Закрыть

При включении тестера на прозвонку постоянно звенит: Страница не найдена — EvoSnab

Содержание

Как прозвонить провода и кабель? Альтернативные способы

Автор Alexey На чтение 5 мин. Просмотров 617 Опубликовано Обновлено

При проверке целостности кабельной продукции по одной из жил пропускают электрический ток, и в данную цепь включают омметр, лампочку или звуковое устройство, которое звенит при тестировании провода, поэтому данные испытания называют прозвонкой.

Цель прозвонки может быть двоякой – проверить исправность провода, или найти два конца одной жилы. Прозванивают цепи при помощи мультиметра или специальных приборов.

С данными задачами превосходно справляется даже самый простой и дешёвый мультиметр, ведь в данном случае погрешность измерений не играет никакой роли – ток либо течёт, либо нет, одно из двух. Поэтому в арсенале электрика всегда должен быть хотя бы простейший мультиметр, помимо проверки целостности кабелей им можно измерять напряжение, сопротивление изоляции и силу тока.

Но для единичной проверки можно соорудить прибор для прозвонки из подручных средств. Для начала нужно рассмотреть способы проверки кабелей.

Проверка исправности изоляции

Данное испытание проводят только с одного конца кабеля. Для этого зачищают проводники, включают мультиметр в режим измерения сопротивления, выбирают диапазон мегаом.

Не касаясь пальцами щупов, проверяют ими, нет ли пробоя между жилами.

Из-за емкости кабельных проводов на электронном дисплее вначале показания будут меняться, но в течение нескольких секунд емкость зарядится и на индикаторе должна высветиться единица в левой стороне экрана – это означает, что сопротивление настолько велико, что выходит за диапазон измерений.


Если же установится ноль, то это значит, что между жилами есть короткое замыкание.

Бывает, что мультиметр показывает какое-то среднее значение. Если кабель новый, то он некачественный, и увлажнённая изоляция дает утечку, или же, может сказываться влияние электромагнитных помех.

В этом случае прибор переключают в более низкий диапазон – сотни килоом, и следят за показаниями – в случае электромагнитных наводок отображаемое на дисплее значение будет постоянно меняться, но если это неисправная изоляция, то показания будут стабильными.

Основные единицы измерения

Обязательно следует следить при проверке за руками – они не должны касаться щупов, чтобы не создавать погрешностей при измерениях. Часто таким способом можно проверить исправность проводки, находящейся во влажной стене, подключаясь к заведомо обесточенным и неподключённым к электроприборам проводам.

Прозвонка целостности проводника

В исправном кабеле каждая жила должна проводить электрический ток, и между ними не должно быть короткого замыкания.

Если кабель имеет маркированные провода, значит идентифицировать пары окончаний каждой жилы не нужно. В этом случае нет нужды подтягивать окончания кабеля в одно место, или тянуть провод от мультиметра к другому концу.

После проверки изоляции на пробой по описанному выше способу, достаточно будет зачистить и соединить в одну скрутку провода на одном конце кабеля, а на другом производить прозвонку.

Мультиметр переключают в режим измерения сопротивления, устанавливают самый низший диапазон – как правило, это 200 Ом, или специальный значок динамика специально предназначенный для прозвонки.

Мультиметр в положении переключения динамика для прозвонки

Всегда перед прозвонкой проверяют сам мультиметр – для этого соединяют два щупа вместе – тестер должен зазвенеть и показать ноль, уже после этого можно проводить измерения.

Для проверки будет достаточно подсоединить один щуп к любому проводу, а другим поочерёдно пройтись по всем жилам – везде они должны прозваниваться, то есть прибор должен издавать звуковой сигнал, если в нём присутствует данная опция, или показывать сопротивление, близкое к нулю.

Некоторые длинные кабели могут обладать сопротивлением в несколько Ом – это нормально. Если прибор показывает единицу справа – значит где-то в тестируемом проводе обрыв.

Как прозвонить проводку между распределительными коробками

Очень часто требуется найти окончания одного проводника в хитросплетении одноцветных проводов в распределительных коробках. В этом случае не обойтись без дополнительного проводника, с длиной большей расстояния между двумя коробками.

Сначала прозванивают сам дополнительный провод, потом один его конец подсоединяют произвольно к одному выводу в распределительной коробке, а к другому окончанию дополнительного проводника подсоединяют один из щупов мультиметра. Электропроводка должна быть обесточена, все розетки должны быть свободными, а выключатели выключены.

Оставшимся щупом проверяют выводы в другой коробке – тот, на котором тестер зазвенит, или покажет ноль и будет единым проводом. Его окончания маркируют, и таким же способом идентифицируют окончания остальных жил. Дополнительный провод и сами щупы лучше снабдить зажимами «крокодил», таким способом цепляя их на тестируемую жилу, что позволит проводить прозвонку проводки самостоятельно. зажим крокодил

Если одна из жил перебита, то её находят методом исключения, идентифицировав и проверив остальные провода. Таким же способом можно осуществить прозвонку и проверку автомобильной проводки, предварительно отключив аккумулятор.

Альтернативные способы прозвонки

Если тестер отсутствует, то его можно заменить, используя аккумулятор или батарейки и лампочку. В разрыв данной цепи включают испытуемый проводник, процедура ничем кардинально не отличается – при исправной жиле лампочка должна светиться.

Профессиональные электрики для прозвонки также используют специальные телефонные трубки, при этом они могут переговариваться, прозванивая разные окончания проводки.

альтернативные способы прозвонки при помощи : а) простой батарейки и лампочки, б) тоже но с заземлением, в) с трубкой телефона через батарею и заземление и г) через трансформатор на разные напряжения с вольтметром или мультиметром

С использованием трансформатора, на одном конце кабеля подключают к проводам выводы вторичной обмотки, имеющие разные напряжения, которые измеряют на проводах другого окончания, тем самым их идентифицируя.

Прозвонка фаз

Также с помощью вольтметра фазируют провода в параллельно подключённых кабелях – для этого на них подают трехфазное напряжение – включенный между одинаковыми фазами вольтметр будет показывать ноль.

Тех же результатов достигают, делая прозвонку фаз при помощи двух последовательно соединённых ламп 220В – они не перегорят при подключении между разными фазами, и не будут светиться при включении на одинаковые фазы.

DT9205a — ремонт мультиметра | Электроника — это просто

Вот такой вот китайский цифровой прибор был всунут в цепь постоянного напряжения на режиме измерения диодов. Мультиметр тихо перестал мерять килоомы.
На дисплее вместо цифры 1 светятся три цифры. И только на измерении полупроводников. В режиме вольтметра, амперметра и измерения ёмкости конденсаторов работает нормально.

Прибор кстати довольно приличный, особенно если учесть его копеечную стоимость. 7 долларов не цена точного прибора с автоотключением, измерением ёмкости и прочими прелестями. Кнопка Power , полностью отключающая прибор — мелочь, а приятно. Не нужно постоянно дёргать галетный переключатель. Крупные цифры на табло тоже являются несомненным достоинством этого прибора. Вобщем прибор мне нравится поэтому ремонтировать его стоило однозначно.


Обычно в подобных цифровиках обрывается омный резистор. Здесь такой тоже есть, но в данном случае замене подлежал транзистор 2N3904 находящийся близко к разъёмам и выполняющий роль стабилитрона. Два вывода транзистора по схеме соединены между собой.

Заменил обычным советским КТ503 обратной проводимости. Нужно только иметь ввиду, что цоколёвка у них зеркальная.

Между собой соединены два правых вывода.

На всякий случай фото расположения контактов. У меня один выпал, и я долго пытался сообразить где он был раньше.

Общий вид платы. Вдруг кому пригодится.

После замены транзистора, если всё сделано правильно, прибор работает как и до поломки.

DT9205A — фото платы с хорошим разрешением:

DT9205a — схема мультиметра

 

Если нужна помощь в ремонте DT9205a, есть вопросы по ремонту других приборов,
Заходите на ФОРУМ:
http://vseprosto.net/forum/index.php?topic=118.0

Запись опубликована в рубрике Мастерская с метками DT9205a, мультиметр, ремонт. Добавьте в закладки постоянную ссылку.

Почему сгорает транзистор в телевизоре. Строчный транзистор. При исправной развёртки и свечении экрана, но отсутствии изображения, можно по некоторым признакам определить неисправность того или иного блока

Тестирование строчной развертки при малом напряжении питания

Сложности, возникающие при поиске неисправностей в телевизоре, особенно в блоке строчной развертки, знакомы многим радиолюбителям и ремонтникам. Для их решения автор публикуемой здесь статьи предлагает использовать простой тестер. Он позволяет проверить работу не только выходного каскада строчной развертки телеаизоров и мониторов, но и импульсных источников питания, а также входящих в такие устройства индуктивных элементов.

При ремонте телевизоров, особенно современных, нередко встречаются неисправности, поиск и устранение которых вызывает определенные трудности не только у радиолюбителей, но и у телемастеров. Значительная их доля связана с дефектами строчной развертки.

По настоящему актуальной эта проблема стала с появлением на отечественном рынке, а значит, и в ремонтных мастерских, телевизоров с цифровым управлением и обработкой сигналов, так как процесс поиска и устранения неисправностей в них связан со спецификой их работы. Об этом подробно рассказано в книге П. Ф. Гаврилова и А. Я. Дедова «Ремонт цифровых телевизоров» (М.: Радиотон, 1999). Дело в том, что малейшее отклонение в режимах работы узлов строчной развертки таких телевизоров вызывает блокировку как ее процессоров, так и блока питания, а следовательно, возникают трудности с их запуском для традиционной проверки.

Решить в большинстве случаев возникающие проблемы позволяет так называемое нагрузочное тестирование выходного каскада строчной развертки. Предлагаемая проверка может не только существенно сократить время поиска неисправности, но и, что самое главное, четко ответить на вопрос, неисправен этот каскад или нет. Тестирование проводят при выключенном телевизоре. Оно выявляет большинство дефектов строчных трансформаторов и отклоняющих систем. Этот метод тестирования можно использовать (по мнению автора) для проверки телевизоров как отечественного, так и импортного производства, причем как современных, так и самых старых, а также блоков развертки компьютерных мониторов и импульсных источников питания с соответствующим изменением параметров сигнала тестирующего устройства — нагрузочного тестера.

Суть метода нагрузочного тестирования состоит в том, что на выходной каскад строчной развертки подают малое напряжение питания (около 15 В), существенно меньшее номинального и заменяющее источник питания аппарата. Импульсы на выходе подключенного к нему тестера, следуя с частотой, например, 15625 Гц для телевизора, имитируют работу транзистора выходного каскада. При этом в строчном трансформаторе и отклоняющей катушке вырабатываются колебания, довольно точно отражающие его работу, только амплитуда возникающих в нем токов и напряжений примерно в 10 раз меньше рабочей амплитуды.

Используя такой тестер, а также миллиамперметр и осциллограф, проверяют работу выходного каскада. Практика показывает, что указанную проверку при поиске неисправностей в цепях строчной развертки целесообразно проводить всегда.

Принципиальная схема нагрузочного тестера представлена на рис. 1. Его полевой транзистор VT1 играет роль силового ключа, подключаемого в необходимой полярности к транзистору выходного каскада строчной развертки. На затвор полевого транзистора поступают импульсы с задающего генератора, собранного на микросхеме DD1. Длительность импульсов регулируют переменным резистором R4, а частоту следования — переменным резистором R1. Тумблер SA1 предназначен для переключения режимов проверки: «Тест.» или «Прозвонка» (об этом режиме будет рассказано дальше).

В режиме тестирования частоту генератора выставляют равной рабочей частоте импульсного преобразователя исследуемого устройства. Для строчной развертки телевизора она равна 15625 Гц, а для монитора VGA может быть 31,5 кГц или выше. В режиме «Прозвонка» частота генератора — около 1 кГц. Длительность импульсов и частоту для телевизора выбирают так, чтобы время открытого состояния полевого транзистора было равно 50, а закрытого состояния — 14 мкс.

Полевой транзистор зашунтирован защитным диодом VD1, повышающим надежность тестера. Он представляет собой быстродействующий пороговый ограничитель напряжения 350 В, защищающий транзистор от высоковольтных выбросов при тестировании. Можно, конечно, отказаться от его использования, но тогда это снизит надежность прибора.

Конструктивно тестер выполнен в виде платы с отдельным блоком питания. Тестер собран на печатной плате из односторонне фольгированного стеклотекстолита, чертеж которой представлен на рис. 2.

В устройстве применены переменные резисторы СП4-1 или любые другие, подходящие по габаритам, постоянные резисторы МЛТ, ОМЛТ, С2-ЗЗН и т. п. Конденсаторы С2, С6 — любые оксидные с минимальным током утечки, остальные — К10-17 или КМ. Конденсатор С5 припаивают между выводами питания микросхемы DD1 либо со стороны печатных проводников, либо со стороны деталей, расположив его над ней. В качестве выходных выводов («Выход» и «Общий») использованы гибкие контакты от разъемов длиной 15…20 мм.

Налаживание сводится к установке меток частоты и длительности импульсов, соответствующих режимам тестирования, на шкалах переменных резисторов.

Нагрузочный тестер «навешивают» на плату проверяемого устройства — припаивают два гибких вывода («Выход» и «Общий») платы к точкам пайки коллектора и эмиттера выходного транзистора (соответственно) тестируемой строчной развертки так, как видно на 1-й с. обложки. При этом нужно не забыть подать напряжение питания (+Uпит = 15 В) на ее выходной каскад. Схема подключения тестера и измерительных приборов к каскаду строчной развертки на примере импортного телевизора представлена на рис. 3.

Блоком питания тестера может служить любой источник постоянного напряжения 15 В, способный обеспечить ток до 500 мА.

Перейдем к самой проверке строчной развертки. Сначала проверяют (омметром) транзистор выходного каскада на пробой. Если он пробит, то перед началом тестирования его следует выпаять. В исправном состоянии транзистор не влияет на показания приборов.

Подключив тестер (по схеме на рис. 3), измеряют ток, потребляемый выходным каскадом. Если миллиамперметр покажет значение в пределах 10…70 мА, то это нормально для большинства выходных каскадов. Меньшее 10 мА значение указывает на наличие обрыва в цепях, а большее 70 мА (особенно более 100 мА) — на повышенное потребление тока выходным каскадом, строчным трансформатором или другими цепями, нагружающими источник основного питания аппарата. При этом включение телевизора, если не разобраться в причине явления, скорее всего, может вызвать либо срабатывание защиты блока питания, либо выход из строя выходного транзистора. В таком случае необходимо выяснить, почему увеличился потребляемый ток.

(нажмите для увеличения)

Пониженное потребление связано обычно с обрывами в элементах и цепях выходного каскада или потребителях энергии преобразуемой строчным трансформатором, например, в кадровой развертке. При повышенном потреблении нужно сначала определить, каким током оно вызвано — переменным или постоянным. Для этого их измеряют в двух режимах: переменный — при работе подключенного тестера, постоянный — при выключенном (закрытом) состоянии его выходного транзистора. Получить второй режим можно самыми разными способами. Например, просто отпаять вывод «Выход» от строчной развертки (что и делал автор). Однако для той же цели можно установить движок резистора R4 в крайнее верхнее (по схеме) положение или предусмотреть выключатель, замыкающий накоротко этот резистор.

Потребителями увеличенного постоянного тока служат конденсаторы с утечкой, пробитые полупроводниковые элементы или межобмоточное замыкание в выходном строчном трансформаторе (ТВС). Повышенное потребление переменного тока вызвано чаще всего межвитковым замыканием в ТВС, отклоняющей системе или других реактивных элементах, а также утечками во вторичных цепях ТВС.

Для того чтобы найти короткие замыкания или утечки во вторичных цепях ТВС, при измерениях выпрямленных напряжений можно использовать вольтметр постоянного тока. Следует помнить, что нагрузочный тестер только имитирует работу выходного каскада строчной развертки при напряжении питания, значительно меньшем номинального. При этом все вторичные выпрямленные и импульсные напряжения будут иметь значения, примерно на порядок -меньшие номинальных.

Если измеряемое импульсное или постоянное напряжение существенно ниже, то нужно проверить элементы в цепях: конденсатор фильтра или выпрямительный диод, а также микросхему кадровой развертки (если она питается от ТВС).

Однако ориентироваться только на потребление тока для принятия окончательного решения о неисправности или исправности строчной развертки нельзя. Точнее, низкое потребление тока не всегда свидетельствует об исправности строчной развертки. Так, выявлен ряд дефектов, когда при тестировании потребляемый ток остается в пределах нормы. Например, в телевизоре SONY- KV-2170 при замыкании обмотки диодно-каскадного строчного трансформатора (ТДКС) на напряжение 24 В (питание кадровой развертки) потребляемый ток с 18 мА возрастает всего до 26 мА, а замыкание накальной обмотки на том же ТДКС вызывает повышение тока до 130 мА. Вероятно, это объясняется различным расположением катушек на магнитопроводе ТДКС и разными индуктивными связями с основной обмоткой. Кроме того, например, в телевизоре PHILIPS — 21РТ136А потребляемый ток строчной развертки был равен 74 мА, а отключение всех нагрузок снизило его лишь до 70 мА. Это опять же не позволило однозначно судить о состоянии каскада.

Более точно сделать заключение о неисправности позволяет осциллограмма импульсов обратного хода на коллекторе ключевого транзистора. Осциллографом можно также измерить длительность этих импульсов, которая зависит от работы цепей выходного каскада, в основном строчного трансформатора, конденсаторов обратного хода, отклоняющей катушки и проходных конденсаторов в цепи отклоняющей катушки. Длительность импульса указывает на то, имеется ли в цепях строчного трансформатора и отклоняющей катушки нужное согласование по времени и достигнут ли резонанс.

Пробитые диоды, межвитковые замыкания обязательно искажают осциллограмму. При замыкании в цепях нагрузки осциллограмма имеет вид, как на рис. 4,б. При пробое выпрямительных диодов осциллограмма выглядит так, как на рис. 4, в или г.

Когда результаты нагрузочного тестирования покажут наличие неполадок в выходном каскаде строчной развертки, ремонтнику, конечно, захочется проверить его компоненты, включая строчный трансформатор и отклоняющую катушку. Но если обнаруживается лишь небольшое отклонение от нормы по нагрузке и по длительности импульсов, то с этими основными компонентами, скорее всего, все в порядке. В таком случае незачем тратить время на их тестирование. Лучше продолжить измерения при включенном телевизоре и найти источник неисправности. Так будет значительно быстрее.

Следует предостеречь от касания руками элементов развертки при тестировании, так как при работе нагрузочного тестера на коллекторе выходного транзистора, выводах строчного трансформатора и умножителя возникают все же довольно высокие напряжения.

Существуют неисправности, при которых длительность импульсов может быть на границе допустимых значений или даже изменяться. Это может свидетельствовать либо о слабом шунтировании обмоток трансформатора, либо об обрыве какой-нибудь из нагрузок.

Проверка рассмотренным способом может оказать большую помощь при замене строчных трансформаторов и отклоняющих систем, когда не удается найти оригинальную деталь и приходится довольствоваться аналогами.

Методом нагрузочного тестирования можно выявить такие редкие неисправности, как мерцающие замыкания. Они связаны в основном с дефектами элементов, которые проявляются эпизодически. Один из таких дефектов — перетирание изоляции витков перегретых, плохо натянутых или незакрепленных по технологическим требованиям обмоток импульсных трансформаторов. Неравномерный нагрев обмоток и их расширение, с учетом вибрации в магнитном поле, создают условия для локального разрушения изоляции и возникновения мерцающих межвитковых замыканий. Тогда силовые транзисторы выходят из строя как бы внезапно и беспричинно.

Указанные дефекты требуют специальных методов диагностики и именно с применением активного режима работы трансформатора.

Теперь перейдем к проверке индуктивных элементов нагрузочным тестером в режиме «Прозвонка», о котором было упомянуто вначале.

Существует много методик резонансных проверок трансформаторов с использованием генераторов 3Ч. Достоверность таких способов проверки такова, что, пытаясь проверить трансформатор, исследуя форму синусоиды или резонансную частоту обмотки, приходится часто только сожалеть о напрасно потраченном времени.

Ведь резонансная частота трансформатора зависит от числа витков, диаметра провода, свойств материала магнитопровода, ширины зазора. Много лет назад методом замыкания части витков катушки магнитной антенны (аналогично и в трансформаторе) резонанс смещали выше по частоте без особого ущерба для работы в резонансе. Поэтому витковые замыкания не сказываются на отсутствии резонанса, а только повышают его частоту, снижая добротность. Форма синусоиды на обмотке с замкнутыми витками может даже не искажаться. А может наблюдаться и несколько резонансов.

Одним из надежных способов проверки индуктивных элементов следует назвать прозвонку или оценку добротности. При выполнении прозвонки параллельно обмотке индуктивного элемента (строчного трансформатора, отклоняющей системы и т. п.) подключают конденсатор емкостью, например, 0,1 мкФ и подают импульсы с генератора длительностью около 10 мкс и частотой 1 …2 кГц. Для этой цели как раз и можно использовать задающий генератор нагрузочного тестера, установив переключатель SA1 в положение «Прозвонка» и отрегулировав частоту переменным резистором R1.

В образованном емкостью конденсатора и индуктивностью обмотки трансформатора параллельном колебательном контуре возникают затухающие через несколько циклов колебания (говорят: «контур звенит»). Скорость затухания зависит от добротности катушки. Если имеется короткозамкнутый виток, то колебания будут продолжаться не более трех периодов. При исправной катушке контур прозвонит 10 и более раз.

Прозвонку строчного трансформатора можно выполнить, даже не выпаивая его из платы телевизора. Необходимо только отключить цепь питания строчной развертки. Если проверяемый трансформатор исправен, то на экране осцилпографа появится осциллограмма, изображенная на рис. 5.

Если же колебания затухают значительно быстрее, например, как на рис. 6, то необходимо поочередно отключать цепи нагрузок вторичных обмоток, пока не появятся длительные колебания. В ином случае необходимо выпаять трансформатор из платы и окончательно убедиться в результатах обследования. Следует иметь в виду, что даже из-за одного замкнутого витка все катушки в трансформаторе звенеть не будут.

Так же можно найти замкнутые витки в отклоняющих системах и трансформаторах импульсных блоков питания.

И наконец, необходимо немного сказать о проверке ТДКС. Особенности их проверки связаны с тем, что умножитель высокого напряжения смонтирован в трансформаторе вместе с обмотками. Высоковольтные диоды умножителя могут быть пробиты, оборваны, иметь утечку, в результате чего анодное и фокусирующее напряжения могут быть занижены или отсутствовать вовсе, а нагрузочное тестирование каскада не позволяет четко разграничить поле поиска неисправности (обмотка, магнитопровод или умножитель). А ведь существуют способы восстановления ТДКС, если у него пробит фильтрующий высоковольтный конденсатор. Да и подобрать и заменить магнитопровод от другого трансформатора не представляет особой трудности.

Подав на первичную обмотку ТДКС импульсы, аналогичные импульсам выходного каскада строчной развертки, можно провести динамическое тестирование, проверить, как выпрямляются и умножаются подаваемые импульсы. Неисправный диод, обмотка или магнитопровод строчного трансформатора приведут к снижению выходного напряжения ТДКС. Динамическое тестирование выполняют тем же тестером, что и нагрузочное тестирование. Следует лишь так отрегулировать напряжение питания, подаваемое на первичную обмотку трансформатора, чтобы размах импульсов на стоке ключевого транзистора тестера был равен примерно 25 В. Измеряют выходное напряжение на аноде кинескопа относительно аквадага. Оно должно быть более 600 В.

Значения измеренного напряжения для исправного ТДКС должны соответствовать указанным в таблице.

Так, например, если в нормально работающем телевизоре амплитуда импульсов на коллекторе выходного транзистора строчной развертки равна 900 В, а напряжение на аноде кинескопа — 25 кВ, то при проверке ТДКС по указанной выше методике на выходе умножителя должно присутствовать напряжение около 695 В (в таблице эти значения выделены жирным шрифтом).

Рассмотренный принцип проверки строчной развертки положен в основу работы многих фирменных приборов. Однако по цене они недоступны рядовым радиолюбителям и частным ремонтникам. А описанный здесь простой тестер может вполне заменить такие приборы.

Смотрите другие статьи раздела .

Читайте и пишите полезные

А.Гапеенков

Ни для кого не секрет, что в импортных телевизорах чаще всего встречаются такие неисправности как выход из строя ключевого транзистора строчной развертки, микросхемы кадровой развертки, ключевого транзистора или микросхемы источника питания.

Думаю, все со мной согласятся, что это наиболее дорогие детали телевизора. И если в процессе ремонта по какой-либо причине они выходят из строя повторно, то такой ремонт может влететь в копеечку.

Поэтому предлагаю ознакомиться с моей методикой «борьбы» с данного рода дефектами, позволяющей снизить на 90% вероятность повторного пробоя силовых радиоэлементов.

Основные причины, по которым происходит повторный «пробой» указанных выше элементов, — следующие.

Во-первых, не всегда удается во-время локализовать неисправные элементы схемы, которые, как правило, выходят из строя вместе с силовыми транзисторами в источниках питания телевизоров.

Во-вторых, в случае неисправности строчной развертки не всегда можно сразу определить дефект источника питания, из-за которого на строчную развертку подается повышенное напряжение питания.

Итак, если у вас «сгорел» транзистор строчной развертки, не ограничивайтесь только его заменой. Сам по себе он «горит» редко — значит нужно искать первопричину неисправности. Сначала проверьте все элементы вокруг этого транзистора, неисправные, естественно, замените. Затем проверьте на короткое замыкание диоды во вторичных цепях строчного трансформатора и радиоэлементы, установленные после них. Выход из строя этих элементов (в частности — микросхемы кадровой развертки) свидетельствует о том, что, возможно, со вторичных цепей строчного трансформатора поступало повышенное напряжение питания. А это, в свою очередь, может быть связано с тем, что на строчную развертку подается повышенное напряжение питания.

Есть еще одна причина, по которой может «гореть» строчный транзистор. Это короткое замыкание витков первичной или любой из вторичных обмоток строчного трансформатора. Не зная активного сопротивления обмоток трансформатора, очень сложно проверить исправность данного узла.

В некоторых случаях проверить трансформатор можно по методике, описанной в (рис. 1).

Через конденсатор С емкостью 0,1 мкФ к первичной обмотке I трансформатора Тр подключают генератор звуковой частоты и по осциллографу контролируют форму напряжения на этой обмотке. Если трансформатор исправен, то напряжение будет синусоидальным, а при изменении частоты генератора форма напряжения должна сохраняться и, кроме того, должен наблюдаться резонанс на определенной частоте, которая зависит от индуктивности обмотки и емкости конденсатора. Если синусоидальная форма напряжения искажена, то можно сделать вывод о неисправности строчного трансформатора.

Допустим, узлы строчной развертки в порядке. Тогда следует проверить работоспособность источника питания. Очень часто встречается неисправность данного узла, в результате которой источник питания выдает повышенное напряжение на узлы телевизора. Причина тому — неисправность схемы стабилизации выходных напряжений, где, как правило, применяются оксидные конденсаторы, которые со временем «высыхают». Реже неисправность связана с выходом из строя полупроводниковых приборов в этом узле.

Чтобы проверить, как работает источник питания, надо отключить от него схему строчной развертки и подключить эквивалентную нагрузку Rн сопротивлением 300…600 Ом (рис. 2).

Остальные узлы телевизора тоже желательно отключить от источника напряжения. При этом показания вольтметра, в зависимости от модели телевизора, должны составлять 110…135 В. Если при изменении нагрузки, скажем, с 300 на 600 Ом, напряжение вторичной цепи не изменилось, то источник питания исправен. Если же напряжение увеличилось, то это говорит о том, что неисправна схема стабилизации напряжений.

Следует устранить дефект и проверить источник питания снова по той же методике. Соблюдайте осторожность на данном этапе ремонта. Внимательно следите за показаниями вольтметра. Если напряжение в цепи питания строчной развертки выше 200 В, то возможен перегрев и взрыв фильтрующих оксидных конденсаторов.

Если источник питания был изначально неисправен (т.е. вы заменили ключевой транзистор и, возможно, его внешние элементы или силовую микросхему источника питания), то желательно перед включением в сеть обезопасить силовые элементы источника питания от повторного пробоя путем подсоединения ограничительного резистора Rогр в разрыв цепи коллектор транзистора — первичная обмотка трансформатора, как показано на рис. 3.


Такая предосторожность необходима для того, чтобы исключить возможность пробоя транзистора в той ситуации, когда он может быть постоянно открыт из-за неисправности схемы управления.

Номинал резистора Rогр выбирается в пределах 50…100 Ом.(Вполне подойдет 100 Вт лампа). Если источник питания «задышал», т.е. на коллекторе транзистора появились импульсы, то резистор можно отключить от схемы. Если нет, то необходимо найти неисправный элемент, который мешает нормальной работе источника питания.

Наконец, вы отремонтировали источник питания и строчную развертку. Теперь пора восстановить все ранее сделанные изменения в схеме и включить телевизор. Но! А вдруг все же неисправен строчный трансформатор? Тогда снова возможен пробой транзистора. Поэтому желательно, на всякий случай, поставить ограничительный резистор в коллекторную цепь выходного транзистора строчной развертки (рис. 4).

Если на экране осциллографа вы наблюдаете строчные импульсы без искажений, то ремонт можно считать состоявшимся. Убирайте все лишние элементы и включайте телевизор. Надеюсь, он заработал. Удачи вам в этом нелегком труде.

Литература
1. А. В. Родин, Н. А. Тюнин. Ремонт импортных телевизоров. Серия «Ремонт», выпуск 7. М.: Солон, 1997.

Меняешь сгоревший строчный транзистор, телевизор включается, растр нормальный через минуту снова горит


строчный транзистор, и замерять ничего не успеваешь.

Выход из строя транзистора строчной развертки наверно наиболее часто встречающаяся неисправность в телевизорах. Строчная развертка основная нагрузка для блока питания и является по сути дополнительным БП, с которого снимается напряжение для кадровой развертки, видеоусилителей и т. д. Хорошо, когда ремонт заканчивается с заменой строчного транзистора, но иногда строчный транзистор после замены, сразу или немного спустя, снова выходит из строя.

И так если после замены строчного транзистора, сразу или через некоторое время он снова выходит из строя, необходимо обратить внимание на следующее:


  1. Не завышено ли напряжение питания строчной развертки НОТ.

  2. Греется ли перед выходом из строя транзистор или нет. Если транзистор греется, то это говорит о том , что нагрузка на него больше чем положено. В данном случае неисправны, могут быть как строчный трансформатор, так и цепи нагруженные на него. Необходимо проверить конденсатор по питанию задающего трансформатора (ТМС). В этом случае происходит изменение строчного импульса запуска. Транзистор строчной развертки будет перегреваться и закончится тепловым пробоем.

  3. Если транзистор не греется, то причина кроется, чаще всего, в холодных пайках, в цепях, через которые поступают строчные импульсы на базу транзистора. Особенно необходимо обратить внимание на согласующий трансформатор драйвера строчной развертки, включенного в цепь транзистора выходного каскада строчной развертки. Плохой контакт разъема отклоняющей системы, так же может стать причиной того, что пробивает строчный транзистор, проверьте соединение проводов в самом разъеме. Короткое замыкание в отклоняющих катушках.

  4. Брак транзистора.
Рассмотрим для примера несколько схем. Строчная развертка телевизора Erisson 21F7:

Проверить 2SC2482, C451, C453, T450, С455, С455А.


Строчная развертка телевизора POLAR 51CTV-4029

К проверке: C401, C403, VT401, T401, C402.

Как проверить строчный транзистор предварительно в схеме не выпаивая ? Между базой и эмиттером мультиметр будет показывать короткое замыкание, так как сопротивление будет измеряться через трансформатор, переходы: Б-К и Э-К если они исправны, будут «звониться» в одну сторону. Но лучше проверять все таки выпаивая.

Проверить строчный трансформатор можно так, выпаиваем трансформатор и вместо него впаиваем две ножки трансформатора ТВС-110ПЦ15, девятую и двенадцатую. Включаем телевизор, и если на трансформаторе появилось высокое напряжение, а строчный транзистор перестал греться, то вероятно сгорел ТДКС (при условии что элементы обвязки исправны и будьте осторожны вывод на умножитель под напряжением 8,5 кВ).

Строчный транзистор (HOT) выходит из строя (пробивается) по двум основным причинам.

Первая — тепловой пробой из-за изменения формы импульсов запуска строчного транзистора. Короткое замыкание в строчном трансформаторе (FBT) тоже может стать причиной теплового пробоя.

Вторая — пробой по напряжению в основном из-за блока питания и микротрещин. Вот несколько основных причин.

Завышено напряжение питание строчной развертки НОТ.

Холодные пайки (кольцевые трещины) в блоке строчной развертки. Пропаять в обязательном порядке трансформатор межкаскадный строчный ТМС, осмотреть плату и устранить подозрительные пайки в элементах строчной развертки.

Конденсатор по питанию ТМС. В этом случае происходит изменение строчного импульса запуска. Транзистор строчной развертки будет перегреваться и закончится тепловым пробоем. Еще один неправильный выход установить транзистор помощнее, ампер так под 25…30 (Для проверки-можно).

Плохой контакт разъема отклоняющей системы, могут так же стать причиной выхода из строя HOT. Причем отсутствие кольцевых трещин по ОС не означает, что контакт хороший. Проверьте соединение проводов в самом разъеме. Короткое замыкание в отклоняющих катушках.

Почему выходит из строя строчный транзистор? Строчный транзистор выбивает по двум основным причинам:


  • Первая-тепловой пробой из-за изменения формы импульсов запуска строчного транзистора. Короткое замыкание в строчном трансформаторе (РВТ) тоже может стать причиной теплового пробоя.

  • Вторая-пробой по напряжению в основном из-за блока питания и микротрещин.
Опять сгорел выходной транзистор в строчной развертке! Вот несколько основных причин:

  1. Завышено напряжение питание строчной развертки НОТ.

  2. Неисправны конденсаторы в коллекторных цепях транзистора.

  3. Холодные пайки (кольцевые трещины) в блоке строчной развертки. Пропаять в обязательном порядке трансформатор межкаскадный строчный ТМС, осмотреть плату и устранить подозрительные пайки в элементах строчной развертки.

  4. Конденсатор по питанию задающего трансформатора (ТМС). В этом случае происходит изменение строчного импульса запуска. Транзистор строчной развертки будет перегреваться и закончится тепловым пробоем. Некоторые мастера по незнанию выходят из положения тем , что ставят в телевизор дополнительные радиаторы. Со временем телевизор может потяжелеть даже на полкилограмма алюминия. Еще один неправильный выход установить транзистор помощнее, ампер так под 25…30.

  5. Плохой контакт разъема отклоняющей системы, могут так же стать причиной выхода из строя строчного транзистора. Причем отсутствие кольцевых трещин по ОС не говорит, что контакт хороший. Проверьте соединение проводов в самом разъеме.

  6. Короткое замыкание в отклоняющих катушках. Например, в телевизоре LG (Goldstar) шасси МС-84А модели CF-21DЗЗ, CF-21DЗЗ E , CF-20К51КЕ, шасси МС-994А модели CF-21F39, где установлена отклоняющая система Pianzhuan QРС 29-90-54. Многократно подтвержден факт выхода из строя строчного транзистора из-за межвиткового пробоя строчной отклоняющей системы.

  7. Прострелы строчного трансформатора могут выводить строчный транзистор из строя.

  8. Диоды, резисторы в СР проверить ?

  9. Не пропаяны выводы или неисправен кварц 500 кГц.

  10. Вы приобрели некачественные, некондиционные или перетертые транзисторы. К сожалению, данная проблема для наших дней становится все более актуальной. Непорядочные коммерсанты идут на всяческие ухищрения, чтобы заработать, как можно больше. Это самое настоящее мошенничество. На сайте www.telemaster.ru в разделе ФУФЛЯНДИЯ вы можете прочитать, а также прислать ваши наработки в области радио мошенничества. Каждый из нас сталкивается или сталкивался с этим неприятным обстоятельством.
Если горит от перегрева, то надо осциллографом посмотреть на базе выходного строчного транзистора размах отрицательного закрывающего выброса. Если он меньше -5 В, то надо копать буферный каскад. Может конденсатор на фильтре питания буфера потек, может неисправен предвыходной буферный транзистор (потеря усиления). Проверить электролитические конденсаторы в блоке питания. Проверять электролитические конденсаторы в блоке питания на момент усыхания удобней всего осциллографом. Подключая его, легко заметить пульсации по тем цепям, которые нуждаются в замене фильтров питания (конденсатором).

Примеры:


Panasonic TC21B3EE. Периодически выходит из строя строчный транзистор. Надо пропаять переходной трансформатор строчной развертки. Также в блоке питания всегда есть холодные пауки (кольцевые трещины).

SONY KV29C3. Выходит из строя строчный транзистор 2SC3997. В таких случаях меняют IC403 SDA9361 и кварц Х401.

SONY 21DK2. Выходит из строя строчный транзистор через 1…2 дня. В телевизоре на микросхеме 1213 подключен кварц. По возможности — заменить его новым.

JVC 21ZE, JVC 21 дюйм. Присутствует та же неисправность, лично 3 транзистора сжег.

PALLADIUM шасси 991, произведено IMPERIAL. Через 5…10 минут выходной транзистор строчной развертки и демпферный диод перегреваются. Напряжение питания строчной развертки в норме. Предвыходной каскад выполнен на TDA8143. В этом случае необходимо заменить неисправный конденсатор с 1-й предвыходного трансформатора строчной развертки на базу строчного транзистора. Если проблема не будет устранена заменить трансформатор строчной развертки.

SARP 70ES14. Выходит из строя строчный транзистор через некоторое время — заменить С607 (330 мкФ х 10 В).

PANASONIC TC 29V50. Горит строчный транзистор. Непропай трансформатора драйвера ТМС, ну и, конечно, убедится в исправности конденсатора на 1500 В подключенного к коллектору выходного транзистора.

VESTEL модель 7216 GST PIP шасси 11АК19В-1. Горит строчный транзистор — проверить ТМС. Все эти турецкие шасси страдают от непропаев на соединителе отклоняющих катушек и вообще в районе строчной развертки.

NORDMENDE SPECTRA C55. Горит строчный транзистор — проверить ТМС.

SARP 70CS-03S. Периодически выходит из строя строчный транзистор. Проверить D609, D610, С601, С619, заменить С604 и проверить разьем на отклоняющей системе, возможно образование холодной пайки. Выходной транзистор ставить только BUH515.

SONY KV29C3 , шасси АЕ4. Выгорает строчный транзистор. Ищите неконтакт по базовой цепи строчного транзистора: обычно кольцевые трещины в ТМС, или резисторе в базе выходного и предвыходного транзистора.

Смотрите: таблица — выходные транзисторы строчной развертки, БП и их аналоги.

При ремонте различной электронной аппаратуры первостепенной задачей является
определение неисправности . Зачастую поиск причины выхода из строя того или иного устройства занимает гораздо больше времени, чем её устранение.
Данная статья предлагает некую методику поиска неисправности в современных телевизорах. Когда встречаются ситуации, что телевизор не подаёт никаких признаков жизни, я стараюсь придерживаться именно этого метода выявления поломки.
Итак, с чего следует начинать.
Для начала, после «вскрытия» аппарата, нужно очистить его «нутро» от пыли. Можно воспользоваться небольшой кистью и пылесосом, а можно как-нибудь по-другому, главное результат.

После чистки нужно внимательно осмотреть плату на предмет видимых глазу дефектов радиокомпонентов (вздутые конденсаторы, почерневшие резисторы и сопротивления, пробитые буквальным образом микросхемы или транзисторы и выгоревшие дорожки). Также следует обратить внимание на «пушку» кинескопа: если она прозрачная, то всё хорошо, если молочно-белого цвета, то кинескоп неисправен (вышел вакуум). Если визуально обнаружить неисправность не удалось, то проверьте кабель питания телевизора и защитный предохранитель. Также следует проверить сетевую кнопку включения телевизора.

Если сгорел предохранитель, то не спешите менять его и включать аппарат, так как он может гореть от короткого замыкания в цепи питания и неисправного позистора (как менять позистор читайте ).

Затем переходим к проверке блока питания. Для этого нужно отключить нагрузку, а именно выходной каскад строчной развёртки и вместо него подключаем лампу 220В и 60…100Вт. В зависимости от размера кинескопа напряжение питания строчной развёртки (СР) варьируется от110 до 150 В. Находим во вторичных цепях конденсатор фильтра питания СР (обычно он имеет номинал 47…220мкф 160…200В), который стоит после выпрямителя питания СР и параллельно ему и подключаем лампу накаливания, имитируя нагрузку. Чтобы отключить нагрузку, находим после этого конденсатора дроссель, ограничительный резистор или предохранитель (иногда просто перемычка), через который поступает питание на каскад СР и отпаиваем его.

Из-за неисправности элементов обвязки в блоке питания (БП), при включении может выйти из строя ключевой транзистор или микросхема БП. Чтобы этого не случилось БП нужно включать через ещё одну лампу 220В 100…150Вт, которая послужит в качестве предохранителя. Если при включении эта лампа ярко горит, то следует проверить входные цепи, выпрямитель (диодный мост) сетевой, силовой конденсатор и ключевой элемент БП (транзистор или микросхема). А если лампа загорелась и погасла или стала светиться слабо, то, скорее всего, блок питания в норме и далее нужно отсоединить эту лампу и дальнейшую диагностику производить без неё.

Теперь включите БП и замерьте напряжение на нагрузке: если кинескоп диагональю 20…21 дюймов, напряжение должно быть 110…130В, если диагональ кинескопа 25…29 дюймов, то 130…150В.
При превышении этих значений нужно проверить элементы в первичной цепи БП и цепи обратной связи. Также следует обратить внимание на электролитические конденсаторы, ёмкость которых при высыхании уменьшается и это приводит к нестабильной работе и повышению напряжений.
При заниженных напряжениях нужно проверить вторичные цепи на предмет замыканий и больших утечек. Также нужно проверить защитные диоды в питании СР, если таковые имеются (обычно это R2K, R2M или аналогичные). Также следует проверить защитные диоды в цепи питания кадровой развёртки (КР).
Убедившись, что БП исправен, убираем лампу, которую использовали вместо нагрузки, и впаиваем обратно элемент, который выпаивали чтобы отключить СР, тем самым восстанавливаем цепь питания СР.
Строчная развёртка

Чтобы проверить СР, желательно вновь установить лампу накаливания в качестве предохранителя. Если при включении лампа загорится и погаснет или будет слабо светиться, то выходной каскад СР исправен. Если же лампа загорелась и продолжает ярко светить, проверьте исправность выходного транзистора СР. При исправном транзисторе и отсутствии высокого напряжения, нужно проверить наличие на базе этого транзистора управляющих импульсов. Если напряжения и импульсы в норме, то следующим шагом будет .

Есть ещё одна поломка СР, благодаря которой БП не включается, а лампа, которая включена вместо предохранителя, ярко светится – это неисправность строчных отклоняющих катушек (пробой). Если эти катушки отсоединить и после этого телевизор включится, то неисправна отклоняющая система (ОС).
Кадровая развёртка

Проверку кадровой развёртки (КР) следует начинать с измерения напряжения питания, которое, в большинстве случаев, берётся с обмотки строчного трансформатора. В первую очередь нужно проверить ограничивающий резистор, через который подаётся питание. Также часто выходит из строя выпрямительный диод в цепи питания КР и, собственно, сама кадровая микросхема. Очень-очень редко бывает межвитковое замыкание в кадровых отклоняющих катушках. Проверку этих катушек лучше производить заменой.

Питание кинескопа
Если блоки питания и развёрток исправны, а экран телевизора не светится, то, в первую очередь, нужно проверить питание на накал кинескопа – оно должно быть в пределах 6…8В. Если напряжение поступает, проверьте целостность нити накала кинескопа.
Совет: если произошёл обрыв накальной обмотки в ТДКС, можно на сердечнике этого же трансформатора намотать новую обмотку – 3…6 витков провода МГТФ 0,14.
Блок цветности, видеоусилитель, радиоканал
При исправной развёртки и свечении экрана, но отсутствии изображения, можно по некоторым признакам определить неисправность того или иного блока:
Отсутствие изображения и звука указывает на неисправность радиоканала – видеопроцессор и тюнер.
Отсутствие изображения, но наличие звука указывает на поломку в блоке цветности или видеоусилителе.
Если есть изображение, но нет звука, нужно проверить УНЧ или видеопроцессор.
Блок управления
Следует сразу сказать, что при ремонте блока управления (БУ) желательно иметь необходимые данные на процессор управления (схема, даташит), которые можно найти в интернете.
Признаки, указывающие на неисправность БУ: тв не включается, не реагирует на кнопки управления и пульт, не регулируется громкость, яркость, контрастность и другие параметры, не настраиваются или не сохраняются каналы.
При не включении тв нужно проверить питание на процессор управления и работу тактового генератора (ТГ). Далее нужно выяснить идёт ли сигнал с процессора на схему включения (обозначается на процессоре «power» или «stand-by»): если сигнал поступает, ищем неисправность в схеме включения; если нет – меняем процессор.
Если тв не реагирует на пульт управления, следует . Если он исправен, нужно проверить путь сигнала от фотоприёмника до процессора. Если на вход процессора сигнал поступает, а на выходе нет никаких изменений, то, скорее всего, процессор неисправен.
Такой же принцип проверки действует и для кнопок управления на панели тв.
Всё это, конечно, лишь малая часть неисправностей, которые могут быть в телевизорах, но если бы, в своё время, у меня была такая инструкция по отыскиванию неисправных блоков, это намного облегчило бы мне моё начало деятельности на поприще мастера.

Всем привет. Сегодня на ремонте телевизор Rainford 5581 с типичной неисправностью «не включается». При подаче напряжения, телевизор издавал так называемое «цыкание», что свидетельствовало о неисправности строчной развертки.

Так как строчная развертка в этих телевизорах построена на транзисторах типа BU808df или его аналоге C5388 , которых в продаже уже нет, вместо них я устанавливал сборку из двух транзисторов. Весь процесс сборки данной замены описан

В этот раз я решил пойти другим путем, который мне подсказал знакомый мастер. Суть заключается в установке обычного строчного транзистора вместо BU808DF с маленькой доработкой схемы, но об этом немного позже.

Итак, после разборки телевизора, мое предположение подтвердилось, и C5388 был пробит.

Плата вся была перепаяна, видимо этот телевизор уже побывал в ремонте не один раз. Причиной выхода из строя строчного транзистора послужила высохшая емкость с613 , которую уже когда-то меняли, и установили 10 мкф на 63вольта.

Я почти уверен, что если бы предыдущие мастера поставили хотя бы 22 мкф на 63 вольта, то еще год-другой телевизор проработал бы точно.

Переделка на схемы.

Для того, чтобы переделать схему нам необходимо произвести такие действия:


Транзистор должен быть качественным, а не подделкой. Косвенно определить качество транзистора можно проверив сопротивление между эмиттером и базой. У нормального транзистора оно обычно составляет около 50 ОМ , но не больше. Меньше допускается.

Включив телевизор, меряем температуру. После 10 мин работы она не должна превышать 70 градусов, если больше, то транзистор из плохой серии, тогда рекомендую использовать . У меня температура составила около 65 градусов, через час температура была 71 градус, что считаю нормальным результатом.

Всем спасибо за просмотр.


Рабочая температура транзистора строчной развертки. Горит строчный транзистор у кого так не было, меняешь сгоревший строчный транзистор

Тестирование строчной развертки при малом напряжении питания

Сложности, возникающие при поиске неисправностей в телевизоре, особенно в блоке строчной развертки, знакомы многим радиолюбителям и ремонтникам. Для их решения автор публикуемой здесь статьи предлагает использовать простой тестер. Он позволяет проверить работу не только выходного каскада строчной развертки телеаизоров и мониторов, но и импульсных источников питания, а также входящих в такие устройства индуктивных элементов.

При ремонте телевизоров, особенно современных, нередко встречаются неисправности, поиск и устранение которых вызывает определенные трудности не только у радиолюбителей, но и у телемастеров. Значительная их доля связана с дефектами строчной развертки. По настоящему актуальной эта проблема стала с появлением на отечественном рынке, а значит, и в ремонтных мастерских, телевизоров с цифровым управлением и обработкой сигналов, так как процесс поиска и устранения неисправностей в них связан со спецификой их работы. Об этом подробно рассказано в книге П. Ф. Гаврилова и А. Я. Дедова «Ремонт цифровых телевизоров» (М.: Радиотон, 1999). Дело в том, что малейшее отклонение в режимах работы узлов строчной развертки таких телевизоров вызывает блокировку как ее процессоров, так и блока питания, а следовательно, возникают трудности с их запуском для традиционной проверки.

Решить в большинстве случаев возникающие проблемы позволяет так называемое нагрузочное тестирование выходного каскада строчной развертки. Предлагаемая проверка может не только существенно сократить время поиска неисправности, но и, что самое главное, четко ответить на вопрос, неисправен этот каскад или нет. Тестирование проводят при выключенном телевизоре. Оно выявляет большинство дефектов строчных трансформаторов и отклоняющих систем. Этот метод тестирования можно использовать (по мнению автора) для проверки телевизоров как отечественного, так и импортного производства, причем как современных, так и самых старых, а также блоков развертки компьютерных мониторов и импульсных источников питания с соответствующим изменением параметров сигнала тестирующего устройства — нагрузочного тестера.

Суть метода нагрузочного тестирования состоит в том, что на выходной каскад строчной развертки подают малое напряжение питания (около 15 В), существенно меньшее номинального и заменяющее источник питания аппарата. Импульсы на выходе подключенного к нему тестера, следуя с частотой, например, 15625 Гц для телевизора, имитируют работу транзистора выходного каскада. При этом в строчном трансформаторе и отклоняющей катушке вырабатываются колебания, довольно точно отражающие его работу, только амплитуда возникающих в нем токов и напряжений примерно в 10 раз меньше рабочей амплитуды.

Используя такой тестер, а также миллиамперметр и осциллограф, проверяют работу выходного каскада. Практика показывает, что указанную проверку при поиске неисправностей в цепях строчной развертки целесообразно проводить всегда.

Принципиальная схема нагрузочного тестера представлена на рис. 1. Его полевой транзистор VT1 играет роль силового ключа, подключаемого в необходимой полярности к транзистору выходного каскада строчной развертки. На затвор полевого транзистора поступают импульсы с задающего генератора, собранного на микросхеме DD1. Длительность импульсов регулируют переменным резистором R4, а частоту следования — переменным резистором R1. Тумблер SA1 предназначен для переключения режимов проверки: «Тест.» или «Прозвонка» (об этом режиме будет рассказано дальше).

В режиме тестирования частоту генератора выставляют равной рабочей частоте импульсного преобразователя исследуемого устройства. Для строчной развертки телевизора она равна 15625 Гц, а для монитора VGA может быть 31,5 кГц или выше. В режиме «Прозвонка» частота генератора — около 1 кГц. Длительность импульсов и частоту для телевизора выбирают так, чтобы время открытого состояния полевого транзистора было равно 50, а закрытого состояния — 14 мкс.

Полевой транзистор зашунтирован защитным диодом VD1, повышающим надежность тестера. Он представляет собой быстродействующий пороговый ограничитель напряжения 350 В, защищающий транзистор от высоковольтных выбросов при тестировании. Можно, конечно, отказаться от его использования, но тогда это снизит надежность прибора.

Конструктивно тестер выполнен в виде платы с отдельным блоком питания. Тестер собран на печатной плате из односторонне фольгированного стеклотекстолита, чертеж которой представлен на рис. 2.

В устройстве применены переменные резисторы СП4-1 или любые другие, подходящие по габаритам, постоянные резисторы МЛТ, ОМЛТ, С2-ЗЗН и т. п. Конденсаторы С2, С6 — любые оксидные с минимальным током утечки, остальные — К10-17 или КМ. Конденсатор С5 припаивают между выводами питания микросхемы DD1 либо со стороны печатных проводников, либо со стороны деталей, расположив его над ней. В качестве выходных выводов («Выход» и «Общий») использованы гибкие контакты от разъемов длиной 15…20 мм.

Налаживание сводится к установке меток частоты и длительности импульсов, соответствующих режимам тестирования, на шкалах переменных резисторов.

Нагрузочный тестер «навешивают» на плату проверяемого устройства — припаивают два гибких вывода («Выход» и «Общий») платы к точкам пайки коллектора и эмиттера выходного транзистора (соответственно) тестируемой строчной развертки так, как видно на 1-й с. обложки. При этом нужно не забыть подать напряжение питания (+Uпит = 15 В) на ее выходной каскад. Схема подключения тестера и измерительных приборов к каскаду строчной развертки на примере импортного телевизора представлена на рис. 3.

Блоком питания тестера может служить любой источник постоянного напряжения 15 В, способный обеспечить ток до 500 мА.

Перейдем к самой проверке строчной развертки. Сначала проверяют (омметром) транзистор выходного каскада на пробой. Если он пробит, то перед началом тестирования его следует выпаять. В исправном состоянии транзистор не влияет на показания приборов.

Подключив тестер (по схеме на рис. 3), измеряют ток, потребляемый выходным каскадом. Если миллиамперметр покажет значение в пределах 10…70 мА, то это нормально для большинства выходных каскадов. Меньшее 10 мА значение указывает на наличие обрыва в цепях, а большее 70 мА (особенно более 100 мА) — на повышенное потребление тока выходным каскадом, строчным трансформатором или другими цепями, нагружающими источник основного питания аппарата. При этом включение телевизора, если не разобраться в причине явления, скорее всего, может вызвать либо срабатывание защиты блока питания, либо выход из строя выходного транзистора. В таком случае необходимо выяснить, почему увеличился потребляемый ток.

(нажмите для увеличения)

Пониженное потребление связано обычно с обрывами в элементах и цепях выходного каскада или потребителях энергии преобразуемой строчным трансформатором, например, в кадровой развертке. При повышенном потреблении нужно сначала определить, каким током оно вызвано — переменным или постоянным. Для этого их измеряют в двух режимах: переменный — при работе подключенного тестера, постоянный — при выключенном (закрытом) состоянии его выходного транзистора. Получить второй режим можно самыми разными способами. Например, просто отпаять вывод «Выход» от строчной развертки (что и делал автор). Однако для той же цели можно установить движок резистора R4 в крайнее верхнее (по схеме) положение или предусмотреть выключатель, замыкающий накоротко этот резистор.

Потребителями увеличенного постоянного тока служат конденсаторы с утечкой, пробитые полупроводниковые элементы или межобмоточное замыкание в выходном строчном трансформаторе (ТВС). Повышенное потребление переменного тока вызвано чаще всего межвитковым замыканием в ТВС, отклоняющей системе или других реактивных элементах, а также утечками во вторичных цепях ТВС.

Для того чтобы найти короткие замыкания или утечки во вторичных цепях ТВС, при измерениях выпрямленных напряжений можно использовать вольтметр постоянного тока. Следует помнить, что нагрузочный тестер только имитирует работу выходного каскада строчной развертки при напряжении питания, значительно меньшем номинального. При этом все вторичные выпрямленные и импульсные напряжения будут иметь значения, примерно на порядок -меньшие номинальных.

Если измеряемое импульсное или постоянное напряжение существенно ниже, то нужно проверить элементы в цепях: конденсатор фильтра или выпрямительный диод, а также микросхему кадровой развертки (если она питается от ТВС).

Однако ориентироваться только на потребление тока для принятия окончательного решения о неисправности или исправности строчной развертки нельзя. Точнее, низкое потребление тока не всегда свидетельствует об исправности строчной развертки. Так, выявлен ряд дефектов, когда при тестировании потребляемый ток остается в пределах нормы. Например, в телевизоре SONY- KV-2170 при замыкании обмотки диодно-каскадного строчного трансформатора (ТДКС) на напряжение 24 В (питание кадровой развертки) потребляемый ток с 18 мА возрастает всего до 26 мА, а замыкание накальной обмотки на том же ТДКС вызывает повышение тока до 130 мА. Вероятно, это объясняется различным расположением катушек на магнитопроводе ТДКС и разными индуктивными связями с основной обмоткой. Кроме того, например, в телевизоре PHILIPS — 21РТ136А потребляемый ток строчной развертки был равен 74 мА, а отключение всех нагрузок снизило его лишь до 70 мА. Это опять же не позволило однозначно судить о состоянии каскада.

Более точно сделать заключение о неисправности позволяет осциллограмма импульсов обратного хода на коллекторе ключевого транзистора. Осциллографом можно также измерить длительность этих импульсов, которая зависит от работы цепей выходного каскада, в основном строчного трансформатора, конденсаторов обратного хода, отклоняющей катушки и проходных конденсаторов в цепи отклоняющей катушки. Длительность импульса указывает на то, имеется ли в цепях строчного трансформатора и отклоняющей катушки нужное согласование по времени и достигнут ли резонанс.

Пробитые диоды, межвитковые замыкания обязательно искажают осциллограмму. При замыкании в цепях нагрузки осциллограмма имеет вид, как на рис. 4,б. При пробое выпрямительных диодов осциллограмма выглядит так, как на рис. 4, в или г.

Когда результаты нагрузочного тестирования покажут наличие неполадок в выходном каскаде строчной развертки, ремонтнику, конечно, захочется проверить его компоненты, включая строчный трансформатор и отклоняющую катушку. Но если обнаруживается лишь небольшое отклонение от нормы по нагрузке и по длительности импульсов, то с этими основными компонентами, скорее всего, все в порядке. В таком случае незачем тратить время на их тестирование. Лучше продолжить измерения при включенном телевизоре и найти источник неисправности. Так будет значительно быстрее.

Следует предостеречь от касания руками элементов развертки при тестировании, так как при работе нагрузочного тестера на коллекторе выходного транзистора, выводах строчного трансформатора и умножителя возникают все же довольно высокие напряжения.

Существуют неисправности, при которых длительность импульсов может быть на границе допустимых значений или даже изменяться. Это может свидетельствовать либо о слабом шунтировании обмоток трансформатора, либо об обрыве какой-нибудь из нагрузок.

Проверка рассмотренным способом может оказать большую помощь при замене строчных трансформаторов и отклоняющих систем, когда не удается найти оригинальную деталь и приходится довольствоваться аналогами.

Методом нагрузочного тестирования можно выявить такие редкие неисправности, как мерцающие замыкания. Они связаны в основном с дефектами элементов, которые проявляются эпизодически. Один из таких дефектов — перетирание изоляции витков перегретых, плохо натянутых или незакрепленных по технологическим требованиям обмоток импульсных трансформаторов. Неравномерный нагрев обмоток и их расширение, с учетом вибрации в магнитном поле, создают условия для локального разрушения изоляции и возникновения мерцающих межвитковых замыканий. Тогда силовые транзисторы выходят из строя как бы внезапно и беспричинно.

Указанные дефекты требуют специальных методов диагностики и именно с применением активного режима работы трансформатора.

Теперь перейдем к проверке индуктивных элементов нагрузочным тестером в режиме «Прозвонка», о котором было упомянуто вначале.

Существует много методик резонансных проверок трансформаторов с использованием генераторов 3Ч. Достоверность таких способов проверки такова, что, пытаясь проверить трансформатор, исследуя форму синусоиды или резонансную частоту обмотки, приходится часто только сожалеть о напрасно потраченном времени.

Ведь резонансная частота трансформатора зависит от числа витков, диаметра провода, свойств материала магнитопровода, ширины зазора. Много лет назад методом замыкания части витков катушки магнитной антенны (аналогично и в трансформаторе) резонанс смещали выше по частоте без особого ущерба для работы в резонансе. Поэтому витковые замыкания не сказываются на отсутствии резонанса, а только повышают его частоту, снижая добротность. Форма синусоиды на обмотке с замкнутыми витками может даже не искажаться. А может наблюдаться и несколько резонансов.

Одним из надежных способов проверки индуктивных элементов следует назвать прозвонку или оценку добротности. При выполнении прозвонки параллельно обмотке индуктивного элемента (строчного трансформатора, отклоняющей системы и т. п.) подключают конденсатор емкостью, например, 0,1 мкФ и подают импульсы с генератора длительностью около 10 мкс и частотой 1 …2 кГц. Для этой цели как раз и можно использовать задающий генератор нагрузочного тестера, установив переключатель SA1 в положение «Прозвонка» и отрегулировав частоту переменным резистором R1.

В образованном емкостью конденсатора и индуктивностью обмотки трансформатора параллельном колебательном контуре возникают затухающие через несколько циклов колебания (говорят: «контур звенит»). Скорость затухания зависит от добротности катушки. Если имеется короткозамкнутый виток, то колебания будут продолжаться не более трех периодов. При исправной катушке контур прозвонит 10 и более раз.

Прозвонку строчного трансформатора можно выполнить, даже не выпаивая его из платы телевизора. Необходимо только отключить цепь питания строчной развертки. Если проверяемый трансформатор исправен, то на экране осцилпографа появится осциллограмма, изображенная на рис. 5.

Если же колебания затухают значительно быстрее, например, как на рис. 6, то необходимо поочередно отключать цепи нагрузок вторичных обмоток, пока не появятся длительные колебания. В ином случае необходимо выпаять трансформатор из платы и окончательно убедиться в результатах обследования. Следует иметь в виду, что даже из-за одного замкнутого витка все катушки в трансформаторе звенеть не будут.

Так же можно найти замкнутые витки в отклоняющих системах и трансформаторах импульсных блоков питания.

И наконец, необходимо немного сказать о проверке ТДКС. Особенности их проверки связаны с тем, что умножитель высокого напряжения смонтирован в трансформаторе вместе с обмотками. Высоковольтные диоды умножителя могут быть пробиты, оборваны, иметь утечку, в результате чего анодное и фокусирующее напряжения могут быть занижены или отсутствовать вовсе, а нагрузочное тестирование каскада не позволяет четко разграничить поле поиска неисправности (обмотка, магнитопровод или умножитель). А ведь существуют способы восстановления ТДКС, если у него пробит фильтрующий высоковольтный конденсатор. Да и подобрать и заменить магнитопровод от другого трансформатора не представляет особой трудности.

Подав на первичную обмотку ТДКС импульсы, аналогичные импульсам выходного каскада строчной развертки, можно провести динамическое тестирование, проверить, как выпрямляются и умножаются подаваемые импульсы. Неисправный диод, обмотка или магнитопровод строчного трансформатора приведут к снижению выходного напряжения ТДКС. Динамическое тестирование выполняют тем же тестером, что и нагрузочное тестирование. Следует лишь так отрегулировать напряжение питания, подаваемое на первичную обмотку трансформатора, чтобы размах импульсов на стоке ключевого транзистора тестера был равен примерно 25 В. Измеряют выходное напряжение на аноде кинескопа относительно аквадага. Оно должно быть более 600 В.

Значения измеренного напряжения для исправного ТДКС должны соответствовать указанным в таблице.

Так, например, если в нормально работающем телевизоре амплитуда импульсов на коллекторе выходного транзистора строчной развертки равна 900 В, а напряжение на аноде кинескопа — 25 кВ, то при проверке ТДКС по указанной выше методике на выходе умножителя должно присутствовать напряжение около 695 В (в таблице эти значения выделены жирным шрифтом).

Рассмотренный принцип проверки строчной развертки положен в основу работы многих фирменных приборов. Однако по цене они недоступны рядовым радиолюбителям и частным ремонтникам. А описанный здесь простой тестер может вполне заменить такие приборы.

Смотрите другие статьи раздела .

Читайте и пишите полезные

Диагностику узла СР полезно провести до первого включения ВМ. После очистки от пыли деталей узла и в первую очередь ТДКС производят осмотр печатной платы в зоне силовых элементов и попутно определяют соответствие типу блок-схемы, способ включения ключевого транзистора и демпферного диода, а также выясняют, каким образом подается питание в схему.

Далее контролируют состояние ключевого транзистора омметром непосредственно на его выводах — переход К-Э не должен быть поврежденным. При этом необходимо учитывать, что параллельно ключевому транзистору подключен демпферный диод (или схема диодного модулятора из двух диодов), он также может быть поврежден, поэтому чтобы убедиться, что неисправен имен­но транзистор, можно диоды выпаять. Если сопротивление перехода отличается от нормального, то транзистор заменяют.

Аналогичным образом проверяют демпферный диод и ключевой транзистор в канале высоковольтной части, если узел СР выполнен по двухканальной схеме.

После замены дефектных деталей дополнительно проверяют отсутствие к.з. между цепями питания первичной обмотки и 0В омметром непосредственно на выводах ТДКС. Наличие сопротивления менее 0.5 кОм говорит о повреждениях в ТДКС или схемы дополнительного источника напряжения В+, возможен также дефект электролитического конденсатора фильтра.

На следующем этапе проверяют выходные выпрямители вторичных напряжений от ТДКС, для чего контролируют омметром сопротивление диодов, подключенных к обмоткам трансформатора и соответствующих электролитических конденсаторов, чтобы убедиться в отсутствии короткого замыкания в этах цепях.

В ходе проведенные проверок нет способа убедиться в исправности ТДКС без включения ВМ в рабочем режиме. Возможными неисправностями могут быть межвитковые замыкания в одной из обмоток или выход из строя высоковольтных выпрямительных диодов. Если нет полной уверенности в отсутствии неисправностей в ТДКС, а такое опасение может возникнуть если был поврежден транзистор и конструкция ИП не имеет хорошей защиты от перегрузок, при этом можно предположить что происходило длительное воздействие большого тока на первичную обмотку, в результате чего она могла быть перегрета и возникли короткозамкнутые витки, то желательно провести дополнительную проверку работоспособности ТДКС.

Следует отметить, что при включении питания на схему после замены всех неисправных деталей, при наличии короткозамкнутых витков в ТДКС произойдет повторное повреждение ключевого транзистора, а информации о причине неисправности не добавится.

Проверить ТДКС можно непосредственно в схеме пользуясь следующим приемом, основанным на том, что все токи и напряжения в схеме пропорциональны питающему напряжению В+, то есть принципиальное функционирование узла будет возможно даже при снижении его в несколько раз

Практически такую проверку осуществляют следующим образом. Отключают вывод питания ТДКС В+ от схем питания на печатной плате, разорвав соответствующую перемычку в этой цепи, или выпаяв, обычно имеющийся в цепи питания выходного каскада дроссель фильтра, затем подключают его к источнику питания с напряжением 12 — 24 В. Этим достигается эффект снижения во много раз рассеиваемой на транзисторе мощности, — она будет ниже допустимой даже при работе на ТДКС с короткозамкнутыми витками. Затем включают питание и осциллографом контролируют форму сигнала на коллекторе ключевого транзистора — она должна быть похожей на изображенную на рис 24 справа, то есть, должны присутствовать импульсы обратного хода в виде узких положительных полуволн синусоиды.

Если на рассматриваемой картине в промежутках между импульсами обратного хода присутствуют другие сигналы, напоминающие колебания, это свидетельствует о наличии короткозамкнутых витков в одной из обмоток ТДКС или недостаточном насыщении тока в базе ключевого транзистора.

Несмотря на сильные в этом случае искажения сигналов можно, измеряя их амплитуду и полярность на всех обмотках осциллографом, восстановить коэффициенты трансформации в обмотках, что поможет в дальнейшем при подборе аналога для замены ТДКС.

Замена ТДКС при наличии запасного не представляет сложности, но необходимо помнить, что после замены следует сделать контрольное измерение высокого напряжения, чтобы убедиться в отсутствии его превышения.

Подбор аналогов при замене ТДКС представляет большую сложность в случае ремонта ВМ типа VGA, SVGA, так как их параметры, такие как коэффициент трансформации обмотки высокого напряжения, величина собственной емкости обмоток, а также возможность работы на повышенных частотах, не позволяют найти даже похожий вариант из серии телевизионных. В случае ремонта ВМ типа CGA и EGA такой подбор в большинстве случаев возможен.

При повреждении ключевого транзистора и последующей его замене, если отсутствует оригинальный, следует проявлять осторожность, особенно в случае ВМ, работающих на повышенных частотах строчной развертки. Подбор аналога при замене производят с учетом максимального импульсного напряжения на коллекторе, максимального тока коллектора и времени включения /выключения (предельной рабочей частоты), а также максимальной рассеиваемой мощности.

После замены проверяют интенсивность разогрева радиатора ключевого транзистора и, если в течение 10 мин после включения в рабочем режиме температура будет выше нормальной (40 — 60 °С), то заменяют транзистор на другой, более подходящий. Естественно, это относится к случаю исправности всех деталей узла СР.

Если Вы не уверены в отсутствии других, еще не проявившихся неисправностей в узле СР и других, например БП, УУ, можно несколько облегчить режим работы выходного каскада снижением амплитуды импульса обратного хода на коллекторе ключевого транзистора, подпаяв дополнительный конденсатор емкостью 2000 — 6000 пФ и высоким рабочим напряжением, в зависимости от типа ВМ, между его коллектором и эмиттером.

Для схем на рис. 30 и 31 использовать такой прием нет смысла, так как аналогичный результат получается при изменении настройки соответствующих подстроечных резисторов. В любом случае такие приемы позволяют проводить поиск неисправностей в режиме близком к рабочему, что облегчает их нахождение наблюдением сигналов осциллографом и измерением напряжений вольтметром.

Попутно следует отметить, что возможность работы силовых схем узла СР во многом определяется УУ и схемами защит. Для проведения проверки работоспособности в целом узла СР можно временно блокировать некоторые сигналы, предварительно обеспечив вышеописанными методами выход из режимов перегрузки для силовых элементов.

После обеспечения возможности принципиальной работы узла СР производится проверка остальных частей схем во всех допустимых для данной модели ВМ режимах совместно с компьютером. При этом проверяют работу схем защит, возможность переключения режимов работы и действие транзисторных ключей в схемах коррекции линейности, а также прохождение сигналов и элементы схем регулировки размера строк.

Найденные при этом неисправности устраняют заменой соответствующих элементов, после чего производят восстановление схемы, т. е. снимают установленные во время проверки конденсаторы, устанавливают выпаянные перемычки и т.д. На окончательном этапе производят проверку действия всех органов управления на передней панели ВМ и регулировку необходимых подстроечных элементов на плате. Необходимым этапом проверки узла СР является контроль теплового режима ключевого транзистора, желательно в течение одного часа.

В заключение следует кратко остановиться на работах по замене ЭЛТ. Такая необходимость возникает крайне редко, так как ЭЛТ представляет собой изделие, выполненное по технологии изготовления электровакуумных приборов и имеет высокую надежность. На практике очень редко бывают случаи потери эмиссии в электронных пушках даже после длительного срока эксплуатации. Однако такая необходимость все же встречается, например, в случае неосторожного обращения или механических повреждений.

Замена ЭЛТ в случае установки той же марки не представляет сложности, но при наличии другого типа может вызвать большие трудности. Сложности обусловлены в большей степени отличием в параметрах применяемых отклоняющих систем, а именно, индуктивности катушек, необходимого количества ампер-витков и К.П.Д. системы. В последних моделях ВМ (с индексом LR, что означает Low Radiation) часто применяются ЭЛТ с ОС, имеющей высокий К.П.Д. что приводит к снижению мощности, потребляемой выходным каскадом СР. По этой причине замена такой ЭЛТ на более старый тип может привести к перегрузке ключевых элементов в выходном каскаде или недопустимой перегрузке ИП. Такая перегрузка может проявиться косвенно через повышение рабочей температуры силовых элементов из-за малых размеров радиаторов охлаждения, что приведет, например, к ухудшению надежности транзисторов вследствие снижения их предельных параметров с ростом температуры корпуса.

Кроме того, потребуются изменения в цепях коррекции линейности, управления размером строк и уточнение величины емкости, определяющей длительность обратного хода.

Из вышесказанного можно сделать вывод, что установка ЭЛТ другого типа не всегда может быть успешной и надо стремиться найти для замены оригинальную.

Rottor не первый раз от тебя слышу о «вертикальной складки по центру экрана». Не ну без п…, ни разу не видел. Что за фигня? Серьёзно. Если ты решишь после этого, что я телеков неисправных не видал, то ты — попугай Флинта. Видал со строкой всякое, а слыхал аж почище твоей складки, если хошь поделюсь во флейме.
Повестку дня одобряю(не знаю почему).
По пунктам:

Некачественные транзисторы.

На эту тему все ссылаются. А как их распознать? Предлагаю завести список признаков левачины, который бы постоянно пополнялся. Прежде всего внешних признаков. Проверить на доброкачественность в лабе можно, даже не надо чтоб спецом ты был обалденным. Но ведь решение-то принимается при покупке. А вот внешний осмотр отсеет, думаю, более половины, предлагаемой туфты, была бы инфа.

Проблемы с пайками.
=============================
Извечная проблема. В строке не так много контактов. А пайки трескаются прежде всего на толстых ногах деталей. На пропайку толстых ног уходит обычно 1-3 минуты. Тем более, что это следует делать даже если причина не в них.

Проблемы режимов выходного каскада.
====================================
А вот это не понял. Там режим ключевой, и при любом другом ХОТ сдохнет, даже если к нему кулер азотовый приделать.
Другое дело что там иногда сопры в базу вешают, которые могут в номинале увеличиться. Ох нехорошо это. Я обычно меряю Б-Э у ХОТа и если там порядка 1 Ома, успокаиваюсь, пока.

Неисправности драйвера.
=====================
Тут я, извините, кроме дохлых транзисторов и порваных резюков(по питанию) ничего не встречал. Правда бывали треснувшие пайки, но сколько ж можно.
Гнусное место — проходной электролит в базу раскачки. Эта падла может вызывать и разогрев основного и внезапный выход оного в тираж без всяких предисловий.

Обрывы коллекторных емкостей.
===========================
Встречал один раз за 15 лет практики. Нарушение пайки, да, не раз! Но чтоб внутри порвалась, спасибо, экий случай был лишь раз. Да и то там, к счастью в параллель ещё один стоял, так что обошлось без микровзрывов. Это конечно же о верхнем кондёре(если их два). А нижние-то рвутся зачастую, но это другая тема.

Витковые ТДКС и ОС
==================
Об этом к Роттору.
Одно скажу, дохлую ОС не видал. А ТДКС проверял явным выжиганием или заменой на любой близкий. Чтоб ХОТ подох от КЗ в ТДКС не верю. От ОСы, верю, может быть, но теоретически(см. чуть выше).

Неисправности ИИП.
====================
Ну-у тут как повезёт. У меня как-то Айва 1402 вразнос ударилась. При номинальном выходе 117В давала такого жару, что лампочка на 220В сгорала. Повесил две посл-но — горели ярко. Напруга на них оказалась за 300В. Ёмкостя вспучились и на выходе питания и во вторичках ТДКСа в том числе и видеоусилительная(эта вообще петардой закинулась). ХОТ сдох только на третье включение(включения длились по 3сек примерно). Памятник ему. До сих пор жалею что не запомнил его имя.

Меняешь сгоревший строчный транзистор, телевизор включается, растр нормальный через минуту снова горит


строчный транзистор, и замерять ничего не успеваешь.

Выход из строя транзистора строчной развертки наверно наиболее часто встречающаяся неисправность в телевизорах. Строчная развертка основная нагрузка для блока питания и является по сути дополнительным БП, с которого снимается напряжение для кадровой развертки, видеоусилителей и т. д. Хорошо, когда ремонт заканчивается с заменой строчного транзистора, но иногда строчный транзистор после замены, сразу или немного спустя, снова выходит из строя.

И так если после замены строчного транзистора, сразу или через некоторое время он снова выходит из строя, необходимо обратить внимание на следующее:


  1. Не завышено ли напряжение питания строчной развертки НОТ.

  2. Греется ли перед выходом из строя транзистор или нет. Если транзистор греется, то это говорит о том , что нагрузка на него больше чем положено. В данном случае неисправны, могут быть как строчный трансформатор, так и цепи нагруженные на него. Необходимо проверить конденсатор по питанию задающего трансформатора (ТМС). В этом случае происходит изменение строчного импульса запуска. Транзистор строчной развертки будет перегреваться и закончится тепловым пробоем.

  3. Если транзистор не греется, то причина кроется, чаще всего, в холодных пайках, в цепях, через которые поступают строчные импульсы на базу транзистора. Особенно необходимо обратить внимание на согласующий трансформатор драйвера строчной развертки, включенного в цепь транзистора выходного каскада строчной развертки. Плохой контакт разъема отклоняющей системы, так же может стать причиной того, что пробивает строчный транзистор, проверьте соединение проводов в самом разъеме. Короткое замыкание в отклоняющих катушках.

  4. Брак транзистора.
Рассмотрим для примера несколько схем. Строчная развертка телевизора Erisson 21F7:

Проверить 2SC2482, C451, C453, T450, С455, С455А.


Строчная развертка телевизора POLAR 51CTV-4029

К проверке: C401, C403, VT401, T401, C402.

Как проверить строчный транзистор предварительно в схеме не выпаивая ? Между базой и эмиттером мультиметр будет показывать короткое замыкание, так как сопротивление будет измеряться через трансформатор, переходы: Б-К и Э-К если они исправны, будут «звониться» в одну сторону. Но лучше проверять все таки выпаивая.

Проверить строчный трансформатор можно так, выпаиваем трансформатор и вместо него впаиваем две ножки трансформатора ТВС-110ПЦ15, девятую и двенадцатую. Включаем телевизор, и если на трансформаторе появилось высокое напряжение, а строчный транзистор перестал греться, то вероятно сгорел ТДКС (при условии что элементы обвязки исправны и будьте осторожны вывод на умножитель под напряжением 8,5 кВ).

Строчный транзистор (HOT) выходит из строя (пробивается) по двум основным причинам.

Первая — тепловой пробой из-за изменения формы импульсов запуска строчного транзистора. Короткое замыкание в строчном трансформаторе (FBT) тоже может стать причиной теплового пробоя.

Вторая — пробой по напряжению в основном из-за блока питания и микротрещин. Вот несколько основных причин.

Завышено напряжение питание строчной развертки НОТ.

Холодные пайки (кольцевые трещины) в блоке строчной развертки. Пропаять в обязательном порядке трансформатор межкаскадный строчный ТМС, осмотреть плату и устранить подозрительные пайки в элементах строчной развертки.

Конденсатор по питанию ТМС. В этом случае происходит изменение строчного импульса запуска. Транзистор строчной развертки будет перегреваться и закончится тепловым пробоем. Еще один неправильный выход установить транзистор помощнее, ампер так под 25…30 (Для проверки-можно).

Плохой контакт разъема отклоняющей системы, могут так же стать причиной выхода из строя HOT. Причем отсутствие кольцевых трещин по ОС не означает, что контакт хороший. Проверьте соединение проводов в самом разъеме. Короткое замыкание в отклоняющих катушках.

Почему выходит из строя строчный транзистор? Строчный транзистор выбивает по двум основным причинам:


  • Первая-тепловой пробой из-за изменения формы импульсов запуска строчного транзистора. Короткое замыкание в строчном трансформаторе (РВТ) тоже может стать причиной теплового пробоя.

  • Вторая-пробой по напряжению в основном из-за блока питания и микротрещин.
Опять сгорел выходной транзистор в строчной развертке! Вот несколько основных причин:

  1. Завышено напряжение питание строчной развертки НОТ.

  2. Неисправны конденсаторы в коллекторных цепях транзистора.

  3. Холодные пайки (кольцевые трещины) в блоке строчной развертки. Пропаять в обязательном порядке трансформатор межкаскадный строчный ТМС, осмотреть плату и устранить подозрительные пайки в элементах строчной развертки.

  4. Конденсатор по питанию задающего трансформатора (ТМС). В этом случае происходит изменение строчного импульса запуска. Транзистор строчной развертки будет перегреваться и закончится тепловым пробоем. Некоторые мастера по незнанию выходят из положения тем , что ставят в телевизор дополнительные радиаторы. Со временем телевизор может потяжелеть даже на полкилограмма алюминия. Еще один неправильный выход установить транзистор помощнее, ампер так под 25…30.

  5. Плохой контакт разъема отклоняющей системы, могут так же стать причиной выхода из строя строчного транзистора. Причем отсутствие кольцевых трещин по ОС не говорит, что контакт хороший. Проверьте соединение проводов в самом разъеме.

  6. Короткое замыкание в отклоняющих катушках. Например, в телевизоре LG (Goldstar) шасси МС-84А модели CF-21DЗЗ, CF-21DЗЗ E , CF-20К51КЕ, шасси МС-994А модели CF-21F39, где установлена отклоняющая система Pianzhuan QРС 29-90-54. Многократно подтвержден факт выхода из строя строчного транзистора из-за межвиткового пробоя строчной отклоняющей системы.

  7. Прострелы строчного трансформатора могут выводить строчный транзистор из строя.

  8. Диоды, резисторы в СР проверить ?

  9. Не пропаяны выводы или неисправен кварц 500 кГц.

  10. Вы приобрели некачественные, некондиционные или перетертые транзисторы. К сожалению, данная проблема для наших дней становится все более актуальной. Непорядочные коммерсанты идут на всяческие ухищрения, чтобы заработать, как можно больше. Это самое настоящее мошенничество. На сайте www.telemaster.ru в разделе ФУФЛЯНДИЯ вы можете прочитать, а также прислать ваши наработки в области радио мошенничества. Каждый из нас сталкивается или сталкивался с этим неприятным обстоятельством.
Если горит от перегрева, то надо осциллографом посмотреть на базе выходного строчного транзистора размах отрицательного закрывающего выброса. Если он меньше -5 В, то надо копать буферный каскад. Может конденсатор на фильтре питания буфера потек, может неисправен предвыходной буферный транзистор (потеря усиления). Проверить электролитические конденсаторы в блоке питания. Проверять электролитические конденсаторы в блоке питания на момент усыхания удобней всего осциллографом. Подключая его, легко заметить пульсации по тем цепям, которые нуждаются в замене фильтров питания (конденсатором).

Примеры:


Panasonic TC21B3EE. Периодически выходит из строя строчный транзистор. Надо пропаять переходной трансформатор строчной развертки. Также в блоке питания всегда есть холодные пауки (кольцевые трещины).

SONY KV29C3. Выходит из строя строчный транзистор 2SC3997. В таких случаях меняют IC403 SDA9361 и кварц Х401.

SONY 21DK2. Выходит из строя строчный транзистор через 1…2 дня. В телевизоре на микросхеме 1213 подключен кварц. По возможности — заменить его новым.

JVC 21ZE, JVC 21 дюйм. Присутствует та же неисправность, лично 3 транзистора сжег.

PALLADIUM шасси 991, произведено IMPERIAL. Через 5…10 минут выходной транзистор строчной развертки и демпферный диод перегреваются. Напряжение питания строчной развертки в норме. Предвыходной каскад выполнен на TDA8143. В этом случае необходимо заменить неисправный конденсатор с 1-й предвыходного трансформатора строчной развертки на базу строчного транзистора. Если проблема не будет устранена заменить трансформатор строчной развертки.

SARP 70ES14. Выходит из строя строчный транзистор через некоторое время — заменить С607 (330 мкФ х 10 В).

PANASONIC TC 29V50. Горит строчный транзистор. Непропай трансформатора драйвера ТМС, ну и, конечно, убедится в исправности конденсатора на 1500 В подключенного к коллектору выходного транзистора.

VESTEL модель 7216 GST PIP шасси 11АК19В-1. Горит строчный транзистор — проверить ТМС. Все эти турецкие шасси страдают от непропаев на соединителе отклоняющих катушек и вообще в районе строчной развертки.

NORDMENDE SPECTRA C55. Горит строчный транзистор — проверить ТМС.

SARP 70CS-03S. Периодически выходит из строя строчный транзистор. Проверить D609, D610, С601, С619, заменить С604 и проверить разьем на отклоняющей системе, возможно образование холодной пайки. Выходной транзистор ставить только BUH515.

SONY KV29C3 , шасси АЕ4. Выгорает строчный транзистор. Ищите неконтакт по базовой цепи строчного транзистора: обычно кольцевые трещины в ТМС, или резисторе в базе выходного и предвыходного транзистора.

Смотрите: таблица — выходные транзисторы строчной развертки, БП и их аналоги.

Существующие стандарты телевизионных разверток используют значение частоты, примерно равное 16 кГц. Системы телевидения высокой четкости (HDTV, ТВВЧ) используют вдвое большее значение (32 кГц). Причем в первом случае минимальный собственный период транзистора должен быть не менее 26 мкс, а во втором — не менее 13 мкс. Минимальные значения задержки включения для этих двух систем также определены и составляют соответственно 6,5 и 4 мкс. Задержку включения в конкретной схеме можно минимизировать, например, путем использования транзистора с максимальным отрицательным током базы (равным примерно половине тока коллектора). Отрицательное напряжение на базе при этом должно быть в пределах -2…-5 В.

Эти транзисторы в большинстве своем служат в устройствах формирования рабочих напряжений, в том числе для питания оконечных каскадов усилителей мощности звукового сигнала.

Транзистор выходного каскада строчной развертки с высоким напряжением на коллекторе позволил бы при малом токе отклоняющих катушек уменьшить уровень собственных электромагнитных излучений, однако при этом вследствие повышенного напряжения питания в нем увеличились бы собственные потери.

Наличие большого тока в катушках строчного отклонения лучей позволяет использовать выходной транзистор с низким напряжением на коллекторе и, соответственно, пониженное напряжение питания всей схемы строчной развертки. Это дает выигрыш в минимизации потерь переключения, однако большой ток в катушках влечет за собой большие колебания электромагнитного поля и необходимость намотки катушек толстым проводом.

На практике в цепях строчной развертки применяют биполярные транзисторы с допустимым напряжением 1500В. Максимальное значение тока коллектора должно при этом находиться в пределах 2…8А, в зависимости от угла отклонения лучей кинескопа (90 или 110°), мощности высоковольтного источника питания и частоты отклонения.

В таблице приведены основные данные для транзисторов, используемых в устройствах строчной развертки телевизоров и мониторов:

ТранзисторМаксимальное напряжение
коллектор-эмиттер, В
Ток коллектора, АМощность, ВтКорпусВозможность использования
ТелевизорМонитор
BU505D
BU505DF
1500
1500
2
2
75
20
TO220АВ
SOT186
Черно-белый 14″
BU506D
BU506DF
1500
1500
3
3
100
20
Т0220АВ
SOT186
Цветной 90°, 14…17″
BU508AD
BU508ADF
1500
1500
4,5
4,5
125
125
SOT93
SOT199
Цветной 110°, 21. ..25″
BU705D
BU705DF
1500
1500
2
2
75
29
SOT93A
SOT199
Черно-белый 14″
BU1508DX15004,535SOT186AЦветной 110°, 21…25″VGA 14″
BU2506DF15003,545SOT199Цветной 90°, 21″
BU2508AD
BU2508ADF
1500
1500
4,5
4,5
125
45
SOT93
SOT199
Цветной 110°, 21. ..25″VGA 14″
BU2520AD
BU2520ADF
1500
1500
6
6
125
45
SOT93
SOT199
Цветной 110°, 25…29″ SVGA 15… 17″
BU2525ADF1500860SOT199Цветной 110°, 25…29″SVGA 15…21″

Если в обозначении транзистора имеется буква D, то внутри транзистора имеется встроенный (демпфирующий) диод Шоттки.

Изолированные корпуса, позволяют устанавливать транзистор на радиатор без изолирующих прокладок, имеют в обозначении букву F.

Транзистор BU2508A спроектирован специально для выходных каскадов строчной развертки телевизоров: в нем минимизированы потери при переключении в сочетании с высоким коэффициентом усиления по мощности. Он допускает значительные изменения управляющего сигнала на базе и разброс сопротивлений нагрузки. Указанный транзистор можно с успехом использовать взамен транзисторов S2000А, 2SD1577, BU508A. Транзистор BU2508A имеет коэффициент усиления, равный 5, при токе коллектора 4А, тогда как BU2520A имеет такое же усиление, но при токе коллектора 6А. Это позволяет достигать больших мощностей от высоковольтных цепей, что в свою очередь позволяет получить высококонтрастные изображения.

Основные данные для транзисторов, используемых в выходных каскадах строчной развертки мониторов, также приведены в таблице.

В монохромных компьютерных мониторах с частотами строчной развертки 31,5… 48 кГц наиболее часто используется транзистор BU2508A.

В цветных мониторах SVGA с углом отклонения 90° чаще всего используется транзистор BU2520A, а в цветных телевизорах с крупногабаритными кинескопами (угол отклонения 110°) и мониторов с кинескопами от 15″ — транзистор BU2525A. Этот транзистор специально спроектирован для телевизоров высокого класса с экранами формата 16:9 и высоковольтным напряжением до 30кВ. Ток коллектора этого транзистора достигает 8А, а ток базы 1,6А.

На рисунке показаны стандартные корпуса, в которых выпускаются транзисторы для выходных каскадов строчной развертки телевизоров и мониторов, и их цоколевки:

Проблемы с телефонной проводкой и устранение неисправностей для домовладельца

Мои телефоны не работают. Я позвонил в телефонная компания, и они утверждают, что проблема в моем доме. Как могу я узнать, в чем проблема?

Пройдемся по основам телефонной проводки. Как только вы поймете основы, устранение неполадок становится проще простого. Это может занять много времени, но совсем несложно. И в 40 долларов или больше за получасовое обслуживание у специалиста по ремонту телефонов, ветер будет за твоей спиной !!

Реальные основы телефонной проводки…

Хотя у вас могут быть сотни футов телефонных проводов и бесчисленное количество соединений, Телефонная разводка действительно проста и логична. Давай прогуляемся по твоему дому, и разберемся вместе.

телефонная компания, благослови их души, предоставляет вам услуги через четыре провода или более проводов, ведущих к внешней стороне вашего дома (есть на самом деле больше, чем это, но вам не нужно больше знать, чтобы работать над свой собственный материал). Эти провода подключаются к коробке, называемой сетью . интерфейс , обычно расположен за пределами вашего дома для облегчения доступа телефонная компания.

Его также называют протектором (просто звук этого вызывает у вас покалывание, а?) Название «защитник» удачно … он защищает вашу домашнюю телефонную проводку от необычного электрического скачки напряжения от ударов молнии, линии электропередач, которые могут касаться снаружи телефонные кабели и т. д. Не надежная система, но очень эффективная 99,9% время. Защитное устройство часто можно найти рядом с вашей электрической службой. (метр), потому что телефонная компания и электрическая компания используют одни и те же критерии выбора точки доступа к дому.

Сетевой интерфейс действует как ваша основная распределительная коробка — место, где все телефонные кабели, ведущие в ваш дом, происходят. Обычно часть выключена пределы для вас. Он может быть запечатан замком или закручен. Вот где телефонная компания устанавливает свои связи. Цвета проводки не будут соответствовать цветовое кодирование вашего интерьера телефонные провода.

На стороне, доступной для клиентов, используется стандартная цветовая кодировка, которую вы будете запускать. снова и снова во всей телефонной работе.Наиболее распространенные телефонные кабели имеют четыре провода внутри … красный, зеленый, черный и желтый. В торговле они именуются «парами». Красно-зеленая пара используется в качестве базовой. линия обслуживания, а черно-желтая пара используется для обеспечения второй линии.

Если вы посмотрите на увеличенное изображение сетевого интерфейса слева, вы увидите, что есть «блок» с шестью цветными винтами. Есть три пары вместе … желто-черный, красно-зеленый и второй желто-черный. Ты также заметите, что есть провода, подключенные к красному и зеленому терминалы.В этом разъеме только одна живая телефонная линия … линия 1. Хотя разъем может поддерживать до трех линий, для облегчения при использовании клиентами они обычно устанавливают только одну линию на разъем. Если у тебя есть три линии, у вас будет один соединитель, обслуживающий одну линию, а второй соединитель, обслуживающий две линии. Этот сетевой интерфейсный блок имеет два таких разъемы, так что в этом доме может быть до шести телефонных линий установлены.

Фактическое подключение к вашей проводке осуществляется через телефонную розетку в разъем с помощью съемной вилки, прикрепленной к черному проводу. Отсоединение этой вилки отключает телефонные линии, подключенные к разъем. Этот плагин немного упрощает поиск и устранение неисправностей, так как вы можете подключите тестер к разъему, чтобы убедиться, что линии телефонной компании в порядке (подробнее об устранении неполадок позже).

В некоторых старых домах нет легкодоступных интерфейсов …

В старых домах защитное устройство снаружи дома представляет собой герметичную коробку, которая не разрешить доступ клиентов. В нем есть специальный предохранитель, предотвращающий попадание молнии. достигает вашей внутренней проводки.По сути, это отправная точка для стандартный 4-жильный кабель для входа в дом, и у вас нет легкого доступа к его внутренности!

Почему телефонная компания защищала своего защитника? Часть Причина в том, что много лет назад телефонная компания сделала все … они владели все телефоны, провода и розетки, и это было незаконно с вашей стороны с проводкой. Таким образом, у них не было стимула делать прямой доступ к внутренней части доступный вам протектор. Подсоедините телефонные кабели непосредственно к протектор выгоден тем, что там самый сильный телефонный сигнал, и я рекомендую это, когда и если возможно.На самом деле, если у вас более старый стиль протектор, многие телефонные компании заменят его на современный разъем, такой как на фото выше, бесплатно. Особенно, если у вас проблемы с телефоном или Проблемы с подключением к Интернету !! Просто плачь и умоляй, как я!

Вторая важная причина, по которой домовладельцам было отказано в доступе, заключается в опасаются, что подключат провода к незащищенной стороне коробки, оставив их системы электропроводки уязвимы для ударов молнии и, возможно, катастрофических последствия!

Так что если у вас старый запломбированный защитник, ваш доступ к телефонной компании осуществляется через кабель (обычно 4 провод или две пары), который входит в ваш дом и подключен к разъему блок или входной мост .Соединительные блоки представляют собой прямоугольные пластины, которые используйте винты для соединения каждого из четырех служебных проводов (от телефонной компании). вместе с вашими внутренними проводами. Соединительный блок имеет четыре клеммы, которые удерживают провода вместе с винтами. Провода от телефонной компании и ваши внутренние провода имеют общий винт в зависимости от цвета провода … все красные до один терминал, черные — в другой и т. д. Эта система была отличной, когда люди может быть, у них было два телефона (если они были грязно богатыми), но немного переполнены три или четыре пары, идущие от них к нескольким телефонным разъемам.

Исторически сложилось так, что соединительные блоки возникли, когда в домах был только один телефон. линия и один телефон. Единственный провод вошел в дом и пошел к одинарный домкрат. Шли годы, и людям стали нужны более удобные телефоны, дополнительные провода были выведены от соединительного блока для обслуживания других телефонов. Примерно через два соединения, блоки заклинили проводами и сложно работать с. Войдите на въездной мост … значительное улучшение. Вместо того, чтобы прокладывать телефонные провода к соединительному блоку в жилом доме. площади, въездной мост был установлен в подвале или подсобном помещении. Подъездные мосты выполняют ту же функцию, что и переходные блоки, но подъездные пути провода телефонной компании не касаются напрямую проводов домашнего кабеля. Вместо, используют различные методы крепления проводов к изолированному металлическому каркасу который обеспечивает соединение. Как вы можете видеть на графике, провода телефонной компании (входящие в график снизу) каждый присоединяется к блок с двумя винтовыми зажимами. До двух телефонных линий с двумя отдельные кабели (например, наверху и внизу) можно подключить без необходимость совместного использования проводов на терминале.

Как видите, входные мосты могут содержать больше проводных соединений, чем разветвления. блоки, и поскольку каждое соединение является отдельным, вы предпочитаете новый или заменяющие установки. У вас будет как лучшая электрическая соединение, меньше шансов непреднамеренного прикосновения проводов и меньше путаницы проводка!

Подводя итог, два провода обеспечивают все ваши телефонные услуги, если у вас есть одна линия, четыре провода, если у вас две линии. И все ваши настенные телефоны, беспроводные телефоны, компьютерные модемы, автоответчики, факсы и даже удаленная домашняя сигнализация системы возвращаются к телефонной компании по этим маленьким проводам!

Что может пойти не так с моей телефонной проводкой?

Вы что-нибудь изменили или повредили… Если ваши телефоны не работает должным образом, подумайте о любых изменениях, которые вы могли внести в свою систему. Установили ли вы новый телефон за последнюю неделю или две (иногда электроника требует ненадолго потерпеть неудачу)? Вы переставили мебель, случайно дернули телефон? провод или уронить телефон? Если вы можете вспомнить что-нибудь, что могло повредить телефон, розетка или провод — это отправная точка в вашей детективной работе!

Грызуны поедают провода … Не смейтесь! Я обнаружил несколько перегоревших телефонных кабелей через лет, а также провода стереодинамиков, коаксиальный (телевизионный) и антенный кабель, и электрический кабель под напряжением.Канатные дороги «Обеденный звонок» — это те места, где кабель проходит в скрытую область, например, за изоляцией в подвале. стена. Я думаю, они знают, что это нас раздражает … вот почему так поступают мыши! Итак, если вы видели следы грызунов, их можно считать возможными подозреваемыми. Прочтите мою вредную статью, в том числе тему … Мыши везде !! У меня был истребитель, но проблема повторяется каждый год. Помощь! ! , относительно того, как найти и, надеюсь, избавиться от мышей из ваших домов, не прибегая к ядовитые приманки или ловушки.

Снова молния … Возможно, у вас был эффект удара молнии ваша телефонная система и даже не знаю об этом. Всплеск может выборочно поджарить один из ваших телефоны, или модульный разъем, или одно соединение, не оставляющее явных доказательств кроме неисправности.

Плохая проводка … Иногда в своем энтузиазме выполнить проект любитель с самыми лучшими намерениями пренебрегает перепроверкой своей работы. возможные исходы:

Короткое замыкание : два оголенных провода, которые не должны касаться, были слишком малы близко, и время и невезение заставили их немного измениться, и, вуаля… короткое замыкание. Если провода соприкасаются, телефонная компания думает, что вы по телефону, и вы не можете принимать или совершать телефонные звонки. К счастью, это не является опасным состоянием, потому что скачок высокого напряжения, возникающий при телефонные звонки не могут произойти. Если бы это было так, возможно, это могло бы поджечь ваши провода. Корректирующее действие, конечно же, — разъединить провода.

Обрыв цепи : Это когда провод, который предполагается подключить нет. В этом случае результат обратный… телефонная компания думает что с вашими телефонами все в порядке, звонящие слышат звонок, а ваш телефон — нет «получить сообщение». Решение … найти незакрепленный или сломанный провод провод, подключи или отремонтируй, и вуаля … мир ждет твоего возвращения.

Перевернутые провода: При условии соблюдения правил цвета проводов последовательно, у вас не должно возникнуть проблем с добавлением новых телефонов или кабели. Поскольку напряжение является постоянным, а не переменным током, обратная проводка может вызвать сбои в работе вашего оборудования.Иногда один телефон может быть неправильно подключенным и по-прежнему функционировать. Добавьте второй телефон с правильным подключением и система тает!

Перво-наперво … это твоя вина или телефонная компания?

Всегда сначала звоните в службу ремонта телефона … хотя они могут не добраться до вас немедленно, это, по крайней мере, поставит вас в «очередь» в случае, если ваша проблема , их проблема !

В большинстве новых домов есть возможность легко проверить, не проблема. находится за пределами вашего дома на линиях телефонной компании… пока у вас есть сетевой интерфейс снаружи или внутри вашего дом.

Откройте доступную для клиентов часть интерфейса, и вы увидеть ряд знакомых предметов … телефонные розетки! Каждому гнезду соответствует одна или несколько телефонных линий в вашем доме. Если у вас есть только один телефонная линия, будет только один видимый телефонный разъем с цветными проводами прикрепил. В этом интерфейсе вы можете увидеть, что у телефонной компании есть записал последние четыре цифры телефонного номера на интерфейсе, чтобы легче найти нужный штекер.

Вынесите один из своих телефонов на улицу или получите тестер телефонных розеток в магазине оборудования. магазин, домашний магазин, магазин электротехники или электроники. Отключите короткожильный телефонный штекер из разъема в интерфейсе, соответствующем вашему телефонную линию и подключите телефон (или тестер). Гудок (или правильный Последовательность освещения) сообщит вам, что телефонная компания не виновата. Если вы не слышите гудка, возьмите трубку и позвоните в ремонтную службу!

Если у вас несколько линий, у вас будет более одной разъемы активны.Вам нужно будет протестировать их все, чтобы понять, что бракованный. Вам также понадобится двухпроводной телефонный тестер, если он интерфейс разделяет две строки, так как вторая строка не будет обнаружена стандартный однолинейный тестер (или однолинейный телефон).

Если у вас есть соединительный блок или въездной мост, вы можете проверить проводку телефонной компании с помощью мультиметра. Для типичной четырехпроводной системы вы не нужно отсоединять какие-либо провода для выполнения этого теста. Прикоснитесь к «+» Щуп мультиметра к зеленому и «-» щуп к красным проводам.Если у вас есть вторая строка, «+» на черный и «-» на желтый. Если вы получаете низкое значение напряжения постоянного тока на паре провода (красно-зеленый или черно-желтый), около 48 В, вы знаете, что подключены в телефонную компанию. Отсутствие напряжения означает, что вы не получаете сигнал от телефонной компании.

Нет проблем с телефонной компанией? Проверять за неисправный телефон!

Один неисправный телефон может испортить всю работу! Отключите все телефоны и телефонные аппараты … компьютеры, автоответчики и т. д. … на всей территории вашего жилой дом. Затем, взяв свой линейный тестер (или один телефон, который, как вы уверены, работает), вокруг и подключите его к каждой розетке, проверяя правильную последовательность освещения (или, в случае телефона, гудок). Если все гнезда кажутся мертвыми (или вы нигде не слышите гудок), ваша проблема не в телефонах или телефонное оборудование.

Однако, если вы действительно показываете положительную связь с вашим тестером, вы знаете, что телефонное устройство, вероятно, является виновником.Подключите каждое устройство по одному к посмотреть, кто из них возмутитель спокойствия. Как только вы найдете виновника, вы сможете либо выбросить его, либо отремонтировать.

Следующим шагом будет проверка вашей проводки …

Сразу предупреждаю, что это может быть сложно, запутать и попробовать ваше терпение! Различные вещи могут вызвать неисправность телефонной проводки. авария … ненадлежащее прикосновение к проводам, мыши, поедающие кабели, или электрическое все возможные виновники всплеска поджаривания телефонной розетки. я попытаюсь дать вам столько информации, сколько смогу, но, в конце концов, это до , вы до внимательно изучите и проанализируйте свою систему!

Отсоедините внутреннюю проводку от телефонной компании.Как упомянул несколько абзацев назад, если у вас есть сетевой интерфейс за пределами вашего домой вы должны отключить вилку, обслуживающую плохую линию. Если у тебя есть соединительный блок или входной мост, физически отделить телефон проводка компании от блока или моста. Убедитесь, что ни один из проводов не соприкасается!

Это действие «откроет» цепь и позволит вам использовать мультиметр, чтобы проверить целостность вашей проводки. Провод, имеющий «непрерывность» позволяет электричеству беспрепятственно течь через него.Если два оголенных провода соприкасаются, у них тоже есть обрыв. Если ты не хочешь эти провода соприкасаются, наличие обрыва указывает на неисправное состояние. Это ваша цель … найти дефект и исправить его!

В правильно подключенном доме каждый цвет провода в вашем доме не зависит от все остальные. Следовательно, не должно быть контакта между любыми проводами разные цвета. Настройте мультиметр на проверку целостности цепи (см. инструкция к счетчику). Вы должны иметь возможность прикоснуться к зондам через любые два провода разного цвета и не получится непрерывности.Ты можешь сделать это на клеммной колодке или входном мосту, не отключая ни один из ваших внутренние провода (кроме, конечно, проводов телефонной компании). Все телефоны и устройства должны быть отключены от сети, иначе этот тест не сработает.

Если вы видите непрерывность, происходит одно из двух … либо два провода соприкасаются где-то в вашем доме или у вас неисправный телефон разъем. Оголенные провода могут касаться телефонной розетки или соединительный блок или въездной мост.Электрический скачок, который попал в ваш система поджарила один из ваших разъемов, что вызвало внутреннее короткое замыкание. Проверять сначала все видимые соединительные блоки. Сделайте видимый осмотр, чтобы увидеть, есть ли провода, подключенные к разным клеммам, соприкасаются, или если какие-либо провода кажутся отсоединены или ослаблены. Если вы видите одно из этих условий, разделите прикоснуться к проводам или затянуть соединения. Вернитесь к предыдущему шагу и проверьте линии снова с телефоном. Если телефоны по-прежнему не работают, продолжайте к другим блокам и телефонным розеткам.Изучая их, убедитесь, что все оголенные провода хорошо удалены друг от друга. Иногда просто переустановка крышка может касаться близких проводов!

Имейте в виду, что может быть вторичных соединительных блоков или параллельно соединения в вашем доме. Они используются для подключения телефонного кабеля к удаленному местоположение, врезавшись в кабель другого телефона, а не проложив новый кабель от основного соединительного блока или протектора. Кроме того, телефонные кабели могут цепочки друг от друга (на электрическом языке называемые параллельными соединение), одно соединение с другим, с другим и так далее.Если вы посмотрите на свой соединительный блок и видите два кабеля, ведущие в дом, но вы знаете, что вы есть шесть телефонных розеток, имеет место один из этих двух сценариев. Вам следует попытайтесь найти все вторичные соединительные блоки и осмотрите их на предмет касания оголенных провода или незакрепленные провода. Что касается параллельных подключений, вы обнаружите только их, когда вы откроете телефонные розетки на следующем этапе вашего устранение неполадок, если вам придется зайти так далеко.

Теперь вам нужно определить, сам ли это кабель или телефон розетки или домкраты.Отсоедините один провод из пары (красный или зеленый, черный или желтый) от каждого гнезда. Это отключает все разъемы без необходимости полностью отключать все провода. Подключите цепь к проводам телефонной компании. Затем один по одному, повторно подключите разъемы по одному, проверяя с телефоном или телефонной линией тестер.

Если ни один из разъемов не работает, значит, у вас короткое замыкание в кабеле. Если все заработает но, во-первых, ваш короткий, вероятно, в домкрате. Вы можете получить новый домкрат и попробовать подключив к нему имеющиеся провода.У меня обычно один стандартный модульный домкрат доступен для тестирования всякий раз, когда я ищу неисправности в телефонах.

Должен признать, что это не единственный способ устранения неполадок телефона. линии … всего лишь один базовый подход. После того, как вы узнаете свой домашний телефон system, вы можете найти ярлыки для тестирования, о которых я даже не упоминал. Считайте это учебником, но не забывайте … вы сами являетесь учеником опыт!!

Есть ли ограничение на количество телефоны, которые я мог подключить к той же линии?

Да и нет.На самом деле нет абсолютного ограничения на количество телефонов или устройств. На вашем телефоне или устройстве есть этикетка, на которой указано значение по номеру REN или звонок Эквивалентность . Имеется ограниченное количество энергии, доступное от телефонная компания, чтобы ваши телефоны звонили. Другими словами, если у вас слишком много телефоны, никто из них не звонит. Ваши собеседники будут думать, что ваш телефон звонит (сигнал «занято» не будет), но вы не услышите звонка!

Хотя ограничение составляет около 5 устройств, вы будете знать, если вы превысите ограничение, потому что телефоны просто больше не будут звонить.Если вы позвоните по телефону компании, они могут предоставить вам лимит REN для вашей системы. Затем сложите REN всех ваши устройства на линии. Если они меньше предела REN, все в порядке, если если вы превысили лимит REN, ваши устройства могут не реагировать на сигнал вызова.

Большинство телефонов имеют REN около 1. Компьютерные модемы, факсы и автоответчики также имеют значение REN, и вы должны их учитывать при подсчете вашего общего REN. У меня есть голосовой факс-модем US Robotics Sportster, и он имеет эквивалент по Рингеру 0.4. У моего автоответчика также REN 0,4.

Вернуться к статьям по поиску и устранению неисправностей телефона

Сигнализация и управление голосовой сетью

В этом документе обсуждаются методы передачи сигналов, необходимые для управления передачей голоса. Эти сигнальные методы можно разделить на три категории; наблюдение, адресация или предупреждение. Наблюдение включает обнаружение изменений в состоянии шлейфа или соединительной линии. Как только эти изменения обнаруживаются, контрольная схема генерирует заранее определенный ответ.Цепь (петля) может замкнуться, например, для соединения вызова. Адресация включает передачу набранных цифр (импульсных или тональных) в частную телефонную станцию ​​(PBX) или центральный офис (CO). Эти набранные цифры предоставляют коммутатору путь подключения к другому телефону или оборудованию в помещении клиента (CPE). Оповещение предоставляет пользователю звуковые сигналы, которые указывают на определенные условия, такие как входящий вызов или занятый телефон. Телефонный звонок не может состояться без всех этих сигнальных приемов. В этом документе обсуждение конкретных типов сигнализации в каждой категории предшествует изучению основного прогресса вызова от начала вызова до завершения.

Требования

Для этого документа нет особых требований.

Используемые компоненты

Этот документ не ограничивается конкретными версиями программного и аппаратного обеспечения.

Условные обозначения

См. Раздел Условные обозначения технических советов Cisco для получения дополнительной информации об условных обозначениях в документе.

Процесс телефонного разговора с включенной сигнализацией «петля» можно разделить на пять этапов; положенная трубка, снятая трубка, набор номера, переключение, звонок и разговор.На рисунке 1 показана фаза положенной трубки.

Рисунок 1

Когда трубка лежит на подставке, в цепи положена трубка. Другими словами, до того, как телефонный звонок будет инициирован, телефонный аппарат находится в состоянии готовности, ожидая, пока вызывающий абонент снимет трубку. Это состояние называется положенной трубкой. В этом состоянии цепь 48 В постоянного тока от телефонного аппарата до коммутатора CO разомкнута. Переключатель CO содержит источник питания для этой цепи постоянного тока. Источник питания, расположенный на коммутаторе CO, предотвращает потерю телефонной связи при отключении электроэнергии в месте нахождения телефонного аппарата.Когда телефон находится в этом положении, активен только звонок. На рисунке 2 показана фаза снятия трубки.

Рисунок 2

Фаза снятия трубки происходит, когда телефонный абонент решает позвонить по телефону и снимает трубку с телефонной подставки. Крючок переключателя замыкает петлю между переключателем CO и телефонным аппаратом и позволяет току течь. Коммутатор CO обнаруживает этот ток и передает на телефонный аппарат тональный сигнал (тоны с частотой 350 и 440 Гц [Гц] воспроизводятся непрерывно).Этот гудок сигнализирует, что клиент может начать набор номера. Нет гарантии, что клиент сразу услышит гудок. Если используются все цепи, клиенту придется ждать гудка. Пропускная способность используемого коммутатора CO определяет, как скоро на телефон вызывающего абонента будет отправлен тональный сигнал ответа станции. Коммутатор CO генерирует гудок только после того, как коммутатор зарезервировал регистры для хранения входящего адреса. Следовательно, клиент не может набрать номер, пока не будет получен гудок. Если нет гудка, значит, регистры недоступны.На рисунке 3 показан этап набора номера.

Рисунок 3

Этап набора номера позволяет клиенту ввести номер телефона (адрес) телефона в другом месте. Клиент вводит этот номер либо с помощью поворотного телефона, который генерирует импульсы, либо с помощью тонального (кнопочного) телефона, который генерирует тональные сигналы. Эти телефоны используют два разных типа адресной сигнализации для уведомления телефонной компании, в которую звонит абонент: двухтональный многочастотный набор (DTMF) и импульсный набор.

Эти импульсы или тональные сигналы передаются на коммутатор CO по двухпроводному кабелю типа «витая пара» (концевой и кольцевой линии). На рисунке 4 показана фаза переключения.

Рисунок 4

В фазе переключения коммутатор CO преобразует импульсы или тональные сигналы в адрес порта, который подключается к телефонному аппарату вызываемой стороны. Это соединение может идти напрямую к запрошенному телефонному аппарату (для местных вызовов) или проходить через другой коммутатор или несколько коммутаторов (для междугородних вызовов), прежде чем оно достигнет своего конечного пункта назначения.На рисунке 5 показана фаза звонка.

Рисунок 5

Как только коммутатор CO подключается к вызываемой линии, коммутатор отправляет на эту линию сигнал 20 Гц 90 В. Этот сигнал звонит на телефон вызываемого абонента. При звонке на телефон вызываемого абонента коммутатор CO посылает вызывающему абоненту звуковой сигнал обратного вызова. Этот обратный звонок позволяет вызывающему абоненту узнать, что звонок происходит у вызываемого абонента. Коммутатор CO передает 440 и 480 тональных сигналов на телефон вызывающего абонента для создания ответного сигнала вызова.Эти тоны воспроизводятся в определенное время включительно и в определенное время. Если телефон вызываемой стороны занят, коммутатор CO отправляет вызывающему абоненту сигнал «занято». Этот сигнал «занято» состоит из тонов с частотой 480 и 620 Гц. На рисунке 6 показана фаза разговора.

Рисунок 6

В фазе разговора вызываемый абонент слышит звонок телефона и решает ответить. Как только вызываемая сторона поднимает трубку, снова начинается фаза снятия трубки, на этот раз на противоположном конце сети.Локальный контур замкнут на стороне вызываемой стороны, поэтому ток начинает течь к коммутатору CO. Этот переключатель определяет текущий поток и завершает голосовое соединение с телефоном вызывающей стороны. Теперь голосовая связь может начинаться между обоими концами этого соединения.

Таблица 1 показывает сводку предупреждающих сигналов, которые могут генерироваться коммутатором CO во время телефонного звонка.

Таблица 1

Тональные сигналы в таблице 1 относятся к телефонным системам Северной Америки.Международные телефонные системы могут иметь совершенно другой набор сигналов о прогрессе. Все должны быть знакомы с большинством этих сигналов о ходе вызова.

A Тональный сигнал ответа станции указывает, что телефонная компания готова принимать цифры с телефона пользователя.

Тональный сигнал Занято указывает, что вызов не может быть завершен, поскольку телефон на удаленном конце уже используется.

Сигнал обратного вызова (нормальный или PBX) означает, что телефонная компания пытается выполнить вызов от имени абонента.

A Перегрузка Сигнал прохождения используется между коммутаторами, чтобы указать, что перегрузка в междугородной телефонной сети в настоящее время препятствует прохождению телефонного вызова.

A Reorder Тональный сигнал указывает, что все местные телефонные цепи заняты, и, таким образом, предотвращает обработку телефонного вызова.

A Телефонная трубка снята тон — это громкий звонок, который указывает на то, что трубка телефона снята в течение длительного периода времени.

A Нет такого номера. сигнал означает, что набранный номер не может быть найден в таблице маршрутизации коммутатора.

Адресная сигнализация

Североамериканский план нумерации

Североамериканский план нумерации (NANP) использует десять цифр для представления телефонного номера. Эти десять цифр разделены на три части: код города, код офиса и код станции.

В исходном NANP код города состоял из первых трех цифр телефонного номера и представлял регион в Северной Америке (включая Канаду).Первой цифрой было любое число от 2 до 9, второй цифрой было 1 или 0, а третьей цифрой было любое число от 0 до 9. Код офиса состоял из вторых трех цифр телефонного номера и однозначно определял переключатель в телефонная сеть. Первой цифрой было любое число от 2 до 9, второй цифрой было любое число от 2 до 9, а третьей цифрой было любое число от 0 до 9. Код города и код офиса никогда не могли быть одинаковыми, потому что вторая цифра каждый код всегда отличался.С помощью этой системы нумерации коммутатор мог определить, был ли это местный вызов или междугородний вызов, по второй цифре кода зоны. Код станции состоял из последних четырех цифр телефонного номера. Этот номер однозначно идентифицировал порт в коммутаторе, который был подключен к вызываемому телефону. Основываясь на этой десятизначной системе нумерации, служебный код может иметь до 10 000 различных кодов станций. Чтобы коммутатор имел более 10 000 подключений, ему необходимо назначить больше служебных кодов.

Увеличение количества телефонных линий, установленных в домах, доступа в Интернет и использования факсимильных аппаратов, резко сократило количество доступных телефонных номеров. Этот сценарий вызвал изменение в NANP. Настоящий план в основном такой же, как и старый, за исключением разделов телефонного номера с кодом города и офисным кодом. Три цифры для кода города и офиса теперь выбираются таким же образом. Первая цифра может быть любым числом от 2 до 9, а вторая и третья цифры могут быть любым числом от 0 до 9.Этот сценарий резко увеличивает количество доступных кодов городов, это, в свою очередь, увеличивает количество кодов станций, которые могут быть назначены. Если звонок является междугородним номером, необходимо набрать единицу перед 10-значным номером.

Международный план нумерации

Международный план нумерации основан на спецификации ITU-T E.164, международном стандарте, которому должны следовать все страны. В этом плане указано, что телефонный номер в каждой стране не может содержать более 15 цифр.Первые три цифры представляют код страны, но каждая может выбрать, использовать ли все три цифры. Остальные 12 цифр представляют собой национальный номер. Например, код страны для Северной Америки — 1. Следовательно, при звонке в Северную Америку из другой страны сначала необходимо набрать 1, чтобы получить доступ к NANP. Затем набираются десять цифр, требуемых NANP. 12 цифр национального номера могут быть организованы любым способом, который сочтет подходящим для конкретной страны.Кроме того, в некоторых странах для обозначения исходящего международного вызова можно использовать набор цифр. Например, 011 используется из Соединенных Штатов для выполнения исходящего международного вызова. На рисунке 7 показана сетевая адресация в Северной Америке.

Рисунок 7

На этом рисунке вызывающий абонент генерирует вызов из помещения клиента, который использует УАТС для доступа к коммутируемой телефонной сети общего пользования (PSTN). Чтобы обойти УАТС, вызывающий должен сначала набрать 9 (именно так настроено большинство УАТС).Затем вызывающий абонент должен набрать 1 для междугороднего соединения и десятизначный номер телефона, на который он хочет дозвониться. Код города передает вызывающего абонента через два коммутатора, сначала местный коммутатор, а затем коммутатор межстанционной связи (IXC), который принимает вызов на большие расстояния. Код офиса (вторые три цифры) снова переводит вызывающего абонента через местный коммутатор, а затем на другую УАТС. Наконец, код станции (последние четыре цифры) переводит вызывающего абонента к вызываемому телефону.

Импульсный набор

Импульсный набор — это метод внутриполосной сигнализации.Он используется в аналоговых телефонах с поворотным переключателем. Большое цифровое колесо на телефоне с дисковым набором номера вращается, чтобы посылать цифры для совершения звонка. Эти цифры должны производиться с определенной скоростью и с определенным уровнем допуска. Каждый импульс состоит из «размыкания» и «замыкания», которые достигаются, когда цепь местного контура размыкается и замыкается. Сегмент разрыва — это время, в течение которого цепь разомкнута. Сегмент включения — это время, в течение которого цепь замкнута.Каждый раз, когда диск поворачивается, нижняя часть диска закрывается и размыкает цепь, ведущую к коммутатору CO или коммутатору PBX.

«Регулятор» внутри шкалы управляет частотой пульсации цифр; например, когда абонент набирает цифру на поворотном переключателе, чтобы позвонить кому-нибудь, заводится пружина. Когда диск отпускается, пружина поворачивает диск обратно в исходное положение, а кулачковый переключатель размыкается и закрывает соединение с телефонной компанией. Количество последовательных открытий и закрытий — или разрывов и замыканий — представляет набранные цифры. Следовательно, если набирается цифра 3, переключатель замыкается и размыкается три раза.На рисунке 8 представлена ​​последовательность импульсов, возникающих при наборе цифры 3 с импульсным набором.

Рисунок 8

На этой иллюстрации показаны два термина: «замыкающий» и «перерыв». Когда телефонная трубка снята, происходит замыкание, и вызывающий абонент получает тональный сигнал готовности от коммутатора CO. Затем вызывающий абонент набирает цифры, которые генерируют последовательность включения и отключения, которая происходит каждые 100 миллисекунд (мс). Цикл размыкания и замыкания должен соответствовать соотношению замыкания 60% и замыкания 40%.Затем телефон остается в состоянии готовности до тех пор, пока не будет набрана другая цифра или пока телефон не будет снова переведен в состояние «положена трубка» (что эквивалентно перерыву). Адресация импульсов набора — очень медленный процесс, потому что количество генерируемых импульсов равно набранной цифре. Таким образом, когда набирается цифра 9, она генерирует девять замыкающих и размыкающих импульсов. Цифра 0 генерирует десять замыкающих и размыкающих импульсов. Для увеличения скорости набора была разработана новая техника набора (DTMF). На рисунке 9 показаны частотные тоны, генерируемые DTMF-набором (также называемым тональным набором).

DTMF Набор

Рисунок 9

DTMF-набор — это метод внутриполосной сигнализации, аналогичный импульсному набору. Этот метод используется в аналоговых телефонных аппаратах с сенсорной панелью. Этот метод набора номера использует только два частотных тона на цифру, как показано на рисунке 9. Каждая кнопка на клавиатуре сенсорной панели или кнопочного телефона связана с набором высоких и низких частот. На клавиатуре каждая строка клавиши идентифицируется низкочастотным тоном, а каждый столбец связан с высокочастотным тоном.Комбинация обоих тонов уведомляет телефонную компанию о вызываемом номере, отсюда и термин двухтональный многочастотный режим. Следовательно, когда набирается цифра 0, генерируются только частотные тоны 941 и 1336 вместо десяти импульсов включения и отключения, генерируемых импульсным набором. Временной интервал по-прежнему составляет 60 мсек и 40 мсек для каждой сгенерированной частоты. Эти частоты были выбраны для набора DTMF на основании их невосприимчивости к нормальному фоновому шуму.

Одночастотная и многочастотная сигнализация
Стандарты сигнализации

R1 и R2 используются для передачи контрольной и адресной сигнальной информации между коммутаторами голосовой сети.Оба они используют одночастотную сигнализацию для передачи контрольной информации и многочастотную сигнализацию для адресации информации.

R2 Сигнализация
Спецификации сигнализации

R2 содержатся в Рекомендациях МСЭ-Т с Q.400 по Q.490. Уровень физического соединения для R2 обычно представляет собой интерфейс E1 (2,048 мегабит в секунду [Мбит / с]), который соответствует стандарту ITU-T G.704. Носитель цифровых средств E1 работает на скорости 2,048 Мбит / с и имеет 32 временных интервала. Временные интервалы E1 пронумерованы от TS0 до TS31, где с TS1 по TS15 и с TS17 по TS31 используются для передачи голоса, который кодируется с помощью импульсной кодовой модуляции (PCM), или для передачи данных со скоростью 64 кбит / с.Этот интерфейс использует временной интервал 0 для синхронизации и кадрирования (так же, как для интерфейса первичной скорости [PRI]) и использует временной интервал 16 для сигнализации ABCD. Существует структура мультикадра с 16 кадрами, которая позволяет одному 8-битному временному интервалу обрабатывать линейную сигнализацию для всех 30 каналов данных.

R2 Управление вызовами и сигнализация

Используется два типа сигнализации: линейная сигнализация (контрольные сигналы) и межрегистровая сигнализация (сигналы управления установкой вызова). Линейная сигнализация включает в себя контрольную информацию (положена и снята трубка), а межрегистровая сигнализация имеет дело с адресацией.Они описаны более подробно в этом документе.

R2 Сигнализация линии

R2 использует сигнализацию, связанную с каналом (CAS). Это означает, что в случае E1 один из временных интервалов (каналов) выделен для сигнализации, а не для сигнализации, используемой для T1. Последний использует верхний бит каждого временного интервала в каждом шестом кадре.

Эта сигнализация является внеполосной сигнализацией и использует биты ABCD аналогично сигнализации с отнятыми битами T1 для индикации состояния «трубка снята» или «трубка снята».Эти биты ABCD появляются во временном интервале 16 в каждом из 16 кадров, составляющих мультикадр. Из этих четырех битов, иногда называемых каналами сигнализации, только два (A и B) фактически используются в сигнализации R2; два других запасные.

В отличие от типов сигнализации с отобранными битами, таких как начало мигания, эти два бита имеют разные значения в прямом и обратном направлениях. Однако вариантов основного протокола сигнализации нет.

Линейная сигнализация определяется этими типами:

R2-Digital — Линейная сигнализация R2 типа ITU-U Q.421, обычно используется для систем PCM (где используются биты A и B).

R2-Analog — Линейная сигнализация R2 типа ITU-U Q.411, обычно используемая для систем несущей (где используется бит тонального сигнала / A).

R2-Pulse —R2 линейная сигнализация, тип ITU-U Supplement 7, обычно используется для систем, которые используют спутниковые каналы (где бит тонального сигнала / A импульсный).

R2 Межрегистровая сигнализация

Передача информации о вызове (вызываемые и вызывающие номера и т. Д.) Выполняется тональными сигналами во временном интервале, используемом для вызова (так называемая внутриполосная сигнализация).

R2 использует шесть частот сигнализации в прямом направлении (от инициатора вызова) и различные шесть частот в обратном направлении (от стороны, которая отвечает на вызов). Эти межрегистровые сигналы относятся к многочастотному типу с внутриполосным кодом «два из шести». Варианты передачи сигналов R2, которые используют только пять из шести частот, известны как декадные системы CAS.

Межрегистровая сигнализация обычно выполняется сквозной принудительной процедурой.Это означает, что тоны в одном направлении подтверждаются тоном в другом направлении. Этот тип сигнализации известен как многочастотная принудительная (MFC) сигнализация.

Существует три типа межрегистровой сигнализации:

R2-Compelled —Когда от коммутатора отправляется пара тонов (прямой сигнал), тоны остаются включенными до тех пор, пока удаленный конец не ответит (отправит ACK) парой тонов, которые сигнализируют коммутатору о выключении тонов. . Звуковые сигналы должны оставаться включенными, пока не будут выключены.

R2-Non-Compelled —Тоновые пары отправляются (прямой сигнал) в виде импульсов, поэтому они остаются включенными на короткое время. Ответы (обратные сигналы) на переключатель (группа B) отправляются в виде импульсов. В несвязанной межрегистровой передаче сигналов группы A нет.

Примечание : В большинстве установок используется необязательная межрегистровая сигнализация.

R2-Semi-Compelled — Прямые тональные пары отправляются как принудительные. Ответы (обратные сигналы) на переключатель отправляются в виде импульсов.Этот сценарий аналогичен принудительному, за исключением того, что обратные сигналы являются импульсными, а не непрерывными.

Функции, которые могут сигнализироваться, включают:

  • Номер вызываемого или вызывающего абонента

  • Тип звонка (транзит, техобслуживание и т. Д.)

  • Эхоподавитель сигналов

  • Категория вызывающего абонента

  • Статус

R1 Сигнализация
Спецификации сигнализации

R1 содержатся в Рекомендациях МСЭ-Т Q.С 310 по Q.331. Этот документ содержит краткое изложение основных моментов. Уровень физического соединения для R1 обычно представляет собой интерфейс T1 (1,544 Мбит / с), который соответствует стандарту ITU-T G.704. Этот стандарт использует 193-й бит кадра для синхронизации и кадрирования (так же, как T1).

R1 Управление вызовами и сигнализация

Снова задействованы два типа сигнализации: линейная сигнализация и сигнализация регистров. Линейная сигнализация включает в себя контрольную информацию (положена и снята трубка), а сигнализация регистров связана с адресацией.Оба обсуждаются более подробно:

R1 Сигнализация линии

R1 использует CAS в слоте, отбирая восьмой бит каждого канала в каждом шестом кадре. Этот тип сигнализации использует биты ABCD таким же образом, как сигнализация с отнятыми битами T1, чтобы указать статус «трубка снята» или «снята трубка».

R1 Сигнализация регистра

Передача информации о вызове (вызываемые и вызывающие номера и т. Д.) Выполняется тональными сигналами во временном интервале, используемом для вызова.Этот тип сигнализации также называется внутриполосной сигнализацией.

R1 использует шесть сигнальных частот от 700 до 1700 Гц с шагом 200 Гц. Эти межрегистровые сигналы относятся к многочастотному типу и используют внутриполосный код «два из шести». Информации об адресе, содержащейся в регистре сигнализации, предшествует тональный сигнал KP (сигнал начала импульса) и завершается тональным сигналом ST (сигнал окончания импульса).

Возможности, которые могут сигнализироваться, включают:

  • Номер вызываемого абонента

  • Статус звонка

Наконечники и кольцевые линии

На рисунке 10 показаны исходящие и вызывные линии в простой старой телефонной сети (POTS).

Рисунок 10

Стандартный способ передачи голоса между двумя телефонными аппаратами — использование исходящей и вызывной линий. Линии наконечника и звонка — это витая пара проводов, которые подключаются к телефону с помощью разъема RJ-11. Гильза является заземляющим проводом для этого разъема RJ-11.

Loop-start signaling — это метод диспетчерской сигнализации, который обеспечивает способ индикации состояния «трубка снята» и «трубка снята» в голосовой сети. Сигнализация по шлейфу используется в основном, когда телефонный аппарат подключен к коммутатору.Этот метод сигнализации может использоваться в любом из следующих подключений:

  • Телефонный аппарат к коммутатору CO

  • Телефонный аппарат к коммутатору АТС

  • Телефонный аппарат к валютной станции (FXS) модуль (интерфейс)

  • Коммутатор УАТС на коммутатор CO

  • Коммутатор АТС на модуль FXS (интерфейс)

  • Коммутатор АТС в обменный пункт (FXO) модуль (интерфейс)

  • Модуль FXS к модулю FXO

Аналоговая сигнализация запуска петли

На рисунках с 11 по 13 показана передача сигналов по шлейфу от телефонного аппарата, коммутатора PBX или модуля FXO к коммутатору CO или модулю FXS.На рисунке 11 показано состояние ожидания для сигнализации о начале цикла.

Рисунок 11

В этом состоянии ожидания модуль телефона, УАТС или FXO имеет разомкнутую двухпроводную петлю (разомкнуты контактные линии и линии звонка). Это может быть телефонный аппарат с положенной трубкой или модуль PBX или FXO, который создает разрыв между линиями подсказки и звонка. CO или FXS ожидает замкнутого контура, который генерирует текущий поток. CO или FXS имеют кольцевой генератор, подключенный к линии вывода и –48 В постоянного тока на кольцевой линии.На рис. 12 показано состояние поднятой трубки для телефонного аппарата или занятие линии для модуля PBX или FXO.

Рисунок 12

На этом рисунке телефонный аппарат, УАТС или модуль FXO замыкают петлю между исходящей и вызывной линиями. Телефон снимает трубку, или модуль PBX или FXO замыкает соединение. Модуль CO или FXS обнаруживает текущий поток, а затем генерирует тональный сигнал, который отправляется на телефонный аппарат, PBX или модуль FXO. Это означает, что клиент может начать набор номера.Что происходит при входящем вызове от коммутатора CO или модуля FXS? На рисунке 13 показана эта ситуация.

Рисунок 13

На иллюстрации модуль CO или FXS захватывает линию вызывного сигнала вызываемого телефона, PBX или модуля FXO путем наложения сигнала 20 Гц, 90 В переменного тока на линию вызова –48 В постоянного тока. Эта процедура звонит на телефонный аппарат вызываемой стороны или сигнализирует модулю PBX или FXS о входящем вызове. Модуль CO или FXS удаляет это кольцо, как только телефонный аппарат, PBX или модуль FXO замыкают цепь между оконечной и вызывной линиями.Телефонный аппарат замыкает цепь, когда вызываемый абонент снимает трубку. Модуль PBX или FXS замыкает цепь, когда у него есть доступный ресурс для подключения к вызываемой стороне. Сигнал вызова с частотой 20 Гц, генерируемый коммутатором CO, не зависит от пользовательских линий и является единственным способом сообщить пользователю о входящем вызове. На пользовательских линиях нет выделенного генератора звонков. Следовательно, коммутатор CO должен циклически перебрать все линии, по которым он должен звонить. Этот цикл занимает около четырех секунд.Эта задержка звонка по телефону вызывает проблему, известную как ослепление, когда коммутатор CO и УАТС телефонного аппарата или модуль FXO одновременно занимают линию. Когда это происходит, человек, который инициирует вызов, подключается к вызываемой стороне почти мгновенно, без сигнала обратного вызова. Ослепление не является серьезной проблемой при переходе от телефонного аппарата к коммутатору городской АТС, потому что пользователь может допустить случайное появление бликов. Ослепление становится серьезной проблемой при использовании петлевого старта от УАТС или модуля FXO к коммутатору CO или модулю FXS, потому что задействован больший трафик вызовов.Следовательно, увеличивается вероятность бликов. Этот сценарий объясняет, почему сигнализация с запуском по шлейфу используется в первую очередь при подключении телефонного аппарата к коммутатору. Лучший способ предотвратить ослепление — использовать сигнализацию «земля-пуск», о которой мы поговорим в следующем разделе.

Цифровая сигнализация пуска петли для платформ 26/36 / 37xx

На этих диаграммах показано состояние битов ABCD для сигнализации о запуске петли FXS / FXO применительно к платформам 26/36 / 37xx:

Цифровая сигнализация пуска петли для AS5xxx

На этих диаграммах показано состояние битов AB для сигнализации о запуске петли FXS / FXO, поскольку это применимо только к платформам AS5xxx.Это не применимо к платформам 26/36 / 37xx. Этот режим работы чаще всего используется в приложениях внешнего расширения (OPX). Это схема сигнализации с двумя состояниями, в которой для сигнализации используется «бит B».

Состояние простоя:

В FXS: бит A = 0, бит B = 1

Из FXS: бит A = 0, бит B = 1

FXS Отправляет:

Шаг 1: FXS меняет бит A на 1, сигнализируя FXO о закрытии цикла.

В FXS: бит A = 0, бит B = 1

Из FXS: бит A = 1, бит B = 1

FXO Исходный

Шаг 1: FXO устанавливает бит B в 0.Бит B переключается с генерацией кольца:

В FXS: бит A = 0, бит B = 1

Из FXS: бит A = 1, бит B = 1

Тестирование с петлевым запуском

Как тестировать состояния сигнализации соединительной линии с запуском петли обсуждается со ссылкой на две точки зрения: от демаркационной линии, смотрящей на CO, и от демаркационной линии, смотрящей на PBX.

Состояние простоя (трубка положена, исходное состояние)

Состояние холостого хода представлено на Рисунке 14.Перемычки удаляются, чтобы изолировать АТС от УАТС.

Если смотреть в сторону УАТС, между выводами T-R на границе наблюдается разрыв.

Если смотреть в сторону CO от разграничения, на выводе T наблюдается заземление, а на выводе R — –48 В. Вольтметр, подключенный между T и R на стороне CO разграничения, в идеале показывает значение, близкое к –48 В.

Рисунок 14

Исходящий (трубка снята)

Чтобы проверить работу по направлению к АТС, снимите перемычки и подсоедините тестовый телефонный аппарат через выводы T-R к АТС.Тестовый комплект обеспечивает замыкание петли. CO обнаруживает замыкание шлейфа, подключает цифровой приемник к цепи, устанавливает аудиотракт и передает тональный сигнал готовности к УАТС. (См. Рисунок 15.)

Рисунок 15

После получения тонального сигнала готовности к набору тестовым телефоном вы можете приступить к набору номера с использованием сигналов DTMF или импульсного набора номера, как это разрешено CO. Некоторые CO оборудованы только для приема адресации с импульсным набором номера. Те, кто оборудован для приема DTMF, также могут получать импульс набора.Когда получена первая набранная цифра, АТС удаляет тональный сигнал ответа станции.

После набора всех цифр приемник цифр удаляется на CO, и вызов направляется на удаленную станцию ​​или коммутатор. Аудиотракт продлевается по исходящему объекту, и на тестовый телефон возвращаются звуковые сигналы о ходе вызова. После ответа на вызов по аудиоканалу можно услышать голосовые сигналы.

Входящий (звонок в пункте назначения)

Тестовый телефон на разграничении также может использоваться для проверки соединительных линий с запуском по шлейфу для работы с входящим вызовом.Настройка теста такая же, как и для исходящих звонков. Обычно технический специалист по АТС вызывает технического специалиста по АТС по другой линии и просит технического специалиста по АТС вызвать УАТС на тестируемой соединительной линии. CO подает вызывное напряжение на магистраль. В идеале тестовый телефон на демарке звонит. Технический специалист по АТС отвечает на вызов на тестовом телефоне. Если технические специалисты могут разговаривать друг с другом по тестируемой магистрали, магистраль функционирует нормально.

Тесты между УАТС и разграничительной рамкой с удаленными зажимами-перемычками затруднены.Для работы интерфейсных схем петлевого запуска в большинстве УАТС требуется напряжение батареи от CO. Если напряжение отсутствует, магистраль не может быть выбрана для исходящих вызовов. Обычная процедура заключается в проверке магистрали от демаркационной линии до CO, сначала со снятыми перемычками, как описано, а затем после установки перемычек. Если соединительная линия не работает должным образом при подключении к УАТС, проблема, вероятно, в УАТС или в проводке между УАТС и демаркацией.

Сигнализация пуска с земли

Наземная сигнализация — это еще один метод диспетчерской сигнализации, такой как петлевой запуск, который обеспечивает способ индикации состояния «трубка снята» и «трубка снята» в голосовой сети. Сигнализация пуска с земли используется в основном в коммутационных соединениях. Основное различие между сигнализацией «земля-старт» и «старт по шлейфу» состоит в том, что «земля-старт» требует, чтобы обнаружение заземления происходило на обоих концах соединения до того, как замкнуть шлейф наконечника и кольцевой цепи.

Хотя сигнализация с запуском по шлейфу работает, когда вы используете телефон дома, сигнализация с заземлением предпочтительнее, когда в телефонных коммутационных центрах задействованы соединительные линии большого объема.Поскольку сигнализация «земля-начало» использует переключатель запроса и / или подтверждения на обоих концах интерфейса, это предпочтительнее, чем FXO и другие методы сигнализации на часто используемых соединительных линиях.

Аналоговая сигнализация заземления

Рисунки с 16 по 19 охватывают сигнализацию запуска с земли только от коммутатора CO или модуля FXS к модулю PBX или FXO. На рисунке 16 показано состояние холостого хода (положена трубка) сигнализации о пуске с земли.

Рисунок 16

На рисунке наконечник и кольцевой провод отсоединены от земли.УАТС и FXO постоянно контролируют заземление на линии сопряжения, а CO и FXS постоянно контролируют линию звонка на предмет заземления. Батарея (–48 В постоянного тока) по-прежнему подключена к кольцевой линии, как и в системе сигнализации по шлейфу. На рисунке 17 показан вызов, исходящий от УАТС или FXO.

Рисунок 17

На рисунке УАТС или FXO заземляют линию звонка, чтобы указать CO или FXS, что есть входящий вызов. CO или FXS определяет заземление кольца, а затем заземляет наконечник, чтобы сообщить PBX или FXO, что он готов принять входящий вызов.УАТС или FXO определяет заземление наконечника и в ответ замыкает петлю между линиями наконечника и звонком. Это также удаляет кольцевую землю. Этот процесс завершает голосовое соединение с CO или FXS, и можно начинать голосовую связь. На рис. 18 показан вызов, поступающий от CO или FXS.

Рисунок 18

На рис. 18 CO или FXS заземляют соединительную линию, а затем накладывают вызывное напряжение 20 Гц и 90 В переменного тока на линию вызывного сигнала, чтобы предупредить УАТС или FXO о входящем вызове.На рисунке 19 показана заключительная фаза сигнализации «земля-старт».

Рисунок 19

На этом рисунке PBX или FXO распознает как заземление, так и звонок. Когда у УАТС или FXO есть доступные ресурсы для установления соединения, УАТС или FXO замыкают петлю между концевой и кольцевой линиями и удаляют кольцевое заземление. CO или FXS определяет ток, протекающий от наконечника и шлейфа звонка, а затем удаляет сигнал вызова. УАТС или FXO должны определить заземление наконечника и звонок в течение 100 мс, в противном случае время ожидания канала истечет, и вызывающий абонент должен изменить порядок вызова.Этот тайм-аут 100 мс помогает предотвратить блики.

Цифровая сигнализация заземления для платформ 26/36 / 37xx

На этих диаграммах показано состояние битов ABCD для сигнализации о запуске петли FXS / FXO применительно к платформам 26/36 / 37xx.

Примечание: Эта диаграмма дана с точки зрения FXO маршрутизатора.

Примечание: Контроль отключения осуществляется с помощью бита.

Цифровая сигнализация заземления для платформ AS5xxx

На этих диаграммах показано состояние битов AB для сигнализации о запуске петли FXS / FXO, поскольку это применимо только к платформам AS5xxx.Это не применимо к платформам 26/36 / 37xx. Этот режим работы чаще всего используется в приложениях магистрали обмена иностранной валюты (FX).

FXS отправляет:

Состояние простоя:

В FXS: бит A = 1, бит B = 1

Из FXS: бит A = 0, бит B = 1

Шаг 1: FXS инициирует вызов. Бит B из FXS переходит в 0:

В FXS: бит A = 1, бит B = 1

Из FXS: бит A = 0, бит B = 0 (исходящий вызов FXS)

Шаг 2: Бит FXO переходит в 0:

Для FXS: бит = 0 (ответ FXO), бит B = 1

Из FXS: бит A = 0, бит B = 0

Шаг 3: FXS отвечает передачей A = 1, B = 1 на FXO:

В FXS: бит A = 0, бит B = 1

Из FXS: бит A = 1, бит B = 1

FXO Отправляет:

Шаг 1: FXO изменяет биты A и B с 1 на 0 (бит B следует за циклом звонка):

В FXS: бит A = 0, бит B = 0

Из FXS: бит A = 0, бит B = 1

Шаг 2: FXS в ответ меняет бит A с 0 на 1.FXO отключает генератор звонков в ответ. Когда генератор звонков отключен, FXO возвращает бит B в 1:

.

В FXS: бит A = 0, бит B = 1

Из FXS: бит A = 1, бит B = 1

Испытания с земли

Тесты магистралей с запуском по схеме «земля» аналогичны тестам для магистралей с кольцевым запуском. Однако обычно можно провести некоторые тесты между УАТС и демаркационной рамкой с удаленными соединительными зажимами.

Состояние холостого хода (положена трубка)

Состояние холостого хода представлено на рисунке 20.Перемычки снимаются, чтобы изолировать УАТС от центральной АТС. Если смотреть в сторону УАТС, на выводе T наблюдается –48 В, а вывод R открыт. Если смотреть в сторону CO, на выводе R наблюдается –48 В, а вывод T открыт.

Рисунок 20

В идеале, вольтметр, подключенный от R к земле на стороне CO демаркационной линии или от T к земле на стороне PBX, показывает приблизительно –48V. Омметр, подключенный между T и землей на стороне CO, показывает очень высокое сопротивление.На многих УАТС в состоянии ожидания присутствует некоторое напряжение между резистором R и землей. При попытке измерения сопротивления могут произойти ошибочные измерения и повреждение измерителя. Обратитесь к техническому руководству производителя УАТС, прежде чем измерять сопротивление заземления на стороне УАТС демаркационной зоны.

Исходящий (трубка снята)

Чтобы проверить соединительную линию с заземлением на исходящие вызовы, снимите соединительные зажимы и подключите тестовый телефон и вольтметр; затем выполните следующие действия:

  1. Наблюдать за вольтметром.При положенной трубке тестового телефона в идеале показания счетчика составляют около 0,0 В.

  2. Поднимите трубку и слушайте. В идеале нет гудка.

  3. Наблюдать за счетчиком. В идеале оно должно быть около –48 В.

  4. На мгновение заземлите провод R с помощью перемычки и снова прислушайтесь к тональному сигналу ответа станции. В идеале тональный сигнал готовности слышен вскоре после удаления заземления.

  5. Наблюдать за вольтметром. Показание намного ниже, чем раньше, что указывает на то, что CO отправляет заземление T.

  6. Наберите номер станции или номер завершения теста милливафт. Если вызов завершен, можно услышать звук.

Входящий (звонок в пункте назначения)

Соединительные линии с наземным запуском могут быть протестированы на работу при входящем вызове с помощью тестового телефона с той же процедурой, что и для соединительных линий с петлевым запуском.

Тестирование тока контура

Для надежной работы магистрали с запуском по контуру и с заземлением должны иметь не менее 23 миллиампер (мА) постоянного тока, протекающего при замкнутом контуре.Менее 23 мА приводит к неустойчивой работе, например, к периодическим отключениям и невозможности заедания. Если ток в шлейфе предельный, магистраль может хорошо протестироваться с помощью тестового телефона, но при подключении к УАТС будет работать нестабильно. Всякий раз, когда магистраль работает хаотично, ток в контуре необходимо измерить с помощью набора для проверки цепи.

Рисунок 22 иллюстрирует испытательную установку. Сняв перемычки, подключите зеленый измерительный провод к T, а красный измерительный провод к R на стороне CO демаркации. Желтый провод в этом тесте не используется.

Рисунок 22

Чтобы измерить ток шлейфа, снимите трубку с тестового телефона и прислушайтесь к тональному сигналу ответа станции. При тестировании ствола с заземлением на мгновение заземлите провод R. После получения тонального сигнала нажмите кнопку «Нажать для измерения» на тестовом наборе и считайте значение тока на шкале мА контура. В идеале показание составляет от 23 до 100 мА.

Тестирование магистрали DID

Состояние холостого хода представлено на рисунке 23.Если смотреть в сторону УАТС, на клемме T отображается «земля», а на проводе R. Если смотреть в сторону C0, между T и R.

наблюдается петля с высоким сопротивлением. Рисунок 23

После ответа на вызов УАТС подключает аккумулятор к проводу T и заземляет к проводу R. Это состояние известно как разворот T-R. Это изменение напряжения можно наблюдать на вольтметре. Из-за того, что батарея и земля на выводах T-R перепутаны, этот тип сигнализации называется обратной батареей контура.

Отключение вызова

Если CO отключается первым, наблюдается кратковременное повышение напряжения, в то время как контур в переключателе CO переходит с низкого на высокое сопротивление. Этот процесс сопровождается изменением напряжения, когда УАТС кладет трубку.

Если сначала отключается УАТС, наблюдается реверс напряжения, за которым следует увеличение напряжения, когда CO кладет трубку, а контур CO переходит с низкого на высокое сопротивление.

Сделайте несколько тестовых звонков. После каждого тестового вызова необходимо снимать перемычки и проверять схему, чтобы убедиться, что она вернулась в состояние холостого хода.

Демарк к АТС

Многие УАТС можно протестировать на работу с прямым входящим набором (DID) из разграничительной зоны с удаленными соединительными зажимами. Выполните следующие шаги:

  1. Снимите трубку с тестовым телефоном.

  2. Наберите от одной до четырех цифр адреса внутреннего номера УАТС.

  3. Если вызываемый добавочный номер звонит, переходите к этапу 4.

  4. Попытка разговора между тестовым телефоном и вызываемым добавочным номером.Если происходит хорошая передача звука, то УАТС и соединительная линия работают хорошо до границы.

  5. Если проблемы возникают на шагах 3 или 4, значит, работа DID неисправна и ее необходимо исправить.

Другой метод передачи сигналов, используемый в основном между УАТС или другими коммутаторами межсетевой телефонии (система электронной коммутации Lucent 5 [5ESS], Nortel DMS-100 и т. Д.), Известен как E&M. Сигнализация E&M поддерживает средства межкоммутаторного типа или сигналы между голосовыми коммутаторами.Вместо того, чтобы накладывать голос и сигнализацию на один и тот же провод, E&M использует отдельные пути или отведения для каждого. E&M обычно называют ухом и ртом или приемом и передачей. Существует пять типов сигнализации E&M, а также два различных метода подключения (двухпроводной и четырехпроводной). Таблица 1 показывает, что некоторые типы сигнализации E&M похожи.

Тип M-Lead Поднимите трубку M-Поводок на крючке E-Lead Поднимите трубку Электронный поводок на крючке
Я Аккумулятор Земля Земля Открыть
II Аккумулятор Открыть Земля Открыть
III Ток контура Земля Земля Открыть
IV Земля Открыть Земля Открыть
В Земля Открыть Земля Открыть
SSDC5 Земля на Земля выключена Земля на Земля выключена

Четырехпроводная сигнализация E&M Type I на самом деле является шестипроводным сигнальным интерфейсом E&M, распространенным в Северной Америке.Один провод — это E-вывод; второй провод — это M-вывод, а оставшиеся две пары проводов служат аудиотрактом. При таком расположении УАТС подает питание или батарею как для M-, так и для E.

Тип II, III и IV — восьмипроводные интерфейсы. Один провод является выводом E, другой провод — выводом M. Два других провода — это сигнальная земля (SG) и сигнальная батарея (SB). В типе II SG и SB являются обратными путями для вывода E и M соответственно.

Тип V — это еще один шестипроводной тип сигнализации E&M и наиболее распространенная форма сигнализации E&M, используемая за пределами Северной Америки.В типе V один провод является выводом E, а другой провод — выводом M.

Подобно типу V, SSDC5A отличается тем, что состояния «трубка снята» и «трубка снята» являются обратными для обеспечения отказоустойчивой работы. Если линия прерывается, интерфейс по умолчанию находится в состоянии «снята трубка» (занята). Из всех типов симметричны только типы II и V (могут быть соединены друг с другом с помощью перекрестного кабеля). SSDC5 чаще всего встречается в Англии. В настоящее время серия Cisco 2600/3600 поддерживает типы I, II, III и V с использованием как двух-, так и четырехпроводной реализации.На этом рисунке показаны двухпроводные и четырехпроводные сигнальные соединения E&M. Голос проходит по линиям подсказок и звонков. Сигнализация происходит по линиям E&M.

На этом рисунке показана сигнализация E&M типа 1 с двухпроводной линией:

На этом рисунке показан процесс, который происходит во время сигнала начала мигания:

На этом рисунке показан процесс сигнализации о немедленном запуске мигания:

Цифровая сигнализация E&M

Цифровая сигнализация E&M — это схема сигнализации с двумя состояниями (положена и снята трубка), обычно используемая в цифровых четырехпроводных соединительных линиях и межкоммутаторных соединительных линиях.«Битовая» сигнализация передает состояние сигнализации. Бит «B» (или биты B, C, D в случае расширенного суперкадра [ESF]) следует за тем же состоянием, что и бит A.

Состояние простоя

В УАТС B: бит A = 0, бит B = 0

Из УАТС B: бит A = 0, бит B = 0

PBX A Поднимается трубка

В УАТС B: бит = 1, бит B = 1

Из УАТС B: бит A = 0, бит B = 0

PBX B Ответы

В УАТС B: бит = 1, бит B = 1

Из УАТС B: бит A = 1, бит B = 1

Примечание: Исходящий коммутатор может получать тональный сигнал ответа станции или мигать обратно с удаленной стороны после инициирования вызова, в зависимости от приложения.

E&M Tie Trunk Testing

Поскольку УАТС на обоих концах межкоммутаторной соединительной линии являются частью одной и той же частной сети, технические специалисты по частной сети могут выполнять сквозные тесты магистральной соединительной линии, даже если путь передачи может включать арендованные объекты в общедоступной сети. Техники на обоих концах ствола работают вместе и координируют свои действия, обсуждая объекты друг друга. Эти процедуры тестирования охватывают тесты только сигналов E&M типов I и II.

Тип I

Для проверки сигнализации E&M типа I с обоих концов выводов E и M снимаются перемычки. Омметры подключаются между выводами E и землей. Когда вывод M на одном конце магистрали соединен перемычкой на –48 В, в идеале показания омметра на другом конце переходят от разомкнутого к очень низкому сопротивлению. Это указывает на заземление электрода. (См. Рисунок 27.)

Рисунок 27

Тип II

Испытательная установка для типа II показана на рисунке 28.Перемычки снимаются только с выводов M и сигнальной батареи (SB). Вольтметры подключаются между E и сигнальной землей (SG). В идеале в режиме простоя вольтметры показывают напряжение аккумулятора с УАТС, примерно –48 В. Когда перемычка подключена между M и SB на одном конце магистрали, в идеале показания вольтметра на дальнем конце уменьшаются до низкого значения, что указывает на заземление E-вывода.

Рисунок 28

Системы сигнализации общего канала

Системы сигнализации по общему каналу (CCS) обычно представляют собой системы сигнализации высокого уровня, основанные на управлении каналом передачи данных (HDLC).В КТСОП США первоначальная реализация CCS началась в 1976 году и была известна как CCIS (межстанционная сигнализация по общему каналу). Эта сигнализация аналогична Системе сигнализации 6 (SS6) ITU-T. Протокол CCIS работал с относительно низкими скоростями передачи данных (2,4 КБ, 4,8 КБ, 9,6 КБ), но передавал сообщения длиной всего 28 бит. Однако CCIS не может адекватно поддерживать интегрированную среду передачи голоса и данных. Поэтому был разработан новый стандарт сигнализации на основе HDLC и рекомендация ITU-T: Система сигнализации 7.

Впервые определенная ITU-T в 1980 году, шведская почта, телефон и телеграф (PTT) начала испытания SS7 в 1983 году, а некоторые европейские страны теперь полностью основаны на SS7.

В Соединенных Штатах Bell Atlantic начала внедрение SS7 в 1988 году, став одной из первых операционных компаний Bell (BOC), если не первой, кто это сделал.

В настоящее время большинство сетей дальней связи и сетей с местными телефонными станциями перешли на реализацию Системы сигнализации 7 (SS7) МСЭ-Т.К 1989 году AT&T преобразовала всю свою цифровую сеть на SS7; и US Sprint базируется на SS7. Однако многие операторы локальной телефонной связи (LEC) все еще находятся в процессе обновления своих сетей до SS7, поскольку количество обновлений коммутаторов, необходимых для поддержки SS7, влияет на LEC гораздо сильнее, чем на IC. Медленное развертывание SS7 внутри LEC также частично является причиной задержек с включением ISDN в Соединенных Штатах.

В настоящее время существует три версии протоколов SS7:

  • Версия ITU-T (1980, 1984) подробно описана в ITU-T Q.701 — Q.741

  • AT&T и Telecom Canada (1985)

  • ANSI (1986)

Система сигнализации 7 Функции PSTN в США

SS7 в настоящее время обеспечивает поддержку POTS посредством использования пользовательской части телефонии (TUP), которая определяет сообщения, которые используются для поддержки этой услуги. Определена дополнительная пользовательская часть ISDN (ISUP), которая поддерживает транспорт ISDN. В конце концов, поскольку ISUP включает в себя трансляции из POTS в ISDN, ожидается, что ISUP заменит TUP.На рисунке 29 показано, где SS7 берет на себя управление голосовой сетью.

Все, что вам нужно знать о POTS (Plain Ordinary Telephone Service) и аналоговых телефонных системах — Master 101, класс

В отрасли базовая телефонная служба известна как обычная обычная телефонная служба (POTS) , а также иногда ее называют индивидуальной телефонной службой или гудком.

Рисунок 1: Схема обслуживания POTS

Как показано на рисунке 1 выше, эта услуга включает телефон с дисковым набором номера, который подключен к линейной карте в телефонном коммутаторе через медный шлейф с двумя проводами.

Телефон в системах POTS состоит из следующих основных компонентов:

  • Микрофон
  • Динамик
  • Гибридный преобразователь
  • Поворотный переключатель
  • Дисковый переключатель
  • Звонок
  • Защита

Наконечник и кольцо

Два провода петли иногда еще называют наконечником и кольцом.Эти названия произошли от первых телефонных коммутаторов, которые состояли из плат с гнездовыми разъемами. К этим доскам подключались стволы и петли.

Операторам приходилось вставлять один конец патч-корда в гнездо магистрали, а другой конец — в гнездо петли, чтобы соединить магистраль с петлей.

Разъемы патч-кордов были сконструированы таким образом, что один из проводов был прикреплен к металлическому кольцу под наконечником, а другой — к металлическому наконечнику вилочного разъема.

Два провода, составляющие петлю, были подключены, когда разъем был вставлен в гнездо.

Витая пара

При подключении двухпроводных цепей они действуют как рамочные антенны. Количество энергии, принимаемой рамочной антенной, пропорционально ее площади, а с телефоном используется петля диаметром 3 мили (5 км)!

Провода покрыты пластиком, а затем скручены вместе, чтобы снизить уровень шума.

Подробнее о витых парах читайте в серии статей здесь.

Хотя с электрической точки зрения провода по-прежнему действуют как одна большая токовая петля с пластиковым покрытием, с точки зрения антенны они действуют как серия маленьких петель. Площадь маленьких петель меньше, чем у большой петли, что сводит к минимуму антенный эффект проводов.

Знаете ли вы? Вы можете расширить POTS-телефоны на расстояние более 3 миль (5 км) — до 20 км или даже 120 км, используя мультиплексоры Fiber PCM от AD-net.

Итак, в основном здесь происходит то, что вы сначала преобразуете аналоговый сигнал в оптический свет, а затем отправляете его в оптоволокно с помощью оптоволоконных мультиплексоров. Схема обычно будет выглядеть так:

Рисунок 2: Расширение POTS-линий за пределы ограничений по длине медных кабелей с использованием наших волоконных мультиплексоров.

Поскольку два провода скручены вместе, они называются витыми парами.Витые пары используются почти для всех кабелей, включая кабели для передачи данных, внутреннюю проводку и телефонные провода на опорах. Кабели LAN используют четыре витые пары.

Рисунок 3: Экранированная витая пара (ScTP)

Линейная карта

Петля витой пары завершается на линейной карте со стороны сети.Линейная карта состоит из небольшой стекловолоконной платы, заполненной компонентами, включая разъемы и интегральные схемы. Линейная карта вставляется в слот в ящике, который вставляется в полку в стойке. Все это является частью традиционного телефонного коммутатора или PABX.

В более новых системах линейная карта часто является частью шлюза, который выполняет преобразование между POTS и передачей голоса по IP (VOIP).

Линейная карта имеет ряд функций и иногда обозначается аббревиатурой BORSCHT : аккумулятор, защита от перенапряжения, вызывной сигнал, контроль, кодек, гибрид и тестирование.

Микрофон и динамик

Микрофон — это преобразователь, который создает напряжение из волн звукового давления. Значение этого напряжения отражает силу волн звукового давления, исходящих от горла динамика.

Это напряжение передается от телефона по шлейфу к линейной карте на ближнем конце. Затем он оцифровывается кодеком и транспортируется по телефонной сети, где он воспроизводится линейной картой на дальнем конце и затем отправляется на дальний телефон по шлейфу на дальнем конце.

Динамик работает с микрофоном, поскольку он использует полученное напряжение для создания волн звукового давления, которые посылаются в ухо пользователя.

Рис. 4: Схема предоставления услуг POTS, на которой показаны поворотный переключатель, рычажный переключатель, защита, провода звонка, подсказки и звонка.

Сбалансированная сигнализация

Напряжение всегда измеряется как разница напряжений между двумя объектами.Один объект часто является землей, а другой — проводом, поэтому напряжение измеряется относительно земли. В телефонном шлейфе это не так, поскольку напряжение измеряется между двумя проводами шлейфа, а не между проводами и землей.

В этом случае используется симметричная сигнализация. Это означает, что если напряжение на одном проводе относительно земли положительное, напряжение на другом проводе относительно земли будет таким же, но отрицательным.

Поскольку добавленный шум будет одинаковым на двух проводах, сигнал удваивается, и шум подавляется, когда напряжение между двумя проводами измеряется на приемнике.

Двусторонняя одновременная

Два провода петли используются для одновременной передачи информации в обоих направлениях. И линейная карта, и телефон создают аналог напряжения звука по двум проводам контура.Таким образом, складываются напряжения от устройств на каждом конце.

Гибридный трансформатор

Устройство внутри телефона, называемое гибридом, разделяет напряжение для каждого направления. Гибрид имеет две цепи с одной стороны и двухпроводную петлю с другой стороны. Одна цепь для динамика, а другая для микрофона. Аналогичное расположение можно найти на линейной карте, соединяющей петлю с выводами приема и передачи кодека.

Аккумулятор

Помимо звукового аналога напряжения, который можно рассматривать как сигнал переменного (или переменного) тока, линейная карта также подает постоянное (или постоянное) напряжение на два провода контура.

В промышленности это напряжение называется аккумулятором, и оно используется для питания телефона. Номинальное значение -48 вольт, измеренное от кольца до наконечника.

Молниезащита

На схеме выше также показана схема защиты в контуре.Это необходимо для защиты пользователя телефона от поражения электрическим током в результате контакта высоковольтного провода электропередачи с петлей или удара молнии в петлю.

Фактически в систему встроено три уровня защиты:

  1. Предохранитель на линейной карте POTS перегорает, если через него проходит слишком большой ток;
  2. Схема в точке разграничения, где провода телефонной компании соединяются с проводами клиента, будут подключаться к земле, если напряжение будет слишком высоким;
  3. Если напряжение на шлейфе слишком высокое, цепь внутри телефона замкнет шлейф накоротко;

Надзор

Переключатель звонка и снятия трубки в телефоне используется для наблюдения.

Supervision означает, что вы должны указать на другом конце вашего шлейфа, что вы хотите начать использовать систему, независимо от того, с кем вы хотите поговорить или что вы собираетесь им сказать.

Рычаг-переключатель в телефоне обычно разомкнут, отсоединяя два провода, составляющих петлю, и в петле не течет ток или электричество.

Пользователь должен снять трубку (снимает трубку), чтобы начать связь.

Это замыкает рычажный переключатель и соединяет два провода, что позволяет линейному напряжению проталкивать ток по петле.

Этот тип контроля называется сигнализацией начала петли, поскольку два провода соединены, образуя петлю, и позволяет току течь.

Ток обнаруживается линейной картой на телефонном коммутаторе, и она подтверждается гудком.

Вариации на эту тему используются в других приложениях, например, в коммутаторах POTS PBX.К ним относятся:

  • Сигнализация начала подмигивания, когда линейное напряжение меняется на противоположное на короткий промежуток времени, а затем возвращается в нормальное состояние
  • Обратная сигнализация аккумуляторной батареи, когда отрицательное и положительное линейные напряжения меняются местами
  • Пуск с земли, сигнализирующий о том, что один из проводов соединен с землей, так что ток течет по одному проводу, а затем обратно через землю

Для контроля в обратном направлении коммутатор указывает, что он хочет инициировать связь, используя линейную карту для подачи сигнала вызова в шлейф.

Это другое напряжение, которое изменяется 20 раз в секунду. Он наносится на линию в повторяющемся цикле, состоящем из двух секунд включения и затем четырех секунд выключения.

Когда телефон POTS звонит, трубка положена, рычаг снят. Ток сигнала вызова проходит через звонок, как показано на рисунке ниже.

Оригинальные звонилки состояли из двух латунных колокольчиков с колокольчиком между ними, которые колебались 20 раз в секунду в течение двух секунд, а затем отдыхали в течение четырех секунд.Пользователь принимает вызов, снимая трубку.

Рисунок 5: Поднимите трубку на схеме POTS

Номинальные линейные напряжения следующие:

  • Поднятая трубка: От -7 до -12 В постоянного тока.
  • Звонок: -48 В постоянного тока, плюс 100 В (среднеквадратичное значение) при 20 Гц
  • На крючке: -48 В постоянного тока

Сигналы о ходе вызова

Тональный сигнал готовности к линии — это один из типов сигналов о прохождении вызова.К другим относятся сигналы «занято», «быстро занято», «перегруженность», «обратный звонок», «вой» и «звуковой сигнал». Звуковые сигналы о ходе вызова генерируются коммутатором, чтобы информировать пользователя о различных условиях. Сигналы «занято» генерируются коммутатором на дальнем конце, в то время как некоторые тональные сигналы, такие как набор номера и быстрые тональные сигналы «занято», генерируются коммутатором на ближнем конце.

УСТРАНЕНИЕ НЕПОЛАДОК — Поддержка MetroNet

Телефон не работает.Нет гудка:

Поищите трещины в телефоне, сломанные или изношенные шнуры или неработающие лампочки. Если вы обнаружите один из этих симптомов, отключите или замените поврежденное оборудование и посмотрите, исчезла ли проблема. Если у вас беспроводной телефон, возможно, разрядился аккумулятор. Убедитесь, что аккумулятор заряжен, или замените аккумулятор. Убедитесь, что все телефоны повешены, и все трубки вставлены в приемники. Если у вас есть компьютерный модем, убедитесь, что модем отключен. Убедитесь, что все устройства, связанные с телефоном, работают правильно (автоответчики, линии сигнализации, факсы, аппараты для кредитных карт, модемы и т. Д.).Отключите все телефоны, подождите 15 минут, а затем подключайте по одному телефону за раз, проверяя каждый из них, чтобы убедиться, что он работает правильно. Я слышу гудок, но не могу звонить по телефону: телефонная линия может быть запрограммирована на остановку определенных типов вызовов, например междугородных. Это называется «блокировкой» или «ограничением междугородных звонков». Отключите все телефоны, подождите 15 минут, а затем подключайте по одному телефону за раз, проверяя каждый из них, чтобы убедиться, что он работает правильно.

Если один телефон не работает, а остальные — отключите телефон, который не работает, и замените его на работающий.Если телефон работает, возможно, необходимо заменить оригинальный телефон. Если ни один из телефонов не работает, возможно, проблема в другом месте сети. Позвоните в службу поддержки клиентов по телефону 1-877-407-3224.

Если вы можете совершать местные звонки, но не можете совершать междугородние звонки, убедитесь, что вы подписались на услугу междугородной связи через оператора междугородной связи. Если у вас нет подписки на услугу междугородной связи, вам может потребоваться телефонная карта для завершения разговора.

Я не могу принимать звонки:

Убедитесь, что звонок телефона включен.

Проверьте, активированы ли у вас какие-либо услуги переадресации вызовов.

Отключите все телефоны и телефонное оборудование, подождите 15 минут, а затем попробуйте подключить телефон к розетке. Попросите кого-нибудь позвонить вам. Если вы по-прежнему не можете принять звонок, попробуйте другой телефон, телефонный шнур и / или разъем.

Я слышу статическое или эхо во время разговора по телефону:

Эхо заставляет вызывающих абонентов слышать звук собственного голоса. Убедитесь, что с вашим телефонным оборудованием нет проблем.Ищите проблемы, такие как трещины в телефоне, изношенные шнуры или неработающие лампочки.

При обнаружении неисправного оборудования отключите или замените поврежденное оборудование и посмотрите, исчезла ли проблема.

Убедитесь, что все телефоны повешены и все трубки вставлены в свои базовые приемники.

Отключите все телефоны, автоответчики, факсы, устройства идентификации вызывающих абонентов и компьютеры от розеток на стене или плинтусе. (Если какое-либо из вышеуказанного оборудования питается от адаптера переменного тока, также отключите его от розетки переменного тока.) Подождите 15 минут, а затем попробуйте подключить проводной телефон к одному из разъемов.

Телефон звонит, но на линии никого нет:

Включена ли у вас услуга переадресации вызовов? Если на вашем телефоне активирована переадресация звонков, ваши звонки могут просто обходить ваш телефон и идти прямо на ваш номер для переадресации или на голосовую почту. Ваш телефон зазвонит один раз.

Отключите все телефоны и телефонное оборудование, подождите 15 минут, а затем попробуйте подключить проводной телефон к одному из разъемов.Попросите кого-нибудь позвонить вам. Если это не помогает, попробуйте другой телефон или замените телефонный шнур и / или настенную розетку.
Это может быть неправильно перенаправленный вызов. Компьютер или факс может быть неправильно запрограммирован на набор вашего телефонного номера.

Если вы прервали телефонный разговор, нажав / отпустив рычаг переключателя, а затем повесив трубку (нажав рычаг переключателя второй раз подряд), телефонная система может увидеть это как запрос на трехсторонний звонок и, следовательно, позвони на свой телефон.

Некоторые продавцы телемаркетинга используют автоматический набор номера, чтобы позвонить вам.Это вызывает задержку приветствия продавца телемаркетинга, когда вы отвечаете на звонок.

Устранение проблем с моим телефоном

Если вы слышите прерывистый или прерывистый гудок на своей линии, это означает, что вы получили голосовое сообщение и ваша линия исправна.

Наберите 1571, чтобы прослушать голосовую почту.

Если вы слышите шум на линии при совершении звонков, это может быть связано с неправильной установкой микрофильтра.

Что такое микрофильтр?

Микрофильтр — это небольшая белая коробка с подключенным телефонным кабелем.

Он устраняет помехи на вашей линии и позволяет одновременно использовать телефон и широкополосный доступ.

Каждый микрофильтр имеет два гнезда:
  • Один для вашего широкополосного концентратора NOW.
  • Один для другого устройства, например стационарного телефона.

Как настроить микрофильтр?

Шаг 1:
Подключите микрофильтр к основной телефонной розетке.
Как найти главную телефонную розетку?

Ваша основная телефонная розетка будет иметь линию посередине, как показано ниже.

Шаг 2:
Подключите телефонный кабель к порту микрофильтра с пометкой Phone , а вашего концентратора к порту с пометкой NOW TV Hub .

Шаг 3:
У вас больше одной телефонной розетки с подключенными устройствами? Убедитесь, что в каждое гнездо включен микрофильтр (запасной будет включен в комплект поставки концентратора).
Шаг 4:
Если вы используете телефонный разветвитель для подключения более чем одного устройства к телефонной розетке, подключите его к порту микрофильтра с пометкой Phone .

Есть телефонная розетка с двумя портами?

Если у вас есть телефонная розетка с предварительной фильтрацией и двумя разными портами, вам не нужно использовать микрофильтр.

Если он у вас есть, убедитесь, что вы используете телефонную розетку с предварительной фильтрацией для подключения концентратора — она ​​не будет работать с другими розетками.

Нужно больше микрофильтров?
Выберите Свяжитесь с нами и позвоните нам по указанному номеру, чтобы заказать дополнительные микрофильтры (вам нужно будет войти в систему, чтобы увидеть номер).Вы также можете перейти на сайт accessories.sky.com.

Как получить бесплатные звонки из инженерного теста

Как получить бесплатные звонки из инженерного теста
 Как получить бесплатные звонки от инженерного теста Сказка о фрикинге!
    ============================================== ==== ================

                 Принесено вам The TiMeLOrD 28/07/91
                 ==========================================
 

Эй! Я ТИМЕЛОРД, и у меня есть небольшая история, чтобы рассказать вам все! Здесь в Халле наша телефонная сеть не управляется великим британским Telecom, но под управлением небольшой, но развивающейся компании Kingston. Коммуникации (далее именуемые «KC»).Хотя будучи небольшая компания, они точно не отстают от времени, в факт, что они находятся на переднем крае современных телефонных технологий. кажется … у нас есть цифровая сеть, все звездные сервисы и т. д.

Еще одна хорошая вещь в подписке на KC — это местные телефонные звонки. стоит нам всего 5 пенсов за соединение, и тогда мы сможем поговорить, модем или сколько угодно! Но звонки за город к сожалению, такие же, как и у BT, так что вы можете представить мои радость, когда я получил свою карманную телефонную трубку на день рождения! Хехехе.) Итак, я спустился к ближайшей телефонной будке и сделал старый трюк с набором номера, затем две девятки на конце.

Удивительно, я мог часами болтать со всеми своими контактами без заряжать! Мы все это сделали. Раздавал бесплатные телефонные звонки по всему мир через печально известный карманный номеронабиратель. Наши контакты Amiga, 0898 чат линии, американские номера порно, или даже просто случайные места по всему миру; вы называете это, мы, скорее всего, позвонили бы!

Однако KC вскоре осознал тот факт, что эти счета от BT были на несколько тысяч фунтов больше, чем обычно — они положить конец старому трюку с «99»… вы все еще можете звонить людям с тональным набором номера ваш звонок продлится только около двух секунды!

Большинство моих товарищей разобрали свои тональные дозвонщики или вытащили батарейки и использовал их для чего-то еще … но я, нет, я всегда в машине Я возил меня со мной, никогда не знаешь, когда это пригодится, Я подумал про себя. Так или иначе, однажды по дороге домой я прошел телефонная будка, и я подумал про себя, ну, может быть, есть другой способ получить бесплатный звонокz!

колодец в районе Халла, где я живу (Hessle), все числа начинаются с 64.Поэтому я решил позвонить в номер 640000. К моему удивлению, я получил какую-то инженерную проверку. В нем говорилось: «Вы подключены к 0482 643466» — это был номер телефонной будки, из которой я звонил. Затем линия оборвалась, и даже положить телефон и забрать его обратно не принесло вернуть гудок. Поэтому я положил трубку и пошел прочь … к моему удивлению, телефон зазвонил примерно через двадцать секунд! На ответив на него, я получил сообщение «Line testing OK … line testing ОК … НАБЕРИТЕ СЛЕДУЮЩИЙ ТЕСТ… «затем я услышал гудок, постоянно. Странно, но оказалось, что при наборе разных номеров по этому «гудку» я проводил различные инженерные испытания.

Скважина это не важно, я объясню их в конце этого докса, если кому интересно, а пока вот как получить бесплатный звонок:

Когда вы слышите этот «тестовый гудок инженера», если вы не набираете номер что угодно и просто подождите около двух минут или около того, они быть щелчком и — >>>> РАЗРЕШАЕТСЯ ПРАВИЛЬНЫЙ ТОН НАБОРА! <<<< -!

Это ваша ссылка, с помощью тонального набора наберите номер, который вы хочу и привет, ты можешь болтать сколько угодно! Я уже довольно давно использую этот метод, и процедура была точно так же каждый раз.Не забывайте делать это только по телефону коробка хоть !!! Я думаю, что это работает только с Hessle, так что не принесет особой пользы некоторым из вас, ребята … НО я считаю, что есть несколько городов, у которых есть номера инженерных тестов, это просто случай обнаруживая их. Как только вы их найдете, просто следуйте этим инструкция а ты качаешься …

i) Найдите телефонную будку.
ii) Используя тональный набор номера, наберите тестовый номер инженера.
iii) Когда он ответит (может быть сразу или может занять около половины минуту) должно быть написано «ВЫ СОЕДИНЕНЫ К… «и т. д. Положите трубку.
iv) Подождите около 20 секунд, и когда зазвонит телефон, ответьте. (Если через 40 секунд телефон не звонит, поднимите трубку; шансы в том, что на этой телефонной будке выключен звонок).
v) Вы должны услышать «ТЕСТИРОВАНИЕ ЛИНИИ ОК … НАБОР СЛЕДУЮЩЕГО ТЕСТА» и ИНЖЕНЕРСКИЙ ТОН НАБОРА должен загореться (как обычный гудок ответа станции).
vi) Теперь подождите несколько минут, пока не загорится правильный гудок.
vii) Наберите номер, на который хотите позвонить, с помощью тонального набора!
viii) Закончив разговор, положите трубку как обычно.
ix) Чтобы сделать еще один звонок, необходимо повторить процесс, начиная с шага ii).

Как вы, наверное, догадались, для modemz в этом нет особого смысла, как кажется. немного не могу положить все компьютерное оборудование в телефонную будку с мега размер блока питания на спине, так что это действительно полезно только для разговора с ваши контакты или что-либо еще в мире!

i) Если вы выполните описанную выше процедуру дома, вы получите гудок, но я думаю, что если вы позвоните по каким-либо номерам, они появятся в вашем счете!
ii) Меня всегда беспокоил тот факт, что он сообщает вам номер вы звоните, как только начинаете тест, так что это риск.
iii) Так как это номер инженерного испытания, вы можете инженер! Так что я думаю, что они МОГУТ СЛУШАТЬ, ЕСЛИ ОНИ ХОЧУ, и как я уже сказал, у них есть номер, с которого вы звоните, так что На мой взгляд, это очень рискованный способ фрикинга!
iv) Однажды, ожидая гудка, я услышал забавный щелкающий звук, и, будучи параноиком, я поставил позвонил и вышел из телефонной будки. Двадцать секунд спустя два KC появились фургоны … один проехал из-за угла, а другой подошел горит дорогу в обратном направлении.Оба притормозили когда они проходили мимо телефонной будки и, казалось, заглядывали внутрь. Но кроме этого у меня не было других «близких встреч»!

Если бы я был на вашем месте, я бы фрикнул после наступления темноты и всегда держал кого-нибудь начеку … Также убедитесь, что вы можете быстро уйти в экстренной ситуации, в противном случае носить с собой какое-то оборудование для вспышек молнии, и в противном случае пистолет может оказаться весьма кстати.

Ну вот и все. Я надеюсь, что вам весело! И если у тебя возникнут проблемы используя тестовую линию инженера, оставьте мне сообщение на этой BBS! Посмотрите За дополнительными текстовыми файлами от меня (The TiMeLOrD).А пока я уйду со списком некоторых инженерных тестов, которые можно выполнить, пока жду гудка …

Ожидая гудка на тестовой линии инженера, вы можете мне интереснее возиться с некоторыми тестами, а не просто стоял там и ждал полные две минуты. Когда вы слышите «НАБОР ДАЛЕЕ ТЕСТ … «, за которым следует ТОН ИНЖЕНЕРА (включается гудок и выкл), у вас есть выбор тестов для набора:

i) Набор 1 активирует ТЕСТ НАБОРА.Это просто используется для тестирование частот сигналов DTMF, выдаваемых телефонами. Это должен сказать «НАЧАТЬ ТЕСТ» после того, как вы запустите тест, а затем вы должен услышать гудок. Правильный способ пройти этот тест: набрать 123456789 * 0 # … на большинстве телефонов это означает просто начать с вверху слева и набирая номер слева направо в каждом ряду. Если вы наберете неправильный номер, то вы получите сообщение «DIAL FAULT», в противном случае вы получите сообщение «ТЕСТ ЗАВЕРШЕН», а затем «НАБЕРИТЕ СЛЕДУЮЩИЙ ТЕСТ».

ii) Набор 3 активирует ТЕСТ ИМПУЛЬСА МОНЕТ. Это забавно. я никогда особо не беспокоился об этом, но я думаю, что ты завершите его, положив в телефон десять пенсов! В противном случае вы получите сообщение «НЕПРАВИЛЬНЫЙ ПУЛЬС МОНЕТЫ».

iii) При наборе номера 4 запускается своего рода проверка напряжения. Если вы начнете это проверить, а затем положить телефон, он издает странные звуки, вроде как полукольца. Странный город, чувак!

iv) Набор A (доступен только при наличии специального тонального набора номера с A, B, C и D) запустит еще один ТЕСТ НАБОРА, аналогичный первому. один, за исключением того, что для его завершения вы должны набрать A, B, C, затем D.

v) Единственный другой тест, который я нашел, — это какой-то другой тест DIAL TEST. К Выполните это, вы должны набрать 11. Ага, вы меня правильно поняли, 11. Как? Ну, большинство из вас, фрикеры, ДОЛЖНЫ знать, что пульсирующие телефоны работают, посылая импульсы, поэтому, если вы дважды быстро нажмете на кнопку телефонной трубки, это будет то же самое, что набрать двойку. Быстро щелкнуть семь раз — все равно что набрать семерку. Нажав десять раз было бы похоже на набор ноль. Как кнопки на телефоне вероятно, только до девяти, единственный способ набрать одиннадцать — это одиннадцать раз щелкнуть по кнопке телефонной трубки.Как сказано, это будет начни еще один ТЕСТ НАБОР … посмотрим, сможешь ли ты с этим справиться!

Что ж, это все тесты, которые я нашел — так мило со стороны телефонных компаний поставьте эти маленькие тесты, чтобы фрикеры могли поиграть, пока они ждут получите их бесплатную линию! Тем не менее, тесты действительно очень странные — скажите, если вы выберите тест, набрав номер с помощью импульса, и с этого момента он не будет работать, если вы пытаетесь выбрать тест с помощью тона … и наоборот.

NB: Как я уже упоминал, вы можете поиграть с этими тестами, пока ждете. для гудка, но если в середине теста линия внезапно щелчки и гудок гудка, это просто означает, что ваш гудок прибыл, пока вы были в середине теста…вы можете сейчас перейти к наберите номер телефона, на который вы хотите позвонить (используя тональный набор номера курс)…


Это определенно все на данный момент, и все, что я могу сказать, это то, что KC должен быть толстым, а не разобраться с этой проблемой к настоящему моменту! Хорошо, я не собираюсь звонить им и жалуйтесь !!! Счастливого фрикинга, парни !!!!!!!!!


 / \ ____________ / \
= - = - = - = - = - = - == - = - = - = ---- = - = - = - = - = - == - == - = - = - - == - / \ / \ / \ - = - ==
= - == - = - = - = - == - = - = - = - = - = - = - = - = --- = - = - = - == - = - = - = - = - <<ВРЕМЯ>> = - =
- = - = - = - = - = - = - == - = - = - = - = - = - = - = - = - = - = - = - = - = - = - = - = - = - = - \ / \ ____________ / \ / == - =
                                                       \ / ____________ \ / июль 1991 г.
 

Скоро из Таймелорда:

История VISA — сказка о мошенничестве.
Zoooom! — Путешествие во времени и как это сделать.

% PDF-1.3 % 3923 0 объект > эндобдж xref 3923 445 0000000016 00000 н. 0000009275 00000 н. 0000009424 00000 н. 0000019276 00000 п. 0000019438 00000 п. 0000019508 00000 п. 0000019646 00000 п. 0000019784 00000 п. 0000019938 00000 п. 0000020001 00000 п. 0000020130 00000 н. 0000020237 00000 п. 0000020436 00000 п. 0000020578 00000 п. 0000020696 00000 п. 0000020821 00000 п. 0000020949 00000 п. 0000021088 00000 п. 0000021239 00000 п. 0000021389 00000 п. 0000021526 00000 п. 0000021680 00000 п. 0000021814 00000 п. 0000021953 00000 п. 0000022090 00000 н. 0000022243 00000 п. 0000022306 00000 п. 0000022434 00000 п. 0000022541 00000 п. 0000022722 00000 п. 0000022906 00000 п. 0000023071 00000 п. 0000023250 00000 п. 0000023353 00000 п. 0000023477 00000 п. 0000023664 00000 п. 0000023782 00000 п. 0000023920 00000 п. 0000024073 00000 п. 0000024249 00000 п. 0000024417 00000 п. 0000024564 00000 п. 0000024687 00000 п. 0000024824 00000 п. 0000024990 00000 н. 0000025125 00000 п. 0000025291 00000 п. 0000025427 00000 н. 0000025579 00000 п. 0000025741 00000 п. 0000025932 00000 п. 0000026119 00000 п. 0000026251 00000 п. 0000026381 00000 п. 0000026535 00000 п. 0000026691 00000 п. 0000026878 00000 п. 0000027061 00000 п. 0000027238 00000 п. 0000027372 00000 п. 0000027519 00000 п. 0000027674 00000 п. 0000027837 00000 п. 0000028012 00000 п. 0000028228 00000 п. 0000028402 00000 п. 0000028518 00000 п. 0000028636 00000 п. 0000028768 00000 п. 0000028903 00000 п. 0000029028 00000 н. 0000029213 00000 п. 0000029402 00000 п. 0000029556 00000 п. 0000029713 00000 п. 0000029884 00000 п. 0000030058 00000 п. 0000030250 00000 п. 0000030391 00000 п. 0000030537 00000 п. 0000030697 00000 п. 0000030857 00000 п. 0000031043 00000 п. 0000031187 00000 п. 0000031336 00000 п. 0000031498 00000 п. 0000031662 00000 п. 0000031855 00000 п. 0000031993 00000 п. 0000032137 00000 п. 0000032294 00000 п. 0000032452 00000 п. 0000032599 00000 п. 0000032751 00000 п. 0000032916 00000 п. 0000033080 00000 п. 0000033254 00000 п. 0000033392 00000 п. 0000033536 00000 п. 0000033681 00000 п. 0000033827 00000 п. 0000033975 00000 п. 0000034137 00000 п. 0000034300 00000 п. 0000034453 00000 п. 0000034516 00000 п. 0000034644 00000 п. 0000034751 00000 п. 0000034930 00000 п. 0000035081 00000 п. 0000035225 00000 п. 0000035350 00000 п. 0000035512 00000 п. 0000035665 00000 п. 0000035728 00000 п. 0000035856 00000 п. 0000035963 00000 п. 0000036139 00000 п. 0000036321 00000 п. 0000036473 00000 п. 0000036648 00000 н. 0000036785 00000 п. 0000036909 00000 н. 0000037103 00000 п. 0000037258 00000 п. 0000037321 00000 п. 0000037449 00000 п. 0000037556 00000 п. 0000037735 00000 п. 0000037921 00000 п. 0000038033 00000 п. 0000038157 00000 п. 0000038346 00000 п. 0000038539 00000 п. 0000038681 00000 п. 0000038836 00000 п. 0000039006 00000 п. 0000039169 00000 п. 0000039329 00000 п. 0000039488 00000 н. 0000039687 00000 п. 0000039835 00000 п. 0000039960 00000 н. 0000040098 00000 п. 0000040253 00000 п. 0000040406 00000 п. 0000040573 00000 п. 0000040720 00000 п. 0000040886 00000 п. 0000041069 00000 п. 0000041277 00000 п. 0000041456 00000 п. 0000041634 00000 п. 0000041858 00000 п. 0000042078 00000 п. 0000042224 00000 п. 0000042372 00000 п. 0000042532 00000 п. 0000042709 00000 п. 0000042891 00000 п. 0000043018 00000 п. 0000043172 00000 п. 0000043235 00000 п. 0000043363 00000 п. 0000043471 00000 п. 0000043650 00000 п. 0000043822 00000 п. 0000043933 00000 п. 0000044057 00000 п. 0000044239 00000 п. 0000044391 00000 п. 0000044527 00000 п. 0000044668 00000 п. 0000044823 00000 п. 0000044977 00000 п. 0000045175 00000 п. 0000045378 00000 п. 0000045545 00000 п. 0000045668 00000 п. 0000045805 00000 п. 0000045948 00000 п. 0000046089 00000 п. 0000046278 00000 н. 0000046463 00000 н. 0000046592 00000 п. 0000046729 00000 п. 0000046881 00000 п. 0000047093 00000 п. 0000047247 00000 п. 0000047395 00000 п. 0000047525 00000 п. 0000047734 00000 п. 0000047894 00000 п. 0000048049 00000 п. 0000048218 00000 п. 0000048388 00000 п. 0000048527 00000 н. 0000048695 00000 п. 0000048880 00000 п. 0000049005 00000 п. 0000049136 00000 п. 0000049259 00000 п. 0000049390 00000 п. 0000049595 00000 п. 0000049722 00000 п. 0000049862 00000 п. 0000050016 00000 п. 0000050159 00000 п. 0000050304 00000 п. 0000050461 00000 п. 0000050656 00000 п. 0000050850 00000 п. 0000051010 00000 п. 0000051157 00000 п. 0000051319 00000 п. 0000051508 00000 п. 0000051651 00000 п. 0000051796 00000 п. 0000051925 00000 п. 0000052057 00000 п. 0000052203 00000 п. 0000052353 00000 п. 0000052506 00000 п. 0000052657 00000 п. 0000052795 00000 п. 0000052931 00000 п. 0000053071 00000 п. 0000053209 00000 п. 0000053365 00000 п. 0000053556 00000 п. 0000053748 00000 п. 0000053918 00000 п. 0000054094 00000 п. 0000054252 00000 п. 0000054379 00000 п. 0000054516 00000 п. 0000054648 00000 н. 0000054791 00000 п. 0000054934 00000 п. 0000055109 00000 п. 0000055284 00000 п. 0000055480 00000 п. 0000055608 00000 п. 0000055749 00000 п. 0000055905 00000 п. 0000056054 00000 п. 0000056246 00000 п. 0000056393 00000 п. 0000056543 00000 п. 0000056704 00000 п. 0000056872 00000 п. 0000057028 00000 п. 0000057172 00000 п. 0000057316 00000 п. 0000057473 00000 п. 0000057635 00000 п. 0000057777 00000 п. 0000057916 00000 п. 0000058069 00000 п. 0000058193 00000 п. 0000058339 00000 п. 0000058492 00000 п. 0000058554 00000 п. 0000058682 00000 п. 0000058789 00000 п. 0000058979 00000 п. 0000059141 00000 п. 0000059305 00000 п. 0000059493 00000 п. 0000059640 00000 п. 0000059763 00000 п. 0000059898 00000 п. 0000060049 00000 п. 0000060200 00000 н. 0000060348 00000 п. 0000060509 00000 п. 0000060705 00000 п. 0000060858 00000 п. 0000061053 00000 п. 0000061304 00000 п. 0000061567 00000 п. 0000061695 00000 п. 0000061818 00000 п. 0000061955 00000 п. 0000062167 00000 п. 0000062277 00000 п. 0000062405 00000 п. 0000062529 00000 п. 0000062666 00000 п. 0000062776 00000 п. 0000062932 00000 п. 0000063117 00000 п. 0000063303 00000 п. 0000063420 00000 п. 0000063551 00000 п. 0000063686 00000 п. 0000063840 00000 п. 0000064051 00000 п. 0000064269 00000 п. 0000064433 00000 п. 0000064572 00000 п. 0000064786 00000 п. 0000064950 00000 п. 0000065090 00000 н. 0000065244 00000 п. 0000065390 00000 п. 0000065536 00000 п. 0000065670 00000 п. 0000065819 00000 п. 0000065984 00000 п. 0000066138 00000 п. 0000066200 00000 н. 0000066327 00000 п. 0000066433 00000 п. 0000066625 00000 п. 0000066756 00000 п. 0000066942 00000 п. 0000067133 00000 п. 0000067257 00000 п. 0000067380 00000 п. 0000067523 00000 п. 0000067675 00000 п. 0000067828 00000 п. 0000067996 00000 п. 0000068169 00000 п. 0000068340 00000 п. 0000068509 00000 п. 0000068571 00000 п. 0000068698 00000 п. 0000068804 00000 п. 0000068988 00000 п. 0000069120 00000 п. 0000069233 00000 п. 0000069411 00000 п. 0000069506 00000 п. 0000069629 00000 п. 0000069813 00000 п. 0000070000 00000 н. 0000070158 00000 п. 0000070279 00000 п. 0000070429 00000 п. 0000070605 00000 п. 0000070776 00000 п. 0000070962 00000 п. 0000071102 00000 п. 0000071252 00000 п. 0000071415 00000 п. 0000071536 00000 п. 0000071676 00000 п. 0000071824 00000 п. 0000071986 00000 п. 0000072141 00000 п. 0000072295 00000 п. 0000072447 00000 п. 0000072646 00000 п. 0000072845 00000 п. 0000072957 00000 п. 0000073093 00000 п. 0000073223 00000 п. 0000073351 00000 п. 0000073493 00000 п. 0000073631 00000 п. 0000073777 00000 п. 0000073840 00000 п. 0000073966 00000 п. 0000074072 00000 п. 0000074239 00000 п. 0000074364 00000 п. 0000074523 00000 п. 0000074645 00000 п. 0000074768 00000 п. 0000074880 00000 п.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *