что это такое? Варисторы: принцип работы, типы и применение
Варистор – что это такое, где он применяется, и зачем необходим? Данный элемент электронных схем довольно редко используется, поэтому название его не на слуху. Давайте исправим это и ознакомимся с его работой и принципом устройства.
Общая информация
Электроустановки обладают изоляцией, которая соответствует номинальному напряжению. Реальный показатель может отличаться от теоретического значения. Но работа будет обеспечиваться в случае, если отклонение невелико и находится в рамках разрешенного диапазона. И всё же электрооборудование часто выходит из строя из-за импульса напряжения. Так называют резкое изменение характеристики в определённой точке, когда следует восстановление до первоначального уровня за небольшой промежуток времени. Импульсы могут быть грозовые и коммутационные. Чтобы защититься от таких перепадов, используют различные устройства, среди которых вентильные разрядники, фильтры, цепочки и много других разработок. Но наиболее успешным оказался варистор. Что это такое? Так называют эффективное и дешевое средство защиты от импульсов, которое базируется на нелинейных полупроводниковых резисторах. Принцип их действия прост: варистор включается параллельно к защищаемому оборудованию и в нормальном режиме на него влияет рабочее напряжение защищаемого устройства. Когда наступает экстренная ситуация, то он начинает функционировать как изолятор. Их отличительной чертой является симметричная и хорошо выраженная нелинейная вольт-амперная характеристика.
Действия варистора
Когда возникает импульс, то устройство в силу нелинейности характеристики быстро уменьшает свое сопротивление (до долей Ома) и шунтирует нагрузку. Таким образом она защищается, а поглощенная энергия рассеивается в виде тепла. Во время таких процессов в варисторах может протекать ток величиной в несколько тысяч ампер. Учитывая практически безынерционность устройства, после того как импульс погашен, он опять становится прибором с большим сопротивлением. Таким образом, в нормальных условиях он не влияет на работу электрооборудования. Но есть будут импульсы опасного напряжения, то будьте уверены – они срежутся. Это обеспечивает сохранность даже слабой изоляции.Самые популярные образцы
Говоря про варистор, что это такое, нельзя обойти стороной материалы, из которых он изготавливается. Наибольшее распространение получили те устройства, которые сделаны с использованием оксида цинка. Это обусловлено несколькими причинами:
- Простота изготовления.
- Цинк имеет хорошую способность к поглощению высокоэнергетических импульсов напряжения.
Создаются они по «керамической» технологии, которая включает в себя прессование, обжиг, нанесение электродов и электроизоляции, пайку выводов и монтаж влагозащитных покрытий. Благодаря простоте изготовления они могут создаваться даже под индивидуальные заказы.
Маркировка
Мы уже достаточно внимания уделили изучению того, чем является варистор. Маркировка этого прибора сложна, и поэтому при приобретении устройства о нём нельзя судить по данным, размещенным на корпусе. Рассмотрим на вот таком примере: есть CNR-06D400K. CNR – это название типа, в данном случае перед нами металлооксидный варистор. 06 – он имеет диаметр в 6 миллиметров. D – перед нами дисковый варистор. 400 – напряжение срабатывания. K – эта буква говорит о том, что допуск возможного отклонения имеет погрешность в 10%. Если говорить о компьютерной технике, то у них варисторы рассчитаны на 470В. Согласитесь, немало. Но ведь существует не один варистор! Маркировка этих деталей проводится каждым крупным производителем по-своему, поэтому универсальных и стандартизированных правил распознавания нет. Поэтому нужно пользоваться или помощью продавцов, или прибегать к услугам справочников.
Изображение
Если мы не хотим, чтобы техника сгорела, то нам важен варистор. Обозначение на схеме выглядит как у обычного резистора, только есть ещё косая линия и буква U. Она говорит о том, что рабочие характеристики напрямую зависят от величины напряжения. Но может и по-другому выглядеть варистор. Обозначение на схеме для него задаётся как RU, после чего указываются цифры. Число является порядковым номером, а вот буквы обозначают название устройства: резистор-варистор. Также могут быть информационные обозначения. Это можно отнести к популярной отечественной продукции, которая изготавливается на заводе «Прогресс» в Ухте. Их варистор на схеме может быть промаркирован буквами от А до Г.Проверка работоспособности элемента
Вот у нас в руках есть варистор. Как проверить его работоспособность? Начинать всегда необходимо с внешнего осмотра устройства. Необходимо внимательно поискать на корпусе сколы, трещины, почернения или следы нагара. Если есть внешние дефекты, то уже одно это говорит о том, что элемент необходимо заменить или не использовать вообще. Если при осмотре не было выявлено проблем, то можно приступать к проверке мультиметром. В этом случае тестер необходимо переключить на режим замера максимального сопротивления. Вот самый простой способ узнать, рабочий ли варистор. Как проверить его работоспособность, мы уже рассмотрели, теперь давайте обсудим, как же подбирать необходимые элементы.
Оптимальный рабочий режим
В силу высокой линейности устройства найти наилучшие параметры для схемы – задача не из легких. Для этого применяются довольно сложные и многочисленные расчеты. Большую важность в этом случае играет рабочий ток, значение которого должно быть минимальным и не вести к перегреву устройства. Но здесь приходится балансировать. Ведь если использовать слишком малой рабочий ток, то увеличится ограничение напряжения, и устройство не будет выполнять свою основную функцию. В качестве «ленивого» варианта можно взять на вооружение такой принцип: рабочее постоянное напряжение не должно превышать 0,85 от порога варистора. Но этот простой подход на практике является малоприменимым. Ведь работа варистора специфическая, и желаемый результат, а также рамки ограничения должны подбираться под каждый конкретный случай.Выбор и установка
Про то, что варисторы должны размещаться параллельно защищаемому электрооборудованию, мы уже говорили. Наиболее предпочтительным местом монтажа варисторов считается место после коммутационного аппарата (если смотреть со стороны нагрузки, которую необходимо защитить). В качестве примера уже готового решения можно привести продукцию ранее упомянутого завода «Прогресс» с названием «Импульс-1». Такой варистор предназначен для того, чтобы его закрепляли на электрощите. Благодаря ему можно просто реализовать схему защиты трехфазных нагрузок с соединением «звезда» или «треугольник». Или в качестве альтернативы выбрать защиту 3 электроустановок, которые питаются от трехфазной сети.
Параметры
Говоря про варистор, что это такое, нельзя обойти вниманием его характеристики, которые важны в работе:- Классификационное напряжение. Так называют величину, при которой ток в 1 мА протекает через устройство.
- Максимальное допустимое переменное напряжение. Под этим понимается величина, при которой варистор срабатывает и начинает выполнять возложенные на него защитные функции.
- Максимальное допустимое постоянное напряжение. То же, что и с предыдущим вариантом. Но в данном случае этот параметр касается работы с постоянным током.
- Максимальное напряжение ограничения. Это величина, при которой варистор может работать без повреждений. Как правило, указывается отдельно для разных значений тока. Если превысить эту величину, то варистор треснет надвое или даже разлетится на куски.
- Максимальная поглощаемая энергия. Указывается в джоулях. Является величиной максимальной энергии импульса, которая может быть рассеяна варистором в виде тепла без угрозы разрушить само устройство.
- Время срабатывания. Это промежуток, за который устройство переходит из одного состояния в другое, если было превышено максимальное допустимое напряжение. Как правило, измеряется в десятках наносекунд.
- Допустимое отклонение. Это величина, изменение на которую квалификационного напряжения варистора считается нормой. Всегда указывается в процентах. Как можно было понять из статьи ранее, данный параметр обозначается буквой в конце маркировки.
Использование
Давайте рассмотрим, к примеру, сеть на 220 Вольт. Для неё оптимальными будут устройства, у которых напряжение срабатывания находится в диапазоне 275-420В (но здесь есть некоторые технические нюансы, которые мы трогать не будем). В качестве сетевого фильтра используется три варистора. Они блокируют проникновение импульсов по цепи фазы и нуля. А почему их три? Бывает иногда такое, что в новостях проскакивают сообщения о проблемах, вследствие которых электроники лишились тысячи людей. Такое бывает, когда вместо нуля и фазы по проводам идёт только последняя. Для аппаратуры это почти всегда верная смерть. Но наличие варистора на нуле позволяет успешно защищать от таких ситуаций. В качестве показательного примера можно привести мобильные телефоны. Чтобы они не перегорели, используют миниатюрные многослойные варисторы. Кроме этого, их можно встретить в телекоммуникационном оборудовании и автомобильной электронике.fb.ru
Варистор, варисторная защита — принцип действия, применение
Варисторная защита, построенная на использовании полупроводниковых резисторов нелинейного типа, служит прекрасным средством для защиты от импульсных перенапряжений.
Варистор отличает резко-выраженная вольт-амперная характеристика нелинейного вида. Благодаря этому свойству с помощью варисторной защиты успешно решаются задачи по защите различных бытовых устройств и производственных объектов.
Принцип действия варистора
Варисторная защита подключается параллельно основному оборудованию, которое необходимо защитить. После возникновения импульса напряжения, благодаря наличию нелинейной характеристики, варистор шунтирует нагрузку и уменьшает величину сопротивления до нескольких долей Ома. Энергия, при перенапряжении, поглощается и рассеивается в виде тепла. Варистор как бы срезает импульс опасного перенапряжения, поэтому защищаемое устройство остается невредимым, что возможно даже с низким уровнем изоляции.
Рис. №1. Конструктивная схема варистора и его характеристика.
Условное обозначение варистора, например, СНI-1-1-1500. СН означает, нелинейное сопротивление, первая цифровое значение – материал, вторая – конструкцию ( 1- стержневой; 2 – дисковый), третья цифра – номер разработки, последняя цифра обозначает значение падения напряжения.
Таблица классификации варисторов
Конструктивные особенности варисторов
Наиболее технологически востребованные материалы для изготовления варистора оксид цинка или порошок карбида кремния, он позволяет успешно поглощать импульсы напряжения с высокоэнергетическими импульсами. Процесс изготовления строится на основе «керамической» технологии, которая заключается на запрессовке элементов с обжигом, установкой электродов, выводов и покрытие приборов электроизоляцией и влагозащитным слоем. Благодаря стандартной технологии варисторы можно делать по индивидуальному заказу.
Параметры варисторов
- Номинальное классификационное напряжение Uкл – считается постоянным показателем, при этом значении через прибор проходит расчетный ток.
- Максимально допустимое значение напряжения импульса, для варисторов стержневого типа входит в границы от 1,2 В до 2 В, для дисковых устройств в пределы от 3 до 4 В.
- Коэффициент нелинейности β – он показывает отношение сопротивления варистора к постоянному току к его сопротивлению переменному току.
- Быстродействие или время срабатывания, обозначает переход из высокоомного положения в низкоомное и может составить несколько нс, примерно, 25 нс.
Защита варисторами
Варисторы защитного типа, марок: ВР-2, ВР-2; СН2-1; СН2-2 рассчитаны на напряжение в границах от 68В до 1500 В, энергия рассеивания в диапазоне от 10 до 114 Дж, коэффициент нелинейности должен превышать значение 30.
Напряжение варисторов защитного класса удовлетворяет показателям максимально возможного пикового напряжения силовой связи, обязательно должно учитываться границы нестабильности напряжения до 10% и разброс величин классификационного напряжения в зависимости от технологических условий.
Uкл ≥ Uном * *1,1 * 1,1
Для сети U = 220В, Uкл ≥ 375 В.
Для трехфазной сети напряжением Uном = 380 В; Uкл ≥ 650 В
Сфера применения варисторов
Приборы используются в устройствах стабилизирующих высоковольтные источники напряжения в телевизорах, для обеспечения стабильного протекания токов в отклоняющих катушках кинескопов, они используются для размагничивания цветных кинескопов и в системах автоматического регулирования.
Варистор применяется в конструкции сетевого фильтра, он производит блокировку импульса перенапряжения и осуществляет защиту и по фазной, и по нулевой цепи.
Рис. №2. Сетевой фильтр с использованием варисторной защиты от импульсных перенапряжений, современная защита может погасить выброс энергии до 3400 Дж, это условие обеспечивает защиту от любых экстренных неожиданных ситуаций.
Большое распространение варисторы получили в конструкции мобильных телефонов для предохранения их от статичного электричества.
Автомобильная электроника и телекоммуникационные сети, еще одна распространенная сфера применения варисторов. Варисторы используются для люминесцентного освещения для защиты от перенапряжения ЭПРА.
Аналогом варисторной защиты служит молниезащита ОПН от перенапряжений и от гроз в высоковольтных цепях, на воздушных линиях и подстанциях.
Внутренняя электросеть в здании оборудуется шкафами от импульсных перенапряжений.
Рис. №3. ЩЗИП – щит от импульсного перенапряжения.
Конструктивная особенность защиты от перенапряжений в здании и размещения ее в щите. Это разнос шины заземления и фазного провода на большое расстояние друг от друга более 1 метра. Подборка элементов в шкафу и установка УЗИП требует внимательного расчета и выбирается в индивидуальном порядке для каждой определенной электроустановки.
Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Поделиться ссылкой:
elektronchic.ru
Что такое варистор и как он работает
Среди радиолюбителей большой популярностью пользуются варисторы. Они применяются практически во всех электронных устройствах и позволяют усовершенствовать некоторые приборы. Для использования в схемах следует понять принцип работы варистора, а также знать его основные характеристики. Кроме того он, как и любая деталь, обладает своими достоинствами и недостатками, которые нужно учитывать при построении и расчете электрических схем.
Общие сведения
Варистор (varistor) является полупроводниковым резистором, уменьшающим величину своего сопротивления при увеличении напряжения. Условное графическое обозначение (УГО) представлено на рисунке 1, на котором изображена зависимость сопротивления радиокомпонента от величины напряжения. На схемах обозначается znr. Если их больше одного, то обозначается в следующем виде: znr1, znr2 и т. д.
Рисунок 1 — УГО варистора.
Многие начинающие радиолюбители путают переменный резистор и варистор. Принцип действия, основные характеристики и параметры этого элемента отличаются от переменного резистора. Кроме того, распространенной ошибкой составления электрических принципиальных схем является неверное его УГО. Варистор выглядит как конденсатор и распознается только по маркировке.
Виды и принцип работы
Полупроводниковые резисторы классифицируются по напряжению, поскольку от этого зависит их сфера применения. Их всего 2 вида:
- Высоковольтные с рабочим напряжением до 20 кВ.
- Низковольтные, напряжение которых находится в диапазоне от 3 до 200 В.
Все они применяются для защиты цепей от перегрузок: первые — для защиты электросетей, электрических машин и установок; вторые служат для защиты радиокомпонентов в низковольтных цепях. Принцип работы варисторов одинаков и не зависит от его вида.
В исходном состоянии он обладает высоким сопротивлением, но при превышении номинального значения напряжения оно падает. В результате этого, по закону Ома для участка цепи, значение силы тока возрастает при уменьшении величины сопротивления. Варистор при этом работает в режиме стабилитрона. При проектировании устройства и для корректной его работы следует учитывать емкость варистора, значение которой прямо пропорционально площади и обратно пропорционально его толщине.
Для того чтобы правильно подобрать элемент для защиты от перегрузок в цепях питания устройства, следует знать величину сопротивления источника на входе, а также мощность импульсов, образующихся при коммутации. Максимальное значение силы тока, пропускаемое варистором, определяет величину длительности и периода повторений выбросов амплитудных значений напряжения.
Маркировка и основные параметры
Маркировка варисторов отличается, поскольку каждый производитель этих радиокомпонентов имеет право устанавливать ее самостоятельно. Это, прежде всего, связано с его техническими характеристиками. Например, различия по напряжениям и необходимым уровням тока для его работы.
Среди отечественных наиболее распространенным является К275, а среди импортных — 7n471k, 14d471k, kl472m и ac472m. Наибольшей популярностью пользуется варистор, маркировка которого — CNR (бывают еще hel, vdr, jvr). Кроме того, к ней прикрепляется цифробуквенный индекс 14d471k, и расшифровывается этот вид обозначения следующим образом:
- CNR — металлооксидный тип.
- 14 — диаметр прибора, равный 14 мм.
- D — радиокомпонент в форме диска.
- 471 — максимальное значение напряжения, на которое он рассчитан.
- К — допустимое отклонения классификационного напряжения, равное 10%.
Существуют технические характеристики, необходимые для применения в схеме. Это связано с тем, что для защиты различных элементов цепи следует использовать различный тип полупроводникового сопротивления.
Их основные характеристики:
- Напряжение классификации — значение разности потенциалов, взятое с учетом того, что сила тока, равная 1 мА, протекает через варистор.
- Максимальная величина переменного напряжения — является среднеквадратичным значением, при котором он открывается и, следовательно, величина его сопротивления понижается.
- Значение постоянного максимального напряжения, при котором варистор открывается в цепи постоянного тока. Как правило, оно больше предыдущего параметра для тока переменной амплитуды.
- Допустимое напряжение (напряжение ограничения) является величиной, при превышении которой происходит выход элемента из строя. Указывается для определенной величины силы тока.
- Поглощаемая максимальная энергия измеряется в Дж (джоулях). Эта характеристика показывает величину энергии импульса, которую может рассеять варистор и при этом не выйти из строя.
- Время реагирования (единица измерения — наносекунды, нс) — величина, требуемая для перехода из одного состояния в другое, т. е. изменение величины сопротивления с высокой величины на низкую.
- Погрешность напряжения классификации — отклонение от номинального его значения в обе стороны, которое указывается в % (для импортных моделей: К = 10%, L = 15%, M = 20% и Р = 25%).
После описания принципа работы, особенностей маркировки и основных характеристик следует рассмотреть сферы применения варисторов.
Применение приборов
Варисторы применяются для защиты электронных устройств от скачкообразного напряжения, амплитуда которого превышает номинальное значение питания. Благодаря применению в блоках питания полупроводникового резистора, появляется возможность избежать множества поломок, которые могут вывести электронику из строя. Широкое применение варистор получил и в схеме балласта, который применяется в элементах освещения.
В некоторых стабилизаторах величин напряжения и тока также используются специализированные полупроводниковые резисторы, а варисторы-разрядники с напряжением более 20 кВ применяются для стабилизации питания в линиях электропередач. Его можно подключить также и в схему проводки (схема 1), защитив ее от перегрузок и недопустимых амплитудных значений тока и напряжения. При перегрузке проводки происходит ее нагрев, который может привести к пожару.
Схема 1 — Подключение варистора для сети 220В.
Низковольтные варисторы работают в диапазоне напряжения от 3 В до 200 В с силой тока от 0,1 до 1 А. Они применяются в различной аппаратуре и ставятся преимущественно на входе или выходе источника питания. Время их срабатывания составляет менее 25 нс, однако этой величины для некоторых приборов недостаточно и в этом случае применяются дополнительные схемы защиты.
Однако технология их изготовления не стоит на месте, поскольку фирма «S+М Eрсоs» создала радиоэлемент с временем срабатывания менее 0,5 нс. Этот полупроводниковый резистор изготовлен по smd-технологии. Конструкции дискового исполнения обладают более высоким временем срабатывания. Многослойные варисторы (CN) являются надежной защитой от статического электричества, которое может вывести из строя различную электронику. Примером использования является производство мобильных телефонов, которые подвержены воздействию статических разрядов. Этот тип варисторов также получили широкое применение в области компьютерной технике, а также в высокочувствительной аппаратуре.
Достоинства и недостатки
Для использования варистора следует ознакомиться с его положительными и отрицательными сторонами, поскольку от этого зависит защита электроники. К положительным качествам следует отнести следующие:
- Высокое время срабатывания.
- Отслеживание перепадов при помощи безинерционного метода.
- Широкий диапазон напряжений: от 12 В до 1,8 кВ.
- Длительный срок службы.
- Низкая стоимость.
У варистора, кроме его достоинств, существуют серьезные недостатки, на которые следует обратить внимание при разработке какого-либо устройства. К ним относятся:
- Большая емкость.
- Не рассеивают мощность при максимальном значении напряжения.
Емкость полупроводникового прибора находится в пределах от 70 до 3200 пФ и, следовательно, существенно влияет на работу схемы. Эта величина зависит от конструкции и типа прибора, а также от напряжения. Однако в некоторых случаях этот недостаток является достоинством при использовании его в фильтрах. Значение большей емкости ограничивает величину напряжения.
При максимальных значениях напряжения для рассеивания мощности следует применять варисторы-разрядники, поскольку обыкновенный полупроводниковый прибор перегреется и выйдет из строя. Каждому радиолюбителю следует знать алгоритм проверки варистора, поскольку при обращении в сервисные центры существует вероятность заплатить за ремонт больше, чем он стоит в действительности.
Проверка на исправность
Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:
- Отвертка.
- Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
- Паяльник, олово и канифоль.
- Мультиметр для диагностики радиокомпонентов.
- Увеличительное стекло для просмотра маркировки.
После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.
vi-pole.ru
Замена и проверка варистора на плате + видео
Если при ремонте кондиционера вы обнаружили на плате сгоревший предохранитель не спешите его тут же менять, вначале выясните причину по которой он сгорел.
Скорее всего это произошло из-за скачков напряжения в сети.
При измерении в сети напряжение питания оно постоянно колеблется,причём не всегда в пределах безопасных для кондиционеров.
Плюс к этому в сети всегда присутствуют короткие импульсы напряжением в несколько киловольт. Происходит это из-за постоянного отключения и включения индуктивной и ёмкостной нагрузки (электродвигатели,трансформаторы и т. д.), а также из-за атмосферного электричества.
Кондиционеры, как и любую другую электронную технику защищают на этот случай варисторами. Точнее электронную начинку кондиционера-плату управления.
Стандартная схема подключения варистора
параллельно защищаемой нагрузке подключают варистор VA1, а перед ним ставят предохранитель F1:
Принцип действия варистора
- По сути варистор представляет собой нелинейный полупроводниковый резистор, проводимость которого зависит от приложенного к нему напряжения. При нормальном напряжении варистор пропускает через себя пренебрежительно малый ток, а при определённом пороговом напряжении он открывается и пропускает через себя весь ток.
- Таким образом он фильтрует короткие импульсы, если же импульс будет более длинным, и ток идущий через варистор превысит номинальный ток срабатывания предохранителя, то он попросту сгорит, обесточив и защитив нагрузку.
Маркировка варисторов
- Существует огромное количество варисторов разных производителей, с разным пороговым напряжение срабатывания и рассчитанные на разный ток. Узнать какой стоял варистор можно по его маркировке.
- Например маркировка варисторов CNR:
CNR-07D390K, где:
- CNR-серия, полное название CeNtRa металлоксидные варисторы
- 07- диаметр 7мм
- D — дисковый
- 390 — напряжение срабатывания, рассчитываются умножением первых двух цифр на 10 в степени равной третьей цифре, то есть 39 умножаем на 10 в нулевой степени получатся 39 В, 271-270 В и т. д.
- K — допуск 10 %, то есть разброс напряжения может колебаться от номинального на 10 % в любую сторону.
Как же найти на плате варистор?
По схеме приведённой выше, видно что этот элемент находится рядом с предохранителем в месте прихода на плату проводов питания. Обычно это диск жёлтого или тёмно-зелёного цвета.
На фото варистор указан красной стрелкой. Можно было подумать что варистор это синяя деталь, покрытая чёрной копотью, но на увеличении видно трещины на корпусе варистора, от которого покрылись нагаром расположенные рядом детали.Хорошо это видно и с обратной стороны, где написаны условные обозначения. Даже если их не будет, распознать варистор можно, зная что он подсоединён параллельно нагрузке или по маркировке на его корпусе.
VA1- это варистор, а синяя деталь рядом это конденсатор-С70.
Не путайте их, по форме они одинаковые, так что ориентируйтесь на маркировку и условные обозначения на плате.
После того как вы нашли варистор, его нужно выпаять, чтобы потом на его место установить новый.Для выпаивания варисторов я обычно использую газовый паяльник, потому что не всегда в месте ремонта есть электропитание — на строящемся объекте, на крыше, например.Ещё очень удобно пользоваться оловоотсосом -разогреть место пайки и оловоотсосом удалить расплавившийся припой.
Но для этих целей вполне подойдёт пинцет или обычные плоскогубцы-нужно захватить ножку детали и вытянуть когда припой расплавится.Если у вас плохо плавится припой, то скорее всего он на плате высокотемпературный-так называемый бессвинцовый (может заметили на моей плате надпись PbF — плюмбум фри). В этом случае нужно или увеличить температуру жала паяльника или же капнуть сверху другого более низкотемпературного, место пайки расплавится и можно будет удалить деталь. После этого вставляем новый варистор и припаиваем его.
Для пайки очень удобно пользоваться припоем в виде проволоки у которого внутри уже есть флюс.
Ещё обратите внимание, что большинство плат — двусторонние, поэтому припаивать ножки детали нужно с обеих сторон платы, так как нередко бывает что ножка детали выполняет роль перемычки между дорожками с разных сторон платы.
После замены варистора остаётся только поставить новый предохранитель и установить плату на место.
Обычно в платах кондиционера стоят варисторы на напряжение 470 В, и предохранители номиналом от 0.5 А до 5 А. Поэтому рекомендую всегда иметь при себе небольшой запас этих деталей.
Для тех, кто хочет нагляднее увидеть процесс , выкладываю видео урок:
Для тех кому требуется отремонтировать плату, путём замены варистора, помогут наши сервисные специалисты, цены смотрите здесь.
masterxoloda.ru
Варистор — Вікіпедія
Матеріал з Вікіпедії — вільної енциклопедії.
Варистор (385 В) Вольт-амперні характеристики варисторів на основах ZnO і SiC.Вари́стор[1] (варістор[джерело не вказане 312 днів], англ. vari(able) (resi)stor — змінний резистор) — напівпровідниковий резистор, електричний опір (провідність) якого нелінійно залежить від прикладеної електричної напруги; іншими словами, який має нелінійну симетричну вольт-амперну характеристику та два виводи.
Виготовляють варистори спіканням при температурі 1700 °C напівпровідника — переважно з порошкоподібного карбіду кремнію SiC або оксиду цинку ZnO, та сполучної речовини (глина, рідке скло, лаки, смоли та ін.). Після цього поверхню отриманого елемента металізують та припаюють до неї виводи.
Конструктивно варистори виготовляються у вигляді дисків, таблеток, стрижнів. Широке розповсюдження отримали стрижневі налаштовувані варистори з рухомим контактом.
Позначення в схемах
Нелінійність характеристик варисторів зумовлена локальним нагрівом дотичних граней численних кристалів карбіду кремнію (або іншого напівпровідника). При локальному підвищені температури на межах кристалів опір останніх різко знижується, що призводить до зменшення загального опору варисторів.
Один з основних параметрів варистора — коефіцієнт нелінійності λ — визначається відношенням його статичного опору R до динамічного опору Rd:
- λ=RRd=UI:dUdI≈const{\displaystyle \lambda ={\frac {R}{R_{d}}}={\frac {U}{I}}:{\frac {dU}{dI}}\approx const},
де U та I — напруга і струм варистора.
Коефіцієнт нелінійності лежить в межах 2-10 у варисторів на основі SiC та 20-100 у варисторів на основі ZnO.
Температурний коефіцієнт електричного опору варистора — негативна величина.
Низьковольтні варистори виготовляють під робочу напругу від 3 до 200 В та струм від 0,1 мА до 1 А; високовольтні варистори — під робочу напругу до 20 кВ.
Варистори застосовують для стабілізації та регулювання низькочастотних струмів і напруги; в аналогових обчислювальних машинах — для реалізації підняття до степеня, добування коренів та інших математичних дій; для захисту від перенапруги (наприклад, високовольтні лінії електропередачі, лінії зв’язку, електричні прилади) та ін.
Високовольтні варистори застосовують для виготовлення обмежувачів перенапруги.
Як електричні компоненти, варистори дешеві і надійні, здатні витримувати значні електричні перевантаження, можуть працювати на високій частоті (до 500 кГц). Серед недоліків — значний низькочастотний шум та старіння — зміна параметрів з часом і при коливаннях температури.
- Вольт-амперна характеристика
- Класифікаційна напруга, В — напруга при визначеному струмі (зазвичай виробники вказують при 1 мА), практичної цінності не являє.
- Робоча напруга (Operating voltage) В (для пост. струму Vdc і Vrms — для змінного) — діапазон — від декількох В до декількох десятків кВ; дана напруга повинна бути перевищена лише при перенапругах.
- Робочий струм (Operating Current), А — діапазон — від 0,1 мА до 1 А
- Максимальний імпульсний струм (Peak Surge Current), А
- Енергія (Absorption energy), Дж
- Коефіцієнт нелінійності
- Температурні коефіцієнти (статичного опору, напруги, струму) — для всіх типів варисторів не перевищує 0,1% на градус
- ↑ Російсько-український та українсько-російський словник з радіоелектроніки / Богдан Рицар, Костянтин Семенистий, Ірина Кочан ; за ред. к. т. н. Богдана Рицара. — Львів : Логос, 1995. — С. 50, 509. — ISBN 5-7707-7696-X.
- Основы промышленной электроники : учебник для ВУЗов / В. Г. Герасимов, О. М. Князьков, А. Е. Краснопольський, В. В. Сухоруков ; под. ред. В. Г. Герасимова. — 2-е изд., перераб. и доп.. — М. : Высшая школа, 1978.
- Электроника : энциклопедический словарь / В. Г. Колесников (гл. ред.). — М. : Сов. энциклопедия, 1991. — С. 54. — ISBN 5-85270-062-2.
- БСЭ
- Правила улаштування електроустановок. Четверте видання, перероблене й доповнене — Х. : Форт, 2011. — 736 с.
uk.wikipedia.org