Photo taken from top of Petronas Towers in Kuala Lumpur Malaysia 90020 90021 Electrical current definition 90022 90002 Electric current definition: 90003 90005 An electric current is a flow of electric charge in a circuit.More specifically, the electric current is the rate of charge flow past a given point in an electric circuit. The charge can be negatively charged electrons or positive charge carriers including protons, positive ions or holes. 90009 90005 The magnitude of the electric current is measured in coulombs per second, the common unit for this being the Ampere or amp which is designated by the letter ‘A’. 90009 90005 The Ampere or amp is widely used within electrical and electronic technology along with the multipliers like milliamp (0.001A), microamp (0.000001A), and so forth. 90009 90005 Current flow in a circuit is normally designated by the letter ‘I’, and this letter is used in equations like Ohms law where V = I⋅R. 90009 90021 What is electric current: the basics 90022 90005 The basic concept of current is that it is the movement of electrons within a substance. Electrons are minute particles that exist as part of the molecular structure of materials. Sometimes these electrons are held tightly within the molecules and other times they are held loosely and they are able to move around the structure relatively freely.90009 90005 One very important point to note about the electrons is that they are charged particles — they carry a negative charge. If they move then an amount of charge moves and this is called current. 90009 90005 It is also worth noting that the number of electrons that able to move governs the ability of a particular substance to conduct electricity. Some materials allow current to move better than others. 90009 90005 The motion of the free electrons is normally very haphazard — it is random — as many electrons move in one direction as in another and as a result there is no overall movement of charge.90009 90043 Random electron movement in a conductor with free electrons 90005 If a force acts on the electrons to move them in a particular direction, then they will all drift in the same direction, although still in a somewhat haphazard fashion, but there is an overall movement in one direction. 90009 90005 The force that acts on the electrons is called and electromotive force, or EMF, and its quantity is voltage measured in volts. 90009 90048 Electron flow under the action of applied electro-motive force 90005 To gain a little more understanding about what current is and how it acts in a conductor, it can be compared to water flow in a pipe.There are limitations to this comparison, but it serves as a very basic illustration of current and current flow. 90009 90005 The current can be considered to be like water flowing through a pipe. When pressure is placed on one end it forces the water to move in one direction and flow through the pipe. The amount of water flow is proportional to the pressure placed on the end. The pressure or force placed on the end can be likened to the electro-motive force. 90009 90005 When the pressure is applied to the pipe, or the water is allowed to flow as a result of a tap being opened, then the water flows virtually instantaneously.The same is true for the electrical current. 90009 90005 To gain an idea of ​​the flow of electrons, it takes 6.24 billion, billion electrons per second to flow for a current of one ampere. 90009 90021 Conventional current and electron flow 90022 90005 There is often a lot of misunderstanding about conventional current flow and electron flow. This can be a little confusing at first but it is really quite straightforward. 90009 90005 The particles that carry charge along conductors are free electrons.The electric field direction within a circuit is by definition the direction that positive test charges are pushed. Thus, these negatively charged electrons move in the direction opposite the electric field. 90009 90063 Electron and conventional current flow 90005 This came about because the initial investigations in static and dynamic electric currents was based upon what we would now call positive charge carriers. This meant that then early convention for the direction of an electric current was established as the direction that positive charges would move.This convention has remained and it is still used today. 90009 90005 In summary: 90009 90068 90069 90006 90019 Conventional current flow: 90020 90007 The conventional current flow is from positive to the negative terminal and indicates the direction that positive charges would flow. 90074 90069 90006 90019 Electron flow: 90020 90007 The electron flow is from negative to positive terminal. Electrons are negatively charged and are therefore attracted to the positive terminal as unlike charges attract.90074 90081 90082 90005 This is the convention that is used globally to this day, even though it may seem a little odd and out-dated. 90009 90021 Speed ​​of electron or charge movement 90022 90005 The speed of the transmission of electrical current is very different to that of the speed of the actual electron movement. The electron itself bounces around in the conductor, and possibly only makes progress along the conductor at the rate of a few millimetres a second. This means that in the case of alternating current, where the current changes direction 50 or 60 times per second, most of the electrons never make it out of the wire.90009 90005 To take a different example, in the near-vacuum inside a cathode ray tube, the electrons travel in near-straight lines at about a tenth of the speed of light. 90009 90021 Effects of current 90022 90093 When an electric current flows through a conductor there are a number of signs which tell that a current is flowing. 90009 90068 90069 90006 90019 Heat is dissipated: 90020 90007 Possibly the most obvious is that heat is generated. If the current is small then the amount of heat generated is likely to be very small and may not be noticed.However if the current is larger then it is possible that a noticeable amount of heat is generated. An electric fire is a prime example showing how a current causes heat to be generated. The actual amount of heat is governed not only be the current, but also be the voltage and the resistance of the conductor. 90074 90069 90006 90019 Magnetic effect: 90020 90007 Another effect which can be noticed is that a magnetic field is built up around the conductor. If a current is flowing in conductor then it is possible to detect this.By placing a compass close to a wire carrying a reasonably large direct current, the compass needle can be seen to be deflect. Note this will not work with mains because the field is alternating too fast for the needle to respond and the two wires (live and neutral) close together in the same cable will cancel out the field. 90005 The magnetic field generated by a current is put to good use in a number of areas. By winding a wire into a coil, the effect can be increased, and an electro-magnet can be made.Relays and a host of other items use the effect. Loudspeakers also use a varying current in a coil to cause vibrations to occur in a diaphragm which enable the electronic currents to be converted into sounds. 90009 90074 90081 90021 How to measure current 90022 90005 One important aspect of current is knowing the amount of current that may be flowing in a conductor. As electric current is such a key factor in electrical and electronic circuits, knowing what current is flowing is very important.90009 90005 There are many different ways is measuring current. One of the easiest is to use a multimeter. 90009 90117 How to measure current with a DMM: 90118 90005 Using a DMM, digital multimeter it is easy to measure current by placing the DMM actually in the circuit carrying the current. The DMM will then give an accurate reading of the current flowing in the circuit 90009 90005 Find out 90006 90019 how to measure current with a DMM. 90020 90007 90009 90005 Although there are other methods of measuring current, this is the most common.90009 90005 Current is one of the most important and fundamental elements within electrical and electronic technology. The current flowing in a circuit can be used in a variety of ways from generating heat to causing circuits to switch, or information to be stored in an integrated circuit. 90009 90005 90006 More Basic Concepts: 90007 90008 Voltage Current Resistance Capacitance Power Transformers RF noise Decibel, dB Q, quality factor 90008 90006 90019 Return to Basic Concepts menu.. . 90020 90007 90009.90000 What is Electric Current? Definition, Unit & Direction of flow of Current 90001 90002 90003 Definition 90004: Electric current is defined as the rate of flow of negative charges of the conductor. In other words, the continuous flow of electrons in an electric circuit is called an electric current.The conducting material consists a large number of free electrons which move from one atom to the other at random. 90005 90006 Unit of Current 90007 90002 Since the charge is measured in coulombs and time in seconds, so the unit of electric current is coulomb / Sec (90003 C / s 90004) or amperes (90003 A 90004).The amperes is the 90003 SI 90004 unit of the conductor. The 90003 I 90004 is the symbolic representation of the current. 90005 90002 90019 90005 90002 90022 90023 Thus, a wire is said to carry a current of one ampere when charge flows through it at the rate of one coulomb per second. 90005 90002 When an electrical potential difference is applied across the metallic wire, the loosely attached free electrons start moving towards the positive terminal of the cell shown in the figure below.This continuous flow of electrons constitutes the electrical current. The flow of currents in the wire is from the negative terminal of the cell to the positive terminal through the external circuit. 90005 90006 Conventional Direction of Flow of Current 90007 90002 According to the electron theory, when the potential difference is applied across the conductor some matter flows through the circuit which constitutes the electric current. It was considered that this matter flows from higher potential to lower potential, i.e. positive terminal to the negative terminal of the cell through the external circuit. 90005 90002 90032 This convention of flow of current is so firmly established that it is still in use.Thus, the conventional direction of flow of current is from the positive terminal of the cell to the negative terminal of the cell through the external circuit. The magnitude of flow of current at any section of the conductor is the rate of flow of electrons i.e. charge flowing per second. 90005 90002 Mathematically, it is represented by 90005 90002 90037 On the basis of the flow of electric charge the current is mainly classified into two types, i.e. alternating current and direct current. In direct current, the charges flow through unidirectional whereas in alternating current the charges flows in both the direction. 90005 .90000 What Is Electric Current? | Live Science 90001 90002 Electric current is electric charge in motion. It can take the form of a sudden discharge of static electricity, such as a lightning bolt or a spark between your finger and a ground light switch plate. More commonly, though, when we speak of electric current, we mean the more controlled form of electricity from generators, batteries, solar cells or fuel cells. 90003 90002 Most electric charge is carried by the electrons and protons within an atom.Protons have positive charge, while electrons have negative charge. However, protons are mostly immobilized inside atomic nuclei, so the job of carrying charge from one place to another is handled by electrons. Electrons in a conducting material such as a metal are largely free to move from one atom to another along their conduction bands, which are the highest electron orbits. A sufficient electromotive force (emf), or voltage, produces a charge imbalance that can cause electrons to move through a conductor as an electric current, according to Serif Uran, a professor of physics at Pittsburg State University.90003 90002 While it is a bit dicey to compare electric current to the flow of water in a pipe, there are some similarities that might make it somewhat easier to understand. We can think of the flow of electrons in a wire as the flow of water in a pipe, according to Michael Dubson, a professor of physics at the University of Colorado Bolder. The caveat is that, in this case, the pipe is always full of water. If we open the valve on one end to let water into the pipe, we do not have to wait for that water to make its way all the way to the end of the pipe.We get water out the other end almost instantaneously because the incoming water pushes the water that’s already in the pipe toward the end. This is what happens in the case of electrical current in a wire. The conduction electrons are already present in the wire; we just need to start pushing electrons in one end, and they start flowing at the other end almost immediately. 90003 90002 According to the Georgia State University’s HyperPhysics website, the actual speed of an electron in a wire is on the order of a few million meters per second, but it does not travel straight down the wire.It bounces around nearly at random and only makes progress at a few millimeters per second. This is called the electron’s drift velocity. However, the transmission speed of the signal, when electrons start being pushed out the other end of the wire after we flip the switch, is nearly the speed of light, which is about 300 million meters per second (186,000 miles per second). In the case of alternating current, where the current changes direction 50 or 60 times per second, most of the electrons never make it out of the wire.90003 90002 Charge imbalances can be created in a number of ways. The first known way was to create a static charge by rubbing two different materials together, such as rubbing a piece of amber with animal fur. A current could then be created by touching the amber to a body with less charge or to ground. However, this current had very high voltage, very low amperage, and lasted for only a fraction of a second, so it could not be made to do any kind of useful work. 90003 90012 Direct current 90013 90002 The next known way to create a charge imbalance was the electro-chemical battery, invented in 1800 by Italian physicist Alessandro Volta for whom the unit for electromotive force, the volt (V) is named.His «voltaic pile» consisted of a stack of alternating zinc and copper plates separated by layers of cloth soaked in salt water and produced a steady source of direct current (DC). He and others improved and refined his invention over the next few decades. According to the National Museum of American History, «batteries attracted the attention of many scientists and inventors, and by the 1840s were providing current for new electrical devices like Joseph Henry’s electromagnets and Samuel Morse’s telegraph.»90003 90002 Other DC sources include fuel cells, which combine oxygen and hydrogen into water, and produce electrical energy in the process. Oxygen and hydrogen can be supplied as pure gasses or from air and a chemical fuel such as alcohol. Another source of DC current is the photovoltaic orsolar cell. In these devices photonic energy from sunlight is absorbed by electrons and converted into electrical energy. 90003 90012 alternating current 90013 90002 Most of the electricity that we use comes in the form of alternating current (AC) from the electric power grid.Alternating current is produced by electric generators that operate on Faraday’s Law of Induction, by which a changing magnetic field can induce an electric current in a conductor. Generators have rotating coils of wire that pass through magnetic fields as they turn. As the coils rotate, they open and close with respect to the magnetic field and produce an electric current that reverses direction every half turn. The current goes through a complete forward-and-reverse cycle 60 times each second, or 60 hertz (Hz) (50 Hz in some countries).Generators can be powered by steam turbines heated by coal, natural gas, oil or a nuclear reactor. They can also be powered by wind turbines or water turbines in hydroelectric dams. 90003 90002 From the generator, the current goes through a series of transformers, where it is stepped up to a much higher voltage for transmission. The reason for this is that the diameter of the wires determines the amount of current, or amperage, they can carry without overheating and losing energy, but the voltage is limited only by how well the lines are insulated from the ground.It is interesting to note that the current is carried by only one wire and not two. The two sides of direct current are designated as positive and negative. However, because the polarity of AC changes 60 times per second, the two sides of alternating current are designated as hot and ground. In long-distance power transmission lines, the wires carry the hot side, and the ground side travels through the Earth to complete the circuit. 90003 90002 Since power equals voltage times amperage, you can send more power down the line at the same amperage by using higher voltage.The high voltage is then stepped down as it is distributed through a network of substations until it gets to the transformer near your house, where it is finally stepped down to 110 V. (In the United States, wall sockets and lights run on 110 V at 60 Hz. In Europe, nearly everything runs on 230 V at 50 Hz.) 90003 90002 Once the current gets to the end of the line, most of it is used one of two ways: either to provide heat and light through electrical resistance , or mechanical motion through electrical induction.There are a few other applications — fluorescent lights and microwave ovens come to mind — that operate on different principles, but the lion’s share of power goes to devices based on resistance and / or inductance. A hair dryer, for example, uses both at the same time. 90003 90002 This brings us to an important feature of electric current: it can do work. It can light your home, wash and dry your cloths, and even raise your garage door at the flip of the switch. What is becoming more and more important, though, is the ability for electric current to convey information, most notably in the form of binary data.Although the Internet connection to your computer uses only a tiny fraction of the electric current of, say, an electric heater, it is becoming more and more important to modern life. 90003 90002 90031 Additional resources 90032 90003 .90000 Electric current 90001 90002 The unit of electric charge is the Coulomb (abbreviated C). Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. Charge is quantized as a multiple of the electron or proton charge: 90003 90004 The influence of charges is characterized in terms of the forces between them (Coulomb’s law) and the electric field and voltage produced by them. One Coulomb of charge is the charge which would flow through a 120 watt lightbulb (120 volts AC) in one second.Two charges of one Coulomb each separated by a meter would repel each other with a force of about a million tons! 90002 The rate of flow of electric charge is called electric current and is measured in Amperes. 90003 90002 In introducing one of the fundamental properties of matter, it is perhaps appropriate to point out that we use simplified sketches and constructs to introduce concepts, and there is inevitably much more to the story. No significance should be attached to the circles representing the proton and electron, in the sense of implying a relative size, or even that they are hard sphere objects, although that’s a useful first construct.The most important opening idea, electrically, is that they have a property called «charge» which is the same size, but opposite in polarity for the proton and electron. The proton has 1836 times the mass of the electron, but exactly the same size charge, only positive rather than negative. Even the terms «positive» and «Negative» are arbitrary, but well-entrenched historical labels. The essential implication of that is that the proton and electron will strongly attract each other, the historical archtype of the cliche «opposites attract».Two protons or two electrons would strongly repel each other. Once you have established those basic ideas about electricity, «like charges repel and unlike charges attract «, then you have the foundation for electricity and can build from there. 90003 90002 From the precise electrical neutrality of bulk matter as well as from detailed microscopic experiments, we know that the proton and electron have the same magnitude of charge. All charges observed in nature are multiples of these fundamental charges.Although the standard model of the proton depicts it as being made up of fractionally charged particles called quarks, those fractional charges are not observed in isolation — always in combinations which produce +/- the electron charge. 90003 90002 An isolated single charge can be called an «electric monopole». Equal positive and negative charges placed close to each other constitute an electric dipole. Two oppositely directed dipoles close to each other are called an electric quadrupole.You can continue this process to any number of poles, but dipoles and quadrupoles are mentioned here because they find significant application in physical phenomena. 90003 90002 One of the fundamental symmetries of nature is the conservation of electric charge. No known physical process produces a net change in electric charge. 90003 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *