Как проверить диодный мост мультиметром?
Методика проверки диодного моста
Поскольку в электронике всё чаще применяются диодные мосты в одном корпусе, то встаёт вопрос о методике их проверки. Мне частенько задают вопрос: «Как проверить диодный мост?».
О проверке обычных диодов я уже рассказывал, но тему проверки диодных сборок как-то упустил из виду. Заполним этот пробел.
Для начала вспомним основные свойства диода и схему диодного моста (так называемую схему Гретца).
Как известно, диод пропускает ток только в одном направлении – это его основное свойство. Схема диодного моста по схеме Гретца приведена на рисунке.
К выводам со значком «~» подводится переменное напряжение, полярность подключения тут не важна. Проще говоря, два вывода «~», это вход переменного напряжения.
С выводов «+» и «—» снимается уже постоянное напряжение. На самом деле оно пульсирующее, но сейчас не об этом.
Иногда выводы для подключения переменного напряжения (~) маркируются также
Итак, память освежили, теперь подумаем о том, как же нам проверить диодный мост мультиметром.
Для экспериментов возьмём диодную сборку RS407 на прямой ток 4 ампера и обратное напряжение 1000 вольт. Также нам потребуется любой цифровой мультиметр.
Включаем мультиметр в режим проверки диода. Обычно он совмещён с режимом «прозвонки» и обозначен на панели прибора символом диода.
Чтобы было более наглядно, нарисуем схему диодного моста на бумаге и будем ориентироваться на рисунок. Далее проверим диоды, которые на рисунке обозначены под номером 1 и 2. Для этого подключаем к минусовому выводу диодного моста плюсовой щуп мультиметра (красный). А минусовой щуп (чёрный) подключаем к выводам моста со значком «~» или аббревиатурой AC. Так как диода два, то проделываем эту операцию по очереди.
Так как в таком случае диоды будут включены в прямом (проводящем) направлении, то на дисплее мультиметра мы увидим числа вроде 0,562V (562 mV). Это падение напряжения на P-N переходе открытого диода. Его ещё называют пороговым, т.е. чтобы открыть диод, нужно превысить данное напряжение. В зарубежных даташитах этот параметр называется Forward Voltage или Forward Voltage Drop (сокращённо Vf), что в вольном переводе означает «падение напряжения в прямом включении».
Для кремниевых диодов пороговое напряжение (Vf) составляет 400…1000 mV.
Теперь подключаем чёрный щуп к другому выводу моста со значком «~» или сокращением AC. Результат должен быть аналогичный. Вот взгляните.
Как видим, этот диод также проводит ток в прямом включении, а величина порогового напряжения чуть-чуть отличается (566 mV), это нормально.
Чтобы 100% удостовериться в исправности диодов 1 и 2, проверим их при обратном включении. Для этого к минусовому выводу моста («—«) подключаем минусовой, чёрный щуп мультиметра, а красный плюсовой щуп поочерёдно подключаем к выводам, обозначенным символом «~».
Проверка одного диода…
…второго.
В обоих случаях на дисплее будет отображаться единица, что свидетельствует о высоком сопротивлении P-N перехода. В таком включении диоды ток не пропускают. Они исправны.
Итак, диоды под номером 1 и 2 мы проверили и убедились в том, что они пропускают ток в одном направлении.
Теперь проверяем другую часть моста — диоды 3 и 4. Для этого к плюсовому выводу моста подключаем минусовой щуп мультиметра и по очереди соединяем красный щуп мультиметра с выводами AC диодной сборки. Это будет проверка диодов при прямом включении.
Как видим, диоды 3 и 4 исправны. Для большей уверенности меняем щупы и проверяем их при обратном включении, аналогично тому, как это делали с диодами 1 и 2. В обоих случаях на дисплее должна быть единица.
Многим такая методика проверки может показаться сложной и нудной. Да, я бы назвал такую проверку «дотошной», но она очень эффективна, так как мы проверяем все диоды сборки по отдельности.
Быстрая проверка диодного моста.
Есть и более быстрый вариант проверки диодного моста. На рисунке, что на фото, видно, что диоды 1 и 3 включены последовательно. Значит можно проверить их сразу. Вот так.
Подключаем к минусовому выводу моста плюсовой щуп мультиметра, а к плюсовому — минусовой щуп. На дисплее должно отобразиться что-то вроде этого.
Так как диоды 1 и 3 включены последовательно, то пороговые напряжения переходов будут складываться. В данном случае оно равно 1,045V. Но не будем спешить!
Как видим, прибор показывает единицу – сопротивление диодов велико.
А теперь возьмём заведомо неисправный диодный мост. У меня в наличии оказался диодный мост с маркировкой KBL06. Один из его диодов пробит. Проводим быструю проверку.
Как видим на фото, пороговое напряжение двух последовательно включенных диодов равно 554 милливольтам (554 mV). В таком случае, величина порогового напряжения на одном диоде будет равно около 277 mV, что для кремниевых диодов маловато. А теперь внимание! Перекинем плюсовой щуп на соседние выводы AC диодного моста. На одном из них прибор покажет нулевое сопротивление, и прибор противно запищит! Мы нашли пробитый диод внутри диодной сборки.
Меняем щупы мультиметра местами, чтобы проверить диод в обратном включении. Напомню, что в обратном включении диод ток не пропускает, он закрыт.
На дисплее тоже, что и раньше. Сопротивление P-N перехода диода равно 0. Мы убедились в том, что один из диодов (3 или 4) сборки пробит. Такой мост нельзя применять, он неисправен.
Как видим, диодный мост можно проверить и быстро, но это не факт, что он окажется исправен. Представьте ситуацию, когда будут пробиты диоды 1 и 4. В таком случае при быстрой проверке прибор нам покажет на дисплее значение около 200 mV (для выпрямительных кремниевых диодов). В обратном включении прибор покажет единицу, так как исправные диоды 3 и 4 не пропустят ток в обратном направлении. Закрыв глаза на весьма малое значение в 200 mV, мы допустим ошибку, и сделаем неверный вывод об исправности моста. Поэтому в особо важных случаях желательно проводить полную проверку диодного моста.
Как уже было сказано, наиболее часто диоды выходят из строя по причине пробоя P-N перехода. Но на практике может встретиться другая неисправность диода – обрыв. Обрыв, это когда диод не проводит ток ни в прямом, ни в обратном включении, он является своего рода изолятором. В таком случае, мультиметр при проверке диода в прямом и обратном включении всегда будет отображать единицу (высокое сопротивление).
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Как проверить диодный мост на исправность? 3 пошаговые методики
Современные бытовые приборы и различные устройства содержат огромное количество радиоэлементов, которые обеспечивают их исправную работу и комфортное существование обывателей. Однако вся техника, эксплуатируемая человеком, иногда выходит со строя и во время ее ремонта приходится проверять состояние радиодеталей.
Одной из наиболее распространенных составляющих, которую вы можете испытать на исправность самостоятельно, является диодный мост. В виду конструктивных особенностей многие новички сталкиваются с рядом сложностей, поэтому будет целесообразно детально разобраться, как проверить диодный мост на исправность.
О диодных мостах
Прежде чем разбираться в способах проверки диодных мостов на исправность, вам нужно как следует изучить общую информацию об устройстве и принципе его работы. Наиболее простой вариант, с практической точки зрения, это четыре выпрямительных диода спаянные в единую схему. Более сложным с точки зрения диагностики является диодная сборка – заводской четырехполюсник, внутри которого набраны четыре полупроводниковых элемента. Но, схематическая реализация и первого, и второго варианта происходит одинаково, принципиальная схема обоих диодных мостов приведена на рисунке ниже:
Как видите, в диоды собираются в мост по такому принципу, в одной точке подключатся катоды двух соседних диодов, а в другой, аноды соседних диодов, с каждого из них снимается полуволна отрицательной или положительной части синусоиды на входе. Другие две точки, имеющие и анодный и катодный вывод диода, предназначены для подачи переменного напряжения. На электрической схеме или непосредственно на диодном мосте выводы переменного напряжения обозначаются буквенной маркировкой AC или значком «~», а положительный и отрицательный вывод постоянного напряжения «+» и «– » соответственно.
Ищем диодный мост на плате
Проверять можно как установленный на плате диодный мост, так и выпаянный из нее, второй вариант считается более точным, поскольку на проверку не влияют другие элементы цепи, но следует помнить, что некоторые методы проверки можно реализовать только в рабочем устройстве. Если конструкция прибора довольно сложная или плата переполнена деталями, диодный мост целесообразно искать в таких локациях:
- в блоках питания;
- во вторичных цепях трансформаторов;
- на выходе генераторов;
- перед аккумуляторными батареями.
После обнаружения диодного моста, необходимо осмотреть его корпус или каждый диод в отдельности. Опытный электрик для себя автоматически заметит расположение вводов, но если вам сложно ориентироваться на память, можете нарисовать схему применительно к вашей ситуации. На такой схеме нужно отобразить плюсовую клемму и отрицательную клемму, клеммы ввода переменного напряжения.
Также следует отметить, что неисправность может заключаться не только в диодных мостах, поэтому при обследовании стоит внимательно осматривать все элементы и детали, а при проверке не исключать целостности объекта.
Проверка индикаторной отверткой
Это наиболее простой вариант опробования, который даст обще представление о состоянии диодного моста и всей схемы в целом. Для работы вам понадобится только индикатор, вся процедура выполняется под напряжением, поэтому следует соблюдать предельную осторожность:
- Коснитесь жалом отвертки поочередно к каждому выводу переменного напряжения AC диодного моста. Если лампочка не горит, то это свидетельствует о неисправности цепи до диодного моста – обрыве обмотки, поломке зарядного устройства и т.д. Если же лампочка горит, значит напряжение на мост поступает нормально.
- Также коснитесь отверткой к плюсу клеммы – если лампочка загорится, то диодный мост нормально пропускает положительные полупериоды, соответственно, на этом выводе присутствует потенциал. Если не горит, присутствует повреждение диодного моста.
- Ту же процедуру повторите с минусовой клеммой. Обязательно разделяйте проверку на оба вывода выпрямительного блока, так как неисправность может присутствовать в любом диоде и в любой ветви.
Как видите, в данном примере была использована отвертка с изолированным стержнем. Это связанно с необходимостью выполнять работу под напряжением, кода вы можете перекрыть металлической деталью разные части электроустановки, что повлечет за собой крайне неприятные последствия. Существенным недостатком метода является его низкая информативность и ограничение по величине рабочего напряжения — так как индикатор рассчитан на номинал 220 В, то использовать его для низковольтных цепей не получится.
С помощью лампочки и батарейки
Довольно простым способом, позволяющим проверить диодный мост, является использование батарейки и электрической лампочки, которые практически каждый может найти у себя дома. Этот метод не сложнее предыдущего, лампа выступает в роли контрольки, а батарейка в качестве источника питания пониженным напряжением. Батарейку подбирают в соответствии с параметрами самого диода. Для проверки исправности необходимо разделить диоды из моста по отдельности и собрать несложную схему:
Рис. 3. Схема проверки лампочкой и батарейкойКак видите, вам нужно собрать последовательное соединение от контактов лампочки к батарейке и самому диоду.
- Первый этап – правильное соединение, когда плюс батарейки подключается к положительной пластине выпрямителя, а минус аккумулятора на отрицательную пластину выпрямителя. Если диод исправен, то в цепи будет протекать ток и лампочка загорится.
- Второй этап заключается в переворачивании диода, когда на минусовую пластину подключится положительный вывод выпрямителя, а на плюсовую отрицательный.
При исправном диоде ток протекать не будет, и лампочка не загорится. С практической точки зрения можно не искать батарейку, а обойтись любыми подручными источниками питания, чей номинал сопоставим с номиналом диодного моста и каждого элемента. К примеру, в гараже можно подключиться к автомобильному генератору или клеммам аккумулятора.
Методика проверки мультиметром
Наиболее информативной является полная проверка диодного моста. Для ее реализации вам понадобится мультиметр, тестер или Цешка – любой из этих приборов в равной мере подойдет для измерений.
Выполните такую последовательность действий:
Время затраченное на проверку: 10 минут
Определите назначение выводов.
Метод универсальный, поэтому вы можете проверить как диодный выпрямитель в сборке, так и конструкцию из отдельных деталей, не разбирая их.
Установите щупы мультиметра.
Установите щупы мультиметра в соответствующие разъемы на приборе, соблюдая цветовую маркировку (черный – минус, красный — плюс). Переключатель выведите в режим прозвонки.
Используйте минусовый щуп мультиметра.
Подведите минусовый щуп мультиметра к плюсу диодного моста, а положительный поочередно к каждому из выводов переменного напряжения.
В результате прикосновения на табло мультиметра должно отображаться напряжение открытия диодов, в обеих точках это измеримая величина одинаковая для каждого измерения. В противном случае, сборка неисправна.
Поменяйте щупы тестера местами.
Далее необходимо поменять щупы тестера местами – красный установите на плюс, а черным попеременно касайтесь выводов для переменного напряжения.
На табло будет отображаться единица, свидетельствующая о бесконечно большом сопротивлении – при обратной полярности диоды остаются закрытыми. В противном случае, если отображается какое-то напряжение, мост пробит.
Используйте плюсовой щуп мультиметра.
Коснитесь плюсовым щупом мультиметра отрицательного вывода диодного моста, а минусовым щупом по очереди переменных выводов. В обоих случаях на табло должно отображаться падение напряжения.
Используйте черный щуп.
Установите черный щуп на отрицательный контакт сборки, а красный подводите к переменным выводам. В обеих позициях на мультиметре должна быть единица, в противном случае, элемент пробит.
Видео по теме
Как проверить диод — как с помощью мультиметра проверить работоспособность диода
Диод полупроводникового типа относится к тем электронным приборам, которым свойственна проводимость только в одну сторону.
Что такое полупроводниковый диод
Пользователи часто сталкиваются с вопросом, как проверить диод. Для того чтобы проверить, нормально ли диод функционирует, лучше всего воспользоваться методом контроля его состояния при помощи цифрового мультиметра. У всех диодов есть два выхода. Один из них – анод – со знаком плюс, а другой – катод – со знаком минус.
С физической точки зрения любой диод – это переходное устройство типа p-n. Следует знать, что приборы с полупроводниковой системой могут иметь несколько таких переходов (динистор имеет 3 перехода). Тем временем, обычный диод с полупроводниковой системой представляет собой самый элементарный электронный прибор из всех существующих, в основе которого лежит один такой переход. Следует также помнить, что диод с полупроводниковой системой может полностью проявить свои физические свойства исключительно после того, как он будет включен на полную силу.
Включение на полную силу подразумевает тот факт, что анод конкретного диода был подключен к напряжению со знаком плюс, а катод – к напряжению со знаком минус. Только тогда происходит полное открытие диода и его переход начинает проводить электрический док. Если сделать все наоборот и подключить к аноду диода минусовое напряжение, а к катоду – плюсовое, то данный диод будет считаться закрытым и не будет пропускать через себя электрический ток. Этот процесс будет длиться до тех пор, пока напряжение в приборе не достигнет предельной отметки, что повлечет за собой разрушение кристаллической основы полупроводника. Таким образом, принцип работы диода – проводимость в одну сторону – подтверждается.
Ответ на вопрос: «Как проверить диод мультиметром?» – очень прост. В большинстве случаев любой современный цифровой тестер (мультиметр), который можно сейчас найти в продаже, обеспечен функцией проверки физической исправности диодов. Этим свойством можно воспользоваться в ситуации, когда требуется проверка работоспособности транзистора.
Во время проверки работоспособности прибора на экране появляется не значение сопротивления перехода, а так называемое «пробивное» напряжение в диоде. Это означает: если превысить данный порог, переход откроется, и диод начнет работать. Как правило, значение этого показателя находится в диапазоне от ста до восьмидесяти милливольт. Они и будут отображены на мониторе устройства. Если же поменять местами выводы мультиметра (с отрицательного на положительный и наоборот), то монитор не должен ничего показывать. Это будет свидетельством того, что диод не пропускает ток в другую сторону, следовательно, функционирует нормально.
Как проверить диод
Для того чтоб облегчить процесс проверки, желательно иметь при себе макетную плату. Прежде всего, следует убедиться, что вы не касаетесь выходов диода и щупов тестера обеими руками. Так поступать нельзя, ведь тогда на результаты измерений повлияет и ваше тело – добавится его сопротивление. Поэтому все необходимо держать только одной рукой – тогда в цепь измерения войдут только необходимые для этого элементы.
Об этой особенности не стоит забывать и при измерении прочих приборов, к примеру, конденсаторов или резисторов. Начать стоит с проверки во время прямого подсоединения. Для этого положительный щуп мультиметра (он красного цвета) нужно подсоединить к аноду диода, а отрицательный щуп (он черного цвета) подсоединить к катоду. Выход катода находится с той стороны устройства, на которую нанесено кольцо белой краской.
Так и отмечается выход катода у большинства диодов современного образца. Если все прошло удачно, и монитор отобразил нормальное значение напряжения, то можно проверять диод, поменяв контакты местами. Стоит отметить, что диоды таки осуществляют пропуск электрического тока в обратном направлении, но в таких малых количествах, что этот показатель никогда не учитывается в расчетах. Так что если подсоединить к аноду щуп черного цвета, а к катоду – красного, то дисплей должен показать значение «один». Это будет говорить о том, что диод функционирует абсолютно нормально.
Возможные неисправности
Полупроводниковым диодам, как правило, свойственны два типа неисправностей: пробивание перехода и обрыв перехода. О них стоит знать следующее:
- Пробивание перехода. В этом случае диод станет самым обычным проводником и получит свойство пропускать электрический ток как в одном направлении, так и в другом. Об этом пользователю может рассказать визжащий буззер его тестера, а монитор покажет величину сопротивления, которая не свойственна данному диоду. Она будет необычно маленькой
- Обрыв перехода. Если случился обрыв перехода, исследуемый диод не будет пропускать электрический ток ни в одном, ни в другом направлении. В такой ситуации монитор мультиметра всегда будет демонстрировать цифру «один». Если это произойдет, исследуемый диод станет изолятором. Однако случаются ситуации, когда абсолютно нормально функционирующему диоду ставят диагноз «обрыв». Это случается, в основном, тогда, когда используется тестер с испорченными или просто поношенными щупами. Этот момент нужно контролировать, ведь их провода часто подвергаются механическим воздействиям, что приводит к обрыву
Что стоит знать про пробивное напряжение
Значение пробивного напряжения у большинства германиевых диодов находится в диапазоне от трехсот до четырехсот милливольт. К примеру, часто используемый диод модели Д9, который также применяется как детектор в устройствах радиоприемников, характеризуется этим показателем в размере четырехсот милливольт.
Вот основные типы диодов и напряжения, которые им соответствуют:
- Диоды из кремния. Им свойственно самое большое напряжение пробоя – от четырехсот до восьмисот милливольт
- Диоды из германия. Имеют среднее напряжение пробоя в размере от трехсот до четырехсот милливольт
- Диоды Шоттки. Их напряжение пробоя составляет от ста до двухсот пятидесяти милливольт
Руководствуясь данной методикой, можно не только проверить, насколько хорошо диод функционирует, но и приблизительно выяснить, какой материал служил сырьем для его изготовления. Определить это можно, узнав величину напряжения на пробой.
Где можно заказать проверку диода
Если у вас есть опасения, что вы не сможете самостоятельно проверить исправность диода при помощи мультиметра, лучше всего будет обратиться к специалистам. Воспользовавшись услугами платформы Юду, вы можете всего за десять минут заказать услуги мастера для проверки диода мультиметром.
Это можно сделать следующими способами:
- Воспользоваться мобильным приложением Юду, чтобы заказать необходимую услугу
- Самостоятельно отыскать интересующую вас услугу в каталоге платформы Юду и связаться с мастером
- Оформить заявку, заполнив соответствующую форму прямо на этой странице, дождаться, когда специалист на нее откликнется, и позвонить ему
На платформе Юду вы не будете ограничены в выборе мастера и сможете воспользоваться услугами именно того специалиста, которого сочтете наиболее квалифицированным. Все исполнители Юду прошли специальную проверку во время регистрации на сайте и смогут гарантировать высокое качество производимых работ.
типы и особенности, инструкция по тестированию, определение работоспособности моста
Печально, но начинать нужно с теории. Придётся изучить виды диодов, область и цели применения. Не углубляясь в физические основы электроники, пробежимся по поисковым запросам. Важно понимать, что все диоды объединяет способность пропускать ток в одном направлении, блокируя движение частиц противоположном, образуя своеобразные вентили. Затем обсудим, как проверить мультиметром диод.
Разновидности диодов
Итак, диоды пропускают ток в прямом направлении и блокируют в обратном. На электрических схемах диоды обозначают черными стрелками, ограниченными поперечной чертой. Символ показывает направление тока в физическом смысле – направленное движение положительных частиц. Чтобы создать прямой ток, к концу стрелки прикладывают минусовой потенциал, к началу – плюсовой. В противном случае диод окажется в «запертом» состоянии.
Диод
При движении электронов за счёт неидеальности молекулярной решётки теряется тепло, что влечёт падение напряжения и в прямом направлении. У кремниевых диодов прямой потенциал выше, на германиевых ниже. Диоды Шоттки характеризует меньшее падение потенциала за счет замены одного полупроводникового слоя металлическим, т.е. в нем нет p-n перехода. Ток потерь увеличивается, а падение напряжения на открытом ключе в прямом направлении рекордно низкое.
Эффект характерен не в любых диапазонах напряжения. Максимально эффективны диоды Шоттки при напряжениях, равных десяткам вольт. Их применяют в выходных фильтрах импульсных блоков питания. Вспомните: номиналы напряжения системника составляют 5, 12, 3 В. Методика построения схем на диоде Шоттки типичная.
Популярная разновидность диодов – стабилитрон. Его рабочая зона – область пробоя. Там, где обычный диод выходит из строя, стабилитрон защищает оборудование. Процесс характеризуется ростом напряжения до номинала и резкой стабилизацией. Через стабилитроны запитывают от высоковольтных линий чувствительные и слабые микросхемы контроллеров импульсных блоков питания, чтобы они нарезали напряжение импульсами большой амплитуды. Без стабилитронов запитывание микросхем решается архисложными методами.
Оценивая диод-стабилитрон при помощи мультиметра, учитывают, что рабочая зона – обратная ветвь. Технически напряжение пробоя для проверки получают от батареек, включенных последовательно, затем проверяют наличие стабилизация. Прямое включение стабилитрона используется крайне редко, прозвон традиционным способом – плохая идея. К стабилитронам относят и лавинный диод, где для стабилизации тока применён эффект ударной ионизации.
Обозначение диода на схемах
Случается, что специфика устройства непонятна. Печатные платы маркированы – каждому элементу соответствует строго определённое обозначение, и мощные диоды выпрямительного моста не спутать с крошечным стеклянным стабилитроном. Худший вариант – клубок проводников с непонятными элементами: то ли диод, то ли резистор необычного вида, либо экзотический конденсатор.
Столкнувшись с подобной ситуацией, аккуратно делают увеличенное фото, потом ищут в интернете по изображению. Хотя маркировка стабилитронов неразборчива, отыскать информацию в сети возможно. Данный шаг намного ускоряет процесс идентификации и оценки работоспособности прибора.
Инфракрасный диод мультиметром проверяется аналогично: снимаем прямое напряжение, потом убеждаемся, что обратно ток не идёт. Для проверки свечения используют видоискатель ночной видеокамеры. Он регистрирует непосредственно инфракрасное излучение объектов. Исправный ИК диод заметен на видоискателе – словно звездочка. Проверяют свечение с тепловизорами, приборами ночного видения, соблюдая осторожность: мощность излучения свето- и ИК-диодов велика, сопоставима с мощностью лазерного излучения.
Надпись внутри принтера о наличии лазера нельзя считать шуткой. И ею пренебрегать. Держите сетчатку глаз подальше от инфракрасного диода.
Схема проверки диода
Как проверить диод при помощи тестера
Для проверки диодов мультиметры снабжены специальной шкалой, маркированной соответствующим значком – схематическим обозначение диода. При включении режима низкие сопротивления включают зуммер, высокие характеризуются номиналом либо падающим на нем напряжении. По показаниям судят о характеристиках диода, к примеру, о сопротивлении прямого включения.
Для правильной интерпретации показаний, важно учитывать характеристики тестера: напряжение постоянного рода и низкого номинала, служащего для оценки. Пример: при измерении сопротивления тестер пропускает по нему ток, прикладывая к щупам некое напряжение. Любая модель мультиметра характеризуется уникальными параметрами. Напряжение узнают по заряду конденсатор: включает мультиметр в режим прозвона или тестирования диодов, через короткое время на обкладках конденсатора сформируется разность потенциалов. Измеряют штатной шкалой тестера. Значение колеблется от сотен милливольт (долей вольта) до единиц вольта.
Зная напряжение, приложенное к диоду, по его вольт-амперной характеристике сверяют достоверность показания. Вводят поисковый запрос на Яндексе, знакомятся с полной технической документацией на исследуемый элемент. Потом прикладывают в нужном месте шкалы абсцисс линейку, чтобы найти выходной ток. По формуле Ома вычисляют сопротивление открытого состояния: R = U/I, где U – вспомогательное напряжение, формируемое тестером. Сравнивают найденную по графику величину с указанной на табло.
Это одна из многочисленных методик. Важно знать, как находить правильные пути, анализировать и сопоставлять данные. Первый шаг – поиск обобщенной информации: что такое диоды, их характеристики (прежде всего, вольт-амперные), тонкости работы конкретного прибора. Зная теоретические основы, легко оперировать информацией, делать правильные выводы из результатов исследований.
Перейдём к жизненному примеру: исследуем диодный мост из генератора автомобиля!
Как определить работоспособность диодного моста
Автомобилю нужна электроэнергия – для систем кондиционирования (наряду с энергией двигателя), дворников, освещения наружного и внутреннего. Нагружать постоянно аккумулятор, что делается во время стоянки, не экономично. Задача решается подключением синхронного генератора переменного тока к валу двигателя. Ранее пользовались коллекторной схемой. Но щётки не переносят тряски, возникала необходимость частого обслуживания.
Ныне устанавливают трёхфазные генераторы. Т.к. обороты постоянно скачут, постоянство выходных характеристик поддерживают изменением тока подпитки ротора. В результате напряжённость переменного магнитного поля статора отслеживает каждое изменение работы мотора. Расплата – нестабильность выходного напряжения. Его выпрямляют и фильтруют, используя схему диодного моста Ларионова.
Глубокие технические подробности избыточны, ограничимся лёгкими знаниями:
- При любом способе соединения обмоток генератора, выходных точек три. Каждая посредством диода замыкается на массу в отрицательный полупериод, а на потребителей сети авто – в положительный.
- Итого, диодов получается шесть.
- Мост представляет собой две изолированных друг от друга серповидных плоскости, выполненные из прочного сплава. На каждой лежат три диода, электрические соединения проводятся согласно схеме (см. рисунок).
Схема соединений на трёхфазном диодном мосте
Из схемы видно:
- Три диода прозваниваются попарно с нулевым сопротивлением между катодом (отрицательная полярность) и анодом (положительная полярность). Сюда выходят клеммы генератора.
- Две тройки диодов (лежащие в одной серповидной плоскости) звонятся между собой катодами или анодами. В зависимости от того, какой электрод выдаёт короткое замыкание, определяют ветвь – нагрузочная или уходящая на массу.
Создав правильную схему раскладки электрических соединений, начинают проверку каждого диода по отдельности. Ветвь, идущую на массу, тестируют со стороны генератора, другую – со стороны нагрузки. Направление известно из схемы Ларионова. Проверяем диодный мост мультиметром, касаясь красным щупом основания чёрной стрелки (см. рисунок) каждого элемента, черным – острия того же элемента. Одновременно проверяют изоляцию контактов с серповидным плоскостями, в т.ч. соседней. По полученным данным оценивают необходимость продолжения поиска неисправности.
Вывод: диод, не выпаивая, проверяют мультиметром на грубой конструкции вроде моста генератора автомобиля. Прозвон электронной платы сложнее. Любую проверку проводят щупами специальной формы. Для грубых конструкций берут захваты-крокодилы, материнскую плату проверяют тонкими игловидными пробниками. В последнем случае появляется шанс прозвонить диод мультиметром на плате под напряжением с риском спалить тестер.
Надеемся, что теперь читатель понял, как проверить диод мультиметром.
Как проверить диод мультиметром — показатели, инструкция, тесты
Автор Юлия На чтение 6 мин. Просмотров 36 Опубликовано Обновлено
Сегодня при устройстве электронных осветительных систем все чаще используются светодиодные лампочки. Они экономичны, практичны и просты в эксплуатации. Однако, как и любой светоэлемент подобного типа, диоды могут выходить из строя или просто некачественно работать.
Для устранения поломки нужно определить причину и последствия. В первую очередь речь идет о том, в каком состоянии диод: в рабочем и подлежит ремонту или в нерабочем и проще будет приобрести новый. Поэтому многие пользователи подобных осветительных приборов интересуются, как проверить диод мультиметром.
Классификация
Светодиодные ленты и прочие элементы освещения, которые работают на базе подобных светоэлеметнов, относятся к группе простых полупроводниковых радиоэлементов.
На сегодняшний день выделяют такие типы диодов:
- выпрямленный;
- стабилитрон;
- варикап;
- высоковольтные диоды;
- светодиодные источники света.
Теперь попробуем разобраться, как проверить диоды мультиметром.
Проверка выпрямленных диодов и стабилитронов
Защитный светоэлемент, равно как и выпрямленный, проверяется с помощью мультиметра. За неимением такого оборудования можно использовать омметр.
Как проверить конденсатор мультиметром
Прозванивание светодиода мультиметром заключается в последовательном выполнении следующих действий:
- В первую очередь для проверки диода необходимо перевести прибор в режим прозвонки. То есть его нужно «прозвонить».
- После этого присоединяем щупы приспособления к выводам светоизлучающего элемента.
- При подключении красного проводка «+» к аноду, а черного «-» к катоду, на дисплее измерительного прибора должны отобразиться показания порогового напряжения, проверяемого светоэлемента.
- После того, как произвести смену полярности, мультиметр должен показать постоянно низкое сопротивление. И если проверка проходит именно по таком сценарию, то можно быть уверенным в том, что проверяемый светоэлемент полностью исправен.
- В том случае, если при обратном подключении прибор показывает утечку, то это означает только одно – светоизлучающее изделие нуждается в ремонте или полной замене.
Данная методика может использоваться и для тестирования светоэлементов на генераторе автомобиля и любого другого транспортного средства.
Контроль стабилитрона выполняется по идентичной схеме, единственное, что стоит отметить, с помощью такого тестирования невозможно определить, выполняется ли стабилизация показателей напряжения на том или ином уровне. В этом случае целесообразно собрать простую схему, которая состоит из источника питания, тестируемого стабилитрона и токоограничителя.
ВИДЕО: Как проверить диод с помощью тестера. Немного о структуре и назначении диодов
Принцип проверки заключается в следующем:
- Подключаемся к блоку питания: к «+» ведем провода проверяемого стабилитрона, а к «-» — токоограничителя, который дальше соединяется с испытываемый образцом.
- Устанавливаем на приборе режим, который позволяет производить замер постоянного напряжения в рамках 200 В.
- Дальше включаем источник питания и поэтапно добавляем напряжение до тех пор, пока амперметр на аккумуляторе не покажет, что он пропускает ток.
- После этого нужно подключить мультиметр таким образом, чтоб он как бы отсекал стабилитрон с двух сторон.
- Остается только измерить показания напряжения стабилизации и сопоставить их с номинальными.
Как проверить обычный диод и светодиод?
Стандартный диодный источник света является элементом, который проводит электроток только в одном направлении. Если же развернуть это направление, то рассматриваемый источник света закроется. Только при соблюдении этих условий светоизлучатели можно считать рабочими.
Проверка индикаторной отверткой
Большая часть мультиметров на своей базе уже имеет аналогичную функцию. Перед проверкой необходимо соединить между собой щупы тестера. Благодаря этому можно удостовериться в том, что прибор полностью исправен. После этого выбираем режим «проверка» и проводим необходимую процедуру.
Если мультиметр аналоговый, то эта операция выполняется в режиме омметра. Проверка диода, светодиода мультиметром проводится достаточно просто, поэтому даже неопытный человек может справиться с этой задачей. Чтоб удостовериться в работоспособности элемента, следует организовать прямое включение: подсоединяем анод к красному щупу («+»), а катод – к черному («-»). Об этом мы говорили немного выше. Если правильно все сделать, то вскоре на дисплее или на шкале появятся значения напряжения светоэлемента. Этот показатель должен быть в рамках от 80 до 750 мВ.
При выполнении обратного включения (при перестановке электродов), тестер должен показать значение, не выше 1. Не сложно сделать выводы, что сопротивление мультиметра большое и электрический ток через него не проходит. Если ваша проверка показала именно такие результаты, то световой элемент полностью работоспособен и готов к дальнейшей эксплуатации.
Иногда во время тестирования при подключении щупов проверяемый источник света пропускает электричество и при прямом подключении, и при обратном. А иногда вообще ток не проходит ни в одном из направлений (показания при протекании тока в обе стороны не превышают 1).
Первый случай говорит о том, что диодный светоэлемент пробит, а второй – он вышел из строя или же оборван от основной цепи. Логично, что такие электроэлементы неисправны и нужно предпринимать меры по устранению неполадки.
В случае с тестированием светодиодных лент принцип идентичен, но при этом в значительной степени упрощает процедуру тот момент, что при прямом подключении такой вид светового источника будет выдавать световой поток. Естественно, что это в разы упрощает проверку работоспособности тестируемого элемента.
Тестим варикапы
В отличие от стандартных диодных светоизлучателей, варикапы p-n обладают своеобразным переходным диодным мостом с емкостью, величина которой пропорциональна показаниям обратного напряжения. Тестирование подобных светоизлучателей выполняется по такому же принципу, как и в случае с обычными источниками света диодного типа. Для реализации проверки диода как варикапа, потребуется все тот же мультиметр, который обладает всеми необходимыми функциями для реализации подобных задач.
Чтоб проверить варикап необходимо установить на приборе соответствующий режим (внизу слева переключатель нужно поставить строго посередине) и установить световой элемент в разъем для конденсаторов.
Проверка высоковольтных диодов
Высоковольтные диодные источники света проверяются несколько по-другому, нежели в случае с тестированием обычных. Это обусловлено особенностями самих светоэлементов. Проверка светодиодов с такими светотехническими характеристиками проводится по специфической схеме, которая подключена к источнику питания в 40-45V. Если в двух словах, то проверяемый образец подключается к токоограничительному элементу и мультиметру, где первый и последний соединяются последовательно, после чего от первого цепь идет на второй.
Для контроля можно на мгновение прикасаться щупами «V/Ω/f» мультиметра, а «СОМ» к эмиттеру
Теперь вы знаете, как проверить светодиод мультиметром. Надеемся, эти советы помогут вам протестировать свою осветительную систему.
ВИДЕО: Диагностика и устранение причин поломки
Как проверить диод мультиметром | AUDIO-CXEM.RU
admin 01 марта 2015 г.
Статьи для новичков
На самом деле проверить диод мультиметром не составит труда даже ребенку. Но для того, чтобы понять процедуру проверки, расскажу немного теории. Я не буду вдаваться в формулы и глубокую теорию о p-n переходе.
Диод пропускает в одну сторону электрический ток при прямом смещении, а в другую (при обратном смещении) — нет. У него есть анод (положительный вывод) и катод (отрицательный вывод).
Прямое смещение – соединение, при котором анод диода соединен с плюсом (либо положительным щупом мультиметра), а катод с минусом (либо отрицательным щупом), обратное прямому смещению, так и называется – обратное смещение.
Катод обычно указывается на элементе полосой, или на элементе нарисована цоколевка диода.
На примере я буду использовать прибор MY-64. Устанавливаем прибор в режим «прозвонки».
Исходя из свойства диода, пропускать в одну сторону электрический ток, а в другую нет, и заключается проверка. То есть, приложив к аноду плюсовой щуп мультиметра, а к катоду – отрицательный, на экране прибора должно отобразиться пробивное падение напряжения на нашем проверяемом элементе, в нашем случае 530 милливольт. Это напряжение, при котором открывается p-n переход.
Далее меняем щупы местами, то есть плюсовой щуп мультиметра соединим с катодом, а отрицательный щуп с анодом. На экране прибора, пробивное падение напряжения на нашем проверяемом элементе, которое должно быть равное бесконечности, то есть p-n переход закрыт.
Если диод открывается в обе стороны, значит он неисправен. Стабилитроны проверяются точно таким же способом.
Теперь вы знаете, как проверить диод мультиметром.
Похожие статьи
Как пользоваться мультиметром
Добавлено в избранное Любимый 53Непрерывность
Тестирование непрерывности — это проверка сопротивления между двумя точками. Если сопротивление очень низкое (менее нескольких Ом), две точки соединяются электрически, и раздается звуковой сигнал. Если сопротивление превышает несколько Ом, значит, цепь разомкнута и звуковой сигнал не раздается. Этот тест помогает убедиться, что соединения выполнены правильно между двумя точками.Этот тест также помогает нам определить, подключены ли две точки, которых не должно быть.
Непрерывность, возможно, самая важная функция для гуру встраиваемого оборудования. Эта функция позволяет нам проверять проводимость материалов и отслеживать, где были выполнены или не выполнены электрические соединения.
Установите мультиметр в режим «Непрерывность». Он может отличаться в зависимости от цифрового мультиметра, но ищите символ диода с распространяющимися волнами вокруг него (например, звук, исходящий из динамика).
Мультиметр установлен в режим проверки целостности цепи.
Теперь соедините щупы вместе. Мультиметр должен издать звуковой сигнал (Примечание: не все мультиметры имеют настройку непрерывности, но большинство должно). Это показывает, что между датчиками может протекать очень небольшое количество тока без сопротивления (или, по крайней мере, с очень маленьким сопротивлением).
Внимание! В общем, выключите систему перед проверкой целостности цепи.
На макетной плате, на которой не запитывается , используйте щупы, чтобы проткнуть два отдельных контакта заземления.Вы должны услышать тональный сигнал, указывающий, что они подключены. Вставьте пробники от контакта VCC на микроконтроллере к VCC на источнике питания. Он должен издать звуковой сигнал, указывающий, что питание свободно течет от вывода VCC к микро. Если он не издает тонального сигнала, вы можете начать следовать по маршруту, по которому идет медный провод, и определять, есть ли обрывы в линии, проводе, макете или печатной плате.
Continuity — отличный способ проверить, соприкасаются ли два контакта SMD. Если ваши глаза не видят этого, мультиметр обычно является отличным вторым средством тестирования.
Когда система не работает, непрерывность — еще одна вещь, которая помогает устранить неполадки в системе. Вот шаги, которые необходимо предпринять:
- Если система включена, внимательно проверьте VCC и GND с настройкой напряжения, чтобы убедиться, что напряжение соответствует уровню. Если система 5 В работает при 4,2 В, внимательно проверьте регулятор, он может быть очень горячим, что указывает на то, что система потребляет слишком большой ток.
- Выключите систему и проверьте целостность цепи между VCC и GND. Если есть непрерывность (если вы слышите звуковой сигнал), значит, у вас где-то короткое замыкание.
- Выключите систему. Убедитесь, что VCC и GND правильно подключены к контактам микроконтроллера и других устройств. Система может включаться, но отдельные микросхемы могут быть подключены неправильно.
- Предположим, вы можете запустить микроконтроллер, отложить мультиметр в сторону и перейти к последовательной отладке или использовать логический анализатор для проверки цифровых сигналов.
Обрыв цепи и большие конденсаторы: При обычном поиске неисправностей.вы будете проверять целостность цепи между землей и шиной VCC. Это хорошая проверка работоспособности перед включением прототипа, чтобы убедиться, что в системе питания нет замыкания. Но не удивляйтесь, если вы услышите короткий звуковой сигнал! при зондировании. Это связано с тем, что в системе питания часто присутствует значительная емкость. Мультиметр ищет очень низкое сопротивление, чтобы проверить, подключены ли две точки. Конденсаторы будут действовать как короткое замыкание в течение доли секунды, пока не заполнятся энергией, а затем будут действовать как открытое соединение.Поэтому вы услышите короткий звуковой сигнал, а затем ничего. Ничего страшного, просто шапки заряжаются.
← Предыдущая страница
Измерение тока
Как проверить диод в цепи с помощью мультиметра?
Введение
Полупроводниковый диод , также известный как кристаллический диод, имеет очевидную однонаправленную проводимость. Это разновидность электронных компонентов, широко используемых в электрооборудовании для защиты, выпрямления, переключения и многих других приложений.Поэтому довольно часто можно увидеть диоды в повседневных электронных схемах, таких как стабилитроны, светодиоды, фотодиоды и т. Д. Следовательно, необходимо знать, как проверить, правильно ли работает диод или нет.
Как проверить диод с помощью мультиметра
Каталог
Ⅰ Основные сведения о диодах
1.1 Определение анода и катода диода
Анод и катод диода можно отличить с помощью трафаретной печати на печатной плате, как показано ниже:
1) Конец с надрезом является катодом диода.
2) Конец с горизонтальной полосой — катод.
3) Конец с белыми параллельными полосами — катод.
4) Один конец треугольной стрелки — катод.
5) Маленький конец вставного диода — это катод, а другой большой конец — это анод.
1.2 Что может вызвать отказ диода?
Распространенными причинами выхода из строя диода являются обрыв цепи, короткое замыкание и нестабильное регулирование напряжения. Среди этих трех типов отказов могут быть признаки.Например, напряжение источника питания повышается, напряжение питания падает до нуля или выход нестабилен. Поэтому при тестировании диодов необходимо детально проанализировать конкретные проблемы.
Обычным инструментом для измерения диодов является мультиметр, включая измерение в цепи (диод на печатной плате) и измерение вне цепи (диода нет на плате). Что касается основного принципа измерения диодов, измеряются прямое сопротивление и обратное сопротивление PN перехода, и основное суждение основывается на их значениях.Следовательно, чтобы хорошо провести тестирование диодов, необходимо понять основную структуру и принцип работы диодов, а затем понять основные характеристики неисправности диода.
1.3 Анализ общих отказов диодов
1) обрыв цепи
Это означает, что положительный и отрицательный электроды диода были отключены, а прямое и обратное сопротивление диода стало бесконечным. После разомкнутого диода цепь находится в разомкнутом состоянии.
2) пробой напряжения
Это означает, что существует путь между положительным и отрицательным электродами диода, а прямое и обратное сопротивление одинаковы или близки друг к другу (но не бесконечны). После выхода из строя диода действие между положительным и отрицательным электродами всегда может прекратиться, потому что в разных цепях проявляются разные проявления.
3) прямое напряжение
Если прямое сопротивление диода слишком велико, падение напряжения сигнала на диоде будет увеличиваться, что приведет к уменьшению выходного сигнала, и диод будет поврежден из-за нагрева.После того, как прямое сопротивление станет больше, однонаправленная проводимость диода станет плохой.
4) обратное напряжение
Обратное сопротивление диода становится меньше, что означает, что диод имеет однонаправленную проводимость.
5) снижение производительности
В этом случае диод не имеет явных отказов, таких как обрыв цепи или пробой. Однако, когда ситуация ухудшается, стабильность схемы ухудшается или напряжение выходного сигнала схемы падает.
Ⅱ Как проверить диод с помощью мультиметра?
2.1 Цифровой мультиметр и аналоговый мультиметр
При использовании цифрового мультиметра для проверки диода красный зонд соединяется с анодом, а черный зонд соединяется с катодом. В это время измеренное сопротивление представляет собой сопротивление прямой проводимости диода, что прямо противоположно результату тестирования аналогового мультиметра.
2.2 Общие правила тестирования диодов
(1) Прямое сопротивление германиевого диода малой мощности составляет 300 Ом ~ 500 Ом, а кремниевого диода — 1 кОм или более.Первое обратное сопротивление составляет десятки тысяч Ом, а второе больше 500кОм (номинал мощного диода меньше).
(2) О полярности диода можно судить по значениям сопротивления (малое прямое сопротивление и большое обратное сопротивление). Установите мультиметр на блок ом (обычно используйте блок R × 100 или R × 1k, не используйте блок R × 1 или блок R × 10k. Блок R × 1 находится в большом токе, легко сжечь лампу , при использовании блока R × 10k может привести к выходу из строя лампы под высоким напряжением).Подключите диод с двумя полярностями соответственно к измерительным щупам и измерьте два значения сопротивления. Когда измеренное значение сопротивления меньше, конец, подключенный к черному проводу, является анодом. Точно так же, когда измеренное значение сопротивления больше, конец, подключенный к черному зонду, является катодом. Если измеренное обратное сопротивление мало, это означает, что диод закорочен, наоборот, если прямое сопротивление большое, это означает, что трубка открыта.В обоих случаях диод не может нормально работать.
(3) Кремниевые диоды обычно имеют прямое падение напряжения 0,6 В 0,7 В, а прямое падение напряжения германиевого диода составляет 0IV 0,3 В. Измеряя прямое напряжение диода, можно судить, что тестируемый диод представляет собой силиконовую трубку или германиевую трубку. Этот метод заключается в подключении резистора (1 кОм) за источником питания, а затем в подключении к диоду в соответствии с характеристикой полярности, чтобы диод проводился прямо.В это время используйте мультиметр для измерения падения напряжения на трубке. Кроме того, его удобнее использовать при динамических измерениях под напряжением.
2.3 Методы тестирования типов диодов
Как проверить стабилитрон? Ниже приведены некоторые идеи.
(1) Обычно для проверки стабилитрона мультиметром используйте низкоомный блок. Так как батарея в измерителе на 1,5 В, этого напряжения недостаточно для обратного пробоя стабилитрона.Таким образом, прямое и обратное сопротивление должны быть такими же, как у обычного диода.
(2) Измерение значения стабилизации напряжения Vz стабилитрона. При измерении диода напряжение источника питания должно быть больше стабильного напряжения проверяемой трубки. Таким образом, необходимо использовать высокоомный блок мультиметра (R × 10k). В это время батарея в счетчике имеет более высокое напряжение. Когда диапазон мультиметра установлен на высокий барьер, измерьте обратное сопротивление диода.Если измеренное сопротивление Rx, значение стабилизации напряжения стабилитрона составляет:
В формуле n — это блокировка используемой передачи. Например, если самый высокий электрический барьер
R0 — центральное сопротивление мультиметра.
E0 — это максимальное значение напряжения батареи используемого мультиметра.
Пример. Используйте мультиметр MF50 для измерения диода 2CW14.
R0 = 10 Ом, самый высокий электрический барьер R × 10 кОм.
E0 = 15 В, измеренное обратное сопротивление 75 кОм, значение регулирования напряжения:
Если измеренное сопротивление очень большое (близкое к бесконечному), это означает, что тестируемое напряжение Vz больше, чем E0, следовательно, трубка не сломается. Если измеренное сопротивление очень мало (0 или всего несколько Ом), это означает, что измерительные щупы подключены в обратном порядке, а затем просто поменяйте их местами.
- Светодиоды (LED)
Светоизлучающий диод — это полупроводниковое устройство, преобразующее электрическую энергию в световую.Он отличается небольшими размерами, низким рабочим напряжением и низким рабочим током.
(1) Внутри светодиода имеется PN переход, поэтому светодиод имеет такую же характеристику однонаправленной проводимости. Его обнаружение аналогично измерению обычных диодов.
(2) Используйте передачу R × 1k или R × 10k, и измеряются значения сопротивления переднего и заднего хода. Обычно прямое сопротивление меньше 50 кОм, а обратное сопротивление больше 200 кОм.
(3) Рабочий ток светодиода — важный параметр. Если рабочий ток слишком мал, светодиод не загорится, а если он слишком большой, светодиод легко повредится.
(4) Напряжение прямого включения светодиода составляет 1,2 В ~ 2,5 В, а напряжение обратного пробоя составляет около 5 В.
Фотодиод — это полупроводниковый прибор, который может преобразовывать силу света в электрические сигналы.
(1) В верхней части фотодиода есть окно, которое может излучать свет, через который свет попадает на кристалл. При возбуждении света в фотодиоде генерируется большое количество фотоэлектрических частиц, что значительно увеличивает его проводимость и снижает внутреннее сопротивление.
(2) Фотодиод аналогичен стабилитрону. Также работает в обратном состоянии, с обратным напряжением.
(3) Прямое сопротивление фотодиода не меняется со светом.Его обратное сопротивление больше, когда нет света, и становится меньше, когда он подвергается воздействию света. То есть, чем сильнее свет, тем меньше обратное сопротивление. Без света обратное сопротивление вернется к исходному значению.
(4) Согласно соответствующему принципу, используйте мультиметр для измерения обратного сопротивления фотодиода. Измените интенсивность света при измерении и наблюдайте за изменением обратного сопротивления фотодиода. Если при изменении света нет изменения или меньше изменение обратного сопротивления, это означает, что трубка вышла из строя.
- Высокоскоростные переключающие диоды
Метод обнаружения быстродействующих кремниевых переключающих диодов такой же, как и у обычных диодов. Разница в том, что прямое сопротивление этой трубки относительно велико. При измерении с блоком Rxlk значение прямого сопротивления составляет 5 кОм ~ 10 кОм, а значение обратного сопротивления бесконечно.
- Диоды быстрого восстановления / Диоды сверхбыстрого восстановления
Обнаружение диодов с быстрым и сверхбыстрым восстановлением с помощью мультиметра в основном такое же, как и обнаружение кремниевых выпрямительных диодов в пластиковой оболочке.То есть сначала используйте блок Rxlk, чтобы проверить его однонаправленную проводимость. Обычно величина прямого сопротивления составляет около 4 ~ 5 кОм, а обратное сопротивление бесконечно. А затем используйте блок Rxl, чтобы повторить тест, в это время прямое сопротивление составляет несколько Ом, а обратное сопротивление все еще бесконечно.
- DIAC (Диод для переменного тока) Диоды
Используйте блок Rxlk и измерьте значения прямого и обратного сопротивления диак, которые должны быть бесконечными.Если испытательные щупы заменяются для измерения, стрелка поворачивается вправо, что указывает на то, что в пробирке есть утечка. Другой способ — поместить мультиметр в блок постоянного напряжения. Во время теста встряхните мегомметр, и значение напряжения, показанное мультиметром, будет значением VBO трубки. Затем замените два штифта тестируемой трубки и таким же образом измерьте значение VBR. Наконец, сравните VBO и VBR. Чем меньше разница между абсолютными значениями этих двух значений, тем лучше симметрия диактильного диода.
Для двойного TVS значения сопротивления между двумя контактами должны быть бесконечными, когда красный и черный щупы мультиметра меняются случайным образом. В противном случае трубка имеет плохие характеристики или повреждена.
- Варисторные диоды высокочастотные
а. Определите полярность диода
Отличие высокочастотных варисторных диодов от обычных диодов в том, что их цветовой код отличается. Обычно он черный из обычных диодов, в то время как высокочастотные варисторные диоды светятся.Его правила полярности аналогичны правилам обычных диодов. То есть конец с зеленым кольцом — катод, иначе — анод.
г. Измерьте прямое и обратное сопротивление
Конкретный метод такой же, как и метод измерения обычных диодов. Используя блок Rxlk мультиметра AM-500, прямое сопротивление составляет 5 кОм 55 кОм, а обратное сопротивление бесконечно.
При использовании блока Rx10k, независимо от того, как заменяются красный и черный измерительные провода для измерения, сопротивление между двумя контактами варакторного диода должно быть бесконечным.Если во время измерения мультиметр слегка отклоняется вправо или значение сопротивления равно нулю, это означает, что тестируемый варакторный диод имеет утечку или вышел из строя. Независимо от потери емкости варакторного диода или внутреннего обрыва цепи, их невозможно обнаружить с помощью мультиметра. При необходимости можно использовать метод замены для осмотра и принятия решения.
- Инфракрасные светоизлучающие диоды (IRED)
Вставьте мультиметр в блок Rxlk и измерьте прямое и обратное сопротивление диода IRED.Как правило, прямое сопротивление должно быть около 30 кОм, а обратное сопротивление должно быть выше 500 кОм. Значит, трубка может нормально работать. Чем больше обратное сопротивление, тем лучше.
а. Идентификация внешнего вида: диодный катод / анод
(1) Обычные инфракрасные приемные диоды имеют черный цвет. Кроме того, есть небольшая наклонная плоскость в верхней части корпуса трубки инфракрасного приемного диода. Обычно штифт с одним концом наклонной плоскости является отрицательным полюсом, а другой конец — положительным полюсом.
(2) Используйте блок Rxlk для проверки сопротивлений между двумя контактами. Когда диод работает нормально, значения сопротивления двух выводов различаются. И несколько раз обменяйте тестовые провода, чтобы получить несколько пар значений. Согласно меньшему значению сопротивления, вывод, подключенный к красному щупу, является катодом, а вывод, подсоединенным к черному щупу, является анодом.
г. Обнаружение производительности
Используйте мультиметр для измерения прямого и обратного сопротивления инфракрасного приемного диода.По значениям сопротивления можно предварительно судить о повреждении диода.
Используйте блок мультиметра Rxlk и определите порядок контактов лазерного диода в соответствии с методом обнаружения обычных диодов. Поскольку прямое падение напряжения лазерного диода больше, чем у обычного диода, при обнаружении прямого сопротивления стрелка мультиметра слегка отклоняется вправо, а обратное сопротивление бесконечно.
- Однопереходный транзистор (UJT)
а. Дискриминация электродов
На основе блока R × 1k используйте двухметровые ручки для измерения прямого и обратного сопротивления между любыми двумя из трех электродов (база B1 и база B2 и эмиттер E) диода ujt. Измеренные значения сопротивления между двумя электродами составляют 2 ~ 10 кОм, кроме того, B1 и B2 будут разными.
г. Судебное решение
Работоспособность ujt-диода можно оценить, измерив нормальное сопротивление между его выводами.Используйте барьер R × 1k, черный измерительный провод подключается к эмиттеру E, а красный измерительный провод подключается к двум базовым электродам по очереди. Обычно значение сопротивления должно составлять от нескольких тысяч до десяти тысяч Ом. Напротив, красный измерительный провод подключается к эмиттеру E, а черный измерительный провод подключается к двум базовым электродам по очереди, и при нормальных условиях сопротивление должно быть бесконечным. Значения прямого и обратного сопротивления между двумя базами находятся в диапазоне 2 ~ 10 кОм.Если они сильно отличаются от нормального значения, диод поврежден.
Ⅲ Пример анализа
3.1 Проверка диода в цепи
a. Проверка диодов с помощью аналогового мультиметра
Все следующие измерения основаны на кремниевых диодах. Если это германиевый диод, прямое и обратное сопротивление диода уменьшатся.
1) Измерьте прямое сопротивление FR
На следующем рисунке представлена принципиальная электрическая схема для измерения прямого сопротивления диода аналоговым мультиметром:
Дайте результат следующим образом:
Показатель | Описание |
Используйте блок R × 1k для измерения диода, прямое сопротивление составляет несколько тысяч Ом, а стрелка показывает стабильность.Если стрелка немного покачивается, это означает, что термостойкость диода плохая. | |
Если стрелка при измерении прямого сопротивления показывает сотни кОм, это означает, что диод открыт. | |
Если стрелка показывает десятки кОм, это означает, что диод имеет большое прямое сопротивление и плохие характеристики диода. |
Описание измерения прямого сопротивления:
Прямое сопротивление (FR) | Описание |
тыс. Ом | Обычный |
Ноль или намного меньше нескольких тысяч Ом | Разбивка |
Сотни килограммов | Большой FR, диод открыт |
Десятки килоом | Большая передняя, плохие передние характеристики |
Указатель нестабилен | Плохая стабильность |
2) Измерьте обратное сопротивление RR
На следующем рисунке представлена принципиальная электрическая схема для измерения обратного сопротивления диода аналоговым мультиметром:
Дайте результат следующим образом:
Показатель | Описание |
При измерении обратного сопротивления значение должно составлять несколько сотен кОм.Чем больше значение сопротивления, тем стабильнее индикатор. | |
Если обратное сопротивление составляет всего несколько тысяч Ом, это означает, что диод вышел из строя и потерял однонаправленную проводимость. |
Описание измерения обратного сопротивления
Обратное сопротивление | Описание |
Сотни килограммов | Обычный |
ноль | Разбивка |
Намного меньше нескольких сотен тысяч Ом | Обратные характеристики диода плохие. |
Указатель не двигается | Диод открыт. Примечание: обратное сопротивление некоторых диодов очень велико, в настоящее время нет уверенности в том, что диод открыт, поэтому следует измерить его прямое сопротивление. Если значение в норме, значит диод не открыт. |
Указатель нестабилен | Стрелка не может быть стабилизирована на определенном значении сопротивления во время измерения, что указывает на плохую стабильность диода. |
3.2 Методы тестирования при выключении и включении питания
Измерение диода в цепи делится на две ситуации: состояние выключения и включения питания
а. Измерение отключения питания
Здесь следует отметить методику этого теста.
- Влияние внешней цепи на результат теста такое же, как сопротивление и емкость, измеренные внутренней цепи. И влияние измеренного прямого сопротивления внешней цепью меньше, чем обратного сопротивления.
- Если есть сомнения относительно результата измерения, диод следует удалить из схемы и измерить отдельно.
г. Измерение при включении
Когда на печатную плату подается питание, контрольной точкой является падение напряжения на лампе. Потому что диод имеет очень важную характеристику: когда он включен, падение напряжения на лампе практически не изменяется. Таким образом, падение напряжения после включения нормальное, то есть диод в норме.
Метод измерения: На приведенной ниже диаграмме показана схема подключения падения напряжения на трубке после диода в цепи постоянного тока. При установке мультиметра в блок постоянного напряжения 1 В красный зонд подключается к катоду диода, а указанное напряжение является прямым падением напряжения диода.
Результаты измерения прямого падения напряжения на диоде анализируются следующим образом:
Диод | Описание | |
Кремниевый диод | 0.6В | Диод нормальный и находится в прямом проводящем состоянии. |
> 0,6 В | Диод не в проводящем состоянии. | |
Близко к 0 | Диод в пробивном состоянии, ток в шлейфе будет увеличиваться. | |
Германиевый диод | 0.2В | Диод нормальный и находится в прямом проводящем состоянии. |
> 0,2 В | Диод не горит или неисправен. | |
Близко к 0 | В состоянии пробоя ток в контуре значительно увеличивается, без однонаправленной проводимости. |
3.3 Вывод
При измерении диодов следует учитывать следующие моменты:
1) Диод переменного тока находится в отключенном состоянии, потому что диод находится в обратном состоянии, и обратное напряжение на обоих концах очень велико. Среднее напряжение на диоде, измеренное блоком постоянного тока, в это время отрицательно.
2) Используйте разные блоки одного и того же мультиметра для измерения положительного и отрицательного сопротивления одного диода, их значения будут разными. Прямое и обратное сопротивление одного и того же диода, измеренное разными мультиметрами, также различается.
3) При измерении прямого сопротивления диода, если стрелка не может остановиться на определенном значении сопротивления и постоянно качается, это указывает на плохую термическую стабильность диода.
4) Некоторые мультиметры предоставляют функцию «проверки диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерители обычно показывают немного более низкое прямое напряжение, чем то, что является «номинальным состоянием» диода, из-за очень небольшого количества тока, используемого во время измерения.
Лучшая цена мультиметр для платы — отличные предложения на мультиметр для платы от глобальных продавцов мультиметров
Отличные новости !!! Вы попали в нужное место для настольного мультиметра. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как этот мультиметр на верхней плате в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели мультиметр на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в мультиметре для платы и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести board multimeter по самой выгодной цене.
Мы всегда в курсе последних технологий, новейших тенденций и самых обсуждаемых лейблов. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
VFD Устранение неисправностей 101 — без проверок питания
Прежде чем вы снимете этот частотно-регулируемый привод (VFD) со стены и отправите его на восстановление, остановитесь.
Некоторые простые проверки позволяют мгновенно диагностировать частотно-регулируемый привод. Вот как выполнить необходимые проверки с помощью мультиметра.
Даниэль Шуберт • Инженер по обучению продукции Yaskawa
Частотно-регулируемые приводы (VFD) являются основным компонентом многих промышленных и коммерческих приложений, в которых двигатели работают для выполнения задач. ЧРП могут управлять и защищать двигатели, а в некоторых приложениях даже обеспечивать экономию энергии. Но, как и любой компонент системы, частотно-регулируемые приводы могут выйти из строя.Здесь мы объясняем некоторые методы поиска и устранения неисправностей, которые инженеры и персонал завода могут использовать для проверки и запуска частотно-регулируемых приводов. Перечень основных проверок отсутствия питания, который мы представляем здесь, включает:
- Безопасность — с системой менее 10 В постоянного тока
- Проверка входа — как проверка диода
- Проверка шины постоянного тока — как визуальная проверка
- Проверка выхода — как проверка диода
- Обзор чеков
Предварительное предупреждение: безопасность при работе с частотно-регулируемым приводом
Наша главная забота — это вы, читатель, поэтому, если вы не чувствуете, что обладаете достаточным опытом для проведения этих тестов, обратитесь к профессионалу, который проведет их за вас.Опасные для жизни напряжение и ток присутствуют в частотно-регулируемом приводе даже после отключения входящего питания. Перед тестированием выполните процедуры блокировки / маркировки для имеющейся системы. После этого следуйте процедурам дугового разряда для данной системы и следуйте местным нормам.
Найдите клеммы шины постоянного тока + (положительный) и — (отрицательный) на приводе. Обратитесь к руководству по эксплуатации устройства или обратитесь к производителю частотно-регулируемого привода, если вы не знаете, где находятся эти клеммы.
Мультиметр должен иметь номинальное напряжение не менее 1000 В CAT III и иметь возможность проверять диоды.
Установите мультиметр на Vdc. Подключите + (красный) и — (черный) провода измерителя к клеммам шины постоянного тока на частотно-регулируемом приводе. Если значение выше 10 В постоянного тока, но уменьшается, подождите, пока избыточное напряжение на шине постоянного тока не станет ниже 10 В постоянного тока. Это время зависит от емкости накопителя. Если напряжение не падает ниже 10 В постоянного тока, отключите питание привода или обратитесь к производителю или установщику частотно-регулируемого привода.
Проверка входа ЧРП (на выпрямителе)
В современных ЧРП входная или выпрямительная секция состоит из входных диодов, которые преобразуют входящую трехфазную синусоидальную волну переменного тока в выпрямленный источник постоянного тока.На каждую фазу приходится как минимум два диода. Они расположены в противоположной проводящей ориентации, чтобы обеспечить двухполупериодное выпрямление. Чтобы проверить входную секцию, нам нужно выполнить простые проверки диодов. Эти проверки включают тестирование прямого и обратного направления смещения обоих диодов в каждой фазе. В этом процессе используются входные клеммы R / L1, S / L2, T / L3 на приводе и клеммы шины постоянного тока.
Если вы не знаете, где находятся входные клеммы, обратитесь к руководству VFD.
С мультиметром для проверки диодов…
… подключите провод + (красный) к входной клемме (R / L1) и провод — (черный) к (+) клемме шины постоянного тока.Это изолирует положительный фазированный диод R / L1. Хороший диод должен показывать около 0,5 В постоянного тока в направлении прямого смещения. Повторите этот процесс для клемм S / L2 и T / L3, оставив провод — (черный) на (+) клемме шины постоянного тока.
Первая секция частотно-регулируемого привода — это секция входного выпрямителя, которая включает в себя входные диоды, которые прерывают трехфазные волны переменного тока на положительный и отрицательный источник постоянного тока.Примечание: При выполнении этого измерения ищите согласованность на всех трех входных клеммах. Измерение 0,5 В постоянного тока является приблизительным и может меняться в зависимости от ЧРП и размера модели. Если в любой момент измеритель покажет 0 В, то диод закорочен.
Следующим шагом является проверка направления обратного смещения диодов. Переместите провод мультиметра — (черный) к клемме R / L1, а + (красный) провод мультиметра к клемме шины постоянного тока (+). Затем проверьте оставшиеся два входа, переместив — (черный) провод мультиметра к клеммам S / L2 и T / L3. Мультиметр должен в конечном итоге отобразить (OL) после зарядки конденсаторов фильтра привода.OL возникает, когда источник питания в измерителе не может протолкнуть ток через диод в заданном направлении.
Теперь мы закончили с верхними диодами и нам нужно проверить оба направления остальных диодов выпрямителя. Начнем с того, что подключим + (красный) провод мультиметра к (-) клемме шины, а — (черный) провод мультиметра к клемме R / L1. Это снова должно быть около 0,5 В постоянного тока. Оттуда переместите — (черный) вывод мультиметра к оставшимся клеммам S / L2 и T / L3, ища согласованность между тремя измерениями.Некоторые инженеры считают, что разница между ними более 0,05 В постоянного тока является плохим признаком, так как это может означать, что один или несколько диодов нуждаются в замене.
Наконец, переместите — (черный) провод мультиметра к (-) клемме шины постоянного тока, а + (красный) провод к входной клемме R / L1, затем проверьте входные клеммы S / L2 и T / L3, снова убедившись, что что прибор показывает OL после непродолжительной зарядки конденсаторов фильтра. При зарядке конденсаторов фильтра время может изменяться и увеличивается с размером привода.
Мы проверили все диоды в обоих направлениях смещения. Если в любой момент измеритель покажет 0 В, то диод закорочен.
Проверка шины постоянного тока на частотно-регулируемых приводах
После того, как диоды преобразуют входящую волну переменного тока в постоянный ток, шина постоянного тока или конденсаторы постоянного тока сохраняют напряжение и оказывают сглаживающий эффект на пульсации напряжения на шине постоянного тока. Чтобы полностью проверить конденсаторы, инженеру или производственному рабочему потребуется вытащить отдельные конденсаторы из системы и использовать тестер, поддерживающий конденсаторы с высоким значением микрофарад.
Первая секция частотно-регулируемого привода — это секция входного выпрямителя, которая включает в себя входные диоды, которые прерывают трехфазные волны переменного тока на положительный и отрицательный источник постоянного тока.Вместо этого (для проверок обесточивания) достаточно визуального осмотра на предмет каких-либо признаков физического повреждения или утечки электролитической жидкости из конденсатора. Иногда даже можно почувствовать запах, если конденсатор больше не работает… и запах, скорее всего, будет сильным. Если на рассматриваемом устройстве используется много часов, а обслуживающий персонал уже заменяет другие компоненты, неплохо было бы пойти дальше и заменить конденсаторы шины постоянного тока.
Проверка выхода VFD (на инверторе)
Третья и последняя секция — это секция вывода или инвертора. Обычно он состоит из биполярных транзисторов с изолированным затвором (IGBT). БТИЗ забирают накопленный постоянный ток от конденсаторов шины и работают вместе, формируя имитацию выходной волны переменного тока для двигателя. VFD использует широтно-импульсную модуляцию (PWM) для управления напряжением и частотой, подаваемыми на двигатель. БТИЗ включает эмиттер, коллектор, затвор и обратный диод. VFD модулирует импульсы, подаваемые на двигатель, изменяя продолжительность подачи напряжения между переходами затвор-эмиттер IGBT.Это называется стробированием и происходит тысячи раз в секунду.
Последняя секция VFD — это выход или преобразователь. Обгонные диоды здесь проверяются так же, как и на входе привода.Сами стробирующие сигналы не могут быть проверены без питания и обычно проверяются после подачи питания, когда привод работает без нагрузки, другими словами, без двигателя. Эта проверка включает использование осциллографа для проверки правильности стробирования IGBT.
Оборотный диод замыкает выходную цепь и обрабатывает любую регенерацию от двигателя, возвращающуюся в привод.Эта регенерированная энергия затем возвращается в конденсаторы шины постоянного тока.
Наша последняя проверка — это, по сути, еще один набор проверок диодов. К счастью, в большинстве случаев IGBT выходит из строя из-за короткого замыкания безынерционного диода. Как это проверить? Мы проверяем это так же, как и ввод от VFD. В частности, проверьте безынерционные диоды так же, как проверялись диоды выпрямителя … но на этот раз используйте клеммы U / T1, V / T2 и W / T3 вместо R / L1, S / L2 и T / Терминалы L3.Если измерения показывают исправный диод, все готово. Если измерения показывают короткое замыкание (менее 0,5 В постоянного тока в обоих направлениях), значит, у вас закороченный IGBT.
Проверка проверок за пределами допустимого диапазона
Обратите внимание, что эти проверки охватывают основные компоненты главной цепи привода. Если у вас есть показания, выходящие за пределы этого диапазона, вероятно, вам придется удалить диск и либо восстановить, либо заменить его.
Проверяет вход частотно-регулируемого привода | |||
Шаг | (+) Провод мультиметра | (-) Провод мультиметра | Показание мультиметра (проверка диодов) |
1 | R / L1, S / L2, T / L3 | (+) Терминал | 0.5 В постоянного тока (приблизительно) |
2 | (+) Терминал | R / L1, S / L2, T / L3 | ПР |
3 | (-) Терминал | R / L1, S / L2, T / L3 | 0,5 В постоянного тока (приблизительно) |
4 | R / L1, S / L2, T / L3 | (-) Терминал | ПР |
Проверяет выход частотно-регулируемого привода | |||
Шаг | (+) Провод мультиметра | (-) Провод мультиметра | Показание мультиметра (проверка диодов) |
1 | U / T1, V / T2, W / T3 | (+) Терминал | 0.5 В постоянного тока (приблизительно) |
2 | (+) Терминал | U / T1, V / T2, W / T3 | ПР |
3 | (-) Терминал | U / T1, V / T2, W / T3 | 0,5 В постоянного тока (приблизительно) |
4 | U / T1, V / T2, W / T3 | (-) Терминал | ПР |
Testing Diode — точный способ проверки полупроводникового диода с помощью мультиметра
Тестирование диодов отличается от тестирования резистора, потому что для этого нужен навык.Если вы не знаете или неправильно тестируете диод, вы не сможете отремонтировать оборудование.
Плохой диод, кажется, хороший. Это точно потратит ваше драгоценное время.
Выпрямительный диод может выйти из строя одним из четырех способов. Может стать:
- Открыть
- Закорочено
- Дырявый
- Пробой при полном рабочем напряжении
Аналоговый мультиметр или цифровой мультиметр можно использовать для проверки всех первых трех условий, кроме последнего, когда пробой диода при полном рабочем напряжении.Из моего опыта работы в области ремонта электроники я обнаружил, что проверка диода с помощью аналогового мультиметра более точна, чем с помощью цифрового мультиметра. Я мог бы объяснить вам, почему я предпочел аналоговый измеритель. Не знаю, как вы, потому что я действительно встречал довольно много диодов, где они проверялись нормально с помощью цифрового мультиметра, но не удавались при тестировании аналоговым измерителем.
Первым шагом при проверке диода является удаление одного из выводов диода. Вы не всегда можете быть уверены в том, что диод хорош или плох, если выполняете внутрисхемный тест, из-за обратных цепей через другие компоненты.Чтобы быть абсолютно уверенным, вам нужно будет снять или отсоединить один вывод диода от цепи, чтобы избежать обратных цепей. Если вы не уверены в проверяемой плате. Иногда при проверке на плате я обнаруживал неисправные диоды. Ваш опытный специалист подскажет, когда проверять диод на плате или вне платы. Если вы новичок в ремонте электроники, я настоятельно рекомендую вам проверить диод с вынутым из платы выводом.
Я установлю свой аналоговый измеритель на x1 Ом, чтобы проверить обратную и прямую утечку тока через диод.Подключив черный зонд вашего измерителя к катоду, а красный — к аноду, диод будет иметь обратное смещение и должен выглядеть как разомкнутое показание. Подключив красный зонд вашего измерителя к катоду, а черный зонд к аноду, диод смещается в прямом направлении, и измеритель должен показывать некоторое значение сопротивления. Если у вас два показания, скорее всего, диод закорочен или негерметично, и вам следует его заменить. Если вы не получаете показаний ни прямого, ни обратного смещения, диод считается разомкнутым.
Настоящая проблема при проверке диода с помощью функции тестирования диодов цифрового измерителя состоит в том, что при обрыве или утечке диода измеритель иногда показывает нормально (0,6). Это связано с тем, что выходное напряжение тестирования диодов цифрового измерителя (которое вы можете измерить выходным тестовым датчиком с помощью другого измерителя) составляет от 500 мВ до 2 В. Аналоговый измеритель, установленный на x1 Ом, имеет выход около 3 В (вспомните две батареи 1,5 В, которые вы установили в измеритель!). Напряжения 3 В достаточно, чтобы показать вам точное показание диода во время тестирования.
Даже если у вас хорошие показания при x1 Ом, это не означает, что диод в порядке. Теперь вам нужно установить измеритель на x10K, чтобы снова проверить диод. Выходное напряжение 10 кОм составляет около 12 В (вспомните батарею 9 В в вашем измерителе — 1,5 В + 1,5 В + 9 В = 12 В). На тестируемом диоде должно быть только одно показание. Это исключение для диода Шоттки, у которого есть два показания, но нет короткого замыкания. Если прибор показал одно показание, значит, проверяемый диод исправен. Если он имеет два показания, скорее всего, диод закорочен или негерметично.Цифровой измеритель не может проверить это, потому что выходной сигнал измерителя составляет всего от 500 мВ до 2 В.
Если диод вышел из строя при полном рабочем напряжении, проверить диод невозможно (если только у вас нет очень дорогого средства проверки диодов, специально разработанного для обнаружения проблем такого типа). Замена на заведомо исправный диод часто является единственным способом решить эту проблему. докажите, что прерывистый диод вызывает конкретную проблему. Иногда прерывистый диод можно найти с помощью спрея охлаждающей жидкости.
Внимание! Перед выполнением любой из следующих проверок диодов убедитесь, что питание отключено от любой цепи, в противном случае счетчик или цепь могут быть повреждены.
Заключение — Для правильной проверки работы диода необходимо установить аналоговый измеритель на диапазон x1 Ом и x10 кОм.
Теги статьи: Полное рабочее напряжение, использование диодов, полное рабочее напряжение, рабочее напряжение, аналоговый измеритель, цифровой измеритель, тестируется
Источник: Бесплатные статьи с сайта ArticlesFactory.com
10 проблем, которые можно решить с помощью мультиметра сегодня
В современном мире мы живем в совокупности электронных инструментов и устройств, которые широко используем в повседневной жизни.В случае незначительных проблем с этими приборами вам не нужно быть специалистом по электронике или вызывать электрика для их решения. С простым мультиметром вы можете сами стать экспертом.
Мультиметры, также известные как счетчики повседневной жизни, являются отличным измерительным инструментом, который может измерять ток, напряжение и сопротивление. Имея в руках значения этих трех параметров, можно легко устранить любые электрические проблемы. Некоторые мультиметры можно использовать для проверки целостности цепи и проверки диодов, что помогает в решении большинства электронных проблем.Мультиметр — простой инструмент, но он экономит много денег и времени и значительно упрощает работу.
ПРИМЕЧАНИЕ: Указанные номинальные напряжения относятся к США, где электрические розетки имеют напряжение 120 вольт, а в цепях тяжелых бытовых приборов (электрические плиты, сушилки для одежды) используется 230 вольт. Во многих других частях света стандартное напряжение в бытовых электрических системах составляет от 230 до 240 вольт. Отрегулируйте ожидаемые показания в соответствии с нормальным напряжением, указанным в вашем регионе.)
Ниже приведены 10 проблем, которые можно легко решить с помощью мультиметра.
Если вы сомневаетесь в наличии электрической розетки
Мультиметр может легко проверить, есть ли выходное напряжение из розетки или его нужно заменить. Все, что нужно сделать, это установить измеритель на 400 В переменного тока, разместить зонды в следующих комбинациях и проверить соответствующие показания.
Зонд 1 | Зонд 2 | Выходное напряжение |
Горячий | нейтральный | 120 В |
Горячий | Земля | 120 В |
нейтраль | Земля | Ноль |
Когда машину заводить лень
Утром, когда вы заводите машину, моторы работают слишком медленно или вообще не заводятся.Первое, в чем можно усомниться, это автомобильный аккумулятор.
Самое простое, что вы можете сделать, это взять мультиметр и установить его на 15 В постоянного тока или более. Выключите свет автомобиля и зажигание. Коснитесь щупами измерителя клемм на автомобильном аккумуляторе. Показатели следующие:
Показания напряжения | Состояние зарядки |
12,6 В | 100% |
12,45 В | 75% |
12.24 В | 50% |
12,06 В | 25% |
11,89 В | 0% |
ПРИМЕЧАНИЕ: эти показания при 80 градусах F. Показания напряжения батареи будут падать с температурой примерно на 0,01 вольт на каждые 10 градусов F.)
(При 30 градусах по Фаренгейту полностью заряженная батарея будет измерять около 12,588 вольт, а при 0 градусах по Фаренгейту — около 12,516 вольт.)
Если напряжение вашей батареи меньше 12.45 вольт (75 процентов заряда), он низкий, и его нужно подзарядить. Это можно сделать, подключив портативное зарядное устройство к аккумулятору или управляя автомобилем от 15 до 20 минут со скоростью 40 миль в час или быстрее. Более подробное объяснение того, как проверить автомобильный аккумулятор
, можно найти .