Электризация. Электрический заряд / Хабр
В основе объяснения явления электризации лежит электронная теория. Теория объясняет электрические свойства тел наличием в них электронов и их движением. Считается что причиной такого явления как «электризация трением» является, что при соприкосновении двух различных тел, часть электронов переходит с одного тела на другое. В результате на поверхности одного тела оказывается положительный заряд (избыток электронов), а на поверхности другого отрицательный заряд (недостаток электронов).
Что известно о таком явлении как электризация трением?
Если потереть друг о друга два разных вещества – стеклянную палочку о шёлк, то они приобретут разный заряд. То же самое произойдёт если потереть сургуч мехом.
Разделение зарядов происходит и без трения. Если в стакан с дистиллированной водой опустить парафиновый шарик на изолированной ручке, то произойдёт разделение зарядов. Вода и парафиновый шарик получат противоположные заряды.
Разделение зарядов имеет место любых двух различных тел: диэлектриков или проводников, твёрдых тел, жидкостей или газов.
Заряды, полученные электризацией трением можно перенести на другие предметы.
Под действием света происходит положительный заряд вещества.
Приведем аргументы против электронной теории.
Во-первых, в веществах не может быть свободных электронов. При взаимодействии протона и электрона всегда выделяется фотон энергии связи. Энергия связи крепко держит протон с электроном вместе даже в простых веществах. А в химических соединениях, которыми в основном и являются диэлектрики, эта связь ещё крепче. Эксперименты по исследованию фотоэффекта показывают, что для того чтобы оторвать электрон от протона нужно затратить фотон равный энергии связи между ними.
Во-вторых, электроны не могут просто взять и перейти от одного атома к другому. Для этого нужно чтобы у принимающего вещества были протоны, к которым эти электроны должны перейти. А у отдающего вещества электрон должен суметь покинуть свой протон.
В-третьих, один протон может быть связан только с одним электроном.
В-четвертых, если электрон оторвать от химического соединения, то это химическое соединение разрушится.
Почему же возникает при трении друг о друга разность потенциалов?
Для объяснения этого явления мне поможет концепция, выдвинутая в статье «Энергия» о квантовой энергетической природе протона и электрона.
В статье «Энергия» было показано, что мир состоит из двух видов энергии – магнитной (протонной) и электронной. Протон и позитрон являются стабильными квантами магнитной (протонной) энергии, а антипротон и электрон – стабильные кванты электронной энергии (статья «Энергия»).
Протоны и электроны могут терять энергию, уменьшаясь в массе. А при недостатке массы забирать энергию своего вида там, где её больше.
Как предполагал Бенджамин Франклин, электрическая энергия представляется в виде «электрической жидкости» которая заключена в самом веществе. Разный уровень «электрической жидкости» в разных веществах создают разницу в энергии этих веществ. По его предположениям движение этой «электрической жидкости» между веществами и приводит к различным электрическим явления.
Каким же образом создаётся эта разница в уровне «электрической жидкости» в веществе?
Наличие стабильных квантов магнитной (протон) и электронных (электрон) видов энергии создают условия для обмена энергией между атомами разных веществ. Разная энергия связи протонов и электронов в атомных ядрах разных химических элементов и химических веществ, создаёт разницу уровня магнитной (протонной) – энергии («электрической жидкости») в веществе.
Бенджамин Франклин условился считать избыток «электрической жидкости» считать плюсом, а её недостаток – минусом. Будем придерживаться той же условности, где имеется избыток магнитной (протонной) энергии – плюс, а там, где недостаток магнитной (протонной) энергии – минус. Именно эта разница энергии протонов в атомных ядрах разных химических элементов и определяет движение этой самой энергии в веществе. Электроны же только создают своей связью с протонами эту разницу в энергии.
Почему же именно протоны являются носителями электрического заряда?
С одной стороны, протоны тяжелее электронов в 1836 раз, и они больше подходят как резервуар энергии. С другой стороны, протоны в атомном ядре находятся в тесном контакте между собой в отличие от электронов, которые в атоме разобщены и каждый электрон находится на своём квантовом уровне у своего протона соответствующей энергии связи, что не даёт им возможности обмениваться энергией между собой.
В молекулярных соединениях участвуют атомы разных химических элементов, которые имеют разную энергию связи с электронами, а значит и разную энергию атомного ядра, приходящуюся на один протон. Это важное обстоятельство, которое влияет на обмен энергией между атомами.
На рисунке 1 представлены два условных однопротонных атома с разной энергией связи протона с электроном. Присутствие нейтрона в атомном ядре вынуждает электрон занимать более высокий энергетический уровень в атоме. Поэтому однопротонные атомы с разным количеством нейтронов имеют разную энергию связи электронов с протонами. Так как нейтроны не участвуют в обмене энергией, и чтобы не загромождать рисунок лишними деталями, они на рисунке не показаны.
Протон можно представить, как сосуд с жидкостью. Размер элементарной частицы определяется по внутреннему квантовому уровню. Чем сильнее связь протона с электроном, тем меньше их масса и больше размер и тем меньше уровень энергии (заряд) Ep1 – сосуд 1 с меньшим уровнем. И чем меньше связь протона с электроном, тем энергия (масса) Ep2 протона больше – сосуд 2.
Каждый однопротонный атом после объединения свободного протона со свободным электроном имеет нейтральный статус. Но относительно друг друга атомы с разной энергией связи имеют разный энергетический потенциал, а значит разный энергетический (электрический) заряд.
Как показано на рисунке 2, при сближении двух атомов с разным энергетическим потенциалом друг с другом, по закону сообщающихся сосудов энергия протона с меньшей энергией связи со своим электроном перетекла к протону, у которого энергия связи со своим электроном больше. Уровень магнитной (протонной) энергии в атоме1 и атоме2 выровнялся. Относительно друг друга эти два атома обрели нейтральный заряд. Но в то же время у атома1 стало больше магнитной (протонной) энергии, чем он должен иметь после соединение свободного протона со свободным электроном, а значит он зарядился положительно, а у атома2 стало меньше магнитной (протонной) энергии, чем должно быть при соединении свободного протона со свободным электроном, и значит он зарядился отрицательно.
При разведении атома1 и атома2, на расстояние, они сохраняют энергетический статус, полученный при контакте друг с другом (рисунок 3). Атом 1 остался заряженным положительно – с избыточным магнитным (протонным) зарядом, а атом 2 заряжен отрицательно – с недостаточным магнитным (протонным) зарядом.
Электрический заряд – это разница уровня магнитной (протонной) энергии между атомами.
На рисунке 4 показаны взаимодействие веществ с разной энергией связи и разным количеством протонов в атомном ядре.
Наиболее тесный контакт между протонами происходит в атомном ядре. И поэтому, несмотря на разную энергию связи протонов с электронами в атоме, масса протонов в атомном ядре одинаковая. Это происходит по той причине, что протоны в атомном ядре имеют наиболее тесный контакт и могут свободно обмениваться энергией. Для электронов это обстоятельство ничего не меняет, так как энергия квантового уровня, на котором находится электрон не изменяется, а энергия (масса) протона определяется по крайнему внутреннему квантовому уровню (статья «Энергия»).
При таком обмене энергией возникает любопытная ситуация. При равенстве масс протонов в атомном ядре, учитывая энергию связи электронов с протонами, один протон становится легче (отрицательно заряженным), чем он должен быть при связи со своим электроном, а другой протон становится тяжелее (положительно заряженным), чем он должен быть при связи со своим электроном. Атомное ядро при этом остаётся нормальным (нейтральным), соответствующим энергии связи всех протонов со своими электронами.
Таким же свойством, как и протоны – обмениваться энергией, обладают и атомные ядра. У разных химических элементов усреднённая масса (энергия) на один протон атомных ядер разная.
При тесном контакте двух веществ, то вещество, у которого энергия связи больше и, соответственно, средняя энергия атомного ядра, приходящаяся на один протон меньше, отбирает часть магнитной (протонной) энергии у атомного ядра вещества, у которого средняя энергия атомного ядра, приходящаяся на один протон больше (Рис. 5). Энергия атомных ядер, приходящаяся на один протон разных веществ, выравнивается и они становятся нейтральными друг к другу, но при этом происходит обмен энергией не между атомами, а между протонами атомных ядер. При разделении этих двух веществ, ядра атомов сохраняют то энергетическое состояние, которое образовалось при тесном контакте (Рис. 6).
Атом2, у которого появился дефицит массы в атомном ядре, становится «отрицательно заряженным». Количество электронов в атоме2 остается неизменным. Атом1, у которого появился избыток массы в атомном ядре, становится «положительно заряженным». Количество электронов в нём также остаётся неизменным.
Для того, чтобы вернуться к своему нормальному (нейтральному) состоянию, атом1 должен отдать лишнюю энергию и для этого ему необходимо войти в тесный контакт с веществом у которого в атомном ядре средняя энергия, приходящаяся на один протон меньше. И наоборот, атом2 должен вернуть недостающую энергию атомному ядру, при этом ему нужно войти в тесный контакт с веществом у которого средняя энергия в атомном ядре, приходящаяся на один протон, больше.
Химические соединения обладают очень большой энергией связи электронов с протонами ядер химических элементов. Наличие в химических соединениях разных ядер с разной энергией, приводит к затруднённой передачи магнитной (протонной) энергии от одного вещества к другому. По этой причине приобретённый заряд энергии сохраняется на наэлектризованном участке диэлектрика.
Рассмотрим электризацию под действием света.
Если взять достаточно чувствительный электроскоп и осветить не заряженную цинковую пластинку светом дугового разряда, то под действием света она зарядится положительно.
Явление заключается в том, что, под действием фотона, протон и связанный с ним электрон восстанавливаются. А электрический заряд связан с энергией протона.
На рисунке 8 показано, что происходит с атомом в опыте с электроскопом показанном на (Рис. 7) на атомном уровне.
В обычных условиях атом является нейтрально заряженным (Рис. 8а).
При взаимодействии атома с фотоном происходит полное или частичное восстановление протона и электрона. Восстановление электрона никак не влияет на заряд системы, т.к. электрический заряд с ним не связан. А полное или частичное восстановление протона и увеличение его энергии, приводит к приобретению системы протон — электрон положительного заряда (Рис. 8b). Даже если под действием фотона электрон переместится на более высокий уровень протона, но не покинет его, это так же приведёт к увеличению электрического заряда атома. Протон показан как положительно заряженный, это только потому что в электрическом поле он ведёт себя как заряженная частица. Свободный протон не может обмениваться магнитной (протонной) энергией так как он является стабильным квантом магнитной (протонной энергии). Так как освобождённый электрон не обладает кинетической энергией, он остаётся рядом со свободным протоном. Затем протон свободный протон снова соединяется со свободным электроном и образуется фотон связи (Рис. 8с). Система протон – электрон приобретает нейтральный заряд. При фотоэффекте электроскоп не может накапливать большой заряд так как возбуждённые атомы снова соединяются со своим электроном и восстанавливают нейтральный статус.
Если электроскоп (рис. 7) наэлектризовать, а затем осветить, то под действием света он разрядится. Это явление на атомном уровне можно объяснить так.
Нейтральный атом (Рис. 9а) заряжается внешним источником магнитной (протонной) энергии (Рис. 9b). У протона в атоме появляется избыточная магнитная (протонная) энергия, а энергетическое состояние электрона не меняется. Если теперь на такой возбуждённый атом попадёт фотон, то электрон восстановится до свободного состояния, а избыточная магнитная (протонная) энергия перейдёт к освободившемуся электрону в виде кинетической энергии. Электрон покинет атом (Рис. 9с). Но свободный электрон далеко не сможет удалится. Полученную кинетическую магнитную (протонную) энергию электрон перенесёт на какое-либо вещество и затем с меньшей кинетической энергией возвратится к своему протону. При соединении свободного протона и электрона выделится фотон энергии связи.
Для разных химических элементов так называемая работа выхода электронов разная: цезий – 1,94эВ для выхода электрона достаточно инфракрасного излучения, а ртуть — 4,52эВ для выхода электрона необходим ультрафиолетовый.
Элементарный учебник физики Т2
Элементарный учебник физики Т2
ОглавлениеИЗ ПРЕДИСЛОВИЯ К ПЕРВОМУ ИЗДАНИЮГлава I. Электрические заряды § 1. Электрическое взаимодействие. § 2. Проводники и диэлектрики. § 3. Разделение тел на проводники и диэлектрики § 4. Положительные и отрицательные заряды § 5. Что происходит при электризации? § 6. Электронная теория. § 7. Электризация трением. § 8. Электризация через влияние. § 9. Электризация под действием света. § 10. Закон Кулона. § 11. Единица заряда. Глава II. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ § 12. Действие электрического заряда на окружающие тела. § 13. Понятие об электрическом поле. § 14. Напряженность электрического поля. § 15. Сложение полей. § 16. Электрическое поле в диэлектриках и в проводниках. § 17. Графическое изображение полей. § 18. Основные особенности электрических карт. § 19. Применение метода линий поля к задачам электростатики. § 20. Работа при перемещении заряда в электрическом поле. § 21. Разность потенциалов (электрическое напряжение). § 22. Эквипотенциальные поверхности. § 23. В чем смысл введения разности потенциалов? § 24. Условия равновесия зарядов в проводниках. § 25. Электрометр. § 26. В чем различие между электрометром и электроскопом? § 27. Соединение с Землей. § 28. Измерение разности потенциалов в воздухе. Электрический зонд. § 29. Электрическое поле Земли. § 30. Простейшие электрические поля. § 31. Распределение зарядов в проводнике. Клетка Фарадея. § 32. Поверхностная плотность заряда. § 33. Конденсаторы. § 34. Различные типы конденсаторов. § 35. Параллельное и последовательное соединение конденсаторов. § 37. Почему электрическое поле ослабляется внутри диэлектрика? § 38. Энергия заряженных тел. Энергия электрического поля. Глава III. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК § 39. Электрический ток и электродвижущая сила. § 40. Признаки электрического тока. § 41. Направление тока. § 42. Сила тока. § 43. «Скорость электрического тока» и скорость движения носителей заряда. § 44. Гальванометр. § 45. Распределение напряжения в проводнике с током. § 46. Закон Ома. § 47. Сопротивление проводов. § 48. Зависимость сопротивления от температуры. § 49. Сверхпроводимость. § 50. Последовательное и параллельное соединение проводников. § 51. Реостаты. § 52. Распределение напряжения в цепи. § 53. Вольтметр. § 54. Каким должно быть сопротивление вольтметра и амперметра? § 55. Шунтирование измерительных приборов. Глава IV. ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА § 56. Нагревание током. Закон Джоуля-Ленца. § 57. Работа, совершаемая электрическим током. § 58. Мощность электрического тока. § 59. Контактная сварка. § 60. Электрические нагревательные приборы. Электрические печи. § 61. Понятие о расчете нагревательных приборов. § 62. Лампы накаливания. § 63. Короткое замыкание. § 64. Электрическая проводка. Глава V. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ЭЛЕКТРОЛИТЫ § 65. Первый закон Фарадея. § 66. Второй закон Фарадея. § 67. Ионная проводимость электролитов. § 68. Движение ионов в электролитах. § 69. Элементарный электрический заряд. § 70. Первичные и вторичные процессы при электролизе. § 71. Электролитическая диссоциация. § 72. Градуировка амперметров при помощи электролиза. § 73. Технические применения электролиза. § 74. Введение. Открытие Вольты. § 75. Правило Вольты. Гальванический элемент. § 76. Как возникают э. д. с. и ток в гальваническом элементе? § 77. Поляризация электродов. § 78. Деполяризация в гальванических элементах. § 79. Аккумуляторы. § 80. Закон Ома для замкнутой цепи. § 81. Напряжение на зажимах источника тока и э. д. с. § 82. Соединение источников тока. § 83. Термоэлементы. § 84. Термоэлементы в качестве генераторов. § 85. Измерение температуры с помощью термоэлементов. Глава VII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ МЕТАЛЛЫ § 86. Электронная проводимость металлов. § 87. Строение металлов. § 88. Причина электрического сопротивления. § 89. Работа выхода. § 90. Испускание электронов накаленными телами. Глава VIII. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ГАЗЫ § 91. Самостоятельная и несамостоятельная проводимость газов. § 92. Несамостоятельная проводимость газа. § 93. Искровой разряд. § 94. Молния. § 95. Коронный разряд. § 96. Применения коронного разряда. § 97. Громоотвод. § 98. Электрическая дуга. § 99. Применения дугового разряда. § 100. Тлеющий разряд. § 101. Что происходит при тлеющем разряде? § 102. Катодные лучи. § 103. Природа катодных лучей. § 104. Каналовые лучи. § 105. Электронная проводимость в высоком вакууме. § 106. Электронные лампы. § 107. Электроннолучевая трубка. Глава IX. ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ ПОЛУПРОВОДНИКИ § 108. Природа электрического тока в полупроводниках. § 109. Движение электронов в полупроводниках. § 110. Полупроводниковые выпрямители. § 111. Полупроводниковые фотоэлементы. Глава X. ОСНОВНЫЕ МАГНИТНЫЕ ЯВЛЕНИЯ § 112. Естественные и искусственные магниты. § 113. § 114. Магнитное действие электрического тока. § 115. Магнитные действия токов и постоянных магнитов. § 116. Происхождение магнитного поля постоянных магнитов. § 117. Гипотеза Ампера об элементарных электрических токах. Глава XI. МАГНИТНОЕ ПОЛЕ § 118. Магнитное поле и его проявления. Магнитная индукция. § 119. Магнитный момент. Единица магнитной индукции. § 120. Измерение магнитной индукции поля с помощью магнитной стрелки. § 121. Сложение магнитных полей. § 122. Линии магнитного поля. § 123. Приборы для измерения магнитной индукции. Глава XII. МАГНИТНЫЕ ПОЛЯ ЭЛЕКТРИЧЕСКИХ ТОКОВ § 124. Магнитное поле прямолинейного проводника и кругового витка с током. § 125. Магнитное поле соленоида. Эквивалентность соленоида и полосового магнита. § 126. Магнитное поле внутри соленоида. Напряженность магнитного поля. § 127. Магнитное поле движущихся зарядов. Глава XIII. МАГНИТНОЕ ПОЛЕ ЗЕМЛИ § 128. Магнитное поле Земли. § 129. Элементы земного магнетизма. § 130. Магнитные аномалии и магнитная разведка полезных ископаемых. § 131. Изменение элементов земного магнетизма с течением времени. Магнитные бури. Глава XIV. СИЛЫ, ДЕЙСТВУЮЩИЕ В МАГНИТНОМ ПОЛЕ НА ПРОВОДНИКИ С ТОКОМ § 132. Введение. § 133. Действие магнитного поля на прямолинейный проводник с током. Правило левой руки. § 134. Действие магнитного поля на виток или соленоид с током. § 135. Гальванометр, основанный на взаимодействии магнитного поля и тока. § 136. Сила Лоренца. § 137. Сила Лоренца и полярные сияния. Глава XV. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ § 138. Условия возникновения индукционного тока. § 139. Направление индукционного тока. Правило Ленца. § 141. Электродвижущая сила индукции. § 142. Электромагнитная индукция и сила Лоренца. § 143. Индукционные токи в массивных проводниках. Токи Фуко. Глава XVI. МАГНИТНЫЕ СВОЙСТВА ТЕЛ § 144. Магнитная проницаемость железа. § 145. Магнитная проницаемость различных веществ. Вещества парамагнитные и диамагнитные. § 146. Движение парамагнитных и диамагнитных тел в магнитном поле. Опыты Фарадея. § 147. Молекулярная теория магнетизма. § 148. Магнитная защита. § 149. Особенности ферромагнитных тел. § 150. Основы теории ферромагнетизма. Глава XVII. ПЕРЕМЕННЫЙ ТОК § 151. Постоянная и переменная электродвижущая сила. § 152. Опытное исследование формы переменного тока. Осциллограф. § 153. Амплитуда, частота и фаза синусоидального переменного тока и напряжения. § 154. Сила переменного тока. § 155. Амперметры и вольтметры переменного тока. § 156. Самоиндукция. § 157. Индуктивность катушки. § 158. Прохождение переменного тока через конденсатор и катушку с большой индуктивностью. § 159. Закон Ома для переменного тока. Емкостное и индуктивное сопротивления. § 160. Сложение токов при параллельном включении сопротивлений в цепь переменного тока. § 161. Сложение напряжений при последовательном соединении сопротивлений в цепи переменного тока. § 162. Сдвиг фаз между током и напряжением. § 163. Мощность переменного тока. § 164. Трансформаторы. § 165. Централизованное производство и распределение электрической энергии. § 166. Выпрямление переменного тока. Глава XVIII. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ: ГЕНЕРАТОРЫ, ДВИГАТЕЛИ, ЭЛЕКТРОМАГНИТЫ § 167. Генераторы переменного тока. § 168. Генераторы постоянного тока. § 169. Генераторы с независимым возбуждением и с самовозбуждением. § 171. Трехфазный электродвигатель. § 172. Электродвигатели постоянного тока. § 173. Основные рабочие характеристики и особенности двигателей постоянного тока с параллельным и последовательным возбуждением. § 174. Коэффициент полезного действия генератора и двигателя. § 175. Обратимость электрических генераторов постоянного тока. § 176. Электромагниты. § 177. Применение электромагнитов. § 178. Реле и их применения в технике и автоматике. Ответы и решения к упражнениям Приложения Предметный указатель Таблицы |
Учебник по физике: трибоэлектрический заряд
В Уроке 1 объяснялось, что атомы являются строительными блоками материи. Кроме того, было объяснено, что материальные объекты состоят из различных типов атомов и комбинаций атомов. Наличие разных атомов в объектах обеспечивает разным объектам разные электрические свойства. Одно из таких свойств известно как сродство к электрону . Проще говоря, свойство сродства к электрону относится к относительному количеству любит , что материал имеет для электронов. Если атомы материала имеют высокое сродство к электрону, то этот материал будет иметь относительно высокую любовь к электронам. Это свойство сродства к электрону будет иметь первостепенное значение, поскольку мы исследуем один из наиболее распространенных методов зарядки — трибоэлектрическую зарядку , также известную как зарядка трением или трением.
Предположим, что резиновый шарик натирают образцом меха животного. В процессе натирания атомы резины сближаются с атомами шерсти животных. Электронные облака двух типов атомов сжимаются и приближаются к ядрам других атомов. Протоны в атомах одного материала начинают взаимодействовать с электронами, присутствующими на другом материале. Среди звука потрескивающего воздуха вы даже можете услышать, как атомы говорят: «Мне нравятся ваши электроны». И, конечно же, атомы одного материала — в данном случае атомы каучука — более серьезно относятся к своим претензиям на электроны. Таким образом, атомы каучука начинают отбирать электроны у атомов меха животных. Когда трение прекратилось, два объекта заряжены.
Процедура трения резинового шарика о волосы выполняется достаточно легко. Вы можете попробовать это сейчас, если вы никогда не выполняли это. Когда закончите, вы, вероятно, заметите, что резиновый шарик и ваши волосы будут притягиваться друг к другу. В сухой день вы даже сможете отпустить воздушный шар и заставить его прилипнуть к вашим волосам. (Вероятно, вы также заметите, что процедура инициирует плохой день для волос. Извините.) Это притяжение между двумя заряженными объектами свидетельствует о том, что заряжаемые объекты заряжены противоположным типом заряда. Один заряжен положительно, а другой отрицательно заряжен. Как это произошло? Как простое трение двух предметов заставляет их заряжаться и заряжаться противоположно?
Как работает трибоэлектрическая зарядкаПроцесс трибоэлектрической зарядки (также известный как зарядка трением) приводит к переносу электронов между двумя объектами, которые трутся друг о друга. Резина имеет гораздо большее притяжение для электронов, чем шерсть животных. В результате атомы каучука вытягивают электроны из атомов шерсти животных, оставляя оба объекта с дисбалансом заряда. В резиновом воздушном шаре электронов избыток, а в шерсти животного электронов не хватает. Имея избыток электронов, резиновый шарик заряжается отрицательно. Точно так же нехватка электронов на шерсти животных оставляет ее с положительным зарядом. Два объекта заряжены противоположными типами зарядов в результате переноса электронов из материала, наименее любящего электроны, в материал, любящий больше всего электронов.
Трибоэлектрический заряд часто демонстрируется на уроках физики. Два резиновых шарика можно подвесить к потолку примерно на высоте головы. При трении о голову учителя воздушные шарики заряжались, поскольку электроны переносились с шерсти учителя на воздушные шарики. Поскольку шерсть учителя потеряла электроны, она стала положительно заряженной, и можно было наблюдать последующее притяжение между двумя потертыми предметами. Конечно, когда учитель оторвался от шариков, шарики испытали отталкивающее взаимодействие друг с другом.
Как уже упоминалось, разные материалы имеют разное сродство к электронам. Потирая различные материалы друг о друга и проверяя их получающееся взаимодействие с объектами с известным зарядом, тестируемые материалы можно упорядочить в соответствии с их сродством к электронам. Такое упорядочение веществ известно как трибоэлектрический ряд . Один такой заказ для нескольких материалов показан в таблице справа. Материалы, показанные выше в таблице, как правило, имеют большее сродство к электронам, чем те, что ниже. Впоследствии, когда любые два материала в таблице трутся друг о друга, можно ожидать, что тот, что выше, будет вытягивать электроны из материала, который ниже. Таким образом, материалы, находящиеся выше всего на столе, будут иметь наибольшую тенденцию приобретать отрицательный заряд. Те, что ниже, станут положительно заряженными.
Закон сохранения заряда
Процесс трибоэлектрической зарядки (как и любой процесс зарядки) включает перенос электронов между двумя объектами. Заряд не создается из ничего. Появление отрицательного заряда на резиновом шарике есть просто результат приобретения им электронов. И эти электроны должны откуда-то браться; в данном случае от предмета, о который он терся. Электроны переносятся в любом процессе зарядки. В случае трибоэлектрического заряда они переносятся между двумя трущимися друг о друга объектами. До зарядки оба объекта электрически нейтральны. чистый заряд системы составляет 0 единиц. После процесса зарядки более любящий электроны объект может приобрести заряд -12 единиц; другой объект получает заряд +12 единиц. В целом система из двух объектов имеет чистый заряд 0 единиц. Всякий раз, когда наблюдается, что такая величина, как заряд (или импульс, энергия или материя), остается одной и той же до и после завершения данного процесса, мы говорим, что эта величина сохраняется. Заряд всегда сохраняется. Когда все вовлеченные объекты рассматриваются до и после данного процесса, мы замечаем, что общее количество зарядов среди объектов такое же, как до начала процесса, так и после его окончания. Это называется закон сохранения заряда .
Flickr Physics Photo
ВЕРХНИЙ РЯД: Пластиковая трубка заряжается, натирая ее синтетическим мехом животных.
ВНИЗ СЛЕВА: затем заряженную трубку подносят к набору нейтральных кусочков бумаги, покоящихся на столе.
ВНИЗ СПРАВА: заряженная трубка и нейтральные кусочки бумаги притягиваются друг к другу. Аттракцион поднимает кусочки бумаги со стола.
Иногда недостаточно просто прочитать об этом. Вы должны взаимодействовать с ним! И это именно то, что вы делаете, когда используете один из интерактивов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашей интерактивной зарядки. Вы можете найти его в разделе Physics Interactives на нашем сайте. Интерактивная зарядка — это электростатическая «игровая площадка», которая позволяет учащимся исследовать различные концепции, связанные с зарядом, взаимодействием зарядов, процессами зарядки и заземлением. Как только вы освоитесь с концепцией, нажмите на кнопку «Играть».
Посетите: Интерактивная зарядка
Ответьте на следующие вопросы, используя свое понимание заряда. Когда закончите, нажмите кнопку, чтобы просмотреть ответы.
1. Во время занятий по физике пластиковую полоску натерли ватой, и она стала положительно заряженной. Правильное объяснение того, почему пластиковая полоска становится положительно заряженной, состоит в том, что…
а. пластиковая полоска получила дополнительные протоны от хлопка.
б. пластиковая полоска приобрела дополнительные протоны в процессе зарядки.
в. протоны были созданы в результате процесса зарядки.
д. пластиковая полоска отдавала электроны хлопку в процессе зарядки.
2. Сарановая пленка имеет большее сродство к электрону, чем нейлон. Если нейлон потереть о сарановую пленку, что в конечном итоге приведет к избыточному отрицательному заряду? ____________ Объяснять.
3. Учитель физики трет стеклянный предмет о войлочную ткань, и стекло заряжается положительно. Какие из следующих утверждений верны? Обведите все подходящие варианты.
а. В процессе трения стекло приобрело протоны.
б. Во время этого процесса трения войлок заряжался отрицательно.
в. Заряд создается в процессе трения; его захватывает более требовательный к заряду объект.
д. Если стекло приобрело заряд +5 единиц, то войлок приобретает заряд -5 единиц.
эл. Это событие нарушает закон сохранения заряда.
ф. Электроны переносятся со стекла на войлок; протоны переносятся с войлока на стекло.
г. После такого заряда стеклянный предмет и войлочная ткань должны притягиваться друг к другу.
ч. Как правило, стеклянные материалы должны иметь большее сродство к электронам, чем войлочные материалы.
4. Какое утверждение лучше всего объясняет, почему резиновый стержень становится отрицательно заряженным при трении о мех?
а. Резина, из которой сделан стержень, является лучшим изолятором, чем мех.
б. Мех является лучшим изолятором, чем резина.
в. Молекулы в резиновом стержне сильнее притягивают электроны, чем молекулы в мехе.
д. Молекулы в мехе сильнее притягивают электроны, чем молекулы в резиновом стержне.
Следующий раздел:
Перейти к следующему уроку:
Электростатика: зарядка за счет проводимости, индукции и трения
Электростатика. Тест 1
Электростатика. Тест 1 (Зарядка и зарядка)
1 / 11 9-6 C
3 / 11
Объект, который не может легко обмениваться электронами, считается ______________.
эмульгатор
проводник
изолятор
4 / 11
Объект, который легко делится электронами, считается ______________.
проводник
эмульгатор
изолятор
5 / 11
Вы используете отрицательно заряженную трубу из ПВХ, чтобы зарядить изначально нейтральный металлический шар с проводимостью . После зарядки и удаления трубы из ПВХ сфера будет __________.
нейтральный
отрицательный
положительный
6 / 11
Вы используете отрицательно заряженную трубу из ПВХ, чтобы зарядить изначально нейтральный металлический шар с проводимостью . При проведении сфера становится __________.
отрицательный
положительный
нейтральный
7 / 11
Вы используете отрицательно заряженную трубу из ПВХ, чтобы зарядить изначально нейтральный металлический шар индукцией . При удалении отрицательно заряженной трубы из ПВХ , сторона металлического шара, ближайшая к трубе из ПВХ, будет заряжена __________.