Закрыть

Проверка диода тестером – Как проверить диод мультиметром: полная инструкция

LED TESTER. Прибор для проверки светодиодов своими руками


Приветствую, Самоделкины!
Как известно, светодиодные осветительные приборы достаточно экономичны, относительно недорогие и в теории имеют очень большой срок службы. Но на практике все слегка иначе.


Из-за некачественных источников питания, которые имеются в любом светодиодном светильнике, такие лампы имеют относительно небольшой срок службы. Выходят из строя как источники питания, так и сами светодиоды. В некоторых случаях ремонт нецелесообразен, так как купить готовый светильник обойдется гораздо дешевле. Но иногда неисправность может быть связана с выходом из строя всего одного или нескольких светодиодов. Если светильник построен на базе матрицы, то починить такую уже не получится - только замена.

В других же случаях всегда можно найти и заменить неисправный светодиод. Светодиоды можно проверить на исправность с помощью некоторых мультиметров или источника питания предварительно ограничив ток резистором.

В современных светодиодных светильниках применяются линейки светодиодов, соединенных последовательно-параллельно и проверка каждого светодиода по отдельности, занимает много времени.

Наши китайские друзья уже давно продают приборы специально для этих целей.

Такие приборы обеспечивают высокое напряжение на выходе и малый ток, что позволит за пару секунд найти неисправный светодиод в линейке. Но такие приборы отнюдь не из дешевых, поэтому автор (AKA KASYAN) решил создать свой вариант аналогичного устройства. Притом этот вариант будет еще и портативным.



Такая штука будет полезной для ремонтников, так как с ее помощью можно ремонтировать LED подсветку мониторов, а также светодиодные ленты и линейки с любым количеством последовательно соединенных светодиодов.

Представленный прибор обеспечивает на выходе постоянное напряжение около 320В и ничтожный ток. Прибор никак не связан с сетью и полностью безопасен, даже если дотронуться до высоковольтных контактов во время работы.

Такой прибор позволит проверить цепь из более 100 последовательно соединенных светодиодов, то есть его хватит для любого светильника.
Как это устроено. Давайте рассмотрим схему устройства.

На базе таймера NE555 собран генератор прямоугольных импульсов. Частота работы генератора около 20 кГц.


Сигнал с выхода таймера поступает на затвор высоковольтного полевого транзистора. Последний, открываясь, замыкает дроссель на источник питания. На этом этапе происходит накачка энергии в дроссель.

Далее транзистор закрывается, дроссель отдает ранее накопленную энергию в виде всплеска напряжения, которое в десятки раз больше напряжения питания.

Это напряжение выпрямляется в постоянку и накапливается в высоковольтном электролитическом конденсаторе.

Наш dc-dc преобразователь представляет из себя обычный бустер без обратной связи. То есть, выходное напряжение не стабилизировано и зависит от источника питания и мощности нагрузки. Устройство собрано на незамысловатой печатной плате и ее можно скачать вместе с общим архивом. Также ссылки есть в описании под видео (ссылка ИСТОЧНИК).
На холостом ходу напряжение на конденсаторе будет расти, что приведет к пробою последнего. Поэтому в схему был добавлен нагрузочный резистор. Этот же резистор разряжает конденсатор после отключения питания.


На схеме имеется еще 1 резистор, он является токоограничивающим.


Если подключить испытуемый светодиод без этого резистора, то напряжение с конденсатора моментально поступит на диод спалив его кристалл. Резистор подобран так, чтобы ограничивать ток на уровне 5 мА, это значение безопасно для любых светодиодов.

При подключении светодиода или линейки светодиодов, выходное напряжение с преобразователя уменьшается до того значения, которое нужно светодиодам и равняется сумме падения напряжения на всех светодиодах. Грубо говоря, нагрузкой и одновременно стабилизирующим звеном являются сами светодиоды.

Компоненты схемы. Ну с таймером 555 и его обвязкой проблем быть не должно, тут все стандартно. Полевой транзистор нужен высоковольтный n-канальный. Автор использовал IRF830. но советует транзисторы наподобие 2N60 и 4N60, у них запаса по напряжению больше, а ток для нашей схемы не столь важен.


Дроссель намотан на ферритовой гантельке, провод 0,15, индуктивность дросселя от 800 до 1000 мкГн. Можно мотать на кольцах из порошкового железа или на ферритовом стержне.

Как уже говорилось, выходное напряжение преобразователя зависит от входного. При питающем напряжении 6В выходное составляет около 320В, а вот при напряжении на входе 8В, выходное составляет более 400В.

Напряжение также зависит от индуктивности дросселя. Чем больше индуктивность, тем больше напряжение. В схему автор также добавил линейный стабилизатор на 6В. Таким образом, выходное напряжение у нас будет держаться более-менее стабильным, независимо от разряда батареи.


Стабилизатор в данном случае построен на базе lm317, но можно и на микросхеме 7806. Ток холостого хода преобразователя составляет 80 мА, но на выходе у нас имеется нагрузочный резистор. Без него преобразователь будет потреблять меньше.

С учетом всего этого, от обычной батареи на 9В преобразователь может непрерывно работать 2-3 часа, от алкалиновых гораздо больше. Так что даже при активном использовании прибора, батарейки хватит на очень долгое время. Готовое устройство помещается в любой подходящий корпус. Для удобства автор поставил пару клемм.



К выходу преобразователя подключен аналоговый вольтметр, который был выдран из стабилизатора напряжения.

В вольтметрах такого типа имеется 1 выпрямительный диод, и по хорошему его нужно заменить перемычкой. Но здесь особо точные показания ни к чему, да и сам вольтметр не суперточный. С его помощью визуально можно понять какое падение напряжения на линейке светодиодов. Был также добавлен выключатель, ну вроде бы и все.



В итоге мы получаем готовый прибор, который однозначно выручит в деле ремонта светодиодных светильников. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

как прозвонить с помощью мультиметра диод и стабилитрон

Проверки диода

Часто у мастеров возникает необходимость проверить на исправность такой радиоэлемент, как полупроводниковый диод. Его назначение состоит в том, чтобы пропускать ток при его протекании в одном направлении (от анода к катоду) и не пропускать при протекании его в обратном направлении (от катода к аноду). Это свойство объясняет само название полупроводник. В этом и состоит суть проверки диода: он должен выполнять заданные функции так, как требуется в схеме.

Пороговое значение напряжения

Одна из основных характеристик полупроводниковых элементов — пороговое значение напряжения, то есть значение прикладываемого напряжения к элементу в прямом включении, при котором через него начинает протекать ток. Для разных типов диодов это напряжение имеет разные диапазоны значений. Для германиевых этот диапазон составляет от 0,3 до 0,7 вольта, для кремниевых — от 0,7 до 1,0 вольта. По этому значению судят об исправности полупроводникового диода.

Основные неисправности полупроводников

Неисправности полупроводниковДиоды могут выходить из строя по разным причинам. Наиболее распространенные из них: протекание повышенного тока через схему, превышение максимального значения обратного напряжения и другие (например, тепловое или механическое воздействие). Основные неисправности этих полупроводников — пробой и обрыв. Обе неисправности можно выявить с помощью мультиметра. При пробое подключенный к элементу мультиметр в режиме измерения сопротивления показывает минимальное сопротивление порядка единиц Ом. При обрыве измерительный прибор в том же режиме покажет бесконечное сопротивление как при прямом, так и при обратном подключении.

Проверка измерителем

Перед началом работы любые типы элементов нуждаются в проверке. Не пренебрегайте этим правилом. Существует несколько способов проверить диод:

  • Основной способ проверки — с помощью мультиметра. Встроенная в измеритель проверка. Большинство мультиметров имеют режим прозвонки p-n перехода. Этот режим обычно обозначен значком диода на их передней панели. Чтобы прозвонить мультиметром диод, установите ручку регулятора вашего измерительного прибора на обозначение диода либо нажмите кнопку с этим обозначением на передней панели прибора. Далее подключите красный измерительный щуп к аноду проверяемого элемента, а черный щуп — к катоду. Узнать, какой из выводов анод, а какой катод, можно в интернете, прочитав описание на используемый вами диод. В описаниях обычно указывается маркировка. При подключении описанным способом мультиметр должен показать пороговое прямое напряжение тестируемого диода. Если элемент неисправен, то прибор покажет ноль или сильно отличающееся от порогового показание. При обратном подключении (черный щуп мультиметра к аноду, красный щуп — к катоду) мультиметр должен показать нулевое напряжение.
  • Проверка измерителем диодовВам нужно прозвонить диод, если ваш мультиметр не поддерживает режим проверки полупроводниковых приборов. Соберите простую схему. Соедините последовательно источник питания постоянного тока номинальным напряжением 5 вольт, резистор сопротивлением 100 Ом и проверяемый полупроводник. Катод соедините с минусом источника питания, а анод — с резистором. Далее переключите мультиметр в режим определения постоянного напряжения. Красный щуп мультиметра соедините с анодом тестируемого диода, а черный щуп — с катодом. При исправности элемента измеритель покажет пороговое прямое напряжение на нем.
  • Проверка диода в случае отсутствия у мультиметра режима прозвонки полупроводников. Выберите на мультиметре режим измерения сопротивления, диапазон измеряемого сопротивления до 2 кОм. Подсоедините красный щуп прибора к аноду, черный щуп к катоду элемента. При этом измерительный прибор должен показать сопротивление порядка сотен Ом. Если подсоединить мультиметр к полупроводнику наоборот (черный щуп к аноду, красный — к катоду), то он должен показать бесконечное сопротивление или разрыв цепи. Если выдаются другие показания, значит, элемент неисправен.

Диагностика исправности стабилитрона

Стабилитроном называется полупроводниковый элемент, стабилизирующий напряжение в довольно узком диапазоне. При этом через него могут протекать разные токи как большие, так и маленькие. Диапазон стабилизации стабилитрона по напряжению обычно ограничен сотней милливольт. Конструктивно стабилитрон представляет собой диод, и в прямом включении он так и работает. Стабилизацию напряжения он производит при подаче на него напряжения в обратном включении. Проверить исправность стабилитрона мультиметром можно точно так же, как и исправность обычного диода.

Замер напряжения стабилизации

Как замерить стабилизацию напряжения Необходимо собрать небольшую схему. Для этого нужно последовательно соединить регулируемый источник питания (он должен показывать напряжение и ток через нагрузку), токоограничивающее сопротивление (номиналом от одного до 10 кОм, мощность рассеивания зависит от напряжения стабилизации, но берите не менее 0,125 Вт) и стабилитрон. Катод стабилитрона подключается к плюсу источника питания, анод соединяется с токоограничивающим резистором. Далее выполните следующие действия:

  1. Подключите мультиметр к стабилитрону (красный щуп к катоду, черный к аноду), переключите его в режим определения постоянного напряжения и выберите диапазон измерения до 200 В.
  2. На источнике питания установите минимальное напряжение.
  3. Включите источник питания и постепенно увеличивайте уровень напряжения на нем.
  4. Как только увидите, что начал протекать ток через схему, прекратите регулировку источника питания и отследите на мультиметре напряжение стабилизации стабилитрона.

Тестирование диода без выпаивания

Проверка диода без выпаиванияПри проверке элементов внутри схем возникают некоторые трудности с определением их характеристик, так как измерительный прибор тестирует все части схемы, включенные между его измерительными щупами. Таким образом, нужно исключить возможные варианты протекания тока в схеме, в которую установлен нужный элемент. Самый простой вариант — выпаять один из выводов нужного вам для проверки диода. Тогда результаты измерения будут достоверными. После проведения выпаивания одного из выводов элемента можно проверить его любым из перечисленных выше способов.

Если выпаять один из выводов проблематично, отключите источник питания схемы и попробуйте проверить диод, не выпаивая его. При этом в схеме не должно быть элементов, шунтирующих проверяемый элемент. Результаты проверки также должны быть достоверны.

tokar.guru

Как проверить диод - как с помощью мультиметра проверить работоспособность диода

Диод полупроводникового типа относится к тем электронным приборам, которым свойственна проводимость только в одну сторону.

Что такое полупроводниковый диод

Пользователи часто сталкиваются с вопросом, как проверить диод. Для того чтобы проверить, нормально ли диод функционирует, лучше всего воспользоваться методом контроля его состояния при помощи цифрового мультиметра. У всех диодов есть два выхода. Один из них – анод – со знаком плюс, а другой – катод – со знаком минус.

С физической точки зрения любой диод – это переходное устройство типа p-n. Следует знать, что приборы с полупроводниковой системой могут иметь несколько таких переходов (динистор имеет 3 перехода). Тем временем, обычный диод с полупроводниковой системой представляет собой самый элементарный электронный прибор из всех существующих, в основе которого лежит один такой переход. Следует также помнить, что диод с полупроводниковой системой может полностью проявить свои физические свойства исключительно после того, как он будет включен на полную силу.

Включение на полную силу подразумевает тот факт, что анод конкретного диода был подключен к напряжению со знаком плюс, а катод – к напряжению со знаком минус. Только тогда происходит полное открытие диода и его переход начинает проводить электрический док. Если сделать все наоборот и подключить к аноду диода минусовое напряжение, а к катоду – плюсовое, то данный диод будет считаться закрытым и не будет пропускать через себя электрический ток. Этот процесс будет длиться до тех пор, пока напряжение в приборе не достигнет предельной отметки, что повлечет за собой разрушение кристаллической основы полупроводника. Таким образом, принцип работы диода – проводимость в одну сторону – подтверждается.

Ответ на вопрос: «Как проверить диод мультиметром?» – очень прост. В большинстве случаев любой современный цифровой тестер (мультиметр), который можно сейчас найти в продаже, обеспечен функцией проверки физической исправности диодов. Этим свойством можно воспользоваться в ситуации, когда требуется проверка работоспособности транзистора.

Во время проверки работоспособности прибора на экране появляется не значение сопротивления перехода, а так называемое «пробивное» напряжение в диоде. Это означает: если превысить данный порог, переход откроется, и диод начнет работать. Как правило, значение этого показателя находится в диапазоне от ста до восьмидесяти милливольт. Они и будут отображены на мониторе устройства. Если же поменять местами выводы мультиметра (с отрицательного на положительный и наоборот), то монитор не должен ничего показывать. Это будет свидетельством того, что диод не пропускает ток в другую сторону, следовательно, функционирует нормально.

Как проверить диод

Для того чтоб облегчить процесс проверки, желательно иметь при себе макетную плату. Прежде всего, следует убедиться, что вы не касаетесь выходов диода и щупов тестера обеими руками. Так поступать нельзя, ведь тогда на результаты измерений повлияет и ваше тело – добавится его сопротивление. Поэтому все необходимо держать только одной рукой – тогда в цепь измерения войдут только необходимые для этого элементы.

Об этой особенности не стоит забывать и при измерении прочих приборов, к примеру, конденсаторов или резисторов. Начать стоит с проверки во время прямого подсоединения. Для этого положительный щуп мультиметра (он красного цвета) нужно подсоединить к аноду диода, а отрицательный щуп (он черного цвета) подсоединить к катоду. Выход катода находится с той стороны устройства, на которую нанесено кольцо белой краской.

Так и отмечается выход катода у большинства диодов современного образца. Если все прошло удачно, и монитор отобразил нормальное значение напряжения, то можно проверять диод, поменяв контакты местами. Стоит отметить, что диоды таки осуществляют пропуск электрического тока в обратном направлении, но в таких малых количествах, что этот показатель никогда не учитывается в расчетах. Так что если подсоединить к аноду щуп черного цвета, а к катоду – красного, то дисплей должен показать значение «один». Это будет говорить о том, что диод функционирует абсолютно нормально.

Возможные неисправности

Полупроводниковым диодам, как правило, свойственны два типа неисправностей: пробивание перехода и обрыв перехода. О них стоит знать следующее:

  • Пробивание перехода. В этом случае диод станет самым обычным проводником и получит свойство пропускать электрический ток как в одном направлении, так и в другом. Об этом пользователю может рассказать визжащий буззер его тестера, а монитор покажет величину сопротивления, которая не свойственна данному диоду. Она будет необычно маленькой
  • Обрыв перехода. Если случился обрыв перехода, исследуемый диод не будет пропускать электрический ток ни в одном, ни в другом направлении. В такой ситуации монитор мультиметра всегда будет демонстрировать цифру «один». Если это произойдет, исследуемый диод станет изолятором. Однако случаются ситуации, когда абсолютно нормально функционирующему диоду ставят диагноз «обрыв».  Это случается, в основном, тогда, когда используется тестер с испорченными или просто поношенными щупами. Этот момент нужно контролировать, ведь их провода часто подвергаются механическим воздействиям, что приводит к обрыву

Что стоит знать про  пробивное напряжение

Значение пробивного напряжения у большинства германиевых диодов находится в диапазоне от трехсот до четырехсот милливольт. К примеру, часто используемый диод модели Д9, который также применяется как детектор в устройствах радиоприемников, характеризуется этим показателем в размере четырехсот милливольт.

Вот основные типы диодов и напряжения, которые им соответствуют:

  • Диоды из кремния.  Им свойственно самое большое напряжение пробоя – от четырехсот до восьмисот милливольт
  • Диоды из германия. Имеют среднее напряжение пробоя в размере от трехсот до четырехсот милливольт
  • Диоды Шоттки. Их напряжение пробоя составляет от ста до двухсот пятидесяти милливольт

Руководствуясь данной методикой, можно не только проверить, насколько хорошо диод функционирует, но и приблизительно выяснить, какой материал служил сырьем для его изготовления. Определить это можно, узнав величину напряжения на пробой.

Где можно заказать проверку диода

Если у вас есть опасения, что вы не сможете самостоятельно проверить исправность диода при помощи мультиметра, лучше всего будет обратиться к специалистам. Воспользовавшись услугами платформы Юду, вы можете всего за десять минут заказать услуги мастера для проверки диода мультиметром.

Это можно сделать следующими способами:

  • Воспользоваться мобильным приложением Юду, чтобы заказать необходимую услугу
  • Самостоятельно отыскать интересующую вас услугу в каталоге платформы Юду и связаться с мастером
  • Оформить заявку, заполнив соответствующую форму прямо на этой странице, дождаться, когда специалист на нее откликнется, и позвонить ему

На платформе Юду вы не будете ограничены в выборе мастера и сможете воспользоваться услугами именно того специалиста, которого сочтете наиболее квалифицированным. Все исполнители Юду прошли специальную проверку во время регистрации на сайте и смогут гарантировать высокое качество производимых работ.

remont.youdo.com

Как проверить светодиод мультиметром

Содержание:
  1. Почему светодиоды выходят из строя
  2. Использование мультиметра для проверки светодиодов
  3. Видео

В современных осветительных приборах широко применяются наиболее прогрессивные источники света, известные как светодиоды. Они входят в состав сигнальных, индикаторных и других устройств. Однако, несмотря на множество положительных качеств, светодиоды все-таки периодически выходят из строя и тогда нередко возникает проблема, как проверить светодиод мультиметром.


Почему светодиоды выходят из строя

Продолжительная и корректная работа светодиода в идеальных условиях обеспечивается строго нормированным током, показатели которого ни в коем случае не должны превышать номинал самого элемента. Обеспечить эти параметры можно лишь с помощью диодов и собственного стабилизатора напряжения, известного как драйвер. Однако данные стабилизирующие устройства применяются совместно с лампами повышенной мощности.

Большинство маломощных светодиодных ламп, не имеют драйвера в цепочке подключения. Для ограничения тока используется обычный резистор, выполняющий функции стабилизатора. На практике эта функция выполняется далеко не в полном объеме, что и является основной причиной перегораний и поломок светодиодов. Защита резистором обеспечивается лишь в идеальных условиях, при корректных расчетах номинального тока и стабильном питающем напряжении. Однако на самом деле эти условия соблюдаются не полностью или не соблюдаются вовсе.

Таким образом, перегорание светодиодов происходит из-за низкого предела обратного напряжения, характерного для всех элементов данного типа. Достаточно любого электростатического разряда или неправильного подключения, чтобы светодиодный источник света вышел из строя. После этого остается лишь проверить его работоспособность и при необходимости заменить. Рекомендуется проверять светодиоды еще до их монтажа на печатную плату. Это связано с тем, что определенная доля изделий оказывается изначально бракованной по вине производителя.


Использование мультиметра для проверки светодиодов

Все мультиметры относятся к категории универсальных измерительных приборов. С помощью мультиметра можно выполнить измерения основных параметров у любых электронных изделий. Для того чтобы проверить работоспособность светодиода, необходим мультиметр с режимом прозвонки, который как раз и используется для проверки диодов.

Перед началом проверки переключатель мультиметра устанавливается в режим прозвонки, а контакты прибора соединяются со щупами тестера. Данный способ проверки позволяет заодно решить вопрос, как проверить мощность светодиода мультиметром, на основе полученных данных, вычислить этот параметр будет уже несложно.

Подключение мультиметра должно выполняться с учетом полярности светодиода. Анод элемента соединяется с красным щупом, а катод – с черным. Если же полярность электродов неизвестна, не стоит бояться каких-либо последствий в результате путаницы. В случае неправильного подключения, начальные показатели мультиметра останутся без изменений. Если же полярность соблюдается как положено, то светодиод должен начать светиться.

Существует одна особенность, которую следует учитывать при проверке. Ток мультиметра в режиме прозвонки имеет достаточно низкое значение и диод на него может не отреагировать. Поэтому для того чтобы хорошо разглядеть свечение, рекомендуется уменьшить внешний свет. Если же это невозможно сделать, следует пользоваться показаниями измерительного прибора. При нормальной работоспособности светодиода, значение, отображенное на дисплее мультиметра, будет отличаться от единицы.

Существует еще один вариант проверки с помощью тестера. Для этого на панели управления имеется блок PNP с помощью которого проверяются диоды. Его мощность обеспечивает свечение элемента, достаточное для того, чтобы определить его работоспособность. Анод включается в разъем эмиттера (Е), а катод – в разъем колодки или коллектора (С). При включении измерительного прибора светодиод должен гореть независимо от того, в каком режиме установлен регулятор.

Основным неудобством этого способа является необходимость выпаивания элементов. Для решения проблемы, как проверить светодиод мультиметром не выпаивая, для щупов потребуются специальные переходники. Обычные щупы не войдут в разъемы колодки PNP, поэтому к проводкам припаиваются более тонкие детали, изготовленные из канцелярских скрепок. Между ними в качестве изоляции устанавливается небольшая текстолитовая прокладка, после чего вся конструкция заматывается изолентой. В результате, получился переходник, к которому можно подключать щупы.

После этого щупы подключаются к электродам светодиода, без выпаивания его из общей схемы. При отсутствии мультиметра, проверку можно выполнить по такой же схеме с помощью батареек. Используется тот же переходник, только его проводки соединяются не со щупами, а с выходами батареек при помощи небольших зажимов-крокодильчиков. Потребуется один источник питания на 3 вольта или два источника на 1,5 вольта.

Если батарейки новые с полным зарядом, то проверять светодиоды желтого и красного цвета рекомендуется с помощью резистора. Его расчетное сопротивление должно составлять 60-70 Ом, что вполне достаточно для ограничения тока. При выполнении проверки светодиодов белого, синего и зеленого цвета, токоограничивающий резистор можно не использовать. Кроме того, резистор не требуется, когда батарейка сильно разряжена. Для выполнения своих прямых функций она уже не годится, а для проверки светодиодов ее будет вполне достаточно.


electric-220.ru

Как проверить диодный мост мультиметром?

Методика проверки диодного моста

Поскольку в электронике всё чаще применяются диодные мосты в одном корпусе, то встаёт вопрос о методике их проверки. Мне частенько задают вопрос: «Как проверить диодный мост?».

О проверке обычных диодов я уже рассказывал, но тему проверки диодных сборок как-то упустил из виду. Заполним этот пробел.

Для начала вспомним основные свойства диода и схему диодного моста (так называемую схему Гретца).

Как известно, диод пропускает ток только в одном направлении – это его основное свойство. Схема диодного моста по схеме Гретца приведена на рисунке.

Типовая схема диодного моста

К выводам со значком "~" подводится переменное напряжение, полярность подключения тут не важна. Проще говоря, два вывода "~", это вход переменного напряжения.

С выводов «+» и «-» снимается уже постоянное напряжение. На самом деле оно пульсирующее, но сейчас не об этом.

Иногда выводы для подключения переменного напряжения (~) маркируются также AC, что означает Alternating Current – в переводе с английского «переменный ток».

Итак, память освежили, теперь подумаем о том, как же нам проверить диодный мост мультиметром.

Для экспериментов возьмём диодную сборку RS407 на прямой ток 4 ампера и обратное напряжение 1000 вольт. Также нам потребуется любой цифровой мультиметр.

Диодный мост - сборка RS407

Включаем мультиметр в режим проверки диода. Обычно он совмещён с режимом "прозвонки" и обозначен на панели прибора символом диода.

Обозначение режима проверки диода и прозвонки на панели мультиметра

Чтобы было более наглядно, нарисуем схему диодного моста на бумаге и будем ориентироваться на рисунок. Далее проверим диоды, которые на рисунке обозначены под номером 1 и 2. Для этого подключаем к минусовому выводу диодного моста плюсовой щуп мультиметра (красный). А минусовой щуп (чёрный) подключаем к выводам моста со значком "~" или аббревиатурой AC. Так как диода два, то проделываем эту операцию по очереди.

Прозвонка диода в составе моста при прямом включении

Так как в таком случае диоды будут включены в прямом (проводящем) направлении, то на дисплее мультиметра мы увидим числа вроде 0,562V (562 mV). Это падение напряжения на P-N переходе открытого диода. Его ещё называют пороговым, т.е. чтобы открыть диод, нужно превысить данное напряжение. В зарубежных даташитах этот параметр называется Forward Voltage или Forward Voltage Drop (сокращённо Vf), что в вольном переводе означает "падение напряжения в прямом включении".

Для кремниевых диодов пороговое напряжение (Vf) составляет 400...1000 mV.

Теперь подключаем чёрный щуп к другому выводу моста со значком "~" или сокращением AC. Результат должен быть аналогичный. Вот взгляните.

Проверка другого диода в составе моста (прямое включение)

Как видим, этот диод также проводит ток в прямом включении, а величина порогового напряжения чуть-чуть отличается (566 mV), это нормально.

Чтобы 100% удостовериться в исправности диодов 1 и 2, проверим их при обратном включении. Для этого к минусовому выводу моста ("-") подключаем минусовой, чёрный щуп мультиметра, а красный плюсовой щуп поочерёдно подключаем к выводам, обозначенным символом "~".

Проверка одного диода...

Проверка диодов в составе моста при обратном включении

...второго.

Проверка второго диода в мосте при обратном включении

В обоих случаях на дисплее будет отображаться единица, что свидетельствует о высоком сопротивлении P-N перехода. В таком включении диоды ток не пропускают. Они исправны.

Итак, диоды под номером 1 и 2 мы проверили и убедились в том, что они пропускают ток в одном направлении.

Теперь проверяем другую часть моста - диоды 3 и 4. Для этого к плюсовому выводу моста подключаем минусовой щуп мультиметра и по очереди соединяем красный щуп мультиметра с выводами AC диодной сборки. Это будет проверка диодов при прямом включении.

Проверка диодов 3 и 4

Проверка диодов 3 и 4

Как видим, диоды 3 и 4 исправны. Для большей уверенности меняем щупы и проверяем их при обратном включении, аналогично тому, как это делали с диодами 1 и 2. В обоих случаях на дисплее должна быть единица.

Многим такая методика проверки может показаться сложной и нудной. Да, я бы назвал такую проверку "дотошной", но она очень эффективна, так как мы проверяем все диоды сборки по отдельности.

Быстрая проверка диодного моста.

Есть и более быстрый вариант проверки диодного моста. На рисунке, что на фото, видно, что диоды 1 и 3 включены последовательно. Значит можно проверить их сразу. Вот так.

Подключаем к минусовому выводу моста плюсовой щуп мультиметра, а к плюсовому - минусовой щуп. На дисплее должно отобразиться что-то вроде этого.

Проверка диодного моста быстрым методом

Так как диоды 1 и 3 включены последовательно, то пороговые напряжения переходов будут складываться. В данном случае оно равно 1,045V. Но не будем спешить! Диоды 2 и 4 тоже включены последовательно и в прямом включении. Мало того, они соединены параллельно последовательной ветке из диодов 1 и 3. А это значит, что измерительный ток разделится и также потечёт и через эту ветку. Таким образом, мы проверяем сразу все 4 диода. Если хотя бы один из диодов будет пробит, то мы уже получим на дисплее не значение около 1 вольта, а минимум в два раза меньше, около 0,5V. В дальнейшем мы в этом убедимся, а пока поменяем щупы местами и проверим диоды в обратном включении.

Как видим, прибор показывает единицу – сопротивление диодов велико.

Проверка диодного моста быстрым методом

А теперь возьмём заведомо неисправный диодный мост. У меня в наличии оказался диодный мост с маркировкой KBL06. Один из его диодов пробит. Проводим быструю проверку.

Неисправный диодный мост

Как видим на фото, пороговое напряжение двух последовательно включенных диодов равно 554 милливольтам (554 mV). В таком случае, величина порогового напряжения на одном диоде будет равно около 277 mV, что для кремниевых диодов маловато. А теперь внимание! Перекинем плюсовой щуп на соседние выводы AC диодного моста. На одном из них прибор покажет нулевое сопротивление, и прибор противно запищит! Мы нашли пробитый диод внутри диодной сборки.

Пробитый диод внутри диодной сборки

Меняем щупы мультиметра местами, чтобы проверить диод в обратном включении. Напомню, что в обратном включении диод ток не пропускает, он закрыт.

Пробитый диод внутри диодной сборки

На дисплее тоже, что и раньше. Сопротивление P-N перехода диода равно 0. Мы убедились в том, что один из диодов (3 или 4) сборки пробит. Такой мост нельзя применять, он неисправен.

Как видим, диодный мост можно проверить и быстро, но это не факт, что он окажется исправен. Представьте ситуацию, когда будут пробиты диоды 1 и 4. В таком случае при быстрой проверке прибор нам покажет на дисплее значение около 200 mV (для выпрямительных кремниевых диодов). В обратном включении прибор покажет единицу, так как исправные диоды 3 и 4 не пропустят ток в обратном направлении. Закрыв глаза на весьма малое значение в 200 mV, мы допустим ошибку, и сделаем неверный вывод об исправности моста. Поэтому в особо важных случаях желательно проводить полную проверку диодного моста.

Как уже было сказано, наиболее часто диоды выходят из строя по причине пробоя P-N перехода. Но на практике может встретиться другая неисправность диода – обрыв. Обрыв, это когда диод не проводит ток ни в прямом, ни в обратном включении, он является своего рода изолятором. В таком случае, мультиметр при проверке диода в прямом и обратном включении всегда будет отображать единицу (высокое сопротивление).

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *