Закрыть

Принцип действия короткозамыкателя: Короткозамыкатели и отделители: назначение, устройство, принцип работы

Содержание

Короткозамыкатели и отделители: назначение, устройство, принцип работы

Современная организация высоковольтных ЛЭП не предусматривает использование выключателей в узловых точках, подключенных к питающим линиям. Вместо них на большинстве подстанций используются короткозамыкатели и отделители. Такая концепция позволила, сохраняя высокий уровень надежности, существенно снизить стоимость оборудования и, что не маловажно, упростить его. Об устройстве этих электрических аппаратов и принципе действия будет рассказано ниже.

Назначение короткозамыкателя и отделителя

Кратко расскажем, для чего предназначен каждый из коммутационных аппаратов:

  • Основная задача отделителей – произвести оперативное отключение обесточенного проблемного сегмента сети. По сути, этот контактный аппарат является разъединителем со скоростью срабатывания 500-1000 мс. Конструкция может иметь заземление или быть изолированной от него. Отделитель ОД-220

В сетях с классом напряжения до 110,0 кВ применяются трехполюсные аппараты, управляемые общим пусковым приводом.

Для 220 кВ и выше используются однополюсные устройства (по одному на фазу). Отключаются отделители автоматически, а включаются вручную. Управление разъединителями осуществляется релейной защитой.

  • Короткозамыкателями называют быстродействующие приводы, используемые для создания искусственного замыкания в линии с целью вызвать ее защитное отключение. В такой операции возникает необходимость в случае возникновения нештатной ситуации или аварии, например, при повреждениях трансформаторов. Короткозамыкатель КЗ-110

В зависимости от конструкции замыкание производится между фазами (в сетях до 35,0 кВ) или одной из фаз на «землю», для линий с классом напряжения от 110,0 кВ. Включается короткозамыкатель автоматически, при срабатывании релейной защиты, но если возникнет необходимость, процесс может быть запущен вручную. Что касается отключения, то для него автоматический режим не предусмотрен.

Устройство короткозамыкателя и отделителя

Кратко расскажем о конструкции электромеханических аппаратов, изображенных выше, это будет полезно при объяснении их принципа работы. Начнем с отделителя, его упрощенный чертеж представлен ниже (рис.3 1).

Рисунок 3. 1) конструкция отделителя; 2)конструкция короткозамыкателя

Обозначения (часть 1 конструкция отделителя):

  • А1 – стойки изоляторы.
  • B1 – поворотные штанги с установленными контактами ножами.
  • С1 – пружинный механизм, приводящий в движение поворотные штанги.
  • D1 – платформа.
  • E1 – шкаф с электромагнитным «спусковым» механизмом, освобождающим пружинный привод, разводящий контактные части.

Как сами устройства, так и механика их работы не отличаются сложностью. Мы уже упоминали, что применение отделителя производится при снятом напряжении с сети, то есть, когда включаются выключатели на питающей магистрали. Следовательно, на разъединители можно не устанавливать специальные вакуумные дугогасительные контактные камеры.

Теперь рассмотрим основные элементы конструкции короткозамыкателя (рис.3 2):

  • A2 – основная (опорная) штанга-изолятор.
  • В2 – неподвижная штанга с контактными ножами.
  • С2 – пружинный привод.
  • D2 – платформа, на которой установлен короткозамыкатель.
  • E2 – шкаф для электромагнитного привода и трансформатора тока.
  • F2 – подвижная заземленная штанга, замыкающая полюса короткозамыкателя.

Конструктивно короткозамыкатель КЗ-35, а также другие модели, создающие искусственное межфазное КЗ, имеют несколько отличий от представленного на рисунке устройства. Поскольку имитируется линейное замыкание, то подвижная не соединена с «землей», она подключается к другой фазе. Соответственно, конструкция снабжена еще одним изолятором-стойкой.

Принцип действия

Механика действий этих устройств довольно простая, у отделителя она следующая: при поступлении сигнала срабатывает реле отключающее электромагнит, который блокирует пружинный механизм. В результате срабатывания привода отделителя, его поворотные штанги разводятся в разные стороны, размыкая контакты. Сигнал на отключения подают цепи управления релейной защиты.

Используются разъединители только с применением короткозамыкателей. Это связано с тем, что с помощью последних можно током КЗ вызвать срабатывание релейной защиты, как на текущей высоковольтной подстанции, так и той, к которой подключена питающая ЛЭП. Короткозамыкатель может быть запущен по сигналу защиты трансформатора или вручную, если в том возникла необходимость.

Как только сигнал на запуск получен, отключается электромагнит блокировки пружинного механизма и под его воздействием приводится в движение подвижный контакт. В результате короткозамыкатель вызовет КЗ линии, что моментально приведет в действие релейную защиту. По ее сигналу сработают высоковольтные выключатели питающей ЛЭП. Поскольку скорость срабатывания разъединителей существенно ниже, они будут производить отключение уже обесточенной магистрали.

Для закрепления материала рассмотрим несколько примеров.

Работа короткозамыкателя без отделителя

Ниже представлена принципиальная электрическая схема подстанции, где применяется короткозамыкатель без использования отделителя.

Схема подстанции 110/10

Значащие обозначения:

  • A – Линейный размыкатель в высоковольтной части ТП.
  • В – Короткозамыкатель.
  • С – Силовой трансформатор.

В данной схеме короткозамыкатель будет работать следующим образом:

  1. Если возникают проблемы с трансформатором «С» его подает сигнал на короткозамыкатель «В».
  2. Механизм электромеханического устройства производит короткозамкнутое соединение.
  3. КЗ отслеживает релейная защита, и формирует сигнал на ЛР «А».
  4. Силовой выключатель срабатывает и отключает ввод.

После того, как будет установлена и устранена причина срабатывания защиты, отключается выключатель (то есть, производится подключения вводной линии).

Описанный выше пример организации защиты на подстанции вполне работоспособен и надежен, но применение выключателя в данном случае не оправдывает себя ввиду его высокой стоимости.

Совместная работа короткозамыкателя с отделителем

Теперь рассмотрим связку ОД-КЗ на примере подстанции с двумя трансформаторными группами, запитанными от одной входящей ЛЭП.

Пример подстанции с ОД-КЗ

Обозначения:

  • Вк1 – силовой выключатель ВЛ (замкнут).
  • Вк2, Вк3 – силовые защитные выключатели на низкой стороне (замкнуты).
  • Вк4 – секторный выключатель (разомкнут).
  • Кз1, Кз2 – короткозамыкатели (разомкнуты).
  • Од1, Од2 – отделители (замкнуты).
  • Тр1, Тр2 – силовые трансформаторы 220/10

Для получения представления как работает данная схема, рассмотрим ситуацию с выходом из строя одного из трансформаторов:

  1. Представим, что в Тр2 нарушилась изоляция, что привело к образованию электроразрядов разлагающих масло, что обнаруживает газовое реле и подает соответствующий сигнал на щит управления короткозамыкателя Кз2.
  2. Сигнал, поступивший на блокирующее реле, приводит к его срабатыванию. Механизм разблокируется и пружинным приводом осуществляется толчок подвижной штанги, в результате замыкаются две фазы.
  3. Это включает Вк1, что приводит к отключению питающей линии обесточиванию Tp1 и Tp2.
    КЗ также вызывает соответствующую реакцию релейной защиты Tp2, она отключает Вк3 (снимается нагрузка) и запускает Од2. Поскольку у последнего самая низка скорость срабатывания, он приводится в действие последним, когда ВЛ и нагрузка отключены.
  4. Через определенную выдержку Вк1 вновь подключает ЛЭП (срабатывает система автоматического повторного включения).
  5. Автоматика ввода резерва включает Вк4.

По итогу на подстанции работает только Тр1, от которого запитываются обе секции.

Особенности

Идеальных систем не бывает, естественно, что у короткозамыкателей и отделителей имеется ряд особенностей, часть из которых можно причислить к недостаткам.

Например, у последних резко снижается надежность срабатывания при оледенении. Эта проблема решается, если используются разъединители закрытого типа с элегазовым наполнением. Такие устройства стоят дороже обычных моделей, но все равно обходятся дешевле силовых выключателей.

К короткозамыкателям также имеются претензии, в частности, по скорости их срабатывания (она порядка 400-500 мс). Самое простое решение в данном случае – использование конструкций, где в качестве приводе используется пороховой заряд.

В остальном эксплуатация аппаратов, описанных в статье, вполне оправдывает себя, о чем говорит популярность связки ОД-КЗ.

Что такое короткое замыкание, его виды и причины возникновения

О таком нештатном режиме работы электрической цепи как короткое замыкание слышали практически все. Описание физики этого процесса входит в школьную программу 8-го класса. Предлагаем вспомнить, что представляет собой данное явление, какую опасность представляют токи КЗ и их вероятные причины возникновения.

В статье мы рассмотрим виды короткого замыкания, а также способы защиты, позволяющие минимизировать негативные последствия.

Что такое короткое замыкание?

Под данным термином принято называть состояние сети, в которой имеет место непредусмотренный нормальной эксплуатацией электрический контакт между точками электроцепи с различными потенциалами. Низкое сопротивление в зоне контакта вызывает резкое увеличение силы тока, превышающее допустимое значение.

Для понимания процесса приведем наглядный пример. Допустим, имеется лампа накаливания мощностью 100 Вт, подключенная к бытовой сети 220 В. Применив Закон Ома, рассчитаем величину тока для нормального режима и короткого замыкания, игнорируя сопротивление источника и электрической проводки.

Электрическая схема нормального режима работы (а) и короткого замыкания (b)

При нормальном режиме работы приведенной выше цепи, электрический ток будет равен 0,45 А (I = P/U = 100/220 ≈ 0,45), а сопротивление нагрузки составит 489 Ом (R = U/A = 220/0,45 ≈ 489).

Теперь рассмотрим изменение параметров цепи при возникновении КЗ. Для этого замкнем цепь между точками А и В выполним соединение при помощи провода с сопротивлением 0,01 Ом. Учитывая свойства электрического тока, он выберет путь с наименьшим сопротивлением, соответственно, Iкз увеличится до 22000 А (I=U/R). Собственно, по этой причине замыкание называется коротким.

Данный пример сильно упрощен, в реальности ток замыкания не поднимется до 2,2 кА, поскольку произойдет падение напряжения на потребителе, согласно второму закону Киргофа: E = I * r + I * R , где I*r  — напряжение на источнике питания, а I * R, соответственно, на потребителе. Поскольку R при замыкании стремится к нулю, то вольтметр в изображенной выше схеме покажет падение напряжения.

Виды КЗ

Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.

Различные виды КЗ

Обозначения с кратким описанием:

  1. 3-х фазное, принятое обозначение – К(З). То есть, происходит электрический контакт между тремя фазами. Это единственный вид замыкания не вызывающий «перекос» фаз, процесс протекает симметрично, что упрощает расчет силы тока КЗ. В тоже время 3-х фазное замыкание представляет наибольшую опасность по факторам тепловых и электродинамических воздействий. В связи с этим, когда производится расчет тока КЗ для трехфазной цепи, как правило, рассматривается данный вид замыкания.

Характерно, что при К(З) наличие контакта с землей не отражается на параметрах процесса.

  1. 2-х фазное (K(2)). Данный вид замыкания, как все последующие, относится к несимметричным процессам, вызывающим перекос напряжений в системе. В кабельных линиях электропередач довольно велика вероятность перехода процесса K(2) в К(З), поскольку температура в месте замыкания разрушает изоляцию токоведущих частей.
  2. 2-х фазное с землей (K(1,1)). Данный процесс можно наблюдать в системах с заземленной нейтралью.
  3. 1-о фазное с землей (K(1)). Этот вид замыкания на практике встречается чаще всего. Характерно, что процесс может возникнуть как в бытовых или промышленных электросетях, так и в запитанном от них оборудовании.
  4. Двойное на землю (K(1+1)). То есть, две фазы замыкаются через землю, не имея электрического контакта между собой. Такой вид замыкания возможен в системах с заземленной нейтралью.

Мы привели только пять видов замыканий, которые чаще всего встречаются на практике. С полным списком возможных вариантов и поясняющими схемами можно ознакомиться в приложении 2 к ГОСТу 26522 85.

Вероятность возникновения каждого из рассмотренных выше вариантов приведена в таблице. Как видно из нее чаще всего наблюдаются однофазные короткие замыкания.

Таблица 1. Распределение, составленное по аварийной статистике.

Обозначение КЗПроцентное соотношение к общему числу (%)
К(З)5,0
K(2)10,0
K(1)65,0
K(1,1) и K(1+1)20,0

Разобравшись с видами замыканий, рассмотрим, в каких ситуациях они могут возникнуть.

Причины возникновения короткого замыкания

Несмотря на случайность данного процесса, существует много причин, имеющих косвенное или прямое отношение к его происхождению. Перечислим наиболее распространенные причины, по данным аварийной статистики:

  • Износ электрохозяйства энергетических систем или бытовой электросети. Со временем изоляция проводов или токоведущих элементов теряет диэлектрические свойства, в результате на участке цепи возникает непредусмотренное электрическое соединение. Определить общее состояние проводки можно по проводам в электрических точках. Старение изоляции заметно на отводах к электрическим точкам
  • Превышение допустимой нагрузки на цепь питания. Это вызывает нагрев токоведущих элементов, что приводит к повреждению изоляции. Подробно о перегрузке электросети можно прочитать на нашем сайте. Перегрузка электросети может стать причиной короткого замыкания
  • Удар молнии в ВЛ. В этом случае происходит перенапряжение электросети, которое может вызвать КЗ. Обратим внимание, что молнии не обязательно попадать непосредственно в ЛЭП, близкий разряд может вызвать ионизацию воздуха, увеличивающую его электропроводимость. В результате увеличивается вероятность образования электрической дуги между линиями электропередач.
  • Физическое воздействие на провода, вызывающее механическое повреждение изоляции. В качестве примера достаточно вспомнить шутку, где перфоратор называют электрическим прибором для поиска скрытой проводки.
  • Попадание металлических предметов на токоведущие элементы. Собственно, это следствие, поскольку причина кроется в неудовлетворительном уходе за электрохозяйством.
  • Подключение к сети неисправного оборудования, например вызванного существенным снижением внутреннего сопротивления.
  • Человеческий фактор. Под это определение можно подвести практически все случаи так или иначе связанные с неправильными действиями человека. Например, ошибки при монтаже электропроводки, неудачные попытки ремонта электрооборудования, неправильные действия оперативного персонала подстанции и т. д.

Опасность и последствия

Чтобы понять, какую опасность представляет КЗ, достаточно узнать о возможных последствиях короткого замыкания. Для этого перейдем к краткому перечню, составленному по статистическим данным Ростехнадзора:

  • Возникновение возгорания в месте механического соприкосновения неизолированных элементов оборудования или электрической сети часто становится причиной пожара.
  • Понижение уровня напряжения электрического тока в зоне замыкания вызовет сбой в работе электрооборудования. О последствиях пониженного напряжения можно подробно узнать в одной из публикаций на нашем сайте.
  • Как видно из приведенной выше таблицы 1, на долю симметричных замыканий (К(З)) приходится не более 5%, это означает, что во всех остальных случаях придется иметь дело с сетевой асимметрией, более известной под названием «перекос фаз». Последствия такого режима мы уже рассматривали в более ранней публикации.
  • Возникновение различных системных аварий, вызывающих отключение потребителей энергосистемы до устранения короткого замыкания.

Как предотвратить КЗ и защита от него?

Нельзя полностью исключить вероятность КЗ, поскольку на природу его возникновения влияет случайная составляющая. Поэтому в данном случае может идти речь только о профилактике, понижающей вероятность возникновения аварийной ситуации. К таким мерам относятся:

  • Контроль состояния изоляции токоведущих элементов оборудования или линий электропередач. В частности, испытание изоляции электропроводки в производственных помещениях положено проводить не реже одного раза в три года. Для бытовых сетей нормируется только срок максимальной эксплуатации. Например, для скрытой проводки, выполненной медным проводом, допустимая эксплуатация – 40 лет.
  • Сверка с проектом бытовой электросети перед сверлением теоретически должна минимизировать вероятность механического повреждения скрытой проводки. Но, как показывает практика, в таких ситуациях надежней воспользоваться прибором, для поиска проводки. Обзор таких устройств и их принципиальные схемы, можно найти на нашем сайте. Детектор проводки
  • Отключение электроприборов при выходе из дома или квартиры.
  • В «сырых» помещениях (например, в ванной комнате) необходимо минимизировать количество электрооборудования. Если таковое нельзя исключить, оно должно иметь соответствующий класс защиты.
  • В случае повреждения электроприбора, требуется исключить возможность его подсоединения к сети питания.
  • Соблюдение норм потребления электроэнергии и т.д.

Не менее важным является организация защиты, она реализуется путем установки автоматических выключателей (или предохранителей) как на ввод, так и на каждую внутреннюю линию проводки. Если произойдет короткое замыкание, электромагнитная защита автоматического выключателя сработает под воздействием высокого уровня тока КЗ. Как подобрать автоматический выключатель, в зависимости от номинального тока, Вы можете прочитать на нашем сайте.

Если в щитах РУ используются плавкие электрические предохранители, то после их «расплавления» (срабатывания), замена должна проводиться на однотипные устройства. Установка предохранителя с током меньше номинального приведет к ложным срабатываниям, превышение допустимого тока срабатывания может вызвать повреждение электрооборудования.

Преднамеренное КЗ

Завершая данную тему нельзя не упомянуть, что большие токи короткого замыкания могут успешно использоваться. Ярким примером этому являются электросварочные аппараты с ручным или автоматическим ограничением по току КЗ. Принцип работы и примеры электрических схем различных видов сварочного оборудования мы уже ранее рассматривали на нашем сайте.

Помимо сварочных аппаратов особенности КЗ используются в короткозамыкателях.

Внешний вид короткозамыкателя

Короткозамыкатели представляют собой специальные электромеханические устройства, вызывающие преднамеренное короткое замыкание для оперативного отключения системой защиты определенного участка цепи.

Таким образом, можно констатировать, что в приведенных примерах короткое замыкание вызывается принудительно для выполнения конструктивных действий.

Несколько видео по теме:

Короткозамыкатель | Заметки электрика

Здравствуйте, уважаемые посетители сайта «Заметки электрика».

Еще перед летним отпуском в этом году, мы выводили в ремонт силовой трансформатор 110/10 (кВ) мощностью 63 (МВА). Ремонтная бригада производила замену разрядников на стороне 110 (кВ) на ОПН. А мы в это время занимались полной проверкой релейной защиты и автоматики этого самого трансформатора.

Схема электроснабжения данной подстанции выстроена с высокой стороны на отделителях и короткозамыкателях. Вот я и решил написать об этом более подробно. Тема сегодняшней статьи будет называться короткозамыкатель. Я Вам расскажу про назначение и применение короткозамыкателя, а также про принцип его работы.

Итак, начнем.

Назначение короткозамыкателя

Короткозамыкатель – это коммутационный аппарат, который необходим для создания искусственного короткого замыкания в электрической цепи.

Смысл его работы заключается в следующем. При внутреннем повреждении силового трансформатора включается короткозамыкатель и создает искусственное короткое замыкание. В это время на питающей подстанции релейная защита реагирует на ток искусственного короткого замыкания и отключает питающую линию, а соответственно, и силовой трансформатор от сети.

Короткозамыкатель может устанавливаться либо на одном полюсе, в электроустановках напряжением 110 (кВ) и выше, либо на двух полюсах, в электроустановках напряжением 35 (кВ).

В моем примере на одной подстанции короткозамыкатель установлен в ОРУ на стороне 110 (кВ) в фазе В, а на другой — в фазе С и А.

На фотографии выше видно, что короткозамыкатель КЗ-110 установлен в фазе В.

А на этой фотографии на одном вводе короткозамыкатель КЗ-110 установлен в помещении ЗРУ в крайней фазе С, а на другом вводе — в фазе А.

В общем это зависит в том числе и от конструктивных особенностей подстанции.

При установке короткозамыкателя высоковольтный выключатель на стороне 110 (кВ) не требуется, что значительно упрощает и удешевляет монтаж такого электрооборудования примерно на 40-50%, не теряя при этом надежность.

Хотя признаюсь Вам, что при написании своего дипломного проекта на тему: «Модернизация главной распределительной подстанции» я ушел от применения короткозамыкателей и отделителей, и установил на сторону 110 (кВ) вакуумные высоковольтные выключатели ВБЭ-110. На то это и дипломный проект, чтобы показать и доказать, что данная модернизация и расчеты имели право на жизнь.

На нашем предприятии имеются две главные распределительные подстанции (ГПП) напряжением 110/10 (кВ), где установлены короткозамыкатели. И у обеих подстанций схемы немного различаются. Давайте разберем работу короткозамыкателя на каждой из этих подстанций.

 

Работа короткозамыкателя без отделителя

Представляю Вашему вниманию электрическую принципиальную схему подстанции ГПП-1 110/10 (кВ) ввода № 1.

Питание силового трансформатора Т-1 осуществляется по воздушной линии 110 (кВ) через линейный разъединитель ЛР-110.

Вот этот самый силовой трансформатор Т-1 110/10 (кВ) мощностью 63 (МВА) .

На стороне 110 (кВ) в сторону линии установлен заземляющий нож ЗН для обеспечения электробезопасности при проведении ремонтных работ.

Как Вы видите, короткозамыкатель КЗ-110 установлен на стороне 110 (кВ) без отделителя.

В таком случае при внутреннем повреждении силового трансформатора Т-1 включается короткозамыкатель, который создает искусственное короткое замыкание на воздушной линии.

Под действием искусственного тока короткого замыкания релейная защита на питающей подстанции отключает с помощью выключателя эту линию. Линия остается без напряжения до выяснения конкретных причин повреждения силового трансформатора Т-1.

Работа короткозамыкателя с отделителем

А вот схема питания ГПП-2 110/10 (кВ) немного отличается от предыдущей схемы.

Питание силового трансформатора Т-1 осуществляется по воздушной линии 110 (кВ) через линейный разъединитель ЛР-110 и отделитель ОДЗ-110.

В данной схеме, в отличии от предыдущей, установлен отделитель ОДЗ-110. Устанавливается он на всех трех полюсах. Более подробно про отделитель я напишу в отдельной статье. Чтобы не пропустить, подпишитесь на получение извещения о выходе новых статей на сайте.

В нормальном режиме работы силового трансформатора Т-1 все три силовых контакта отделителя замкнуты. 

А при возникновении внутреннего повреждения силового трансформатора Т-1 срабатывает короткозамыкатель, который создает искусственное короткое замыкание на воздушной линии.

Под действием искусственного тока короткого замыкания релейная защита на питающей подстанции отключает с помощью высоковольтного выключателя эту линию. И только после того, как линия отключится, в эту бестоковую паузу отключается отделитель, размыкая свои силовые контакты и тем самым отделяя поврежденный силовой трансформатор от сети.

Выглядит это следующим образом. Специально для Вас я снял видео работы короткозамыкателя в паре с отделителем.

Затем на этот высоковольтный выключатель на питающей подстанции действует АПВ (автоматическое повторное включение) и он включается. Линия снова становится под напряжение.

Эта схема немного сложна тем, что в ней необходима более точная  и четкая слаженность работы релейной защиты на срабатывание короткозамыкателя и отделителя, а также высоковольтного выключателя на питающей подстанции. Этому способствуют различные виды блокировки устройств релейной защиты и автоматики, а также своевременное обслуживание приводов короткозамыкателя и отделителя.

Вот поэтому к релейной защите и предъявляются такие основные требования, как селективность (избирательность), быстродействие, чувствительность и надежность.

Но Вы только представьте себе, что произойдет, если релейная защита сработает не слаженно, и отделитель будет разрывать ток искусственного короткого замыкания. Это приведет к очень большим последствиям и аварии на подстанции.

P.S. Думаю, что смысл установки короткозамыкателя и отделителя на подстанции Вам ясна. В следующих статьях я расскажу Вам про конструкцию короткозамыкателя и отделителя, и их привода.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Короткозамыкатель — это… Что такое Короткозамыкатель?

Короткозамыкатель — электрический аппарат, предназначенный для создания искусственного короткого замыкания на землю в сетях электроснабжения.

Устройство

Конструктивно короткозамыкатель аналогичен заземлителю, но за счёт мощной контактной системы может включаться на короткое замыкание.

Применение

Короткозамыкатели совместно с отделителями применяются в упрощённых схемах подстанций вместо более дорогих силовых выключателей. Подобная замена позволяет экономить значительные денежные средства, так как стоимость силовых выключателей довольно высока. Чем больше присоединений на подстанции и выше напряжение высокой стороны, тем более заметной становится выгода от использования упрощённых схем. В основном упрощённые схемы получили распространение на напряжении 35, 110 кВ. Устанавливаются короткозамыкатели: в сетях с заземлённой нейтралью — на одну фазу, в сетях с изолированной нейтралью — на две. Включение короткозамыкателя происходит автоматически, отключение производят вручную.

В настоящее время применение короткозамыкателей ограничено теми подстанциями где они установлены, короткозамыкатели больше не производятся, так как схемы ПС где они применяются имеют меньшую надежность и большую вероятность повреждения дорогостоящего оборудования подстанции (силового трансформатора), чем схемы с применением выключателей.

Принцип действия защиты с использованием короткозамыкателей

Схема подстанции без выключателя на стороне высокого напряжения

В случае аварии на трансформаторе одного из присоединений (T1), установленная на нём защита подаст напряжение на катушку включения соответствующего короткозамыкателя (SC1). Короткозамыкатель замкнёт свои контакты, создав искусственное замыкание на землю. На это замыкание среагирует защита магистральной ЛЭП, в зоне действия которой находится подстанция, и с помощью головного выключателя (Q) отключит всю подстанцию. Через небольшой промежуток времени на линии сработает АПВ и включит головной выключатель. За это время, которое называется бестоковой паузой, сработает только отделитель повреждённого трансформатора (E1) и отключит его от сети. Таким образом, не используя отдельный выключатель на каждое присоединение, возможно отключить повреждённый участок, оставив подстанцию в работе.

Источники

  • ГОСТ 17703-72 «Аппараты электрические коммутационные. Термины и определения»
  • «Релейная защита и автоматика подстанций с короткозамыкателями и отделителями» М. Л. Голубев «Энергия» Москва 1973
  • «Релейная защита и автоматика систем электроснабжения» Андреев В. А. М. «Высшая школа» 2007 ISBN 978-5-06-004826-1
  • «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. М. Энергоатомиздат 1998 ISBN 5-283-010031-7

Отделители и короткозамыкатели. Назначение, принцип работы.

Сегодня на высоковольтных подстанциях зачастую используются типовые схемы без установки выключателей на питающей линии. Благодаря такой конструктивной особенности удаётся настроить полнофункциональное оборудование, которое отличается простотой исполнения и дешевизной при неизменно высокой надёжности. Чтобы заменить выключатели на стороне высокого напряжения применяются отделители и короткозамыкатели.

Короткозамыкатели служат для того чтобы создавать искусственное КЗ сети по сигналу релейной защиты. Отличаются высоким быстродействием.

Отделитель — это разъединитель, способный быстро отключить обесточенную сеть, когда подаётся команда на его привод. Отделители срабатывают значительно медленней обычных разъединителей (в течение 0,5-1,0 секунд). Посредством отделителя отсоединяются повреждённые участки сети после того, как выполнено отключение защитного выключателя. В свою очередь выключатель срабатывает по причине короткого замыкания, которое создаётся короткозамыкателем.

Короткозамыкатели создают искусственное КЗ в случаях повреждения трансформатора. В результате этого под влиянием защиты происходит отключение выключателей, которые установлены на питающих выводах линий. Короткозамыкатели управляются посредством привода ШПК, а включение короткозамыкателя происходит в автоматическом режиме под влиянием пружинного механизма в результате срабатывания привода по сигналу релейной защиты. В случае необходимости короткозамыкатель можно также включить вручную. Отключить же его можно исключительно при ручном оперировании.

Отделитель на подстанции.

Особенности короткозамыкателей и отделителей

Разъединители бывают одно- и трёхполюсными, предназначены для внутренней и наружной установки. Для осуществления отключения и включения разъединителей используются пневматические, электродвигательные и ручные приводы.

Отделители, короткозамыкатели открытой конструкции не очень надёжно функционируют во время неблагоприятных погодных условий (гололёд, мороз). Немало зафиксировано случаев отказа в работе. Чтобы повысить стабильность работы таких изделий, была разработана конструкция с контактной системой, помещаемой в закрытую камеру, наполненную элегазом. Для того чтобы скомпенсировать утечки элегаза, имеется связанный через фильтр баллон с внутренней полостью камеры контакта.

В установках напряжением 35 кВ используются два полюса короткозамыкателя, которые когда срабатывают, создают искусственное двухфазное короткое замыкание. В более мощных установках (110 кВ и выше) с заземлённой нейтралью используется только один полюс короткозамыкателя.

Типичные короткозамыкатели имеют скорость включения порядка 0,4-0,5 секунд. Если такого времени срабатывания недостаточно, используются короткозамыкатели на основе порохового заряда, под действием взрыва которого происходит движение ножа.

В целях автоматизации подстанций отделители применяются не только для обесточивания электрических цепей, но также и для перевода подстанций на резервные источники питания.

При контроле состояние короткозамыкателей и отделителей в первую очередь необходимо обращать внимание на состояние изоляции изделий и контактных соединений.

Разъединители, отделители, короткозамыкатели: условия выбора, применение, назначение

Разъединители применяются для отключения и включения цепей без тока и создания видимого разрыва цепи в воздухе. Между силовыми выключателем и разъединителем должны предусматриваться механическая и электромагнитная блокировки, не допускающие отключения разъединителя при включенном выключателе, когда в цепи протекает ток нагрузки.

Разъединители могут также применяться для следующих операций на подстанции: заземление и разземление нейтралей силовых трансформаторов; отключение и включение дугогасящих реакторов при отсутствии в сети замыкания на землю; отключение и включение измерительных трансформаторов напряжения; отключение и включение обходные выключателей в схемах РУ с обходной секцией шин, если шунтируемый разъединителем выключатель включен.

Разъединители выпускаются также с одним и двумя заземляющими ножами (число ножей обозначается цифрами 1 или 2 после буквенного обозначения: РНДЗ1220У/2000 или РЛНД2220/1000).

Короткозамыкатели и отделители

Короткозамыкатели и отделители — это специальные разъединители, имеющие автоматически действующие приводы. При выборе отделителей и разъединителей необходимо учитывать коммутационные возможности этих аппаратов, оговоренные в каталогах (намагничивающий ток, зарядный ток, ток замыкания на землю).

При проектировании необходимо учесть возможность увеличения отключающей способности разъединителей применением дутьевых приставок. Это позволяет повысить предельный ток отключения до 80, 60 и 100 А соответственно. При выборе короткозамыкателей необходимо учитывать режим нейтрали сети. В сетях 110 и 220 кВ с заземленной нейтралью достаточно установить однополюсный короткозамыкатель. В сетях 35 кВ с изолированной нейтралью необходимо установить два полюса короткозамыкателя или по одному короткозамыкателю в двух фазах.

Разъединители, отделители и выключатели

Разъединители, отделители и выключатели нагрузки выбирают по напряжению Uном, номинальному длительному току, а в режиме короткого замыкания проверяют термическую и электродинамическую стойкость (табл. 7.2). Для короткозамыкателей выбор по номинальному току не требуется. Разъединители, отделители и короткозамыкатели должны выбираться также по роду установки и конструктивному исполнению.

В целях снижения стоимости распределительного устройства 6—10 кВ подстанции вместо силовых выключателей небольшой и средней мощности можно применять выключатели нагрузки, способные отключать рабочие токи линий, трансформаторов и других электроприемников.

Рекомендуется установка выключателя нагрузки после предохранителя, считая по направлению тока от источника питания, что следует иметь в виду при вычерчивании однолинейной схемы соединений подстанции.

Преимущество такой схемы заключается в том, что если при отключении выключателя нагрузки возникнут неполадки (например, затяжка дуги вследствие износа вкладышей или случайное превышение тока над паспортными значениями), то предохранители практически мгновенно отключат данную линию и авария ограничится пределами только данной камеры и не распространится на все распределительное устройство. Такая установка предохранителей дает возможность безопасного осмотра и ревизии выключателя нагрузки при вынутых предохранителях.

Выбор выключателей нагрузки производится по тем же условиям, что и выбор разъединителей.

Номинальные токи плавких вставок предохранителей ПК следует выбирать так, чтобы не возникало ложного срабатывания предохранителя вследствие толчков тока при включении трансформатора на небольшую нагрузку, а также при включении электродвигателей или батарей конденсаторов. Для выполнения этого условия ток плавкой вставки выбирается в 1,4—2,5 раза больше номинального тока защищаемого электроприемника. С учетом этого выбор предохранителя следует производить на основе данных, приведенных в табл. 7.3.

При выборе предохранителей следует обращать особое внимание на то, что их можно применять лишь в сетях и электроустановках с напряжением, соответствующим номинальному напряжению предохранителя. Применение предохранителей с номинальным напряжением, отличным (большим или меньшим) от номинального напряжения сети, не допускается.

Коэффициент короткого замыкания синхронной машины — его значение

Коэффициент короткого замыкания (SCR) синхронной машины определяется как отношение тока возбуждения, необходимого для создания номинального напряжения в разомкнутой цепи, к току возбуждения, необходимому для направить номинальный ток якоря при коротком замыкании. Коэффициент короткого замыкания можно рассчитать из характеристики разомкнутой цепи (O. C.C) при номинальной скорости и характеристики короткого замыкания (S.C.C) трехфазной синхронной машины, как показано на рисунке ниже.

На приведенном выше рисунке коэффициент короткого замыкания определяется уравнением, показанным ниже.

Так как треугольники Оаб и Ода подобны. Следовательно,

Синхронное реактивное сопротивление прямой оси X d определяется как отношение напряжения холостого хода для данного тока возбуждения к току короткого замыкания якоря для того же тока возбуждения.

Для тока возбуждения, равного Oa, синхронное реактивное сопротивление прямой оси в Ом определяется уравнением, показанным ниже.

Стоимость единицы X d дается как

Но базовое сопротивление —

Следовательно,

Из уравнения (1) и уравнения (6) получаем

Из уравнения (7) ясно, что коэффициент короткого замыкания равен значению, обратному удельному значению синхронного реактивного сопротивления прямой оси.

В насыщенной магнитной цепи значение X d зависит от степени насыщения.

Значение коэффициента короткого замыкания (SCR)

Коэффициент короткого замыкания — важный фактор синхронной машины. Это влияет на рабочие характеристики, физические размеры и стоимость машины. Большое изменение напряжения на клеммах при изменении нагрузки имеет место для более низкого значения коэффициента короткого замыкания синхронного генератора. Чтобы поддерживать постоянное напряжение на клеммах, ток возбуждения (I f ) должен варьироваться в широком диапазоне.

При малом значении коэффициента короткого замыкания (SCR) мощность синхронизации мала. Поскольку мощность синхронизации поддерживает синхронизацию машины, меньшее значение SCR имеет низкий предел устойчивости. Другими словами, машина с низким SCR менее стабильна при работе параллельно с другими генераторами.

Синхронная машина с высоким значением SCR имела лучшее регулирование напряжения и улучшенный предел устойчивости в установившемся режиме, но ток короткого замыкания в якоре высок. Это также влияет на размер и стоимость машины.

Напряжение возбуждения синхронной машины определяется уравнением.

Для того же значения Tph Напряжение возбуждения прямо пропорционально потоку поля на полюс.

Синхронная индуктивность определяется как

Следовательно,

Следовательно, коэффициент короткого замыкания прямо пропорционален реактивному сопротивлению воздушного зазора или его длине.

Если длина воздушного зазора увеличена, SCR может быть увеличен. С увеличением длины воздушного зазора поле MMF должно увеличиваться для того же значения напряжения возбуждения (E f ). Следовательно, для увеличения значения MMF поля необходимо увеличить либо ток возбуждения, либо количество витков возбуждения. Все это требует большей высоты полевых столбов и, как следствие, увеличения общего диаметра машины.

Таким образом, можно сделать вывод, что большое значение SCR увеличит размер, вес и стоимость станка.

Типичные значения SCR для различных типов машин следующие: —

  • Для машины с цилиндрическим ротором значение SCR находится в пределах от 0,5 до 0,9.
  • В случае машины явнополюсной модели она находится в пределах от 1 до 1,5 и
  • Для синхронных компенсаторов это 0,4.
Схема защиты от короткого замыкания

Короткое замыкание — это непреднамеренное соединение между двумя клеммами, которые подают питание на нагрузку.Это может произойти как в цепи переменного, так и постоянного тока, если это источник переменного тока, то короткое замыкание может привести к отключению источника питания всей области, но на многих уровнях, от электростанции до дома, есть предохранители и схемы защиты от перегрузки. А если это источник постоянного тока, например аккумулятор, он может нагреть аккумулятор, и аккумулятор очень быстро разрядится. В некоторых случаях аккумулятор может взорваться. Существует множество способов защиты цепи от короткого замыкания, и для защиты от перегрузки доступно множество типов предохранителей.

Мы собираемся разработать и изучить простую схему защиты от короткого замыкания низкого напряжения для постоянного напряжения . Схема разработана с целью безопасной работы схемы микроконтроллера и может защитить ее от повреждения из-за короткого замыкания в другой части схемы.

Необходимые компоненты

  • СК100Б Транзистор ПНП — 1 шт.
  • BC547B Транзистор NPN — 1 шт.
  • Резистор 1 кОм — 1 шт.
  • Резистор 10 кОм — 1 шт.
  • Резистор 330 Ом — 2 шт.
  • Резистор 470 Ом — 1 шт.
  • Источник питания 6 В постоянного тока — 1 шт.
  • Макетная плата — 1 шт.
  • Соединительные провода — согласно требованию

SK100B PNP Транзистор

Начиная с выемки транзистора — эмиттер, середина — база, а последняя — коллектор.

  • Излучатель — E
  • База — B
  • Коллектор — C

BC547B Транзистор NPN

Схема защиты от короткого замыкания

Типичный пример короткого замыкания — это когда положительный и отрицательный полюсы батареи соединены вместе с проводом с низким сопротивлением, например, проводом.В этом состоянии аккумулятор может загореться и даже взорваться. Так часто бывает с мобильными батареями в мобильных устройствах.

Чтобы избежать этого состояния короткого замыкания, используется схема защиты от короткого замыкания . Схема защиты от короткого замыкания отклонит ток или прервет контакт между цепью и источником питания.

Иногда при использовании неисправной бытовой техники, такой как духовка, утюг и т. Д., Случается сбой в электросети с внезапной искрой.Причина этого в том, что где-то в неисправном приборе протекает избыточный ток. Это может привести к поражению электрическим током или вызвать возгорание дома, если он не защищен. Поэтому во избежание такого повреждения используется предохранитель или автоматический выключатель . В таком состоянии автоматический выключатель или предохранитель отключает основное питание в доме. Цепь предохранителя-выключателя также представляет собой схему защиты от короткого замыкания , , в которой используется провод с низким сопротивлением, который плавится и отключает основной источник питания в доме всякий раз, когда через него проходит избыточный ток.

Итак, здесь мы собираемся изучить и спроектировать схему, чтобы избежать повреждения из-за короткого замыкания в ней.

Принципиальная схема

Работа цепи защиты от короткого замыкания

Выше показана простая схема защиты от короткого замыкания постоянного тока с низким энергопотреблением, которая состоит из двух транзисторных схем, одна из которых представляет собой транзисторную схему BC547 NPN, а другая — транзисторную схему SK100B PNP. Вход подается в схему с помощью источника питания 5 В постоянного тока, который может быть обеспечен либо батареей, либо трансформатором.

Работа схемы проста, когда горит зеленый светодиод D1, это означает, что схема работает нормально и риск повреждения отсутствует. Красный светодиод D2 должен гореть только при коротком замыкании.

При включении источника питания транзистор Q1 смещается и начинает проводить ток, а светодиод D1 загорается.В это время красный светодиод D2 не горит из-за отсутствия короткого замыкания.

Свечение зеленого светодиода D1 также указывает на то, что напряжение питания и выходное напряжение примерно равны.

В нашей схеме стимуляции мы сгенерировали «короткое замыкание» с помощью переключателя на выходе. Когда происходит «короткое замыкание», выходное напряжение падает до 0 В и Q1 перестает проводить, так как его базовое напряжение равно 0 В. Транзистор Q2 также перестает проводить, поскольку напряжение на его коллекторе также упало до 0 В.

Итак, теперь ток начинает течь через КРАСНЫЙ светодиод D2 и проходит через землю по короткому замыканию (через переключатель).Это приводит к тому, что красный светодиод D2 начинает проводить, поскольку он смещен в прямом направлении, и указывает на то, что было обнаружено короткое замыкание, и ток отводится через красный светодиод D2 вместо повреждения всей цепи.

Электрическое короткое замыкание — типы, причины и предотвращение

Короткое замыкание — это соединение с низким сопротивлением между двумя проводниками, которые подают электроэнергию в цепь. Это вызовет избыточное протекание напряжения и вызовет чрезмерное протекание тока в источнике питания.Электричество пройдет по «короткому» маршруту и ​​вызовет короткое замыкание.

Что такое Типы электрического короткого замыкания

1. Нормальное короткое замыкание

Это когда ток, протекающий под напряжением, касается нейтрального провода. Когда это произойдет, сопротивление мгновенно упадет, и большой ток пройдет неожиданным путем.

2. Короткое замыкание при замыкании на землю

Короткое замыкание на землю происходит, когда ток, по которому проходит ток, входит в контакт с некоторой заземленной частью системы.Это может быть заземленная металлическая настенная коробка, оголенный провод заземления или заземленная часть прибора.

Каковы основные причины электрического короткого замыкания

  • Неисправная изоляция проводов цепи

Если изоляция повреждена или устарела, горячие провода могут соприкоснуться с нейтралью. Это вызовет короткое замыкание.

Возраст провода, гвоздей или шурупов может повредить изоляцию и привести к короткому замыканию. Есть риск, что вредители прогрызут изоляцию, а также оголят жилы проводов.

Если есть какие-либо незакрепленные соединения или крепления проводов, это позволит контактировать токоведущий и нейтральный провод. Если вы видите неисправные соединения проводов, не пытайтесь исправить это самостоятельно и немедленно обратитесь к специалисту.

Если вы подключите прибор к розетке, его проводка станет продолжением цепи. Таким образом, если есть какие-либо проблемы в электропроводке устройства, это станет проблемой цепи.

Короткое замыкание может произойти в шнурах питания, вилках или внутри устройства.Убедитесь, что у вас есть защита от короткого замыкания для всех приборов.

Как предотвратить электрическое короткое замыкание

  • Контрольные розетки и устройства

К каждой розетке подключена сеть проводов. Если есть неисправные провода, неплотные соединения коробки или розетка старше 15-25 лет, это может привести к короткому замыканию. Обратите внимание на возможные признаки неисправности розеток, в том числе:

  1. Следы ожогов на розетке или запах гари
  2. Искры, исходящие из розетки
  3. Жужжащий звук от розетки

Аналогичным образом проверьте приборы и их проводку тоже. Неисправная электропроводка или трещины в приборе могут вызвать короткое замыкание. Отремонтируйте такие приборы или замените их полностью.

  • Используйте меньше электроэнергии во время шторма

Короткое замыкание, вызванное ударами молнии, может быть чрезвычайно опасным, поскольку большое количество электричества может привести к повреждению. Уменьшите потребление электроэнергии во время шторма, так как это может помочь предотвратить короткое замыкание и уменьшить ущерб в случае скачка напряжения.

  • Ежегодный осмотр электрической части

Позвоните сертифицированному специалисту и проведите осмотр электрической части не реже одного раза в год.Они могут определить критические проблемы и решить их до того, как они станут опасными, потому что знают, как исправить короткое замыкание.

  • Установите устройства, предотвращающие короткое замыкание

  1. Автоматические выключатели или предохранители: Автоматический выключатель — это коммутирующее устройство в цепи, которое прерывает ненормальное протекание тока. Он использует внутреннюю систему пружин или сжатого воздуха для определения любых изменений в текущем потоке. Это «разомкнет» цепь и отключит ток.Предохранитель — это устройство, обеспечивающее защиту от сверхтока. В нем есть металлическая полоса или проволока, которая плавится при прохождении через нее большого количества тока. Это прерывает цепь.
  1. Прерыватели цепи при замыкании на землю (GFCI): GFCI работает, сравнивая величину тока, протекающего в цепи и из нее. Если есть замыкание на землю или дисбаланс между входящими и выходящими токами, GFCI отключит электрическое питание.
  1. Прерыватели цепи при возникновении дугового замыкания (AFCI): AFCI размыкает цепь при обнаружении электрической дуги в цепи.Это помогает предотвратить электрические пожары.

Проверьте AFCI против GFCI и где вы должны их установить, чтобы получить дополнительную информацию о том, где вы должны установить AFCI и GFCI.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. В нем хранится обширный перечень электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводов, предохранительных выключателей и т. Д.Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной продукции и современных решений для электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

Логические операции с коротким замыканием — Логические операторы MATLAB: Короткое замыкание && ||

С логическим замыканием, второй операнд, expr2 , оценивается только тогда, когда результат не полностью определяется первым операндом expr1 .

Из-за свойств логического И и ИЛИ результатом логического выражения является иногда полностью определяется до оценки всех условий. Логический Операторы и возвращают логическое значение 0 ( ложь ) если хотя бы одно условие в выражении ложный. Логический оператор или возвращает логический 1 ( истинно ), если хотя бы одно условие в выражение верно.Когда оценка логического выражения заканчивается раньше встретив одно из этих значений, говорят, что выражение имеет замкнут накоротко .

Например, в выражении A && B MATLAB ® вообще не оценивает условие B , если условие — ложь. Если A ложно, то значение из B не меняет исход операции.

При поэлементном использовании и и | операторы в контексте , если или , а выражение цикла (и только в этом контексте), они используют короткое замыкание для оценки выражений.

Примечание

Всегда используйте && и || операторы для включения оценки короткого замыкания. Использование и и | операторов короткого замыкания могут привести к неожиданному результаты, когда выражения не вычисляются до логических скаляров.

Замкнутые, разомкнутые и короткие замыкания

  1. Программирование
  2. Электроника
  3. Компоненты
  4. Замкнутые, разомкнутые и короткие замыкания

Кэтлин Шэми

Вам нужен замкнутый путь или замкнутый контур, чтобы заставить электрический ток течь. Если где-то на пути есть обрыв, у вас есть обрыв цепи , и ток перестает течь — и атомы металла в проводе быстро успокаиваются и переходят в мирное, электрически нейтральное существование.

Замкнутая цепь позволяет току течь, но разомкнутая цепь оставляет электроны скрученными.

Представьте галлон воды, текущий по открытой трубе. Вода будет течь в течение короткого времени, но затем остановится, когда вся вода выйдет из трубы. Если вы перекачиваете воду через закрытую систему труб, вода будет продолжать течь, пока вы заставляете ее двигаться.

Открытые цепи часто создаются конструктивно. Например, простой выключатель света размыкает и замыкает цепь, соединяющую свет с источником питания.Когда вы создаете цепь, рекомендуется отключать аккумулятор или другой источник питания, когда цепь не используется. Технически это создает разрыв цепи.

Выключенный фонарик — это разрыв цепи. В показанном здесь фонарике плоская черная кнопка в левом нижнем углу управляет переключателем внутри. Переключатель представляет собой не что иное, как два гибких металлических куска, находящихся в непосредственной близости друг от друга. Черная кнопка сдвинута до упора вправо, переключатель находится в разомкнутом положении, а фонарик выключен.

Переключатель в разомкнутом положении отключает лампочку от аккумулятора, создавая разрыв цепи.

Включение фонарика, сдвинув черную кнопку влево, сдвигает два металлических куска вместе — или замыкает переключатель — и замыкает цепь, чтобы ток мог течь.

Замыкание переключателя завершает токопроводящий путь в этом фонарике, позволяя электронам течь.

Иногда разомкнутые цепи возникают случайно. Например, вы забыли подключить аккумулятор или где-то в вашей цепи произошел обрыв провода.Когда вы строите схему с использованием беспаечной макетной платы, вы можете по ошибке вставить одну сторону компонента в неправильное отверстие на макетной плате, оставив этот компонент неподключенным и создав разомкнутую цепь. Случайные разомкнутые цепи обычно безвредны, но могут стать источником большого разочарования, когда вы пытаетесь выяснить, почему ваша схема не работает так, как вы думаете.

Короткие замыкания — совсем другое дело. Короткое замыкание — это прямое соединение между двумя точками в цепи, которые не должны быть подключены напрямую, например, двумя выводами источника питания.Электрический ток идет по пути наименьшего сопротивления, поэтому при коротком замыкании ток будет обходить другие параллельные пути и проходить через прямое соединение. (Думайте о токе как о ленивом и идущем по пути, по которому ему не нужно много работать.)

При коротком замыкании ток может отклониться от пути, по которому он должен проходить.

Если вы закоротите блок питания, вы отправите большое количество электроэнергии с одной стороны блока питания на другую.Поскольку в цепи нет ничего, что ограничивало бы ток и поглощало электрическую энергию, в проводе и источнике питания быстро накапливается тепло. Короткое замыкание может привести к расплавлению изоляции вокруг провода и вызвать возгорание, взрыв или выброс вредных химикатов из определенных источников питания, таких как аккумулятор или автомобильный аккумулятор.

Об авторе книги

Кэтлин Шэми — инженер-электрик и технический писатель с обширным инженерным и консультационным опытом в области медицинской электроники, обработки речи и телекоммуникаций.

типов короткого замыкания | Кабельные зажимы

  • Дом
  • Кабельные вводы
    • Продукты
      • Промышленное / Общего назначения
      • Взрывоопасная атмосфера
      • Группа I Горное дело
      • Американский NEC и CEC
      • Аксессуары
      • Просмотреть все продукты по именам
      • Как заказать
    • Технический
      • NEC и CEC для Северной и Южной Америки
      • Каталог Загрузки
      • Скачать сертификат
      • Схемы сертификации
      • Взрывоопасные атмосферы
      • Загрузки продуктов
      • Что такое кабельный ввод?
      • Загрузки файлов STEP
    • Установка
      • Инструменты и руководства
      • Обучение и поддержка
      • Установка Загрузки
  • Кабельные зажимы
    • Продукты
      • Металл
      • Полимерный
      • Одно / многоядерное приложение
      • Приложение «Трилистник»
      • Приложение Quad
      • Аксессуары
      • Посмотреть все
    • Технический
      • Скачать сертификат
      • Аксессуары для кабельных зажимов
      • Проставка гайки кабельной планки
      • Выбор кабельной планки
      • Кабельные образования
      • Рекомендуемые расстояния между шипами
      • Каталог Загрузки
      • Комплекты крепления шипов
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *