Закрыть

Постоянные конденсаторы: Принцип работы и маркировка конденсаторов ⋆ diodov.net

Содержание

Керамические конденсаторы (конденсаторы км) — состав, применение, цена за грамм

Керамические конденсаторы нашли свое применение в высокоточной технике, например, измерительных приборах, медицинском оборудовании. Незаменимы керамические радиодетали и для приборов, работающие в импульсном режиме. Основным отличием этого типа конденсаторов является хорошее сцепление между его обкладками и керамическим покрытием. Это явление обеспечивает низкую температурную нестабильность.

Емкость керамических радиодеталей может достигать значения в 2,2 мФ. Значения переменной емкости может колебаться в зависимости от температуры – 10-90 микрофарад. В данной статье будут рассмотрены все особенности этих устройств. В статье можно посмотреть полезное видео и скачать бонус – интересный материал на данную тему.

Керамический конденсатор.

Что такое керамические конденсаторы

Керамические конденсаторы являются естественным элементом практически любой электронной схемы. Они применяются там, где необходима способность работать с сигналами меняющейся полярности, необходимы хорошие частотные характеристики, малые потери, незначительные токи утечки, небольшие габаритные размеры и низкая стоимость.

Там же, где эти требования пересекаются, они практически незаменимы. Но проблемы, связанные с технологией их производства, отводили этому типу конденсаторов нишу устройств малой емкости. Действительно, керамический конденсатор на 10 мкФ еще недавно воспринимался как удивительная экзотика, и стоило такое чудо как горсть алюминиевых электролитических, таких же емкости и напряжения, либо как несколько аналогичных танталовых.

Однако, развитие технологий позволило к настоящему времени сразу нескольким фирмам заявить о достижении ими емкости керамических конденсаторов 100 мкФ и анонсировать начало производства приборов еще больших номиналов в конце этого года. А сопровождающее этот процесс непрерывное падение цен на все изделия данной группы заставляет внимательнее присмотреться ко вчерашней экзотике, чтобы не отстать от технического прогресса и сохранить конкурентоспособность.

Таким образом, увеличения емкости конденсатора можно добиться уменьшением толщины слоя в диэлектрика, увеличением числа электродов, их активной площади и увеличением диэлектрической проницаемости диэлектрика. Уменьшение толщины диэлектрика и связанная с этим возможность увеличения количества электродов ≈ основной способ увеличения емкости керамических конденсаторов. Но снижение толщины диэлектрика приводит с снижению напряжения пробоя, поэтому конденсаторы большой емкости на высокое рабочее напряжение встречаются редко. Увеличение числа слоя в диэлектрика, процесс технологически связанный с уменьшением толщины единичного слоя.

 

Увеличение активной площади одного электрода – это увеличение габаритных размеров конденсатора ≈ крайне неприятное явление, приводящее к резкому росту стоимости изделия. Увеличение диэлектрической проницаемости при заметном увеличении емкости приводит к существенному ухудшению температурной стабильности и сильной зависимости емкости от приложенного напряжения. Теперь рассмотрим возможности и особенности применения керамических конденсаторов большой емкости. Перед началом обсуждения стоит обратить внимание на уже имеющиеся предложения и ближайшие планы лидеров отрасли фирм Murata и Samsung Electro-Mechanics .

Материал в тему: все о переменном конденсаторе.

Естественной областью применения подобного спектра керамических конденсаторов большой емкости может быть замена ими танталовых и алюминиевых конденсаторов для поверхностного монтажа в схемах подавления пульсаций, разделения постоянной и переменной составляющих электрического сигнала, интегрирующих цепочках. Однако, при этом необходимо учитывать принципиальные различия между этими группами деталей, делающие, в большинстве случаев, бессмысленными замены вида электролитический конденсатор “номинал x напряжение” на керамический конденсатор аналогичного “номинала x напряжения”. Рассмотрим коротко основные причины этого.

Частотные свойства конденсаторов определяет зависимость их импеданса и эквивалентного последовательного сопротивления (ESR) от частоты.

Существенная разница в импедансе керамических конденсаторов на частотах выше 1 кГц с алюминиевыми электролитическими и свыше 10 Гц с танталовыми конденсаторами позволяет в некоторых случаях использовать для сглаживания пульсаций напряжения номиналы меньшей ╦мкости для получения аналогичного эффекта. Данные, характеризующие разницу в величине сглаживания паразитных синусоидальных пульсаций различных частот конденсаторами разного типа, но одинаковой емкости 10 мкФ.

Таким образом, для обеспечения одинакового с танталовым конденсатором в 10 мкФ уровня подавления пульсаций частотой 1 МГц можно использовать керамический конденсатор емкостью 1,0√2,2 мкФ. Экономия места на плате и денег очевидна. Низкое эквивалентное последовательное сопротивление и связанные с ним малые потери позволяют значительно сильнее нагружать керамические конденсаторы, нежели электролитические, не вызывая при этом критического для детали разогрева, несмотря на их значительно более скромные габаритные размеры.

Механизм и строение

Состав керамического BaTiO3 является совокупностью, составленной из микрокристаллов от 1 до 20 миллиметрового в диаметре. Этот микрокристалл называют частицей, и состоит из кристаллической структуры, которая показана на рис. 1 и 2. Частица разделена на много доменов при температуре ниже Точки Кюри. Кристаллические оси выровнены в одном направлении в пределах домена, таким образом, как и спонтанная поляризация. При нагревании до Точки Кюри и выше кристаллическая структура BaTiO3 изменяется от четырехугольной до кубической. Тогда, спонтанные поляризационные и доменные стены исчезают (пропадают).

Строение керамического конденсатора.

Когда BaTiO3 находится в охлажденном состоянии (ниже Точки Кюри), ее кристаллическая структура поворачивается от кубической до четырехугольной, отрезки примерно до 1 % вдоль оси C и вдоль других осей – сокращаются. Тогда появляются спонтанные поляризационные и доменные стены. В то же время от воздействия «из вне» частицы искажаются. В этой стадии генерируются много мелких доменных стен, и направление спонтанной поляризации в каждом домене легко полностью изменить, даже малыми (низкими) электрическими полями. Так как диэлектрическая постоянная – пропорциональна сумме инверсии спонтанной поляризации к единице объема, наблюдается большая емкость.

Когда конденсаторы хранятся (применяются) без нагрузки при температурах ниже Точки Кюри размер беспорядочно ориентированных доменов становится большим, и они (домены) постепенно сдвигаются к устойчивому энергетическому состоянию (Рис. 3, 90   доменов). Это также облегчает сбор остаточного напряжения при кристаллическом искажении.

Кроме того, перемещение пространственных зарядов (ионы с низкой подвижностью, свободные точки кристаллической решетки и т.д.) в пределах доменной стены приводит к поляризации пространственного заряда. Эта поляризация пространственного заряда неблагоприятно воздействует на спонтанную поляризацию, преграждая ее инверсию.

Другими словами, временный переход от генерации спонтанной поляризации (спонтанная поляризация постепенно перестраивается к более устойчивому состоянию) к инверсии  затруднена появлением поляризации пространственного заряда. В этом состоянии более высокое электрическое поле необходимо, чтобы полностью изменить спонтанную поляризацию в доменах, которые в свою очередь могут быть полностью изменены низким уменьшением электрического поля и снижениями емкости. Это, как полагают и есть механизм старения.

Однако, микротекстура кристаллической решетки возвращается в исходное состояние при нагревании до температуры выше Точки Кюри, в которой старение решетки начинается снова и снова. Вообще емкость многослойного керамического конденсатора с высокой диэлектрической постоянной уменьшается приблизительно линейно в логарифмическом масштабе времени – в течение 24 часов после термической обработки выше 125 C. Пожалуйста, обратитесь к прикрепленным типовым данным старения нашей продукции и номинальной емкости конденсаторов. Емкость, которая уменьшилась в результате естественного старения, имеет свойство восстанавливаться при нагревании конденсаторов до Точки Кюри и выше.

Ожидаемая емкость многослойного керамического конденсатора будет в его номинале, когда эти условия установлены на оборудовании. Мы выбираем свою амплитуду емкости, основанную на предшествующем предположении. Кстати, температура, компенсирующая значения типовых конденсаторов, не проявляют явление старения.

Керамические конденсаторы стандартных параметров.

Керамические и стеклокерамические конденсаторы с твердым неорганическим диэлектрическим слоем выпускаются в высоковольтном и низковольтном исполнении. Отличаются компактными размерами и надежностью. Широко востребованы в вычислительной, бытовой, медицинской, военной техники, транспорте. По номинальному напряжению их разделяют на высоко- и низковольтные.

По типу конструкции выпускают следующие керамические конденсаторы:

  • КТК – трубчатые;
  • КДК – дисковые;
  • SMD – поверхностные и другие.

Для изготовления керамических конденсаторов используют не обожженную глину, а материалы, сходные с ней по структуре, – ультрафарфор, тиконд, ультрастеатит. Обкладка – серебряный слой. Керамические и стеклокерамические устройства используются в схемах, в которых важных частотные характеристики, невысокие потери при утечке, компактные габариты, невысокая стоимость.

Стоит почитать: все об электолитических конденсаторах.

Конденсаторы постоянной емкости

Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре. Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.

Номинальные величины емкостей конденсаторов установлены ГОСТ 2519 — 60. При изготовлении конденсаторов действительное значение емкости отличается от номинального, обозначенного в маркировке. Допустимое отклонение емкости от номинального называется допуском. По этому принципу все конденсаторы разделяют на пять классов: 0, 1, II, III, IV, допуски их соответственно составляют ±2%; ±5%; ±10%; ±20% и от — 20 до + 50%.

Керамический высоковольтный конденсатор.

В зависимости от назначения различают контурные, разделительные, блокировочные и фильтровые конденсаторы. По материалу диэлектрика конденсаторы делят на слюдяные, керамические, бумажные, металлобумажные, бумаго-масляные, пленочные, стеклоэмалевые, стеклокерамические, электролитические, воздушные, вакуумные, газонаполненные. По конструктивному признаку конденсаторы подразделяют на трубчатые, дисковые, бочоночные, горшковые, опрессованные и герметизированные, плоские и цилиндрические и т. д.

Независимо от вида конденсатор характеризуется рабочим напряжением. Рабочим напряжением называется напряжение, под которым обкладки конденсатора могут длительно находиться без пробоя разделяющего их диэлектрика. Рабочее напряжение выражают в вольтах. Большое значение для нормальной работы конденсатора имеет сопротивление его изоляции. При малом сопротивлении изоляции возникают утечки, нарушающие нормальную работу схемы. Потери в конденсаторе характеризуются тангенсом угла диэлектрических потерь, выражающим отношение мощности активных потерь к реактивной мощности конденсатора.

В маломощных конденсаторах потери энергии в основном вызываются проводимостью диэлектрика и диэлектрическим гистерезисом, т. е. потерями на поворот полярных молекул в направлении поля при приложении напряжения к обкладкам. Потери в обкладках и выводах малы, поэтому ими обычно пренебрегают. Одной из важнейших характеристик конденсатора является стабильность — неизменность величины емкости конденсатора во время работы. Изменение емкости может быть как временным, так и необратимым. Основным фактором, влияющим на стабильность емкости конденсатора, является воздействие температуры окружающей среды и нагрев конденсатора за счет рассеиваемой на нем мощности. При повышении температуры увеличиваются геометрические размеры материала, что и влечет за собой временное (до возвращения температуры к первоначальному значению) изменение емкости.

Заключение

Более подробно о том, что такое керамический конденсатор можно узнать из статьи что такое высоковольтные керамические конденсаторы. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.pereosnastka.ru

www.www.irvus.ru

www.www.chipinfo.rul

Предыдущая

КонденсаторыЧто такое полярность конденсатора и как ее определить?

Следующая

КонденсаторыФормула расчёта сопротивления конденсатора

Конденсатор.Типы конденсаторов.

Типы конденсаторов

Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

  • Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). Ёмкость в 1 Фараду очень велика. К примеру, земной шар имеет ёмкость менее 1 Ф, а точнее около 710 мкф. Правда, тут надо понимать, что физики любят аналогии. Говоря про электрическую ёмкость земного шара, они имеют ввиду, что в качестве примера взят металлический шар размером с планету Земля и являющийся уединённым проводником. Это всего лишь аналогия. В технике существует электронный компонент, который обладает ёмкостью более 1 Фарады – это ионистор.

    В основном, в электронике и радиотехнике используются конденсаторы с ёмкостью равной миллионной доле фарады – микрофарада (1мкФ = 0,000001 Ф). Также находят применение конденсаторы с ёмкостями исчисляемыми десятками – сотнями нанофарад (1нФ = 0,000000001 Ф) и пикофарад (1пФ = 0,000000000001 Ф). Номинальную ёмкость указывают на корпусе конденсатора.

    Чтобы не запутаться в сокращениях (мкФ, нФ, пФ), и научиться переводить микрофарады в пикофарады, а нанофарады в микрофарады необходимо знать о сокращённой записи численных величин.

  • Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. При превышении допустимого значения конденсатор будет пробит, то есть, превратится в обычный проводник. Диапазон допустимых значений рабочих напряжений конденсаторов лежит в пределах от нескольких вольт до единиц киловольт (

    1 киловольт – 1 000 вольт). Номинальное напряжение маркируют на корпусе конденсатора.

  • Допуск. Также как у резисторов и у конденсаторов есть допустимое отклонение величины его реальной ёмкости от той, что указана на его корпусе. Допуск обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В технике, где требуется особая точность номинальных значений ёмкости, применяются конденсаторы с малым допуском (1% и менее).

Три указанных параметра являются основными. Знание этих параметров достаточно, чтобы самостоятельно подбирать конденсаторы для изготовления самоделок и ремонта электроники.

Изображается конденсатор на принципиальных схемах так, как показано на рисунке.

Типы конденсаторов

Кроме обычных существуют ещё и электролитические конденсаторы. Емкость их намного больше, чем у обычных, следовательно, габариты также существенно больше.

Отличительная особенность электролитических конденсаторов – полярность. Если обычные конденсаторы можно впаивать в схему не беспокоясь о полярности прикладываемого к конденсатору напряжения, то электролитический конденсатор необходимо включать в схему строго в соответствии с полярностью напряжения. У электролитических конденсаторов один вывод плюсовой, другой минусовой.

Обозначение электролитического конденсатора на схемах.

Также широкое применение получили подстроечные конденсаторы. Подстроечные конденсаторы необходимы в тех случаях, когда требуется точная подстройка ёмкости в электронной схеме. В таких конденсаторах подстройку ёмкости производят один раз или очень редко.

Обозначается так.

Наряду с подстроечными конденсаторами существуют и конденсаторы переменной ёмкости

. В отличие от подстроечных, переменные конденсаторы служат для частой подстройки ёмкости. В простом (не цифровом) приёмнике настройка на радиостанцию как раз и осуществляется с помощью конденсатора переменной ёмкости.

Свойства конденсатора

  • Конденсатор не пропускает постоянный ток и является для него изолятором.

  • Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Свойство конденсатора оказывать разное сопротивление переменному току нашло широкое применение. Конденсаторы используют для фильтрации, отделения одних частот от других, отделения переменной составляющей от постоянной…

Вот так выглядят конденсаторы постоянной ёмкости.

Электролитический конденсатор. Длинный вывод – плюсовой, короткий – минусовой.

Планарный электролитический конденсатор. На корпусе указана номинальная ёмкость22 мкФ (22), номинальное напряжение16 Вольт (16V). Видно, что емкость обозначена только цифрами. Ёмкость электролитических конденсаторов указывается в микрофарадах.

Со стороны отрицательного вывода конденсатора на верхней части корпуса чёрный полукруг.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

как работает и зачем нужен в цепи переменного и постоянного тока

Практически во всех электронных устройствах, от самых простых до высокотехнологичных, таких как материнские платы компьютеров, можно встретить один неизменно присутствующий элемент, являющийся пассивным компонентом. Но к сожалению, мало кто знает как устроен и для чего нужен конденсатор, и какие виды этого накопителя бывают.

Просто о сложном

Итак, это небольшое устройство для накопления электрического поля или заряда похоже на обычную банку, ту, в которой маринуют помидоры или хранят муку. Она точно так же в себе накапливает сухое вещество или жидкость, которую в неё поместят.

Аналогия проста: по цепи бегут электроны, а на своей дороге встречают проводников, которые ведут их в «банку», где они и накапливаются, усиливая заряд.

Для того чтобы выяснить, много ли элекрончиков так можно собрать, и в какой момент накопление прекратится (банка лопнет), электрический процесс обычно сравнивают с водопроводом. Если представить трубу, в которой течёт вода, закачиваемая туда насосом, то где-то в центре трубопровода нужно вообразить мягкую мембрану, растягивающуюся под давлением жидкости. Очевидно, что она будет растягиваться до определённого предела, пока не разорвётся или, если попалась очень крепкая, не уравновесит силу насоса.

Такой пример показывает, как работает конденсатор, только мембрана заменяется электрическим полем, которое увеличивается по мере зарядки накопителя (работы насоса), уравновешивая напряжение источника питания. Очевидно, что этот процесс не бесконечный, и предельный заряд существует, по достижении которого «банка» выйдет из строя и перестанет выполнять свои функции.

Устройство и принцип работы

Конденсатор — устройство, состоящее из двух пластин (обкладок), имеющих между собой пустоту. Напряжение к нему подаётся через проводки, подсоединённые к пластинкам. Современные приборы, по сути, не сильно отличаются от макетов на уроках физики, они также состоят из диэлектрика и обкладок. Следует отметить, что именно вещество или его отсутствие (вакуум), плохо проводящее электричество, изменяет характеристики накопителя.

Суть принципа работы конденсатора проста: дали напряжение, и заряд начал накапливаться. Для примера следует рассмотреть

как ведёт себя накопитель в двух вариантах электрической цепи:

  • Постоянный ток. Если в цепь с подключённым к ней конденсатором подать ток, то можно увидеть, что стрелка на амперметре начнёт двигаться, а потом быстро вернётся в исходное положение. Это объясняется просто: устройство быстро зарядилось, то есть источник питания был уравновешен обкладками накопителя, и тока не стало. Поэтому часто говорят, что в условиях постоянного тока конденсатор не работает. Такое утверждение неправильное, всё функционирует, но очень непродолжительное время.
  • Переменный ток — это когда электроны двигаются сначала в одну, а затем в другую сторону. Если представить такую цепь с подключённым к ней накопителем, то на обеих обкладках конденсатора будут попеременно накапливаться положительные и отрицательные заряды. Это говорит о том, что переменный ток свободно протекает через устройство.

Поскольку конденсатор задерживает постоянный ток, но пропускает переменный, отсюда формируются и сферы его назначения, например, для устройств, в которых нужно убрать постоянную составляющую в сигнале. Вполне очевидно, что накопитель обладает сопротивлением, а вот мощность на нём не выделяется, поэтому он не греется.

Основные виды

Рядовой пользователь не всегда знает о том, каким конденсатором снабжено его устройство. А ведь каждый вид имеет свои недостатки и преимущества, а также эксплуатационные особенности. Существуют две большие группы этих устройств, предназначенные для электрической цепи с переменным и постоянным током. Но всё-таки основная классификация ведётся по типу диэлектрика, который находится между облатками конденсатора. Основные виды:

  • Керамические. Имеют маленький размер, малый ток утечки и небольшую индуктивность. Отлично работают в условиях высоких частот, в цепях пульсирующего, постоянного и переменного тока. Представлены в различном диапазоне напряжений и ёмкостей, в зависимости от того, для чего конденсатор предназначен.
  • Слюдяные. В настоящее время почти не используются и не выпускаются. В накопителях такого типа диэлектриком служит слюда. Рабочее напряжение таких конденсаторов в диапазоне — 200−1500 В.
  • Бумажные. В алюминиевых облатках заключена конденсаторная бумага. Выдерживают напряжение 160−1500 В.
  • Полиэстеровые. Максимальная ёмкость не превышает 15 мФ, рабочее напряжение — 50−1500 В.
  • Полипропиленовые. Выгодно выделяются на фоне остальных собратьев двумя преимуществами. Первое — маленький допуск ёмкости (+/- 1%), второе — до 3 кВ рабочего напряжения.

Отдельно стоит отметить электролитические конденсаторы. Главное их отличие от других видов — подключения только к цепи постоянного или пульсирующего тока. Такие накопители имеют полярность — это особенность их конструкции, поэтому неправильное подключение ведёт к вздутию или взрыву устройства. Они обладают большой ёмкостью, что делает конденсатор электролитический пригодным для применения в выпрямительных цепях.

Сферы применения

Можно смело сказать, что конденсаторы используют практически во всех электронных и радиотехнических схемах. Чтобы иметь представление о том, где и зачем нужен конденсатор, следует вспомнить его способность сохранять заряд и разряжаться в нужное время, а также пропускать переменный ток и не пропускать постоянный. А это значит, что такие устройства используются во многих технических сферах, например:

  • телефонии;
  • в производстве счётных и запоминающих устройств;
  • автоматике;
  • при создании измерительных приборов и многих других.

Электрические накопители можно встретить как в телевизорах, так и в приборах радиолокации, где необходимо формировать импульс большой мощности, для чего и служит конденсатор. Невозможно встретить блок питания без этих устройств или сетевой фильтр.

Нужно сказать, что накопители применяют и в сферах, не связанных с электрикой, например, в производстве металла и добыче угля, где используют конденсаторные электровозы.

классификация по характеристикам и функциональному назначению

Конденсаторы являются одним из важнейших пассивных компонентов в электронике. В простейшем случае представляет собой две металлические обкладки, разделенные слоем диэлектрика, толщина которого многократно меньше линейных размеров. Назначение – накопление заряда и энергии электрического поля.

Разнообразные конденсаторы

История

Прототипом первого конденсатора была «лейденская банка», изобретенная в 1745 г. Это была стеклянная банка, в которой обкладками были тонкие листы оловянной фольги, наклеенные на внутренние и внешние стороны стенок. В качестве внешней обкладки могли выступать руки экспериментатора, а в качестве внутренней – жидкость.

Лейденская банка

Обратите внимание! Первый удар током при разряде конденсатора был получен при испытании лейденской банки с ладонями вместо внешней обкладки.

Конструкция конденсатора

Конденсатор представляет собой два проводящих электрода (обкладки), разделенных слоем диэлектрика. Толщина изолятора пренебрежимо мала, по сравнению с его линейными размерами. Емкость увеличивается пропорционально площади обкладок и обратно пропорционально толщине диэлектрика.

В элементах высокой емкости для уменьшения габаритов конструкцию «обкладка – диэлектрик – обкладка» сворачивают в рулон или делают многослойной.

Конструкция конденсаторов

Свойства конденсатора

Поскольку в конструкции конденсатора содержится диэлектрик, то при включении его в цепь постоянного напряжения ток идет только в первый момент времени, при зарядке обкладок.

В цепи переменного напряжения происходит циклическая перезарядка, поэтому наблюдается прохождение тока. Его величина определяется реактивным сопротивлением конденсатора, которое равно:

XC=1/(2πfC), где f – частота колебаний.

Таким образом, становится понятным, почему при постоянном напряжении ток отсутствует (частота равняется нулю, а сопротивление стремится к бесконечности).

Обозначение конденсаторов на схемах

На схемах конденсатор изображается в виде символических обкладок двумя параллельными черточками. С небольшими изменениями все типы конденсаторов используют данное обозначение.

Обозначение на схемах

Основные параметры

Главные параметры конденсаторов, которые используются при проектировании и ремонте устройств радиоэлектроники, – это емкость и номинальное напряжение. Кроме этого, существует еще несколько дополнительных параметров, которые могут влиять на элементы схемы. Конденсаторы имеют следующие основные характеристики.

Ёмкость

Это самый основной параметр, который характеризует накопление электрического заряда. Расчет значения производится по различным формулам, в зависимости от конструкционных особенностей: плоский, цилиндрический или круглый конденсатор. На практике большая их часть выпускается как разновидности плоского. Емкость современных устройств варьируется от единиц пикофарад до десятков тысяч микрофарад и даже единиц фарад.

Удельная ёмкость

Этот относительный параметр привязывает габариты к величине емкости. Таким образом, чем выше удельная емкость, тем меньше габариты конструкции, однако при этом может упасть электрическая прочность (рабочее напряжение).

Плотность энергии

Данный параметр важен при использовании конденсаторов в качестве накопителей энергии, определяет величину энергии на единицу массы или объема элемента.

Номинальное напряжение

Значение напряжения, при котором сохраняются рабочие параметры в течение срока службы, называется номинальным. Рабочее напряжение должно быть меньше номинального.

Важно! Превышение номинального напряжения чревато выходом элемента из строя. Электролитический конденсатор при этом может разрушиться со взрывом. Вопреки распространенному мнению, элемент, включенный в цепь с напряжением, в несколько раз меньше номинального, сохраняет все остальные параметры.

Полярность

Такие виды конденсаторов, как электролитические, зачастую требуют включения в цепь с соблюдением полярности. Поскольку такие элементы используются, в основном, как накопители или фильтры, это не составляет затруднений. Несоблюдение полярности приводит к:

  • несоответствию емкости;
  • повреждению.

Маркировка обязательно содержит информацию о полярности подключения.

Опасность разрушения (взрыва)

Разрушение со взрывом характерно для электролитических конденсаторов. Причиной взрыва является нагрев, который возникает из-за:

  • несоблюдения полярности;
  • расположения рядом с источниками тепла;
  • старения (увеличения утечки и повышения эквивалентного сопротивления).

Для уменьшения последствий разрушения на корпусе в торце ставят предохранительный клапан или формируют насечки на крышке. Такая конструкция гарантирует, что при резком увеличении давления внутри корпуса скопившиеся газы и электролит выделяются через клапан или разрушенную по насечкам крышку. Таким образом, предотвращается взрыв, при котором обкладки и электролит разбрасываются по большой площади и вызывают замыкание элементов плат. Охлаждение устройства снижает вероятность разрушения.

Последствия разрушения

Паразитные параметры

Отдельные виды параметров являются паразитными, которые стараются снизить при конструировании и изготовлении. Их описание приведено ниже.

Эквивалентная схема

Электрическое сопротивление изоляции диэлектрика конденсатора, поверхностные утечки Rd и саморазряд

Данный параметр зависит от свойств диэлектрика и материала корпуса. Он показывает, насколько уменьшается заряд с течением времени у элемента, не включенного во внешнюю цепь. Утечка происходит в результате неидеальности диэлектрика и по его поверхности.

Для некоторых конденсаторов в характеристиках указывается постоянная времени Т, которая показывает время, в течении которого напряжение на обкладках уменьшится в е (2.71) раз. Численно постоянная времени равняется произведению сопротивления утечки на емкость.

Эквивалентное последовательное сопротивление (Rs)

Эквивалентное последовательное сопротивление ЭПС (в англоязычной литературе ERS) слагается из сопротивления материала обкладок и выводов. К нему также может добавляться поверхностная утечка диэлектрика.

По своей сути, ЭПС представляет собой сопротивление, соединенное последовательно с идеальным конденсатором. Такая цепь в некоторых случаях может влиять на фазочастотные характеристики. ЭПС обязательно должно учитываться при проектировании импульсных источников питания и контуров авторегулирования.

Электролитические конденсаторы имеют особенность, когда из-за наличия внутри паров электролита, воздействующих на выводы, величина ЭПС со временем увеличивается.

Эквивалентная последовательная индуктивность (Li)

Поскольку выводы обкладок и сами обкладки металлические, то они имеют некоторую индуктивность. Таким образом, конденсатор представляет собой резонансный контур, что может оказать влияние на работу схемы в определенном диапазоне частот. Наименьшую индуктивность имеют СМД компоненты ввиду отсутствия у них проволочных выводов.

Тангенс угла диэлектрических потерь

Отношение активной мощности, передаваемой через конденсатор, к реактивной, называется тангенсом угла диэлектрических потерь. Данная величина зависит от потерь в диэлектрике и вызывает сдвиг фазы между напряжением на обкладке и током. Тангенс угла потерь важен при работе на высоких частотах.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ означает изменение емкости при колебаниях температуры. ТКЕ может быть как положительным, так и отрицательным, в зависимости от того, как ведет себя емкость при изменениях температуры.

Для фильтрующих и резонансных цепей для компенсации температурного дрейфа в одной цепи используют элементы с разным ТКЕ, поэтому многие производители группируют выпускаемые элементы по величине и знаку коэффициента.

Диэлектрическая абсорбция

Данный эффект еще называют эффектом памяти. Проявляется он в том, что при разряде конденсатора через низкоомную нагрузку через некоторое время на обкладках возникает небольшое напряжение.

Величина диэлектрической абсорбции зависит от материалов, из которых изготовлен элемент. Она минимальна для тефлона и полистирола и максимальна для танталовых конденсаторов. Важно учитывать эффект при работе с прецизионными устройствами, особенно интегрирующими и дифференцирующими цепями.

Паразитный пьезоэффект

Так называемый «микрофонный эффект» выражается в том, что при воздействии механических нагрузок, в том числе акустических колебаний, керамический диэлектрик в некоторых типах устройств проявляет свойства пьезоэлектрика и начинает генерировать помехи.

Самовосстановление

Свойством самовосстановления после электрического пробоя обладают электролитические бумажные и пленочные конденсаторы. Такие типы конденсаторов и их разновидности нашли применение в цепях, обеспечивающих запуск электродвигателей, в особенности, если трехфазный асинхронный электродвигатель включается в однофазную сеть. Свойство восстановления широко используется в силовой технике.

Виды конденсаторов

Классификация конденсаторов производится по технологии изготовления и материалу диэлектрика и обкладок. Чтобы полностью классифицировать, какие бывают конденсаторы, требуется большой объем информации. Наибольшее распространение получили такие устройства.

Бумажные и металлобумажные конденсаторы

Бумажные состоят из двух алюминиевых лент, разделенных полосой из конденсаторной бумаги. В металлопленочных вместо алюминиевых лент используется способ напыления металла непосредственно на бумагу. Такие конденсаторы могут восстанавливать характеристики после электрического пробоя.

Распространенная бумажная конструкция

Электролитические конденсаторы

Состоят из металлического анода, у которого оксидный слой на поверхности выполняет роль диэлектрика. Вторая обкладка представлена жидким электролитом. Ввиду того, что слой окиси очень тонкий, емкость таких конструкций может достигать больших величин. Ценой этому следует низкое рабочее напряжение и требование соблюдения полярности.

Электролитические конденсаторы

Алюминиевые электролитические конденсаторы

Это основной тип электролитических конденсаторов. Отличаются большой погрешностью емкости и низкой стойкостью к повышению температуры.

Танталовые электролитические конденсаторы

Разновидность электролитического, где в качестве анода используется спеченный танталовый порошок. Благодаря развитой поверхности анода, эквивалентная площадь обкладки получается очень большой. Используются в импульсных цепях.

Полимерные конденсаторы

Специальный проводящий органический полимер в таких устройствах используется в качестве замены электролита. Твердотельные электролитические конденсаторы имеют большой срок службы и не взрывоопасны.

Пленочные конденсаторы

В пленочных конструкциях диэлектриком выступают тонкие пленки полистирола, стироплекса, лавсана или фторопласта. Отличаются высокой стабильностью, низкими потерями, поэтому широко используются в высокочастотных устройствах.

Конденсаторы керамические

В данном случае диэлектриком служит керамика или стекло с напыленным слоем металла.

Керамические конденсаторы

Конденсаторы с воздушным диэлектриком

Конструкции низкой емкости, в основном с изменяемой емкостью (переменные) для плавной регулировки частотных характеристик схемы.

Маркировка конденсаторов

Маркировка отличается у различных производителей. В изделиях, производимых в СССР и постсоветских республиках, в маркировке обязательно присутствуют следующие данные:

  • Буквенно-цифровое обозначение, характеризующее тип и технологию изготовления;
  • Значение емкости и погрешность изготовления;
  • Номинальное напряжение;
  • ТКЕ;
  • Дата изготовления.

Для импортных изделий обязательно только обозначение емкости. Остальные параметры наносятся по усмотрению производителя.

Пример маркировки

Невозможно в ограниченном объеме подробно описать все существующие виды конденсаторов. Тем более что их конструкция постоянно совершенствуется, приходят новые технологии, которые позволяют снизить стоимость с одновременным улучшением характеристик.

Видео

Конденсатор и RC цепочка | Электроника для всех

Если соединить резистор и конденсатор, то получится пожалуй одна из самых полезных и универсальных цепей.
 

О многочисленных способах применения которой я сегодня и решил рассказать. Но вначале про каждый элемент в отдельности:
 

Резистор — его задача ограничивать ток. Это статичный элемент, чье сопротивление не меняется, про тепловые погрешности сейчас не говорим — они не слишком велики. Ток через резистор определяется законом ома — I=U/R, где U напряжение на выводах резистора, R — его сопротивление.
 

Конденсатор штука поинтересней. У него есть интересное свойство — когда он разряжен то ведет себя почти как короткое замыкание — ток через него течет без ограничений, устремляясь в бесконечность. А напряжение на нем стремится к нулю. Когда же он заряжен, то становится как обрыв и ток через него течь перестает, а напряжение на нем становится равным заряжающему источнику. Получается интересная зависимость — есть ток, нет напряжения, есть напряжение — нет тока.
 

Чтобы визуализировать себе этот процесс, представь ган… эмм.. воздушный шарик который наполняется водой. Поток воды — это ток. Давление воды на упругие стенки — эквивалент напряжения. Теперь смотри, когда шарик пуст — вода втекает свободно, большой ток, а давления еще почти нет — напряжение мало. Потом, когда шарик наполнится и начнет сопротивляться давлению, за счет упругости стенок, то скорость потока замедлится, а потом и вовсе остановится — силы сравнялись, конденсатор зарядился. Есть напряжение натянутых стенок, но нет тока!
 

Теперь, если снять или уменьшить внешнее давление, убрать источник питания, то вода под действием упругости хлынет обратно. Также и ток из конденсатора потечет обратно если цепь будет замкнута, а напряжение источника ниже чем напряжение в конденсаторе.
 

Емкость конденсатора. Что это?
Теоретически, в любой идеальный конденсатор можно закачать заряд бесконечного размера. Просто наш шарик сильней растянется и стенки создадут большее давление, бесконечно большое давление.
А что же тогда насчет Фарад, что пишут на боку конденсатора в качестве показателя емкости? А это всего лишь зависимость напряжения от заряда (q = CU). У конденсатора малой емкости рост напряжения от заряда будет выше.
 

Представь два стакана с бесконечно высокими стенками. Один узкий, как пробирка, другой широкий, как тазик. Уровень воды в них — это напряжение. Площадь дна — емкость. И в тот и в другой можно набузолить один и тот же литр воды — равный заряд. Но в пробирке уровень подскочит на несколько метров, А в тазике будет плескаться у самого дна. Также и в конденсаторах с малой и большой емкостью.
Залить то можно сколько угодно, но напряжение будет разным.
 

Плюс в реале у конденсаторов есть пробивное напряжение, после которого он перестает быть конденсатором, а превращается в годный проводник 🙂
 

А как быстро заряжается конденсатор?
В идеальных условиях, когда у нас бесконечно мощный источник напряжения с нулевым внутренним сопротивлением, идеальные сверхпроводящие провода и абсолютно безупречный конденсатор — этот процесс будет происходить мгновенно, с временем равным 0, равно как и разряд.
 

Но в реальности всегда существуют сопротивления, явные — вроде банального резистора или неявные, такие как сопротивление проводов или внутреннее сопротивление источника напряжения.
В этом случае скорость заряда конденсатора будет зависить от сопротивлений в цепи и емкости кондера, а сам заряд будет идти по экспоненциальному закону.
 

 

А у этого закона есть пара характерных величин:

  • Т — постоянная времени, это время при котором величина достигнет 63% от своего максимума. 63% тут взялись не случайно, тут прямая завязка на такую формулу VALUET=max—1/e*max.
  • 3T — а при троекратной постоянной значение достигнет 95% своего максимума.

 

Постоянная времени для RC цепи Т=R*C.
 

Чем меньше сопротивление и меньше емкость, тем быстрей конденсатор заряжается. Если сопротивление равно нулю, то и время заряда равно нулю.
 

Рассчитаем за сколько зарядится на 95% конденсатор емкостью 1uF через резистор в 1кОм:
T= C*R = 10-6 * 103 = 0.001c
3T = 0.003c через такое время напряжение на конденсаторе достигнет 95% от напряжения источника.
 

Разряд пойдет по тому же закону, только вверх ногами. Т.е. через Твремени в на конденсаторе остаенется всего лишь 100% — 63% = 37% от первоначального напряжения, а через 3T и того меньше — жалкие 5%.
 

Ну с подачей и снятием напряжения все ясно. А если напряжение подали, а потом еще ступенчато подняли, а разряжали также ступеньками? Ситуация тут практически не изменится — поднялось напряжение, конденсатор дозарядился до него по тому же закону, с той же постоянной времени — через время 3Т его напряжение будет на 95% от нового максимума.
Чуть понизилось — подразрядился и через время 3Т напряжение на нем будет на 5% выше нового минимума.
Да что я тебе говорю, лучше показать. Сварганил тут в мультисиме хитровыдрюченный генератор ступечнатого сигнала и подал на интегрирующую RC цепочку:

 

Видишь как колбасится 🙂 Обрати внимание, что и заряд и разряд, вне зависимости от высоты ступеньки, всегда одной длительности!!!
 

А до какой величины конденсатор можно зарядить?
В теории до бесконечности, этакий шарик с бесконечно тянущимися стенками. В реале же шарик рано или поздно лопнет, а конденсатор пробьет и закоротит. Вот поэтому у всех конденсаторов есть важный параметр — предельное напряжение. На электролитах его часто пишут сбоку, а на керамических его надо смотреть в справочниках. Но там оно обычно от 50 вольт. В общем, выбирая кондер надо следить, чтобы его предельное напряжение было не ниже того которое в цепи. Добавлю что при расчете конденсатора на переменное напряжение следует выбирать предельное напряжение в 1.4 раза выше. Т.к. на переменном напряжении указывают действующее значение, а мгновенное значение в своем максимуме превышает его в 1.4 раза.
 

Что следует из вышеперечисленного? А то что если на конденсатор подать постоянное напряжение, то он просто зарядится и все. На этом веселье закончится.
 

А если подать переменное? То очевидно, что он будет то заряжаться, то разряжаться, а в цепи будет туда и обратно гулять ток. Движуха! Ток есть!
 

Выходит, несмотря на физический обрыв цепи между обкладками, через конденсатор легко протекает переменный ток, а вот постоянному слабо.
 

Что нам это дает? А то что конденсатор может служить своего рода сепаратором, для разделения переменного тока и постоянного на соответствующие составляющие.
 

Любой изменяющийся во времени сигнал можно представить как сумму двух составляющих — переменной и постоянной.

Например, у классической синусоиды есть только переменная часть, а постоянная равна нулю. У постоянного же тока наоборот. А если у нас сдвинутая синусоида? Или постоянная с помехами?
 

Переменная и постоянная составляющие сигнала легко разделяются!
Чуть выше я тебе показал как конденсатор дозаряжается и подразряжается при изменениях напряжения. Так что переменная составляющая сквозь кондер пройдет на ура, т.к. только она заставляет конденсатор активно менять свой заряд. Постоянная же как была так и останется и застрянет на конденсаторе.
 

Но чтобы конденсатор эффективно разделял переменную составляющую от постоянной частота переменной составляющей должна быть не ниже чем 1/T
 

Возможны два вида включения RC цепочки:
Интегрирующая и дифференцирующая. Они же фильтр низких частот и фильтр высоких частот.
 

Фильтр низких частот без изменений пропускает постоянную составляющую (т.к. ее частота равна нулю, ниже некуда) и подавляет все что выше чем 1/T. Постоянная составляющая проходит напрямую, а переменная составляющая через конденсатор гасится на землю.
Такой фильтр еще называют интегрирующей цепочкой потому, что сигнал на выходе как бы интегрируется. Помнишь что такое интеграл? Площадь под кривой! Вот тут она и получается на выходе.
 

Как здесь вычисляется постоянная составляющая? А с виду и не скажешь, но надо помнить, что любой периодически сигнал раскладывается в ряд Фурье, превращаясь в сумму из постоянной составляющей и пачки синусоид разной частоты и амплитуды.
 

Фильтр высоких частот работает наоборот. Он не пускает постоянную составляющую (т.к. ее частота слишком низка — 0) — ведь конденсатор для нее равносилен обрыву, а вот переменная пролазит через кондер без проблем.

А дифференцирующей цепью ее называют потому, что на выходе у нас получается дифференциал входной функции, который есть не что иное как скорость изменения этой функции.

  • На участке 1 происходит заряд конденсатора, а значит через него идет ток и на резисторе будет падение напряжения.
  • На участке 2 происходит резкое увеличение скорости заряда, а значит и ток резко возрастет, а за ним и падение напряжения на резисторе.
  • На участке 3 конденсатор просто удерживает уже имеющийся потенциал. Ток через него не идет, а значит на резисторе напряжение тоже равно нулю.
  • Ну и на 4м участке конденсатор начал разряжаться, т.к. входной сигнал стал ниже чем его напряжение. Ток пошел в обратную сторону и на резисторе уже отрицательное падение напряжения.

А если подать на вход прямоугольнй импульс, с очень крутыми фронтами и сделать емкость конденсатора помельче, то увидим вот такие иголки:

Вверху идет осциллограма того что на входе, внизу то что на выходе дифференциальной цепи.
Как видишь, тут мощные всплески на фронтах. Оно и понятно, в этом месте функция меняется резко, а значит производная (скорость изменения) этой функции велика, на пологих участках сигнал константа и его производная, скорость изменения, равна нулю — на графике ноль.
 

А если загнать в дифференциатор пилу, то на выходе получим…

прямоугольник. Ну, а чо? Правильно — производная от линейной функции есть константа, наклон этой функции определяет знак константы.
 

Короче, если у тебя сейчас идет курс матана, то можешь забить на богомерзкий Mathcad, отвратный Maple, выбросить из головы матричную ересь Матлаба и, достав из загашников горсть аналоговой рассыпухи, спаять себе истинно ТРУЪ аналоговый компьютер 🙂 Препод будет в шоке 🙂
 

Правда на одних только резисторах кондерах интеграторы и диффернциаторы обычно не делают, тут юзают операционные усилители. Можешь пока погуглить на предмет этих штуковин, любопытная вещь 🙂
 

А вот тут я подал обычный приямоугольный сигнал на два фильтра высоких и низких частот. А выходы с них на осциллограф:

И вот что получилось на осциллографе:

Вот, чуть покрупней один участок:

>

Как видишь, на одном срезало постоянную составляющую, на другом переменную.
 

Ладно, что то мы отвлеклись от темы.
 

Как еще можно применить RC цепь?
Да способов много. Часто ее используют не только в качестве фильтров, но и как формирователи импульсов. Например, на сбросе контроллера AVR, если надо чтобы МК стартанул не сразу после включения питания, а с некоторой выдержкой:

При старте кондер разряжен, ток через него вваливат на полную, а напряжение на нем мизерное — на входе RESET сигнал сброса. Но вскоре конденсатор зарядится и через время Т его напряжение будет уже на уровне логической единицы и на RESET перестанет подаваться сигнал сброса — МК стартанет.
А для AT89C51 надо с точностью наоборот RESET организовать — вначале подать единицу, а потом ноль. Тут ситуация обратная — пока кондер не заряжен, то ток через него течет большой, Uc — падение напряжения на нем мизерное Uc=0. А значит на RESET подается напряжение немногим меньше напряжения питания Uпит-Uc=Uпит.
Но когда кондер зарядится и напряжение на нем достигнет напряжения питания (Uпит=Uс), то на выводе RESET уже будет Uпит-Uc=0
 

Аналоговые измерения
Но фиг сними с цепочками сброса, куда прикольней использовать возможность RC цепи для замера аналоговых величин микроконтроллерами в которых нет АЦП.
Тут используется тот факт, что напряжение на конденсаторе растет строго по одному и тому же закону — экспоненте. В зависимости от кондера, резистора и питающего напряжения. А значит его можно использовать как опорное напряжение с заранее известными параметрами.
 

Работает просто, мы подаем напряжение с конденсатора на аналоговый компаратор, а на второй вход компаратора заводим измеряемое напряжение. И когда хотим замерить напряжение, то просто вначале дергаем вывод вниз, чтобы разрядить конденсатор. Потом возвращем его в режим Hi-Z, cбрасываем и запускаем таймер. А дальше кондер начинает заряжаться через резистор и как только компаратор доложит, что напряжение с RC догнало измеряемое, то останавливаем таймер.

Зная по какому закону от времени идет возрастание опорного напряжения RC цепи, а также зная сколько натикал таймер, мы можем довольно точно узнать чему было равно измеряемое напряжение на момент сработки компаратора. Причем, тут не обязательно считать экспоненты. На начальном этапе зарядки кондера можно предположить, что зависимость там линейная. Или, если хочется большей точности, аппроксимировать экспоненту кусочно линейными функциями, а по русски — отрисовать ее примерную форму несколькими прямыми или сварганить таблицу зависимости величины от времени, короче, способов вагон просто.
 

Если надо заиметь аналоговую крутилку, а АЦП нету, то можно даже компаратор не юзать. Дрыгать ножкой на которой висит конденсатор и давать ему заряжаться через перменный резистор.
 

По изменению Т, которая, напомню T=R*C и зная что у нас С = const, можно вычислить значение R. Причем, опять же необязательно подключать тут математический аппарат, в большинстве случаев достаточно сделать замер в каких-нибудь условных попугаях, вроде тиков таймера. А можно пойти другим путем, не менять резистор, а менять емкость, например, подсоединяя к ней емкость своего тела… что получится? Правильно — сенсорные кнопки!
 

Если что то непонятно, то не парься скоро напишу статью про то как прикрутить к микроконтроллеру аналоговую фиговину не используя АЦП. Там подробно все разжую.
 

Теперь, думаю, ты понял за что я так люблю RC цепочки и почему на моей отладочной плате PinBoard их несколько и с разными параметрами 🙂
 

Схемы на все случаи жизни » Номинальное, рабочее и испытательное напряжение конденсатора

Под номинальным напряжением конденсатора понимается предельно допустимое напряжение постоянного тока (или сумма напряжений постоянного и переменного токов), при котором конденсатор может работать в течение гарантируемого срока службы при максимально допустимой рабочей температуре.

Номинальное напряжение постоянного тока устанавливается с необходимым запасом по отношению к длительной электрической прочности диэлектрика, исключающим возникновение в течение гарантируемого срока службы сильного старения конденсатора, вызывающего существенное ухудшение его электрических характеристик.

Допускаемые значения амплитуды переменного тока выбираются таким образом, чтобы исключить возможность развития ионизации в конденсаторе и его нагрев сверх допускаемой предельной температуры.

Эти значения обычно приводятся в технических условиях на конденсатор. При эксплуатации конденсаторов на переменном или постоянном с переменной составляющей напряжениях следует придерживаться следующих правил:

• Сумма постоянной составляющей и амплитуды пульсации не должна превышать номинального рабочего напряжения.

• Амплитуда переменного напряжения не должна превышать величины, определяемой формулой: U=400*103*√(Pp/fC), где U — амплитуда переменного напряжения,В; Pp — допустимая реактивная мощность, Вар; С — емкость, пф; f — частота, гц.

• Ток, проходящий через конденсатор, не должен превышать допустимой по ТУ величины. Максимальным значением допустимого переменного напряжения, равным номинальному, обладают керамические низковольтные высокочастотные конденсаторы. Ограничение напряжения для этих конденсаторов обусловливается допустимыми значениями реактивной мощности и тока.

Для слюдяных конденсаторов допустимое значение амплитуды переменного напряжения в процентах от номинального в соответствии с действующими ТУ приведено ниже. Для конденсаторов типов КСО, СГМ:
• На номинальные напряжения до 500 В: 100% до 500 гц, 60% от 500 до 10000 гц, 20% более 10000 гц;

• На номинальные напряжения 500 В: 50% до 500 гц, 30% от 500 до 10000 гц, 10% более 10000 гц;

• На номинальные напряжения от 1000 до 3000 в: 30% до 50 гц, 20% от 500 до 10000 гц, 5% более 10000 гц;

• На номинальные напряжения 5000 в и выше: 15% до 500 гц, 20% от 500 до 10000 гц, 3% более 10000 гц.

Срок службы конденсаторов зависит от приложенного напряжения и окружающей температуры. Следовательно, существует принципиальная возможность в зависимости от времени, в течение которого будет эксплуатироваться конденсатор, и окружающей температуры устанавливать допустимые значения рабочих напряжений, значительно отличающиеся от номинальных. Это обстоятельство, расширяющее возможность применения конденсаторов, использовано в некоторых металлобумажных конденсаторах.

Во избежание повреждения конденсатора нельзя допускать, чтобы амплитудное значение переменной составляющей (любой формы, частоты и длительности воздействия) превышало величину приложенного постоянного напряжения, так как при этом на аноде периодически будет создаваться отрицательный потенциал.

Величина допускаемого значения переменной составляющей для электролитических конденсаторов зависит от типа конденсатора и уменьшается пропорционально частоте.

Некоторые типы конденсаторов нежелательно использовать при напряжениях, значительно ниже номинального (особенно ниже 1 в), так как могут возникнуть нарушения в работе схем из-за неустойчивости внутренних контактов между обкладками и выводами, роста потерь и развития окислительных процессов, приводящих к временной или постоянной потери емкости. Примером таких конденсаторов являются конденсаторы типа БМ-1.

При низких напряжениях наиболее надежными являются конденсаторы с припаянными или приваренными, контактами: керамические, стеклоэмалевые, стеклокерамические, бумажные (БМ-2, БМТ-2, К40У-9), металлобумажные (МБГ, МБГТ, МБМ, К42У-2), металлопленочные (МПГ, МПГО, К71П-2Б), фторопластовые (К72П-6).

Для отбраковки конденсаторов с заведомо низкой электрической прочностью, обусловленной грубыми случайными дефектами, заводы-изготовители проверяют конденсаторы испытательным напряжением, значительно превышающим номинальное. Конденсаторы должны выдерживать воздействие испытательного напряжения в течение короткого времени (обычно 10 сек) не пробиваясь.

Обычно испытательное напряжение выбирается, исходя из запаса кратковременной электрической прочности конденсатора.

Для слюдяных конденсаторов испытательное напряжение выбирается обычно в два раза больше номинального, для бумажных на напряжение до 1500 в 3 раза больше, а при 1500 в и выше в 2 раза больше.

Испытательным напряжением на заводах-изготовителях обычно проверяются все выпускаемые конденсаторы (испытание на электрическую прочность), что позволяет отбраковывать образцы с особо грубыми дефектами, но, однако, не обеспечивает безотказность при последующей эксплуатации конденсаторов, выдержавших это испытание. У конденсаторов, истинное пробивное напряжение которых превышало испытательное на сравнительно небольшую величину, воздействие испытательного напряжения может вызвать необратимое изменение в диэлектрике, снижающее запас электрической прочности.

При повторном испытании на электрическую прочность, такие конденсаторы могут выйти из строя. Эксперименты показывают, что если достаточно большую партию конденсаторов неоднократно испытывать одним и тем же испытательным напряжением, то при последующих испытаниях всегда будет иметься некоторое количество пробитых образцов.

Исходя из сказанного, проверки конденсаторов на электрическую прочность следует стремиться уменьшать до предела, например до двух: 1) на заводе-изготовителе конденсаторов и 2) при входном контроле на заводе-потребителе.

Однако при входном контроле рекомендуется проводить испытание конденсаторов всех типов на кратковременную электрическую прочность при испытательном напряжении не выше 1.15*Uном.

Список использованной литературы
  1. Элементы радиоэлектронной аппаратуры. Электрические конденсаторы постоянной ёмкости. В.Н. Гусев, В.Ф.Смирнов. — М.: Советское радио, 1968.

Конденсатор постоянной емкости

Конденсатор электронное устройство, хранящее электрический заряд. когда на конденсатор подается напряжение, в нем хранится электрическая заряжать. Это хранение заряда может быть фиксированным или переменным в зависимости от от типа конденсатора.

Конденсаторы находятся в основном подразделяется на два типа:

  • Фиксированный конденсаторы
  • переменная конденсаторы

В В этом руководстве объясняются конденсаторы постоянной емкости.

Фиксированный конденсатор

Фиксированный конденсатор это тип конденсатора, который обеспечивает фиксированное количество емкость (емкость означает способность хранить электрическую заряжать). Другими словами, конденсатор постоянной емкости — это тип конденсатор, который хранит фиксированное количество электрического заряда, который не регулируется.

Фиксированный конденсаторы делятся на разные типы в зависимости от диэлектрической проницаемости материал, из которого они построены.Различные типы фиксированных конденсаторы бытовые:

Конденсатор бумажный это тип конденсатора, который использует бумагу в качестве диэлектрика для хранить электрический заряд. Он состоит из бумажных листов и алюминиевые листы. Лист бумаги покрыт воском или маслом, чтобы защитить его от вредного воздействия окружающей среды. Бумажные конденсаторы конденсаторы фиксированного типа, что означает, что они предлагают смешанные емкость.

бумажный конденсатор делается помещением бумажного листа между двумя алюминиевые листы. Лист бумаги, помещенный между алюминиевыми листы действуют как диэлектрик, а алюминиевые листы действуют как электроды. Бумага плохо проводит электричество. Следовательно, бумага не пропускает электрический ток между двумя электроды (алюминиевые листы).Однако бумажный лист позволяет электрический поле между двумя электродами.

Бумага листы и алюминиевые листы скручиваются вместе в виде цилиндр и провода прикреплены к обоим концам алюминиевые листы. Затем весь цилиндр покрывается воском. для защиты от влаги. Бумажные конденсаторы используются в высоких напряжения и сильноточные приложения.Читать полная статья ……

  • Пластик конденсатор или конденсатор с пластиковой пленкой

Пластик Конденсатор — это тип конденсатора, в котором используется пластиковая пленка. как диэлектрик для хранения электрического заряда. В пластике конденсаторы, полипропилен, полиэстер, сульфид полифенилена и полиэтилентерефталат обычно используются в качестве диэлектрики.В пластиковых конденсаторах пластиковые листы используются для конструкция из диэлектрика и алюминиевых или цинковых листов построить электроды конденсатора. Пластиковые конденсаторы широко используются в схемах, где низкие потери и высокие требуется сопротивление изоляции.

Типы конденсаторы пластиковые

Пластик конденсаторы делятся на два типа:

  • Пленка фольга конденсаторы
  • Металлизированный пленочные конденсаторы

Пленка фольга конденсаторы

Пленочный конденсатор из фольги изготавливается путем помещения пластикового листа между два алюминиевых листа.Пластиковый лист, помещенный между алюминиевые листы действуют как диэлектрик, а алюминиевые листы действует как электроды. Пластиковые листы и алюминиевые листы затем прокатываются в форме цилиндра, а проволочные выводы прикреплены к обоим концам алюминиевых листов.

Пластик плохой проводник электричества. Следовательно, это не позволяет протекание электрического тока между электродами (алюминиевые листы).Однако пластиковый лист допускает электрическое поле между двумя электроды.

Металлизированный пленочные конденсаторы

В металлизированные пленочные конденсаторы, пластиковый лист непосредственно покрытый алюминием. Алюминиевое покрытие на пластике действует электроды и пластиковый лист действуют как диэлектрик.

главное преимущество использования пластиковых конденсаторов перед натуральными конденсаторы в том, что пластиковый лист искусственный или синтетический.Таким образом, мы можем увеличить толщину и термостойкость пластичного диэлектрика.

различные применения пластиковых конденсаторов включают фильтры, детекторы пикового напряжения и аналого-цифровые преобразователи. Читать статью полностью ……..

Конденсаторы керамические являются наиболее широко используемыми конденсаторами в электронной схемы. Эти конденсаторы используются при большом накоплении заряда. и требуется небольшой физический размер.

В керамический конденсатор, керамический материал используется в качестве диэлектрика и проводящие металлы используются в качестве электродов. Керамический материал выбран в качестве диэлектрика из-за его большой способности допускать электростатическое отталкивание и притяжение.

Керамика диэлектрик плохой проводник электричества. Следовательно, это не позволяет электрический ток между двумя электродами.Однако керамические диэлектрик допускает электрическое поле между двумя электродами. Читать статью полностью ……….

Слюдяные конденсаторы стабильные, надежные и высокоточные конденсаторы. Эти конденсаторы доступны от низкого до высокого напряжения. Слюдяные конденсаторы используются в приложениях, где желательны точность и низкое изменение емкости во времени.Эти конденсаторы могут эффективно работать на высоких частотах.

Виды слюды конденсаторы

Слюда конденсаторы делятся на два типа:

  • С накоплением конденсаторы слюдяные
  • посеребренный конденсаторы слюдяные

сложенная слюда конденсаторы

уложенные друг на друга слюдяные конденсаторы изготовлены из тонких листов слюды, размещенных один над другим, и каждый лист слюды будет разделен тонкие металлические листы из алюминия или меди.

Затем вся установка заключен в пластиковый корпус для защиты от влаги и механическое повреждение. Листы слюды, помещенные между металлическими листами действует как диэлектрик, а металлические листы действуют как электроды.

Посеребренная слюда конденсатор

В посеребренный слюдяной конденсатор, лист слюды покрыт прямым покрытием с серебром.Это можно сделать с помощью техники скрининга. Читать полностью артикул ……….

An электролитический конденсатор — это тип конденсатора, в котором используется электролит. в качестве одного из электродов для достижения большой емкости. Электролитические конденсаторы в основном используются при высоком заряде. требуется хранение в небольшом объеме.

электролитический конденсатор состоит из двух алюминиевых фольг (анода и катода), алюминия оксидный слой, электролитическая бумага и жидкий электролит.В жидкий электролит содержит атомы или молекулы, которые приобрели или потеряли электроны.

В электролитический конденсатор, анод и катод часто изготавливаются используя чистую алюминиевую фольгу. Анодная алюминиевая фольга с покрытием с тонким слоем изолирующего слоя оксида алюминия. Этот изолирующий слой оксида алюминия действует как диэлектрик электролитический конденсатор.Катод и анод с оксидным покрытием разделены электролитической бумагой. Электролитическая бумага пропитанный жидким электролитом.

катод покрыт очень тонким изолирующим оксидным слоем, который образуется естественным образом. Однако этот оксидный слой очень тонкий. по сравнению с оксидным слоем анода. Читать полная статья ………

Суперконденсаторы могут хранить большое количество электрического заряда по сравнению с электролитические и все другие типы обычных конденсаторов.Суперконденсаторы также известны как ультраконденсаторы или электрические. конденсаторы с двойным слоем.

Суперконденсатор состоит из двух электродов, сепаратора и электролита. Электролит представляет собой смесь отрицательных и положительных ионов, растворенных в вода. Два электрода суперконденсатора разделены разделителем.

левый боковой электрод контактирует с левой жидкостью электролит аналогично; правый боковой электрод контактирует с жидким электролитом справа.Два противоположных обвинения строятся в области, где поверхность электрода и жидкость электролит вступает в контакт. Эти противоположные обвинения представлен в виде двух слоев электрического заряда.

Один зарядовый слой формируется на поверхности электрода одним полярность и еще один слой заряда образуется в жидкости электролит у поверхности электрода с противоположной полярностью.Эти два зарядовых слоя разделены монослоем воды. молекулы. Молекулы растворителя или воды, которые разделяют противоположные заряды действуют как диэлектрик. Читать статью полностью …………

Разница между конденсатором и суперконденсатором |

Суперконденсатор также известен как ультраконденсатор или двухслойный конденсатор.Суперконденсатор отличается от обычного конденсатора тем, что он имеет гораздо более высокую емкость и плотность энергии, но в то же время имеет более высокую плотность мощности. Эти характеристики делают его удобным источником питания для устройств, которым требуется большая мощность и долговечность силового агрегата.

как сделать ультраконденсатор

Конденсатор — это пассивный электрический элемент, который накапливает энергию в электрическом поле между двумя проводящими электродами. Конденсатор накапливает электрический заряд и способен при необходимости разряжать его.Он блокирует постоянный ток и позволяет переменному току проходить через него. Благодаря своим характеристикам конденсатор широко используется в электронных схемах. Конденсатор накапливает электрическую энергию напрямую, так как между двумя металлическими «пластинами» создается электростатическое поле.

Суперконденсатор можно заряжать и разряжать непрерывно. Благодаря углеродной технологии суперконденсаторы могут создавать очень большую площадь поверхности, которая существует даже при чрезвычайно малом разделительном расстоянии.

Конденсатор Суперконденсатор
Определение В конденсаторах энергия накапливается в их электрическом поле. Суперконденсатор также известен как ультраконденсатор или двухслойный конденсатор. Суперконденсатор имеет тенденцию отличаться от обычного конденсатора своей очень большой емкостью.
Плотность энергии Сравнительно низкая Сравнительно очень высокая
Диэлектрические материалы Диэлектрические материалы, такие как керамика, полимерные пленки или оксид алюминия, используются для разделения электродов. Активированный уголь используется в качестве физического барьера между электродами, так что при приложении электрического заряда к материалу создается двойное электрическое поле.Это электрическое поле действует как диэлектрик.
Стоимость Сравнительно дешево Сравнительно дорого
Преимущества · Меньший разряд аккумулятора — аккумулятор автомобиля не разряжается из-за конденсатора. Высокий накопитель энергии — по сравнению с традиционными конденсаторными технологиями, он обладает на несколько порядков большей плотностью энергии.
· Мощные стереосистемы — Рабочий механизм усилителей и сабвуферов основан на конденсаторах. Низкое эквивалентное последовательное сопротивление (ESR) — По сравнению с батареями, они имеют низкое внутреннее сопротивление.Таким образом, обеспечивается возможность высокой удельной мощности.
· Менее поврежденное оборудование — помогает избежать чрезмерного потребления энергии. Быстрая зарядка / разрядка — их можно заряжать и разряжать без повреждения деталей.
Приложения Электролитические высоковольтные, используемые в источниках питания. CMOS RAM, IC для часов
Axial Electrolytic; меньшее напряжение меньшего размера для общего назначения, где требуются большие значения емкости. Микрокомпьютер CMOS
Керамический диск высокого напряжения; малый размер и значение емкости, отличные характеристики допуска. Микрокомпьютер, RAM
Металлизированный полипропилен; небольшой размер для значений до 2 мкФ, хорошая надежность. Приводной двигатель
Субминиатюрный конденсатор с многослойным керамическим чипом (поверхностный монтаж). Относительно высокая емкость для размера, достигаемая за счет использования нескольких слоев. Фактически несколько конденсаторов параллельно. Источник питания игрушек, светодиод, зуммер

Сильноточная подача на короткий промежуток времени

http://www.differencebetween.info/difference-between-capacitor-and-supercapacitor

О SPS

Supreme Power Solutions Co., Ltd. (SPS) — ведущий производитель ультраконденсаторов, а также поставщик систем хранения энергии на ультраконденсаторах и технологических решений. Наши продукты находят широкое применение в промышленности, например, в транспортных средствах на новой энергии, системах управления тангажем ветряных турбин, трамваях и метро, ​​интеллектуальных сетях, микросетях, тяжелых механизмах, интеллектуальных приборах и т.Мы обслуживаем более 200 клиентов, а наша продукция экспортируется в 26 стран и территорий.

Дополнительная информация: https://www.spscap.com

RFI X / Y | Фильм | Конденсаторы

Конденсаторы, фиксированные Пленка Пленочный конденсатор для подавления помех — класс X2, радиальный MKT, 310 В переменного тока — класс высокой стабильности Радиальный 310.0 0,01 мкФ 2,2 мкФ
Конденсаторы, фиксированные Пленка Конденсаторы переменного тока, защитные пленочные конденсаторы, класс X2, 440 В переменного тока (MKT), радиальный тип Радиальный 440.0 10 нФ 1 F
Конденсаторы, фиксированные Пленка Конденсаторы переменного тока, защитные пленочные конденсаторы, класс X2, 440 В переменного тока (MKT), радиальный тип Радиальный 440.0 10 нФ 1 F
Конденсаторы, фиксированные Пленка Пленочный конденсатор для подавления помех — класс X2, осевой MKT, 253 В перем. Тока — непрерывный через линию Осевой 253.0 0,01 мкФ 3,3 мкФ
Конденсаторы, фиксированные Пленка Пленочный конденсатор для подавления помех — класс X2, радиальный MKP, 310 В переменного тока — стандарт для всей линии Радиальный 310.0 0,001 мкФ 4,7 мкФ
Конденсаторы, фиксированные Пленка Пленочный конденсатор для подавления помех — класс X2, радиальный MKP, 310 В переменного тока — стандарт для всей линии Радиальный 310.0 0,001 мкФ 40 мкФ
Конденсаторы, фиксированные Пленка Пленочный конденсатор для подавления помех — Радиальный MKP, класс X1, 330 В переменного тока — Стандартный для всей линии Радиальный 330.0 0,001 мкФ 2,2 мкФ
Конденсаторы, фиксированные Пленка Пленочный конденсатор для подавления помех — класс X1, радиальный MKP 480 В переменного тока — трехфазный через линию Радиальный 480.0 0,001 мкФ 1 мкФ
Конденсаторы, фиксированные Пленка THB Grade IIB Class X2 Пленочный конденсатор для подавления помех, радиальный MKP 305 В переменного тока — через линию Радиальный 305.0 0,1 мкФ 4,7 мкФ
Конденсаторы, фиксированные Пленка THB Grade IIIB Class X1 Пленочный конденсатор для подавления помех, радиальный MKP 480 В переменного тока — через линию Радиальный 480.0 0,22 мкФ 8,2 мкФ
Конденсаторы, фиксированные Пленка THB Grade IIIB Class X2 Пленочный конденсатор для подавления помех, радиальный MKP 305 VAC — через линию Радиальный 305.0 1 мкФ 20 мкФ
Конденсаторы, фиксированные Пленка THB Grade IIIB Class Y2 Пленочный конденсатор для подавления помех, радиальный MKP 305 В перем. Тока — байпас линии Радиальный 305.0 0,01 мкФ 1 мкФ
Конденсаторы, фиксированные Пленка Пленочный конденсатор для подавления помех — Радиальный MKP 440 В перем. Тока класса X1 — Стандартный для всей линии Радиальный 440.0 0,01 мкФ 1 мкФ

Вакуумные фиксированные конденсаторы — Страница 1

(CVF) CFB-5-35N389

Special Jennings керамический конденсатор.5 пФ, 35 кв, 50 ампер, диаметр 1,8 дюйма, длина 2,8 дюйма.

150 долларов США за штуку

(CVF) ЦФТ-25-20

25 пФ, 20 кв. Корпус 1-11 / 16 «проходит через отверстие 1-3 / 4». 1-1 / 4 дюйма вверху / внизу шасси.

175 $ за штуку

(CVF) CF1-80-0015

Jennings Вакуумный конденсатор постоянной емкости. 80 пФ ± 5%, тест 15 кв, 76 ампер. 15/9 кв. 1,75 дюйма диаметром x 2.43 дюйма в длину.

235 $ за штуку

(CVF) JCSF-100-15S

Jennings Вакуумный конденсатор постоянной емкости. 100 пф, 15 кв, 40 ампер. Диаметр 1-5 / 8 дюйма, длина 1-5 / 8 дюйма. 8/32 терминал.

275 долларов США за штуку

Малый размер

(CVF) JCSF-210-15S

Конденсатор фиксированной дверной ручки. 210 пФ, 5%, 15 кв, 40 ампер. Диаметр 1-3 / 4 дюйма, высота 2-1 / 8 дюйма. # 8 с резьбой краны.В наличии более 300 штук новых с завода.

229 долларов за штуку — 207 долларов (6+), 195 долларов (50+)

(CVF) JCSL-800-3S

Jennings фиксированный вакуумный конденсатор. 800 пФ, 3000в, 65 ампер. 2-1 / 4 дюйма D x 3-1 / 2 дюйма общая длина. Доступен только один.

329

Б / у Новый

(CVF) CF2W-2500G / 30U

Вакуумный конденсатор постоянной емкости Comet .С водяным охлаждением, высокий ток. Номинальное значение 2500 пФ (фактическое 2615 пФ), 30 кВ. 13 дюймов в диаметре и 11 дюймов в высоту. Слегка б / у, но в отличном состоянии. Стоимость замены составляет 14 000 долларов США +. Оригинальный транспортный ящик включены.

8 900 долл. США за штуку

(CVF) CF2W-2500G / 30

Comet вакуумный конденсатор постоянной емкости, как указано выше кроме нового, неиспользованного !!

11 500 долл. США за штуку

(CVF) CF3C-300E / 60

Comet конденсатор постоянной емкости.300 пФ, 60 кв, 240 усилители. Диаметр 4-3 / 8 дюйма, высота 5-3 / 8 дюйма. То же, что Jennings CFHD-300.

1200 долларов США за штуку

Номер детали Вместимость Напряжение Текущий Размеры Банкноты Цена
(CVF) JCS-2-50 50 пФ 10 кв 1-3 / 8 «D x 2-1 / 2» L Муфта 5/16 « 85.00 Добавить
(CVF) JCSL-75-15 75 пФ 15 кв 215,00 Добавить
(CVF) JCS-1-75 75 пФ 25 кв 2 «D x 3-3 / 4» L Манжета 7/8 « 215.00 Добавить
(CVF) JCS-2-80 80 пФ 10 кв Б / у — Выводы под пайку 95,00 Добавить
(CVF) JCSL-250-3S 250 пФ 3 кв 1-5 / 8 «D x 2-3 / 8» L Муфта 5/16 « 195.00 Добавить
(CVF) JCSL-250-5S 250 пФ 5 кв 1-5 / 8 «D x 2-3 / 8» L Муфта 5/16 «, фиксированная 225,00 Добавить
(CVF) JCS-250-10 250 пФ 10 кв 65 ампер 2.63 дюйма x 3,5 дюйма Манжета 7/8 « 245,00 Добавить
(CVF) JCS-250-15 250 пФ 15 кв 70 ампер 2,63 дюйма x 3,5 дюйма Манжета 7/8 « 425,00 Добавить
(CVF) JCS-400-10 400 пФ 10 кв 390.00 Добавить
(CVF) JCS-500-7.5S 500 пФ 7,5 кв 75 ампер Harris P / N: 512-0054-000 350,00 Добавить
(CVF) JCS-1000-7.5S 1000 пФ 7,5 кв 3-3 / 8 «D x 4-5 / 8» L Фланцы Perm, фиксированные 290.00 Добавить
(CVF) JCS-1000-10S 1000 пФ 10 кв 3-3 / 8 «D x 4-5 / 8» L Фланцы Пермь
Доступен только 1 штука
350,00 Добавить

Добро пожаловать! Благодарим вас за посещение нашего онлайн-магазина электронных товаров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *