Закрыть

Постоянный или переменный ток: Отличие переменного тока от постоянного: преобразование, разница, принцип действия

Содержание

Как ток в квартирной розетке

Жизнь современного человека невозможно представить без электрического тока, все коммуникации так или иначе связаны с этим источником энергии. Многие жители многоквартирного дома, пользуясь бытовыми приборами, никогда не задумываются о том, какой ток в розетке, постоянный он или переменный, а знать это обязательно, так как перед подключением какого-либо устройства нужно понимать, предназначено оно для работы в данной сети или требует установки дополнительного оборудования. В этой статье подробно рассмотрены вопросы: какое напряжение в розетке, что такое переменный и постоянный ток, а также какая сила тока в розетке и бытовом освещении.

Какой ток в розетке

Переменный ток

Существует классификация типов тока на два вида:

  1. Постоянный ток, когда положительные и отрицательные заряды двигаются в одном направлении от источника питания к потребителю;
  2. Переменный ток. В данном случае сила тока будет такой же, что и в первом пункте, но направление движения зарядов разное.
    Благодаря своим физическим свойствам, частицы двигаются в обоих направлениях, независимо от вида потребляющего прибора и его расположения.

Практически все электростанции производят электрический ток переменного типа, так как его генерация и транспортировка гораздо легче и выгоднее. От стадии производства до конечного потребителя электричество проходит множество трансформаций с повышением и понижением напряженности. На генерирующей станции ток вырабатывается номиналом 12 кВт, затем происходит его трансформирование специальной установкой, которая повышает указанное значение до 400 кВт. Это делается для того, чтобы устранить потери напряжения во время передачи тока на большие расстояния по специальным магистралям, к тому же переменные токи двигаются в обоих направлениях, поэтому для их беспрепятственного передвижения по проводнику нужно высокое напряжение.

Трансформатор

Трансформатор играет роль буфера, который накапливает определенное количество переменного тока и повышает его силу в несколько раз. Раньше эти установки были громоздкими и занимали много места, но благодаря современным технологиям, трансформаторные приборы могут располагаться прямо на линиях электропередач с фиксацией на опорах.

В отличие от переменного, постоянный ток имеет одно направление, и при его транспортировке происходят большие потери напряжения, в результате до потребителя доходит заряд не 220 В, а намного ниже, что пагубно влияет на бытовые приборы и электродвигатели. С этой точки зрения, намного выгоднее и безопаснее было сделать в сетях розеток для бытового или промышленного пользования переменный ток. Конечно, встречаются линии, которые снабжены постоянным напряжением, но это бывает крайне редко, в основном на предприятиях с высокоточным оборудованием.

Таким образом, ответ на вопрос «в розетке постоянный ток или переменный» однозначный: в бытовых сетях – переменный, в промышленности – и первый, и второй.

Сила тока

Чтобы ответить на вопрос, сколько ампер в розетке, необходимо обозначить, что такое сила тока. Это величина, которая исчисляется нормативом прохождения заряда через проводник за определенный интервал времени, обозначается эта величина буквой А, что значит Ампер. Для бытовых и промышленных розеточных сетей существует стандарт, согласно которому в таких магистралях течет ток, равный 220 Вольт, это означает, что энергия имеет силу, равную 1 Ампер. В зависимости от типа розетки и класса подключаемого прибора, эта величина может меняться в большую сторону, так как потребляемый ток у каждого оборудования разный, соответственно, и сила напряжения будет увеличиваться.

Прибор для измерения силы тока

Таким образом, можно сделать вывод, что в большинстве случаев в розеточных сетях протекает ток напряжением 220 вольт и силой 1 Ампер в спокойном режиме. При включении в розетку какого-либо потребителя заряды стремятся на обмотку двигателя и приводят его в движение. При этом необходимо учитывать, что чем выше производительность оборудования, его мощность, тем больше энергии нужно для его работы, следовательно, и проседание всей линии будет соответствующее.

Виды розеток

Виды розеток

Существует множество классификаций розеток, в зависимости от их расположения, номинальной мощности, уровня защиты от влаги и пыли и других параметров, среди них можно выделить следующие:

  1. Розетки с наружным расположением. Это тип проводной арматуры, который фиксируется на поверхности и подключается за счет подводки проводника наружным способом. Сети, организованные таким методом, чаще всего можно встретить в деревянных домах, в которых, согласно технике пожаробезопасности, запрещено монтировать скрытую проводку;
  2. Розетки скрытого монтажа. В данном случае установка арматуры осуществляется путем врезки ее в плоскость стены и подключения к проводнику, при этом фиксация проводится путем прикручивания плоскости розетки к закладной конструкции внутри стены, которая называется «корзинка».

В обоих случаях необходимо учитывать номинальную мощность изделия и ток, на который оно рассчитано, а также тип напряжения. Чаще всего производители обозначают вид тока волнистой линией, что означает переменный ток, и сплошной ровной полосой, что значит постоянное напряжение.

Важно! Не стоит пытаться подключить оборудование, предназначенное для определенного типа энергии в противоположный, так как это может спровоцировать аварийную ситуацию и выход из строя всей системы.

Также розетки подразделяются на простые и с повышенным уровнем защиты от пыли и влаги, в таких устройствах имеются специальные шторки, которые предотвращают попадание грязи внутрь изделия. Подключение подобных приборов ничем не отличается от обычных, различие заключается только в самом корпусе.

Большинство современных бытовых приборов комплектуется стандартными вилками еврообразца, но встречается и оборудование с тонкими или плоскими контактами для подключения к сети. Поэтому стоит учитывать данный факт, прежде чем выбирать ту или иную розетку и устанавливать ее.

Также существуют специальные розетки, которые питают только определенный тип приборов, например, электрическую плиту с тремя плоскими контактами. В такое устройство можно подключать единственное оборудование, поэтому такой тип розеток называется «специальные».

В большинстве современных приборов обязательным условием является устройство заземления, поэтому розетки комплектуются дополнительным контактом в виде металлической рейки на корпусе. Когда вилка вставляется в розетку, металлические пластины замыкаются между собой, что образует непрерывную сеть.

Требования к сети

Для качественной работы всей системы электропитания необходимо учитывать множество факторов, такие как:

  1. Сколько вольт в розетке. Если бытовой прибор рассчитан на работу при воздействии тока, равного 220 Вольт, то важно соблюдать это правило, так как при присоединении к большему или меньшему напряжению оборудование может полностью выйти из строя;
  2. Стабильность напряжения. Многие приборы чувствительны к перепадам напряжения, поэтому, если установлено, что в данной местности неустойчивая работа трансформатора, то лучше установить стабилизатор, который возьмет на себя работу по выпрямлению тока;
  3. Изолированность проводов внутри розетки. Из-за плотного размещения контактов внутри коробки часто бывает, что наружная изоляция нагревается и оплавляется. Это приводит к возникновению короткого замыкания между положительными и отрицательными зарядами;
  4. Плотность примыкания между вилкой и розеткой. Как ни странно, но это также влияет на качество и долгосрочность работы устройства, так как при недостаточном соприкосновении контактов будет возникать нагрев проводов, это тепло будет передаваться на пластиковые элементы, что их разрушит.

Таким образом, для правильного выбора розетки и верного монтажа необходимо учитывать тип тока, постоянный или переменный, устройство и назначение оборудования, а также напряжение в сети.

Видео

В чем разница между переменным током и постоянным током?. Статьи компании «SECURITY59»

Переменный ток или постоянный ток, который является лучшим? Это проблема, которая уже привела к одному из главных научных конфликтов, когда-либо виденных человеческой историей.

Отец постоянного тока Томас Эдисон защищал идею о том, что это лучший способ взять энергию где угодно, в то время как сторонником альтернативного тока был никто иной, как Никола Тесла.

Эта великая дискуссия вызвала массовый переполох, и в споре было несколько зрелищных тонов, и самым известным был Томас Эдисон, поражающий электрическим током животных с переменным током, пытаясь таким образом доказать опасность передачи электроэнергии.

Но в чем большая разница между переменным током и постоянным током? Теперь мы узнаем различия и в каких ситуациях каждая из них более эффективна.

Разница в переменном и постоянном токе  

Электрический ток - это смещение электрического заряда проводником упорядоченным образом, как от гнезда для провода электрооборудования.

Когда мы говорим о постоянном или постоянном токе, мы должны представить, что этот электрический заряд или электроны движутся в одном направлении, всегда начиная с генератора, который является началом линии, и до конца линии, которая является электрическим оборудованием.

Переменный ток немного отличается, вместо того, чтобы заряд, движущийся в одном направлении, продвигается и убирается, не останавливая, электроны изменяют направление примерно на 120 в секунду в переменном токе.

 

Когда использовать переменный или постоянный ток?

Одним из преимуществ, благодаря которым переменный ток доминирует при передаче энергии от генерирующих станций к дому всех людей, является именно его эффективность преодоления больших расстояний. С переменным током можно увеличивать напряжение, а не постоянный ток.

Для передачи электрической энергии на расстояние 1 км с помощью постоянного тока потребуется в 10 раз больше энергии, чтобы получить тот же результат, что и для переменного тока.

Постоянный ток необходим для электронного оборудования, так как отрицательный и положительный заряды находятся на разных проводах, а в электронном оборудовании есть несколько компонентов, которые нуждаются в специальном питании с положительным или отрицательным зарядом.

То есть в переменном токе положительный и отрицательный в основном вместе в потоке, в то время как в постоянном токе положительный и отрицательный заряд разделены в разных проводниках.  

Шрифт конвертера безопасности

Обычно электронное оборудование, такое как сотовые телефоны или ноутбуки, имеет свои собственные источники, но другому оборудованию, такому как электронные защитные устройства, нужны запасные источники, которые преобразуют переменный ток из розетки в постоянный ток.

Чтобы решить эту проблему, Security представила преобразователь Бастион, который выходит за рамки преобразования переменного тока в постоянный ток. Думая о проблеме потери эффективности переменного тока, источник преобразователя преобразует переменный ток в постоянный 24 вольт, который может перемещаться на большее расстояние, а затем уменьшается через редуктор мощности до 12 вольт, который является правильным напряжением для питания самого большого часть электронного охранного оборудования.

Чем отличается переменный ток от постоянного — объяснение простыми словами

Основное отличие переменного тока от постоянного. Как получают каждый из этих токов.


В электричестве есть два рода тока – постоянный и переменный. Устройства также требуют для питания один или другой вид тока. От этого зависит возможность их работы, а иногда и целостность после подключения к неправильному питанию. Чем отличается переменный ток от постоянного мы расскажем в этой статье, дав краткий ответ наиболее простыми словами. Содержание:

Определение

Электрическим током называется направленное движение заряженных частиц. Так звучит определение из учебника по физике. Простыми словами можно перевести так, что у его составляющих всегда есть какое-то направление. Собственно, это направление и является определяющем в сегодняшнем разговоре.

Переменный ток (Alternative Current – AC) отличается от постоянного (Direct Current – DC) тем, что у последнего электроны (носители заряда) всегда движутся в одном направлении. Соответственно отличием переменного тока является то, что направление движения и его сила зависят от времени. Например, в розетке направление и величина напряжения, соответственно и сила тока, изменяется по синусоидальному закону с частотой в 50 Гц (50 раз за секунду изменяется полярность между проводами).

Для так сказать чайников в электрике изобразим это на графике, где по вертикальной оси изображена полярность и напряжение, а по горизонтальной время:

Красной линией изображено постоянное напряжение, оно остаётся неизменным с течением времени, разве что изменяется при коммутации мощной нагрузки или КЗ. Зелеными волнами показан синусоидальный ток. Вы можете видеть, что он протекает то в одну, то в другую сторону, в отличие от постоянного тока, где электроны всегда протекают от минуса к плюсу, а направлением движения электрического тока выбран путь от плюса к минусу.

Если сказать по-простому, то разницей в этих двух примерах является то, что у постоянки всегда плюс и минус находятся на одних и тех же проводах. Если говорить о переменном, то в электроснабжении используют понятия фазы и нуля. Если рассматривать по аналогии с постоянкой, то фаза и ноль являются плюсом и минусом, только полярность меняется 50 раз в секунду (в США и ряде других стран 60 раз в секунду, а в самолётах более 400 раз).

Происхождение

Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.

Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.

Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.

Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.


Формулы для расчета постоянного тока

Разницей между переменкой и постоянкой являются и формулы для расчетов процессов, происходящих в цепи. Так сопротивление рассчитываются по Закону Ома для участка цепи или для полной цепи:

E=I/R

E=I/(R+r)

Мощность также просто рассчитываются:

P=UI

Формулы для расчета переменного тока

В расчётах цепей переменного тока разница в формулах обусловлена отличием процессов, протекающих в емкостях и индуктивностях. Тогда формула закона Ома будет для активного сопротивления:

Для ёмкости:

Для индуктивности:

Здесь 1/wC и wL – емкостное и индуктивное реактивные сопротивления, а w – угловая частота, она равна 2пиF.

Для цепи с ёмкостью и индуктивностью:

wL-1/wC – это реактивное сопротивление, оно обозначается как Z.

На видео ниже более подробно рассказывается, в чем отличие переменного тока от постоянного:

Материалы по теме:

  • Как повысить постоянное и переменное напряжение
  • Что такое активная, реактивная и полная мощность
  • Что такое линейное и фазное напряжение


Нравится0)Не нравится0)

Постоянный или переменный ток - Всё о электрике

Переменный и постоянный ток: в чем разница, история развития, применение

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках? Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток – трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Постоянный ток

Сначала напомним, что ток – это движение заряженных частиц.

Постоянный ток – это ток, который течет в одном направлении.

Типичный источник постоянного тока – гальванический элемент. Проще говоря, батарейка или аккумулятор. Один из древнейших артефактов, связанных с электричеством – багдадская батарейка, которой 2000 лет. Предполагают, что она давала ток напряжением 2-4 Вольта.

Где используется постоянный ток:

  • в питании большинства бытовых приборов;
  • в батарейках и аккумуляторах для автономного питания приборов;
  • для питания электроники автомобилей;
  • на кораблях и подводных лодках;
  • в общественном транспорте (троллейбусах, трамваях).

Проще всего представить постоянный ток наглядно, на графике. Вот как он выглядит:

Постоянный ток

Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Переменный ток

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток – alternating current (AC). Постоянный ток – direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.

Переменный ток

Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным, а второе – отрицательным.

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 – это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.

Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей – война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.

Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Постоянный и переменный ток: преимущества и недостатки

Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?

Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.

Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции. Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно. Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.

Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.

I1 = P/U1 = 1000 кВт/10 кВ = 100 А.

I2 = P/U2 = 1000 кВт/100 кВ = 10 А.

Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.

Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.

Pпот1 = I1 2 ∙R = 100 2 ∙10 = 100000 Вт = 100 кВт.

Pпот2 = I2 2 ∙R = 10 2 ∙10 = 1000 Вт = 1 кВт.

Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.

Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.

Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.

Преимущества переменного тока

Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.

Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.

Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.

Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока. Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин. Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.

Недостатки постоянного тока

Из выше изложенного следуют такие недостатки.

  1. Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
  2. Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
  3. Сложности в развязке высокого и низкого напряжений.

Недостатки переменного тока

  1. Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его. В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.

Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.

  1. Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.

Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.

Преимущества постоянного тока

  1. Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
  2. Постоянный ток в отличие от переменного протекает по всему сечению проводника.

Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.

К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.

Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя. Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения. Такие инверторы должны получать питание от источника постоянного напряжения.

Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.

Выводы: постоянный или переменный ток

Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества. Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции. К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.

Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.

Сила тока в сети: как узнать, сколько ампер в квартире, и какой ток в розетке – переменный или постоянный?

Человек, хоть частично знакомый с электричеством, знает какой ток протекает в розетке – переменный или постоянный. Но большинство граждан, которые пользуются благами электричества ежедневно, не задумываются об этом, и зря. Ответ на вопрос прост, ведь практически вся производимая электроэнергия относится к переменному току.

Какой ток в розетках постоянный или переменный?

98% вырабатываемой энергии – это переменный ток, и домашняя проводка не исключение. Переменный ток – это тот, который периодически изменяет величину и направление. Частота измеряется в Герцах (период изменения в секунду). Переменный ток производить намного легче чем постоянный, также не вызывает сложностей передача на большие расстояния. При передачи электроэнергии величина напряжения может как увеличиваться, так и уменьшаться неоднократно, поэтому розетки делаются для переменного значения. Но также существуют электронные приборы, которые питаются постоянным током, и их нужно приводить к одному типу.

  • легко передавать на большие расстояния;
  • простое генераторное оборудование, упрощение устройства электродвигателей;
  • отсутствие полярности.
  • расчеты проводятся на максимальное значение, по факту используется не более 70%;
  • электромагнитная индукция, приводящая к неравномерному распределению электричества по сечению проводника;
  • сложность проверки и измерения параметров;
  • увеличивается сопротивление, так как используется не весь кабель.

Для чего нужно знать сколько ампер в розетках в квартире

Сила тока измеряется в Амперах (А). Знать этот показатель необходимо, так как розетки различаются по нему.

Стандартные современные розетки рассчитаны на 6, 10 и 16 А. У советских приборов максимальный номинал равен 6,3 А. Для потребителей с повышенной мощностью выбирают соответствующие розетки, у которых повышенная стойкость к большим значениям.

Знание основ электротехники пригодится при поездке в другую страну. У государств могут различаться стандарты частоты и напряжений, и невозможно будет подключить привезенные с собой приборы к местной сети. Каждая розетка имеет маркировку, на которой указана максимальная сила тока.

Сила тока в розетке

Стандартами частоты в России и европейских странах является 50 Гц, в Америке – 60 Гц. Сила тока в квартирах ограничивается 16 Амперами, в частных загородных домах это значение может достигать 25 А.

Токовые измерения проводят различными способами. Можно опытным путем – подключить прибор в розетку, и если он функционирует — электроэнергия есть. Существуют мультиметры, которые замеряют значения, контрольные лампы, тестеры и индикаторы напряжения.

220 В

Номинальным напряжением в домашней сети является 220В, но на практике это значение может варьироваться. Отклонения до 20-25 Вольт.

На этот показатель влияют:

  • техническое состояние,
  • нагрузки сети,
  • загруженность электростанций.

Более 220 В

Для силовой электрической техники используются трехфазные сети, которые питаются напряжением 380 Вольт и выше. Чаще всего их можно встретить в электротранспорте – трамваях, троллейбусах, электричках. Для такого напряжения токовая нагрузка составляет до 32 А.

Сколько ампер в розетке 220В

Домашние розетки делаются на разную силу тока, которую она способна пропустить. Наибольшее значение – 16 А для напряжения в 220 Вольт. Каждая электророзетка промаркирована – если отмечено значение 6 А, то суммарная подключаемая нагрузка не более этого числа.

Нагрузка которую может выдержать соединение определяется по сумме подключенных электроприборов. Например микроволновая печь, стиральная машина подключаются через отдельные розетки не менее чем на 16 А, а для осветительных приборов, телефонов требуются устройства с меньшим номиналом.

Живя в ХХІ веке, используя блага научных открытий, человеку обязательно знать тип и величину тока, протекающего в домашней сети. Без этой информации невозможно купить электророзетку, правильно рассчитать нагрузку для электроприборов. Стандарты различаются для разных стран, и это стоит учитывать при поездке в другое государство.

Полезное видео

{SOURCE}

Переменный ток и постоянный ток: отличие

В чём разница переменного и постоянного тока

Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.

Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.

Постоянный электрический ток по определению – это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.

Графическое изображение постоянного тока

Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).

Графическое изображение переменного тока

Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «~». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.

Почему в сети переменное напряжение, а не постоянное

Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.

Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.

Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.

Сначала с генератора получает 220 – 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.

Три фазы трехфазного тока сдвинутые на 120 градусов

Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.

Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения – это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.

Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали – Почему в нашей розетки течет переменный ток, а не постоянный?

Переменный ток — Википедия

     Постоянный ток Три примера переменных токов:      Синусоидальный ток      Пульсирующий ток, форма импульсов близка к пилообразной      Случайно изменяющийся ток

Переме́нный ток  — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным[1].

Хотя переменный ток часто переводят на английский как alternating current, эти термины не являются эквивалентными. Термин alternating current (AC) в узком смысле означает синусоидальный ток, в широком смысле — периодический знакопеременный ток (то есть периодический двунаправленный ток). Условное обозначение на электроприборах: ∼{\displaystyle \thicksim } или ≈{\displaystyle \thickapprox } (знак синусоиды), или латинскими буквами AC{\displaystyle AC}.

Общее понятие о переменном токе

Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.

Переменный ток — величина алгебраическая, знак его определяется тем, в каком направлении в рассматриваемый момент времени протекает ток в цепи — в положительном или отрицательном.

Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока.

Максимальное мгновенное значение переменного тока, которое он достигает в процессе своего изменения, называется амплитудой тока Im{\displaystyle I_{m}}.

График зависимости переменного тока от времени называется развёрнутой диаграммой переменного тока.
Развёрнутая диаграмма переменного синусоидального тока

На рисунке приведена развёрнутая диаграмма переменного тока, изменяющегося с течением времени по величине и направлению. На горизонтальной оси 0t{\displaystyle 0t} отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки 0{\displaystyle 0} — положительные, вниз — отрицательные. Часть развёрнутой диаграммы тока, расположенная выше оси времени 0t{\displaystyle 0t}, характеризует изменение положительных величин во времени, а часть, расположенная ниже оси времени 0t{\displaystyle 0t}, — изменение отрицательных величин.

В начальный момент времени t=0{\displaystyle t=0} ток равен нулю (i=0){\displaystyle (i=0)}. Затем он с течением времени растёт в положительном направлении, в момент времени t=T4{\displaystyle t={\frac {T}{4}}} достигает максимального значения, после чего убывает по величине и в момент времени t=T2{\displaystyle t={\frac {T}{2}}} становится равным нулю. Затем, пройдя через нулевое значение, ток меняет свой знак на противоположный, то есть становится отрицательным, затем растёт по абсолютной величине, затем достигает максимума при t=34T{\displaystyle t={\frac {3}{4}}T}, после чего убывает и при t=T{\displaystyle t=T} становится равным нулю.

Периодический переменный ток

Развёрнутая диаграмма периодического переменного тока

Периодическим переменным током называется такой электрический ток, который через равные промежутки времени повторяет полный цикл своих изменений, возвращаясь к своей исходной величине.

На представленной диаграмме мы видим, что через равные промежутки времени T{\displaystyle T} график тока воспроизводится полностью без каких-либо изменений.

Время T{\displaystyle T}, в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока.

Величина, обратная периоду, называется частотой переменного тока:

f=1T{\displaystyle f={\frac {1}{T}}}, где
f{\displaystyle f} — частота переменного тока;
T{\displaystyle T} — период переменного тока.

Если выразить время T{\displaystyle T} в секундах (sec), то будем иметь:

f=1T[1sec]{\displaystyle f={\frac {1}{T}}\left[{\frac {1}{sec}}\right]}, то есть размерность частоты переменного тока выражается в 1/с..

Частота переменного тока численно равна числу периодов в секунду.

За единицу измерения частоты переменного тока принят 1 герц (1 гц, 1 Гц, 1 Hz).

Герц — единица Международной системы единиц (СИ), названа в честь Генриха Герца. Через основные единицы СИ герц выражается следующим образом: 1 Гц = 1 с−1. Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Частота переменного тока равна одному герцу, если период тока равен одной секунде (один полный цикл за одну секунду).

Стандарты частоты

В большинстве стран в электротехнике применяются частоты 50 или 60 Гц (60 Гц — этот вариант принят в США и Канаде). В некоторых странах, например, в Японии, используются оба стандарта (см. Промышленная частота переменного тока).

Частота 16 ⅔ Гц до сих пор используется в некоторых европейских железнодорожных сетях (Австрия, Германия, Норвегия, Швеция и Швейцария), частота 25 Гц — на старых железнодорожных линиях США. (См. Электрификация железных дорог переменным током пониженной частоты).

В авиации и военной технике для снижения массы устройств или с целью повышения частоты вращения электродвигателей переменного тока применяется частота 400 Гц.

Число оборотов ротора n[1min]{\displaystyle n\left[{\frac {1}{min}}\right]} синхронного электродвигателя определяется по формуле:

n=60fp{\displaystyle n={\frac {60f}{p}}}, где

f{\displaystyle f} — частота переменного тока;

p{\displaystyle p} — число пар полюсов.

Так как минимальное число пар полюсов равно единице, тогда синхронный электродвигатель, работающий на переменном токе частотой 50 герц разовьёт 3 000 оборотов в минуту, а электродвигатель, рассчитанный на 400 герц, разовьёт 24 000 оборотов в минуту. Число оборотов ротора асинхронного электродвигателя меньше, чем ротора синхронного двигателя и зависит от нагрузки. Скольжение — разность между частотой вращения вращающегося магнитного поля и частотой вращения ротора.

В технике связи применяются частоты более высокие, и в частности в радиотехнике — порядка миллионов и миллиардов герц.

Переменный синусоидальный ток

Синусоидальным током называется периодический переменный ток, который с течением времени изменяется по гармоническому закону синуса.

Синусоидальный ток — элементарный, то есть его невозможно разложить на другие более простые переменные токи[2].

Переменный синусоидальный ток выражается формулой:

i=Imsin⁡ωt{\displaystyle i=I_{m}\sin \omega t}, где

Im{\displaystyle I_{m}} — амплитуда синусоидального тока;

ωt{\displaystyle \omega t} — некоторый угол, называемый фазой синусоидального тока.

Фаза синусоидального тока ωt{\displaystyle \omega t} изменяется пропорционально времени t{\displaystyle t}.

Множитель ω{\displaystyle \omega }, входящий в выражение фазы ωt{\displaystyle \omega t} — величина постоянная, называемая угловой частотой переменного тока (круговой частотой переменного тока).

Угловая частота ω{\displaystyle \omega } синусоидального тока зависит от частоты f{\displaystyle f} этого тока и определяется формулой:

ω=2πf=2πT{\displaystyle \omega =2\pi f={\frac {2\pi }{T}}}, где

ω{\displaystyle \omega } — угловая (круговая) частота синусоидального тока;

f{\displaystyle f} — частота синусоидального тока;

T{\displaystyle T} — период синусоидального тока;

2π{\displaystyle 2\pi } — центральный угол окружности, выраженный в радианах.

Исходя из формулы ω=2πf=2πT{\displaystyle \omega =2\pi f={\frac {2\pi }{T}}}, можно определить размерность угловой (круговой) частоты:

[ω]=[2πT]=[1sec]{\displaystyle \left[\omega \right]=\left[{2\pi \over T}\right]=\left[{1 \over sec}\right]}, где

sec{\displaystyle sec} — время в секундах,

2π{\displaystyle 2\pi } — угол в радианах, является безразмерной величиной.

Фаза ωt{\displaystyle \omega t} синусоидального тока измеряется радианами.

1 радиан = 57,29° = 57°17′, угол 90° = π2{\displaystyle \pi \over 2} радиан, угол 180° = π{\displaystyle \pi } радиан, угол 270° = 3π2{\displaystyle 3\pi \over 2} радиан, угол 360° = 2π{\displaystyle 2\pi } радиан,
где π=3,14{\displaystyle \pi =3,14} радиан; π{\displaystyle \pi } — число «Пи», ° — угловой градус и  — угловая минута.

Формула i=Imsin⁡ωt{\displaystyle i=I_{m}\sin \omega t} описывает случай, когда наблюдение за изменением переменного синусоидального тока начинается с момента времени t=0{\displaystyle t=0}. Если начальный момент времени не равен нулю, тогда формула для определения мгновенного значения переменного синусоидального тока принимает следующий вид:

i=Imsin⁡(ωt+ψ){\displaystyle i=I_{m}\sin(\omega t+\psi )}, где

(ωt+ψ){\displaystyle (\omega t+\psi )} — фаза переменного синусоидального тока;

ψ{\displaystyle \psi } — угол, называемый начальной фазой переменного синусоидального тока.

Если в формуле i=Imsin⁡(ωt+ψ){\displaystyle i=I_{m}\sin(\omega t+\psi )} принять t=0{\displaystyle t=0}, то будем иметь

ωt=0{\displaystyle \omega t=0}, ωt+ψ=ψ{\displaystyle \omega t+\psi =\psi } и it=0=Imsin⁡ψ{\displaystyle i_{t=0}=I_{m}\sin \psi }.

Начальная фаза — это фаза синусоидального тока в момент времени t=0{\displaystyle t=0}.

Начальная фаза переменного синусоидального тока может быть положительной (ψ>0){\displaystyle (\psi >0)} или отрицательной (ψ<0){\displaystyle (\psi <0)} величиной. При ψ>0{\displaystyle \psi >0} мгновенное значение синусоидального тока в момент времени t=0{\displaystyle t=0} положительно, при ψ<0{\displaystyle \psi <0} — отрицательно.

Если начальная фаза ψ=π2{\displaystyle \psi ={\frac {\pi }{2}}}, то ток определяется по формуле i=Imsin⁡(ωt+π2){\displaystyle i=I_{m}\sin(\omega t+{\frac {\pi }{2}})}. Мгновенное значение его в момент времени t=0{\displaystyle t=0} равно

it=0=Imsin⁡π2=Im{\displaystyle i_{t=0}=I_{m}\sin {\frac {\pi }{2}}=I_{m}}, то есть равно положительной амплитуде тока.

Если начальная фаза ψ=−π2{\displaystyle \psi =-{\frac {\pi }{2}}}, то ток определяется по формуле i=Imsin⁡(ωt−π2){\displaystyle i=I_{m}\sin(\omega t-{\frac {\pi }{2}})}. Мгновенное значение его в момент времени t=0{\displaystyle t=0} равно

it=0=Imsin⁡(−π2)=−Im{\displaystyle i_{t=0}=I_{m}\sin(-{\frac {\pi }{2}})=-I_{m}}, то есть равно отрицательной амплитуде тока.

Многофазный переменный ток

Два синусоидальных тока совпадают по фазе друг с другом

Синусоидальные токи сдвинуты по фазе на угол π2{\displaystyle {\frac {\pi }{2}}}

Два переменных синусоидальных тока совпадают по фазе, если они имеют одинаковые фазы и, следовательно, одновременно достигают своих нулевых и максимальных значений одинакового знака.

На левой иллюстрации представлены развёрнутые диаграммы токов i1{\displaystyle i_{1}} и i2{\displaystyle i_{2}}. Токи i1=I1msin⁡ωt{\displaystyle i_{1}=I_{1m}\sin \omega t} и i2=I2msin⁡ωt{\displaystyle i_{2}=I_{2m}\sin \omega t} совпадают по фазе.

Два переменных синусоидальных тока сдвинуты по фазе относительно друг друга, если они имеют различные фазы.

На правой иллюстрации токи i1=I1msin⁡(ωt+π2){\displaystyle i_{1}=I_{1m}\sin(\omega t+{\frac {\pi }{2}})} и i2=I2msin⁡ωt{\displaystyle i_{2}=I_{2m}\sin {\omega t}} сдвинуты по фазе на угол π2{\displaystyle {\frac {\pi }{2}}}, так как

(ωt+π2)−ωt=π2{\displaystyle (\omega t+{\frac {\pi }{2}})-{\omega t}={\frac {\pi }{2}}}.

Ток i1{\displaystyle i_{1}} опережает по фазе ток i2{\displaystyle i_{2}} на угол π2{\displaystyle {\frac {\pi }{2}}}, или, иначе, ток i2{\displaystyle i_{2}} отстаёт по фазе относительно тока i1{\displaystyle i_{1}} на угол π2{\displaystyle {\frac {\pi }{2}}}.

Трёхфазный ток

Развёрнутая диаграмма трёхфазного тока.      Фаза «A» (или U1), сдвиг по фазе 0°      Фаза «B» (или U2), сдвиг по фазе 120°      Фаза «C» (или U3), сдвиг по фазе 240° Трёхфазная электрически связанная система, соединение «звездой» с нейтральным проводом: генератор G слева, нагрузка M справа.{\circ }} (23π){\displaystyle \left({\frac {2}{3}}\pi \right)}.

Статор трёхфазного генератора переменного тока имеет три совершенно одинаковые катушки, размещённые на общем кольцеобразном (тороидальном) магнитопроводе, сдвинутые относительно друг друга на 120°. В обмотках индуктируются синусоидальные электродвижущие силы, сдвинутые по фазе относительно друг друга на 120°.

Если в первой катушке индуктируется электродвижущая сила e1=E1msin⁡(ωt){\displaystyle e_{1}=E_{1m}\sin(\omega t)},

то во второй катушке будет индуктироваться электродвижущая сила e2=E2msin⁡(ωt−23π){\displaystyle e_{2}=E_{2m}\sin(\omega t-{\frac {2}{3}}\pi )},

в третьей катушке — электродвижущая сила e3=E3msin⁡(ωt−43π){\displaystyle e_{3}=E_{3m}\sin(\omega t-{\frac {4}{3}}\pi )},

где e1{\displaystyle e_{1}}, e2{\displaystyle e_{2}} и e3{\displaystyle e_{3}} — мгновенные значения электродвижущих сил в отдельных катушках;

E1m{\displaystyle E_{1m}}, E2m{\displaystyle E_{2m}} и E3m{\displaystyle E_{3m}} — амплитуды электродвижущих сил в отдельных катушках.

Если к каждой катушке подключить нагрузку, то в этих цепях будут протекать следующие токи:

 i1=I1msin⁡(ωt−ψ1)i2=I2msin⁡(ωt−23π−ψ2)i3=I3msin⁡(ωt−43π−ψ3)}{\displaystyle ~\mathrm {{\begin{matrix}{\mbox{i}}_{1}=I_{1m}\sin(\omega t-\psi _{1})\\{\mbox{i}}_{2}=I_{2m}\sin(\omega t-{\frac {2}{3}}\pi -\psi _{2})\\{\mbox{i}}_{3}=I_{3m}\sin(\omega t-{\frac {4}{3}}\pi -\psi _{3})\\\end{matrix}}{\Bigg \}}} },

где i1{\displaystyle i_{1}}, i2{\displaystyle i_{2}} и i3{\displaystyle i_{3}} — мгновенные значения токов в первой, второй и третьей катушках;

I1m{\displaystyle I_{1m}}, I2m{\displaystyle I_{2m}} и I3m{\displaystyle I_{3m}} — амплитуды токов в катушках;

ψ1{\displaystyle \psi _{1}}, ψ2{\displaystyle \psi _{2}} и ψ3{\displaystyle \psi _{3}} — углы сдвига фаз между электродвижущими силами и токами в катушках.

Трёхфазная система называется симметричной, если амплитуды электродвижущих сил в отдельных фазах генератора одинаковы по величине, то есть: E1m=E2m=E3m=Em{\displaystyle E_{1m}=E_{2m}=E_{3m}=E_{m}}.

Если в трёхфазной системе отдельные фазы представляют собой совершенно независимые друг от друга электрические цепи, то такая система называется электрически не связанной, имеет мало преимуществ по сравнению с однофазной системой, практического применения не находит.

Трёхфазная система называется электрически связанной, если её отдельные фазы соединены между собой электрически.

Трёхфазная электрически связанная система обладает преимуществами по сравнению с однофазной системой, так как она требует меньшей затраты металла на провода при передаче одной и той же мощности.

Другое преимущество трёхфазной системы — возможность получения вращающегося магнитного поля, с помощью которого осуществляется работа простых по конструкции и удобных в эксплуатации асинхронных двигателей.

Для работы конденсаторных, однофазных и двухфазных асинхронных двигателей также используется вращающееся магнитное поле, однако их характеристики уступают трёхфазным асинхронным двигателям.

Трёхфазные системы как генератора, так и потребителя могут быть соединены «звездой» с нейтральным проводом, «звездой» без нейтрального провода или «треугольником».

  • Соединение «звездой» с нейтральным проводом — четырёхпроводное, нейтральный провод обеспечивает независимость работы только одной фазы потребителя от другой фазы, так как при малом падении напряжения в проводах напряжения на фазах потребителя относительно мало изменяются с изменением нагрузки фаз. Применяется при неравномерной нагрузке на фазы.
  • Соединение «звездой» без нейтрального провода — трёхпроводное, если результирующий ток в нейтральном проводе равен нулю, то отпадает необходимость в нём, что даёт экономию цветных металлов при передаче одной и той же мощности потребителю. Трёхфазная трёхпроводная система, соединённая «звездой», может применяться там, где нагрузка на фазы равномерна, например, при подключении трёхфазного асинхронного двигателя.
Если при трёхфазной трёхпроводной системе, соединённой «звездой», нагрузка оказывается неравномерной, то это ведёт к перераспределению напряжений на фазах потребителя в соответствии с их нагрузками и система перестаёт быть симметричной.
Например, если одну фазу потребителя «закоротить», то есть её напряжение станет равным нулю, то на остальных фазах напряжение возрастёт в 3{\displaystyle {\sqrt {3}}} против нормального. Это явление называется «перекос фаз». В бытовых условиях «перекос фаз» происходит, например, когда в домашнем распределительном щите по какой-то причине отсоединяется нулевой провод.
  • Соединение «треугольником» — трёхпроводное. Применяется в основном потребителями с целью увеличения крутящего момента трёхфазного асинхронного двигателя, соответственно увеличивается его электрическая мощность при неизменном числе оборотов. Обмотки переключаются с «звезды» на «треугольник».
Или наоборот, когда необходимо электродвигатель (соединение обмоток «звезда»), рассчитанный, например, на напряжение 380 В включить под напряжение 220 В, в этом случае (обмотки также переключаются с «звезды» на «треугольник») его электрическая мощность и крутящий момент остаются неизменными.

Двухфазный ток

Основы электроники: постоянный и переменный ток

  1. Образование
  2. Наука
  3. Электроника
  4. Основы электроники: постоянный и переменный ток

Автор: Дуг Лоу

Электрический ток, который непрерывно течет в одном направлении, называется постоянного тока или постоянного тока . Электроны в проводе постоянного тока движутся медленно, но в конечном итоге они перемещаются от одного конца провода к другому, потому что они продолжают двигаться в одном и том же направлении.

Напряжение в цепи постоянного тока должно быть постоянным или, по крайней мере, относительно постоянным, чтобы ток протекал в одном направлении. Таким образом, напряжение, обеспечиваемое батареей фонарика, остается стабильным и составляет около 1,5 В.

Положительный конец батареи всегда положительный по отношению к отрицательному полюсу, а отрицательный конец батареи всегда отрицательный относительно положительного полюса. Это постоянство толкает электроны в одном направлении.

Другой распространенный тип тока называется переменного тока , сокращенно AC . В цепи переменного тока напряжение периодически меняется на противоположное. Когда напряжение меняется на противоположное, меняется и направление тока.

В наиболее распространенной форме переменного тока, используемой в большинстве систем распределения электроэнергии по всему миру, напряжение меняется на противоположное 50 или 60 раз в секунду, в зависимости от страны. В Соединенных Штатах напряжение меняется 60 раз в секунду.

Переменный ток используется почти во всех мировых системах распределения электроэнергии по той простой причине, что переменный ток намного эффективнее, когда он передается по проводам на большие расстояния.Все электрические токи теряют мощность, когда они протекают на большие расстояния, но цепи переменного тока теряют гораздо меньше энергии, чем цепи постоянного тока.

Электроны в цепи переменного тока на самом деле не движутся вместе с током. Вместо этого они как бы сидят и покачиваются взад и вперед. Они движутся в одном направлении за 1/60 секунды, а затем разворачиваются и идут в другом направлении за 1/60 секунды. В результате они никуда не денутся.

Для вашего дальнейшего просветления, вот еще несколько интересных и полезных фактов, касающихся переменного тока:

  • Популярная игрушка под названием Newton’s Cradle может помочь вам понять, как работает переменный ток.Игрушка состоит из набора металлических шаров, подвешенных на веревке к каркасу, так что шары просто касаются друг друга по прямой.

    Если вы оттянете мяч на одном конце линии от других мячей, а затем отпустите его, этот мяч отскочит назад к линии шаров, ударится по одному на конце и мгновенно вытолкнет мяч по другому концу шаров. линия от группы.

    Этот шар немного покачивается вверх, а затем поворачивается и возвращается вниз, чтобы ударить группу с другого конца, который затем отталкивает первый шар от группы.Это чередование движений вперед и назад продолжается удивительно долго, если игрушка тщательно сконструирована.

    Переменный ток работает примерно так же. Электроны сначала движутся в одном направлении, но затем меняют свое направление и движутся в другом направлении. Возвратно-поступательное движение электронов в цепи продолжается до тех пор, пока напряжение продолжает меняться.

  • Изменение напряжения в типичной цепи переменного тока не происходит мгновенно.Вместо этого напряжение плавно переключается с одной полярности на другую. Таким образом, напряжение в цепи переменного тока постоянно меняется. Он начинается с нуля, затем увеличивается в положительном направлении на бит, пока не достигает максимального положительного напряжения, а затем уменьшается, пока не вернется к нулю.

    В этот момент он увеличивается в отрицательном направлении, пока не достигает своего максимального отрицательного напряжения, после чего снова уменьшается, пока не вернется к нулю. Затем весь цикл повторяется.

Об авторе книги
У Дуга Лоу до сих пор есть набор экспериментатора электроники, который дал ему отец, когда ему было 10 лет. Хотя он стал программистом и написал книги по различным языкам программирования, Microsoft Office, веб-программированию и компьютерам (включая 30+ книг для чайников), Дуг никогда не забывал свою первую любовь: электронику.

переменного и постоянного тока | Электричество переменного и постоянного тока

Переменный ток, переменный ток и постоянный ток, постоянный ток - это две формы электрического тока, каждая из которых имеет свои преимущества и недостатки.Выбор переменного или постоянного тока зависит от применения и свойств переменного и постоянного тока.


Учебное пособие по электрическому току Включает:
Что такое электрический ток Единица измерения тока - Ампер ПЕРЕМЕННЫЙ ТОК


Одно из основных различий в типе протекания тока в цепи заключается в том, является ли ток переменным током, переменным или постоянным, постоянным.

Электричество переменного и постоянного тока широко используются в электрических и электронных схемах, каждая из которых используется для разных целей.

И переменный, и постоянный ток имеют свои особенности и дают разные преимущества, которые можно использовать в разных ситуациях.

Что такое постоянный ток, DC

Поскольку название подразумевает постоянный ток, постоянный ток - это форма электричества, которое течет в одном направлении - оно прямое, что и дало ему название.

Постоянный ток в базовой цепи

Характеристика постоянного тока, DC может быть показана на графике. Здесь видно, что ток может быть либо положительным, либо отрицательным.

График, показывающий атрибуты постоянного тока

Применения постоянного тока, постоянного тока

Постоянный ток, DC используется во многих сферах:

  • Батареи: Батареи, как неперезаряжаемые, так и перезаряжаемые, могут питать только постоянный ток. Аккумуляторные батареи также нуждаются в подзарядке постоянным током.
  • Электронное оборудование: Все оборудование, такое как компьютеры, радио, мобильные телефоны, и фактически все электронное оборудование использует постоянный ток для питания электронных схем.Биполярные транзисторы, полевые транзисторы и интегральные схемы, которые используют эти компоненты, нуждаются в постоянном токе для питания их и будут повреждены, если будет установлена ​​обратная полярность. Хотя многие из этих элементов питаются от сети переменного тока, внутри устройства есть блок, называемый источником питания, который преобразует входящий переменный ток в постоянный ток с правильным напряжением (-ями) внутри электронного элемента.
  • Некоторое электрическое оборудование: Хотя во многих электрооборудовании используется переменный ток, в некоторых используется постоянный ток.
  • Солнечные панели: Солнечные панели, используемые для выработки электроэнергии, вырабатывают постоянный ток непосредственно от самих солнечных батарей. При использовании с сетью переменного тока для подачи в сеть или подачи местного питания переменного тока для источников переменного тока требуется блок, известный как инвертор, для обеспечения постоянного тока, постоянного тока от солнечных панелей для преобразования в переменный ток.

Что такое переменный ток, АС

Переменный ток, переменный ток отличается от постоянного.Как следует из названия, он течет сначала в одном направлении, а затем в другом.

График, поясняющий переменный ток

На приведенном выше графике показана форма волны тока, изменяющаяся как синусоида, причем ток сначала движется в одном направлении, а затем в другом.

Чаще всего наблюдаются колебания напряжения. Опять же, для переменного сигнала напряжение будет изменяться в положительную и отрицательную сторону.

Как для тока, так и для напряжения видно, что форма волны меняется, становясь в этом примере сначала положительной, а затем отрицательной.

Напряжение для синусоидальной волны переменного тока

Синусоидальную волну легко представить и понять, но большое количество других форм волны также могут представлять собой переменную форму волны с переменным током.

Есть несколько важных моментов относительно чередования сигналов. Первый - это период времени для сигнала. Это время от точки в одном цикле формы волны до идентичной пинты в следующем цикле. Часто пик легче всего увидеть, как показано, но можно взять любую точку - например, когда определенное напряжение достигается в заданном направлении - это может быть точка срабатывания напряжения и т. Д.Нулевые переходы - еще одна возможность, которую легко определить.

Еще одна особенность переменного сигнала - его частота. Это количество раз, когда заданная точка формы сигнала видна в течение секунды, и измеряется в герцах, Гц, где 1 Гц - это один цикл в секунду. Показанный пример имеет частоту 3 Гц, так как в течение секунды наблюдаются три цикла.

В качестве других примеров частота электросети составляет 50 Гц или 60 Гц в зависимости от страны. В Европе и многих других странах используется 50 Гц, тогда как в Северной Америке, странах Карибского бассейна и некоторых странах Южной Америки используется 60 Гц.

Применения переменного тока

Переменный ток обычно используется для распределения энергии. Его преимущество заключается в том, что его можно легко преобразовать в другие напряжения с помощью простого трансформатора - трансформаторы не работают с постоянным током.

Если мощность распределяется при высоком напряжении, потери намного ниже. Возьмем, к примеру, источник питания 250 В с током 4 А и сопротивлением провода 1 Ом. В качестве мощности, Вт = вольт x ампер, передаваемая мощность составляет 1000 Вт.Потери мощности составляют I 2 x R = 16 Вт.

При передаче электроэнергии высокого напряжения используется переменный ток

Если линия напряжения передает 4 А, но имеет напряжение 250 000 вольт, то есть 250 кВ, и линия передает 4 А, тогда потери мощности все равно остаются такими же, но в целом Система передачи несет 1 МВт, а 16 Вт - это почти незначительные потери.

Именно по этой причине для передачи энергии используются высокие напряжения, а затем снижается до относительно безопасного уровня для использования в жилых и коммерческих помещениях.

Ввиду того, что в системе питания используется переменный ток, он также используется в двигателях, для отопления и во многих других изделиях без необходимости его преобразования в постоянный ток.

переменного тока и постоянного тока

Во многих областях может быть принято решение о переменном или постоянном токе и о том, какая форма питания лучше всего подходит для данного приложения.

Переменный ток, переменный ток и постоянный ток, постоянный ток имеют свои преимущества и недостатки, но это означает, что есть возможность выбрать лучший вариант для любого конкретного применения или применения.Переменный ток, переменный ток, как правило, используется для распределения электроэнергии, поэтому сетевые розетки в наших домах и на работе обеспечивают переменный ток для питания всего, что необходимо, но постоянный ток более широко используется для самих плат электроники и для многих другие приложения.

Источники как переменного, так и постоянного тока широко используются в электротехнической и электронной промышленности, каждый в своей области.

И переменный, и постоянный ток могут обеспечивать передачу электроэнергии, но с немного разными преимуществами.

Дополнительные основные понятия:
Напряжение Текущий Сопротивление Емкость Мощность Трансформеры RF шум Децибел, дБ Q, добротность
Вернуться в меню «Основные понятия». . .

20,5 Сравнение переменного и постоянного тока - College Physics

20,5 Сравнение переменного и постоянного тока - College Physics | OpenStaxSkip к контенту
  1. Предисловие
  2. 1 Введение: Природа науки и физики
    1. Введение в науку и область физики, физических величин и единиц измерения
    2. 1.1 Физика: Введение
    3. 1.2 Физические величины и единицы
    4. 1.3 Точность, прецизионность и значащие числа
    5. 1.4 Приближение
    6. Глоссарий
    7. Резюме раздела
    8. Концептуальные вопросы
    9. Задачи и упражнения
  3. Введение Одномерная кинематика
  4. 2.1 Смещение
  5. 2.2 Векторы, скаляры и системы координат
  6. 2.3 Время, скорость и скорость
  7. 2.4 Ускорение
  8. 2.5 Уравнения движения для постоянного ускорения в одном измерении
  9. 2.6 Основы решения проблем для одномерной кинематики
  10. 2.7 Падающие объекты
  11. 2.8 Графический анализ одномерного движения
  12. Глоссарий
  13. Краткое изложение концепции
  14. Вопросы
  15. Задачи и упражнения
  • 3 Двумерная кинематика
    1. Введение в двумерную кинематику
    2. 3.1 Кинематика в двух измерениях: введение
    3. 3.2 Сложение и вычитание векторов: графические методы
    4. 3.3 Сложение и вычитание векторов: аналитические методы
    5. 3.4 Движение снаряда
    6. 3.5 Сложение скоростей
    7. Глоссарий
    8. Краткое содержание раздела
    9. Задачи и упражнения
  • 4 Динамика: сила и законы движения Ньютона
    1. Введение в динамику: законы движения Ньютона
    2. 4.1 Развитие концепции силы
    3. 4,2 Первый закон движения Ньютона: инерция
    4. 4,3 Второй закон движения Ньютона: концепция системы
    5. 4,4 Третий закон движения Ньютона: симметрия сил
    6. 4,5 Норма, напряжение и другие примеры of Forces
    7. 4.6 Стратегии решения проблем
    8. 4.7 Дальнейшее применение законов движения Ньютона
    9. 4.8 Расширенная тема: Четыре основных силы - Введение
    10. Глоссарий
    11. Краткое содержание раздела
    12. Концептуальные вопросы
    13. Задачи и упражнения
  • 5 Дальнейшие применения законов Ньютона: трение, сопротивление и упругость
    1. Введение: дополнительные применения законов Ньютона
    2. 5.1 Трение
    3. 5.2 Силы сопротивления
    4. 5.3 Эластичность: напряжение и деформация
    5. Глоссарий
    6. Краткое содержание раздела
    7. Концептуальные вопросы
    8. Задачи и упражнения
  • 6 Равномерное круговое движение и гравитация Введение в гравитацию
    1. 6.1 Угол вращения и угловая скорость
    2. 6.2 Центростремительное ускорение
    3. 6.3 Центростремительная сила
    4. 6.4 Фиктивные силы и неинерциальные системы координат: сила Кориолиса
    5. 6.5 Универсальный закон тяготения Ньютона
    6. 6.6 Спутники и законы Кеплера: аргумент в пользу простоты
    7. Глоссарий
    8. Резюме раздела
    9. Концептуальные вопросы
    10. Задачи и упражнения
  • 7 Работа, энергия и энергетические ресурсы
      Введение от
        Работа, энергия и энергетические ресурсы
      1. 7.1 Работа: научное определение
      2. 7.2 Кинетическая энергия и теорема об энергии работы
      3. 7.3 Гравитационная потенциальная энергия
      4. 7.4 Консервативные силы и потенциальная энергия
      5. 7,5 Неконсервативные силы
      6. 7.6 Сохранение энергии
      7. 7,7 Энергия
      8. 7,8 Работа, энергия и мощность у людей
      9. 7.9 Мировое потребление энергии
      10. Глоссарий
      11. Краткое содержание раздела
      12. Задачи и упражнения
    1. 8 Линейный импульс и столкновения
      1. Введение в линейный импульс и столкновения
      2. 8.1 Линейный импульс и сила
      3. 8.2 Impulse
      4. 8.3 Сохранение импульса
      5. 8.4 Упругие столкновения в одном измерении
      6. 8.5 Неупругие столкновения в одном измерении
      7. 8.6 Столкновения точечных масс в двух измерениях
      8. 8.7 Введение в ракетное движение
      9. Глоссарий
      10. 000 Краткое содержание раздела Концептуальные вопросы
      11. Задачи и упражнения
      1. Введение в статику и крутящий момент
      2. 9.1 Первое условие равновесия
      3. 9.2 Второе условие равновесия
      4. 9.3 Стабильность
      5. 9.4 Приложения статики, включая стратегии решения проблем
      6. 9.5 Простые механизмы
      7. 9.6 Силы и моменты в мышцах и суставах
      8. Глоссарий
      9. Резюме раздела
      10. Концептуальные вопросы Задачи и упражнения
    2. 10 Вращательное движение и угловой момент
      1. Введение в вращательное движение и угловой момент
      2. 10.1 Угловое ускорение
      3. 10.2 Кинематика вращательного движения
      4. 10.3 Динамика вращательного движения: вращательная инерция
      5. 10.4 Кинетическая энергия вращения: новый взгляд на работу и энергию
      6. 10,5 Угловой момент и его сохранение
      7. Два
      8. 10,6 Столкновения 9000 протяженных тел 4
      9. 10.7 Гироскопические эффекты: векторные аспекты углового момента
      10. Глоссарий
      11. Резюме раздела
      12. Концептуальные вопросы
      13. Задачи и упражнения
      1. Введение в статику жидкостей
      2. 11.1 Что такое жидкость?
      3. 11.2 Плотность
      4. 11.3 Давление
      5. 11.4 Изменение давления по глубине в жидкости
      6. 11,5 Принцип Паскаля
      7. 11,6 Измерение манометрического давления, абсолютного давления и давления
      8. 11,7 Принцип Архимеда
      9. 11,8 : Поверхностное натяжение и капиллярное действие
      10. 11.9 Давления в теле
      11. Глоссарий
      12. Краткое содержание раздела
      13. Концептуальные вопросы
      14. Задачи и упражнения
    3. 12 Динамика жидкости и ее биологические и медицинские приложения
      1. Введение в динамику жидкости и ее использование Биологические и медицинские приложения
      2. 12.1 Расход и его связь со скоростью
      3. 12.2 Уравнение Бернулли
      4. 12.3 Наиболее общие приложения уравнения Бернулли
      5. 12.4 Вязкость и ламинарный поток; Закон Пуазейля
      6. 12.5 Начало турбулентности
      7. 12.6 Движение объекта в вязкой жидкости
      8. 12.7 Явления молекулярного переноса: диффузия, осмос и связанные процессы
      9. Глоссарий
      10. Краткое содержание раздела
      11. Концептуальные вопросы
      12. Концептуальные вопросы
    4. 13 Температура, кинетическая теория и законы газа
      1. Введение в температуру, кинетическую теорию и законы газа
      2. 13.1 Температура
      3. 13.2 Термическое расширение твердых тел и жидкостей
      4. 13.3 Закон идеального газа
      5. 13.4 Кинетическая теория: атомное и молекулярное объяснение давления и температуры
      6. 13,5 Фазовые изменения
      7. 13,6 Влажность, испарение и кипение
      8. Краткое содержание раздела
      9. Концептуальные вопросы
      10. Задачи и упражнения
    5. 14 Методы тепла и теплопередачи
      1. Введение в методы теплопередачи
      2. 14.1 Тепло
      3. 14.2 Изменение температуры и теплоемкость
      4. 14.3 Фазовое изменение и скрытая теплота
      5. 14.4 Методы теплопередачи
      6. 14,5 Проводимость
      7. 14,6 Конвекция
      8. 14,7 Излучение
      9. Глоссарий
      10. Краткое содержание раздела
      11. Вопросы по концепции
      12. И упражнения

    Двигатели переменного или постоянного тока?

    • Тенденции рынка
    • НИОКР
    • Технологии
      • Моделирование
      • Материалы
      • Компоненты
      • Тестирование
      • Мониторинг состояния
      • Устойчивость
    • Приложения
      • Автомобильная промышленность
      • Машины
      • HVAC
    • Рекомендуемые
    • Профиль поставщиков
    • Рекламный

    Поиск

    Воскресенье, 10 января 2021 г.

    Электромоторостроение
    • Тенденции рынка
    • НИОКР
    • Технологии
      • Моделирование
      • Материалы
      • Компоненты
      • Тестирование
      • Мониторинг состояния
      • Устойчивость
    • Приложения
      • Автомобильная промышленность
      • Машины
      • HVAC
    • Рекомендуемые
    • Профиль поставщиков
    • Рекламный
    Домой Приложения Машины Двигатели переменного или постоянного тока?
    • Приложения
    • Машины
    Redazione

    Постоянный ток - Energy Education

    Рисунок 1: Анимация из моделирования [1] PhET постоянного тока, который был значительно замедлен.См. Переменный ток для сравнения.

    Постоянный ток (DC) - это электрический ток, который является однонаправленным, поэтому поток заряда всегда в одном направлении. [2] В отличие от переменного тока направление и сила постоянного тока не меняются. Он используется во многих бытовых приборах и во всех устройствах, в которых используются батарейки. [3]

    Недвижимость

    Постоянный ток определяется постоянным потоком электронов (см. Рисунок 1) из области с высокой электронной плотностью в область с низкой электронной плотностью.В схемах, включающих батареи, это иллюстрируется постоянным потоком заряда от отрицательной клеммы батареи к положительной клемме батареи. Менять напряжение постоянного тока гораздо дороже и труднее, чем переменного, что делает его плохим выбором для передачи электроэнергии под высоким напряжением. Однако на очень большие расстояния передача HVDC может быть более эффективной, чем переменный ток [2] .

    Использует

    Постоянный ток используется в любом электронном устройстве с батареей в качестве источника питания.Он также используется для зарядки аккумуляторов, поэтому перезаряжаемые устройства, такие как ноутбуки и сотовые телефоны, поставляются с адаптером переменного тока, который преобразует переменный ток в постоянный [2] .

    PhET Моделирование

    Университет Колорадо любезно разрешил нам использовать следующее моделирование PhET. Это моделирование можно использовать для изучения того, как работают постоянный и переменный ток.

    Для дальнейшего чтения

    Для получения дополнительной информации см. Соответствующие страницы ниже:

    Список литературы

    Произошла ошибка: SQLSTATE [42000]: синтаксическая ошибка или нарушение доступа: 1064 У вас есть ошибка в синтаксисе SQL; проверьте руководство, соответствующее вашей версии сервера MySQL, чтобы найти правильный синтаксис рядом с ')' в строке 1

    ГЕНЕРАТОРЫ ПРЯМОГО ТОКА (ПОСТОЯННОГО ТОКА)

    Если якорь вращается между двумя неподвижными полюсами поля, ток в якоре перемещается в одном направлении в течение половины каждого оборота и в другом направлении в течение другой половины.Чтобы обеспечить устойчивый поток однонаправленного или постоянного тока от такого устройства, необходимо обеспечить средство реверсирования тока, протекающего вне генератора, один раз за каждый оборот. В старых машинах это реверсирование осуществляется с помощью коммутатора () - разрезного металлического кольца, установленного на валу якоря. Две половины кольца изолированы друг от друга и служат выводами катушки якоря. Неподвижные щетки из металла или углерода прижимаются к коммутатору во время его вращения, электрически соединяя катушку с внешними проводами.При повороте якоря каждая щетка поочередно контактирует с половинками коммутатора, меняя положение в момент, когда ток в катушке якоря меняет свое направление. Таким образом, во внешней цепи, к которой подключен генератор, протекает однонаправленный ток. Генераторы постоянного тока обычно работают при довольно низком напряжении, чтобы избежать искрения между щетками и коммутатором, возникающего при высоком напряжении. Наибольший потенциал, обычно развиваемый такими генераторами, составляет 1500 В.В некоторых более новых машинах это реверсирование выполняется с помощью силовых электронных устройств, например диодных выпрямителей.

    В современных генераторах постоянного тока используются барабанные якоря, которые обычно состоят из большого количества обмоток, установленных в продольных прорезях в сердечнике якоря и подключенных к соответствующим сегментам многократного коммутатора. В якоре, имеющем только одну петлю из проволоки, возникающий ток будет расти и падать в зависимости от части магнитного поля, через которую проходит петля.Коммутатор из многих сегментов, используемый с якорем барабана, всегда соединяет внешнюю цепь с одним витком провода, проходящим через область высокой напряженности поля, и в результате ток, подаваемый обмотками якоря, практически постоянен. Поля современных генераторов обычно оснащены четырьмя или более электромагнитными полюсами для увеличения размера и силы магнитного поля. Иногда межполюсники меньшего размера добавляются для компенсации искажений магнитного потока поля, вызванных магнитным эффектом якоря.

    Генераторы постоянного тока

    обычно классифицируются по методу, используемому для обеспечения тока возбуждения для возбуждения полевых магнитов. Генератор с последовательной обмоткой имеет поле последовательно с якорем, а генератор с шунтовой обмоткой имеет поле, подключенное параллельно якорю. В генераторах с комбинированной обмоткой часть полей включена последовательно, а часть - параллельно. И генераторы с шунтирующей обмоткой, и генераторы с составной обмоткой обладают преимуществом обеспечения сравнительно постоянного напряжения при переменных электрических нагрузках.Генератор с последовательной обмоткой используется в основном для подачи постоянного тока при переменном напряжении. Магнито - это небольшой генератор постоянного тока с полем постоянного магнита



    ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

    Два основных типа двигателей предназначены для работы на переменном токе: синхронные двигатели и асинхронные двигатели. Синхронный двигатель - это, по сути, трехфазный генератор переменного тока, работающий в обратном направлении. Полевые магниты установлены на роторе и возбуждаются постоянным током, а обмотка якоря разделена на три части и питается трехфазным переменным током.Изменение трех волн тока в якоре вызывает различную магнитную реакцию с полюсами полевых магнитов и заставляет поле вращаться с постоянной скоростью, которая определяется частотой тока в линии электропередачи переменного тока.

    Постоянная скорость синхронного двигателя является преимуществом в некоторых устройствах. Однако в приложениях, где механическая нагрузка на двигатель становится очень большой, синхронные двигатели не могут использоваться, потому что, если двигатель замедляется под нагрузкой, он выйдет из строя с частотой тока и остановится.Синхронные двигатели можно заставить работать от однофазного источника питания путем включения подходящих элементов схемы, которые вызывают вращающееся магнитное поле.

    Самым простым из всех электродвигателей является асинхронный двигатель с короткозамкнутым ротором, использующийся с трехфазным питанием. Якорь двигателя с короткозамкнутым ротором состоит из трех неподвижных обмоток, аналогичных якорю синхронного двигателя. Вращающийся элемент состоит из сердечника, в который заключен ряд тяжелых проводников, расположенных по окружности вокруг вала и параллельно ему.После удаления сердечника проводники ротора напоминают по форме цилиндрические клетки, которые когда-то использовались для тренировок домашних белок. Трехфазный ток, протекающий по неподвижным обмоткам якоря, создает вращающееся магнитное поле, и это поле индуцирует ток в проводниках клетки. Магнитная реакция между вращающимся полем и токоведущими проводниками ротора заставляет ротор вращаться. Если ротор вращается с точно такой же скоростью, что и магнитное поле, в нем не будет индуцироваться ток, и, следовательно, ротор не должен вращаться с синхронной скоростью.В процессе работы скорости вращения ротора и поля различаются примерно на 2-5%. Эта разница в скорости называется проскальзыванием.

    Двигатели с короткозамкнутым ротором могут использоваться на однофазном переменном токе за счет различных схем индуктивности и емкости, которые изменяют характеристики однофазного напряжения и делают его похожим на двухфазное напряжение. Такие двигатели называются двухфазными двигателями или конденсаторными двигателями (или конденсаторными двигателями), в зависимости от используемой конструкции.Однофазные двигатели с короткозамкнутым ротором не имеют большого пускового момента, и для приложений, где требуется такой крутящий момент, используются асинхронные двигатели с отталкиванием. Отталкивающий асинхронный двигатель может быть двухфазного или конденсаторного типа, но имеет ручной или автоматический переключатель, который позволяет току течь между щетками на коммутаторе при запуске двигателя и замыкает накоротко все сегменты коммутатора после того, как двигатель достигает критическая скорость. Отталкивающие асинхронные двигатели названы так потому, что их пусковой момент зависит от отталкивания между ротором и статором, а их крутящий момент во время работы зависит от индукции.Двигатели с последовательной обмоткой и коммутаторами, которые будут работать на постоянном или переменном токе, называются универсальными двигателями.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *