Закрыть

Проверка симистора на исправность: Как проверить исправность симистора, тиристора, динистора

Содержание

Как проверить исправность симистора, тиристора, динистора

Динисторы, тиристоры, симисторы представляют собой полупроводниковые приборы четырехслойной структуры р-п-р-п. Часто при пояснении принципа работы их изображают в виде соединенных между собой, как показано на рис. 1, транзисторов разной проводимости. Как видно из рисунка, тиристор имеет три вывода: анод (А), катод (К) и управляющий электрод (УЭ). Напряжение, приложенное к р-n переходу одного из транзисторов, обеспечивает отпирание тиристора.

Самая распространенная и характерная неисправность симисторов, тиристоров и динисторов это межэлектродный пробой — анод1-анод2, анод-катод, анод-управляющий электрод, катод управляющий электрод. По этой причине в первую очередь следует проверить омметром сопротивление между электродами. В исправных симисторах, тиристорах, динисторах участок А-К (A1-A2) не прозванивается. Тиристор и симистор, кроме того, можно проверить на исправность р-n перехода между УЭ и К, за исключением приборов со встроенным резистором.

Наилучшие результаты проверки тиристоров и симисторов обеспечивает испытательная схема, изображенная на рис. 2. Для питания схемы используется источник постоянного тока напряжением 12 В с допустимым током нагрузки не менее 200 мА. Резистор R1 ограничивает ток через испытуемый прибор, а резистор R2 — через его управляющий электрод. Схема обеспечивает тестирование тиристоров и симисторов малой и средней мощности. Для проверки прибора необходимо:

1. Включить его в схему, как показано на рис. 2.

2. Кратковременно соединить его УЭ с резистором R2. Прибор должен открыться, напряжение +Uтест станет близким к нулю. Прибор остается открытым и при отключенном от R2 управляющем электроде.

3. Разорвать цепь питания анода (УЭ при этом соединен с К) и замкнуть ее вновь. Прибор должен находиться в закрытом состоянии. +Uтест при этом равно 12 В.

При тестировании симисторов следует повторить п.п. 2, 3, и R2 при этом должен быть запитан от отрицательного полюса источника питания.

Результат такого тестирования позволяет убедиться в исправности прибора. Тем не менее 100% результатом тестирования следует считать исправную работу полупроводникового прибора в том устройстве, где он установлен.

Динисторы (или диаки и сидаки как их еще называют) не имеют вывода УЭ, и они открываются при превышении напряжения на аноде некоторого значения, указываемого в параметрах на данный тип прибора. Как было сказано выше, с помощью мультиметра динистор можно проверить только на пробой перехода. Для того чтобы точно знать исправен динистор или нет, его следует проверить, включив в испытательную схему (рис. 3), которая питается от регулируемого источника напряжения переменного тока.

Диод D1 представляет собой однополупериодный выпрямитель, конденсатор С1 — сглаживающий, резистор R1 ограничивает ток через динистор. При проверке следует плавно увеличивать напряжение на динисторе. При достижении некоторого порогового значения он откроется, при уменьшении напряжения по достижении протекающего тока значения заданного тока удержания — закроется. После такой проверки необходимо ее повторить, изменив полярность приложенного к динистору напряжения. При проверке в качестве источника напряжения переменного тока во избежание опасности поражения следует использовать трансформатор.

принцип работы, проверка и включение, схемы

Любые электроприборы и электрические платы основаны на комплексе различных радиоэлементов, которые являются основой для нормального функционирования всего многообразия электротехники. Одним из основных элементов любой электросхемы является симистор, который представляет собой один из видов тиристора.

Говоря тиристор, мы также будем подразумевать и симистор. Его предназначение заключается в коммутации нагрузки в сети переменного тока. Внутреннее устройство

включает три электрода для передачи электрического тока: управляющий и 2 силовых.

Предназначение и использование симисторов в радиоэлектронике

Особенность тиристора заключается в пропускании тока от одного контакта (анода) к другому (катоду) и в обратном направлении. Любой тиристор управляется как положительным, так и отрицательным током. Для его работы нужно подать низковольтный импульс на управляющий контакт. После такой сигнальной подачи симистор открывается и переходит из закрытого состояния в открытое, пропустив, через себя ток. Во время прохождения отпирающего тока через управляющий контакт он открывается. А также отпирание происходит, когда напряжение между электродами превышает определённую величину.

При подаче переменного тока смена состояния тиристора вызывает изменение полярности напряжения на силовых электродах. Он закрывается, при смене полярности между силовыми выводами, а также когда рабочий ток ниже, чем ток удержания. Для предотвращения ложного срабатывания симистора, вызванное различными радиомеханическими помехами, использующиеся приборы имеют дополнительную защиту. Для этого обычно используется демпферная RC цепочка (последовательное соединение резистора и конденсатора постоянного тока) между силовыми контактами симистора. Иногда используется индуктивность. Она служит для ограничения скорости изменения тока при коммутации.

Симисторы в электросхеме

Если говорить о симисторах, необходимо принять во внимание и тот факт, что это один из видов тиристора, который тоже имеет три и более p — n переходов . Их различие лишь в управляющем катоде, который определяет соответственные переходные характеристики пропускаемого тока и в принципе работы в электросхемах. Обычно они начинают свою работу сразу после запуска подводящего напряжения на нужный контакт.

Схема управления симистора

Схема управления на тиристоре проста и надёжна. Они намного

упрощают принципиальную схему своим присутствием, освобождая её от лишних электродеталей и дорожек. Тем самым облегчая и дальнейший ремонт (проверка и прозвонка) в случае необходимости или выхода из строя радиоэлектронных блоков с их участием.

Практическое применение симисторов

Необходимые знания для проверки, замены и последующего ремонта различных радиоэлектронных блоков с участием симисторов или тиристоров помогут любому радиолюбителю в повышении своих профессиональных и практических навыков.

Для проверки радиоэлементов на работоспособность, чаще всего используется мультиметр. Он хорош тем, что с его помощью, можно быстро выявить радикальные дефекты большинства радиодеталей. Минус тут в том, что не каждым мультиметром, и не каждую деталь, можно протестировать досконально.

Аналоговый мультиметр

Чаще всего называемый тестером, реже – авометром (Ампер-Вольт-Ом-метр) и, почти никогда, непосредственно мультиметром. Состоит из прецизионной стрелочной головки потенциометра и сложных коммутируемых цепей измерения. Причем, внутренняя батарея питания (4,5-9 В.) нужна лишь для измерения сопротивления. Напряжение и ток можно измерить и без нее.

Проверить тиристор мультиметром такого плана, можно только при наличии свежей, не разряженной батарейки.

Цифровой мультиметр

Так и называют, реже – тестером, и, почти никогда – авометром. Состоит из упрощенных коммутируемых цепей измерения обслуживающих микроконтроллер с АЦП (аналого-цифровой преобразователь). Его широкий диапазон измерения, чувствительность и точность, позволяют обойтись и без них. Внутренний элемент питания (1-9 В) используется не только для измерения сопротивления, но и для питания микроконтроллера и его периферии.

Как проверить тиристор мультиметром

Рассмотрим последовательность действий для определения работоспособности тиристора.

  1. Прозвонка анод-катод, при любом приложении щупов:
    • аналоговый покажет бесконечность, стрелка не двинется;
    • цифровой или никак не отреагирует или высветит несколько МОм.
  2. При прозвонке анод-управляющий электрод:
    • аналоговый покажет от нескольких до десятков кОм;
    • цифровой выдаст такие же цифры.
  3. При прозвонке катод-управляющий электрод:
    • то же самое для обоих приборов.

Теперь попробуем проверить тиристор на открытие, его основную работу. Для этого, минусовой щуп приложим к катоду, плюсовой к аноду и им же, не отрывая от анода, кратковременно коснемся управляющего электрода. Тиристор должен открыться (сопротивление упасть почти до 0 Ом) и удерживаться в таком состоянии до разрыва цепи.
Если этого не произошло то:

  • перепутаны плюсовой и минусовой щупы тестера;
  • неподходящий тестер или разряженная батарея в нем;
  • тиристор неисправен.

Перед тем, как выбросить тиристор, проверим мультиметр и правильность своих действий при работе с ним:

  • земляной (корпусный или COM) щуп аналогового тестера – является плюсовым, а у цифрового мультиметра наоборот – минусовым.
  • диапазон измерения должен быть выставлен на 100-2000 Ом, в зависимости от градации коммутационного блока;
  • питание измерительного прибора должно осуществляться свежей, не разряженной батареей с напряжением от 4,5 до 9 вольт;
  • на шкале цифрового мультиметра, в секторе измерения сопротивлений, должен присутствовать значок диода.

Цифровые тестеры-игрушки, размером со спичечную коробку и питанием от часового аккумулятора, для проверки полупроводниковых элементов не подходят. Да и полагаться на другие их измерения не стоит. Но и утверждать, что проверить тиристор цифровым мультиметром невозможно (а такое мнение бытует), тоже неверно. Можно, причем очень даже многими. Соблюдение вышеперечисленных правил, позволяет добиться положительных результатов с разными приборами.

Многие используют самодельные пробники и измерительные приборы для того, чтобы проверить работоспособность, а также примерную оценку параметров симисторов и тринисторов. Для того чтобы это сделать, можно использовать такой прибор как омметр, также можно пользоваться авометром, который работает в режиме омметра напряжение у них должно быть полтора вольта.

На случай, если кто-то забыл, что такое симистор , тринистор, омметр и авометр, или просто для справочной информации. Симистор — это прибор на полупроводниках, является одним из видов тринисторов, который используют для коммуникации в сетях с переменным током, в основном рассматривается как управляемый выключатель. Тренистор прибор на полупроводниках, который выполнен на базе монокристалла полупроводника и в котором, минимум 3 p-n-перехода, у него есть два вида состояний: открытое (высокая проводимость) и закрытое (низкая проводимость). Омметр — прибор, который определяет электрически активные сопротивления, измерения можно проводить как при переменном токе, так и при постоянном. Существуют следующие виды омметров: гигаомметры, мегаомметры, миллиомметры, микроомметры, тераомметры, их различие состоит в диапазоне измеряемых сопротивлений. Авометр (мультиметр) это прибор в который может выполнять несколько функций, чаще всего это амперметр, вольт метр и омметр их существует 2 вида, цифровые и аналоговые.

Во время проверки симистора, нужно подключить к нему омметр (авометр) к аноду плюсовым щупом, минусовым щупом подключить к катоду. Для начала нужно установить предельное измерение «х1» и замкнуть пинцетом управляющего электрода и выводы анода. Стрелка прибора должна отклонится примерно к середине шкалы. После этого нужно убрать пинцет и в случае, если симистор «чувствительный», это когда, симистор открывается при малом токе и удерживается в таком состоянии небольшим анодным током и положение стрелки, при этом, не должно изменятся.

Также, аналогичные испытания нужно провести на пределе «х10» и измерять сопротивление между катодом и анодом симистора в открытом состоянии (некоторые виды симисторов, могут удерживаются и при этом пределе). В случае, если сопротивление находится в пределах 140-300 Ом, значит симистор можно смело использовать для вашей конструкции.

Если Вы проверяете симистор с большим током то удержание стрелка индикатора, после того как Вы отсоедините пинцет, она должна вернутся на нулевое положение шкалы. Такой вид симистора, обычно стараются не использовать.

Точно также поступают и при проверке тринистора: подключается омметр (авометр) к катоду и аноду, дальше перемыкаются выводы управляющего электрода и анода. Проверяйте семисторы и тренистора, а также остальные элементы ваших конструкций, и они будут работать без сбоев.

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Проверить работоспособность и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Подробнее от том, как работают диоды и тиристоры читайте здесь: ,

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку.


Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки


При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Эта неисправность практически не встречается, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Для этого потребуется всего несколько секунд времени.

При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит. Это его основное отличие в работе от обычного диода.

Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода.

Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания.

Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Рис. 3. Схема прибора для проверки тиристоров

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода.

Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт.


Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода.

Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить описанными выше методами проверки.

При помощи домашнего тестера (мультиметра) можно проверять самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой – это настоящая находка. Например, проверка тиристора мультиметром может избавить вас от необходимости поиска новой детали во время ремонта электрооборудования.

Это полупроводниковый прибор, выполненный по классической монокристальной технологии. На кристалле имеется три или более p-n перехода, с диаметрально противоположными устойчивыми состояниями. Основное применение тиристоров – электронный ключ. Можно эффективно использовать эти радиоэлементы вместо механических реле.

Включение происходит регулируемо, относительно плавно и без дребезга контактов. Нагрузка по основному направлению открытия p-n переходов подается управляемо, можно контролировать скорость нарастания рабочего тока.

К тому же тиристоры, в отличие от реле, отлично интегрируются в электросхемы любой сложности. Отсутствие искрения контактов позволяет применять их в системах, где недопустимы помехи при коммутации.

Деталь компактна, выпускается в различных форм-факторах, в том числе и для монтажа на охлаждающих радиаторах.

Управляются тиристоры внешним воздействием:

  • Электрическим током, который подается на управляющий электрод;
  • Лучом света, если используется фототиристор.

При этом, в отличие от того же реле, нет необходимость постоянно подавать управляющий сигнал. Рабочий p-n переход будет открыт и по окончании подачи управляющего тока. Тиристор закроется, когда протекающий через него рабочий ток опустится ниже порога удержания.

Тиристоры выпускаются в различных модификакциях, в зависимости от способа управления, и дополнительных возможностей.

  • Диодные прямой проводимости;
  • Диодные обратной проводимости;
  • Диодные симметричные;
  • Триодные прямой проводимости;
  • Триодные обратной проводимости;
  • Триодные ассиметричные.

Существует разновидность триодного тиристора, имеющая двунаправленную проводимость.

Что такое симистор, и чем он отличается от классических тиристоров?

Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.
Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.

Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.

Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.

Как прозвонить тиристор мультиметром?

Сразу оговоримся – проверить исправность тиристора можно и без тестера. Например, с помощью лампочки от фонарика и пальчиковой батарейки. Для этого включаем последовательно источник питания, соответствующий напряжению лампочки, рабочие выводы тиристора, и лампочку.

Важно! Не забудьте о том, что обычный тиристор проводит ток лишь в одном направлении. Поэтому соблюдайте полярность.

При подаче управляющего тока (достаточно батарейки АА) – лампочка будет гореть. Значит, управляющая цепь исправна. Затем отсоединяем батарейку, не отключая источник рабочего тока. Если p-n переход исправный, и настроен на определенную величину тока удержания – лампочка продолжает гореть.

Если под рукой нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.

    1. Переключатель тестера устанавливаем в режим «прозвонка». При этом на щупах проводов появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает p-n переход, поэтому сопротивление на выводах будет высоким, ток не протекает. На дисплее мультиметра высвечивается «1». Мы убедились в том, что рабочий p-n переход не пробит;
    2. Проверяем открытие перехода. Для этого соединяем управляющий вывод с анодом. Тестер дает достаточный ток для открытия перехода, и сопротивление резко уменьшается. На дисплее появляются цифры, отличные от единицы. Тиристор «открыт». Таким образом, мы проверили работоспособность управляющего элемента;

  1. Размыкаем управляющий контакт. При этом сопротивление снова должно стремиться к бесконечности, то есть на табло мы видим «1».

Почему тиристор не остался в открытом состоянии?

Дело в том, что мультиметр не вырабатывает величину тока, достаточную для срабатывания тиристора по «току удержания». Этот элемент мы проверить не сможем. Однако остальные пункты проверки говорят об исправности полупроводникового прибора. Если поменять местами полярность – проверка не пройдет. Таким образом, мы убедимся в отсутствии обратного пробоя.

Можно проверить и чувствительность тиристора. В этом случае, мы переводим переключатель тестера в режим омметра. Измерения производятся по раннее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начинаем с предела измерения вольтметра «х1».

Чувствительные тиристоры при отключении управляющего тока сохраняют открытое состояние, что мы и фиксируем на приборе. Увеличиваем предел измерения до «х10». В этом случае ток на щупах тестера уменьшается.

Если при отключении управляющего тока переход не закрывается – продолжаем увеличивать предел измерения до срабатывания тиристора по току удержания.

Важно! Чем меньше ток удержания – тем чувствительнее тиристор.

При проверке деталей из одной партии (или с одинаковыми характеристиками), выбирайте более чувствительные элементы. У таких тиристоров гибче возможности по управлению, соответственно шире область применения.

Освоив принцип проверки тиристора – легко догадаться, как проверить симистор мультиметром.

Важно! При прозвонке необходимо учитывать, что этот полупроводниковый ключ имеет симметричную двустороннюю проводимость.

Проверка симистора мультиметром

Схема подключения для проверки аналогичная. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов при одной полярности, переключаем щупы тестера на полярность обратную.

Исправный симистор должен показать весьма похожие результаты проверки. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.

Если радиодеталь, нуждающаяся в проверке, находится на монтажной плате – нет необходимости ее выпаивать для теста. Достаточно освободить управляющий вывод. Важно! Не забудьте предварительно обесточить проверяемый электроприбор.

В заключении смотрите видео: Как проверить тиристор мультиметром.

Как проверить тиристор и симистор мультиметром

Устройство, принцип действия и параметры тиристоров

Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки. Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.

Устройство тиристора

При подаче напряжения на катушку, контакты реле замыкаются и пропускают токи большой величины. Такой же принцип работы и у электронного ключа – тиристора. На управляющий электрод подаётся управляющее напряжение до 10 В, открываются p-n переходы и пропускают большие токи, которые зависят от мощности тиристоров.

По сравнению с электромеханическим реле у тиристора нет дребезга контактов. Бесшумная работа электронного ключа и хорошая совместимость с любой электронной схемой, главные достоинства тиристоров. Используется тиристоры и симисторы там, где нужна регулировка больших токов.

Тиристоры также могут работать от светового луча, если в качестве управляющего электрода использовать фотоэлемент. Такой электронный ключ называется фототиристором. Если тиристор пропускает только положительную полуволну переменного напряжения, то симистор прозрачен для токов в обоих направлениях, т. е. он рассчитан на работу с переменным напряжением. К основным параметрам электронного ключа относятся:

  1. Iоткр.max – максимально допустимый ток тиристора.
  2. Uу – напряжение открывания.
  3. Uобр.max – наибольшее обратное напряжение элемента.
  4. Iуд – ток удержания в открытом состоянии ключа.

Как проверить тиристор мультиметром

Проверить работоспособность тиристора можно батарейкой или источником питания и лампочкой. Для проверки напряжение источника питания или батарейки должны соответствовать напряжению питания лампочки. Если плюс источника приложить к аноду элемента, минус через лампочку подать на катод, а батарейку приложить плюсом к управляющему электроду, а минусом к аноду, то исправный тиристор откроется и лампочка загорится.

Схема проверки тиристора с дополнительным источником питания и батарейкой

Если убрать напряжение с управляющего электрода ключа лампочка не погаснет. Чтобы она погасла нужно снять напряжение источника питания с тиристора, или кратковременно изменить полярность управляющего напряжения. Лампочка не гаснет после снятия напряжения с управляющего электрода, потому что через тиристор протекает ток выше его тока удержания.

Определить ток удержания можно, если плавно снижать напряжение блока питания и через амперметр проконтролировать ток, при котором произойдет отключение лампочки. Таким образом, можно выбрать тиристор с наименьшим током удержания. Проверить работоспособность тиристора можно также одним мультиметром.

Прозвонка тиристора мультиметром

Переключатель режима измерения ставят в положение проверки диодов и проверяют сопротивление перехода УЭ – катод в обоих направлениях, оно должна быть в пределах от 50 до 500 ом. Электронный ключ с наибольшим сопротивлением перехода УЭ – катод будет более чувствительный, с меньшим напряжением, при котором тиристор откроется. Сопротивление катод – анод должно быть большим, на дисплее отображается 1.

Мы прозвонили тиристор мультиметром, а теперь проверим его на открытие перехода анод – катод. Плюс щупа мультиметра присоединяют к аноду, а минус к катоду. В положении X1 переключателя замыкают управляющий электрод на анод элемента. При исправном электронном ключе мультиметр показывает несколько десятков ом, т. е. тиристор открылся.

При отсоединении электрода от анода, тиристор закроется и мультиметр покажет единицу. При проверке мультиметром его ток меньше тока удержания ключа, поэтому тиристор закрывается. Удобно проверять электронные ключи на схеме ниже.

Схема проверки тиристора с дополнительным источником питания

В качестве источника используют блок питания или автомобильный аккумулятор. Подключают к схеме тиристор, подают питание на него кнопкой КН-1 и подключают УЭ кнопкой КН-2. Лампочка загорается. Отключают КН-2, лампочка продолжает гореть, т. к. ток удержание элемента ниже, чем ток источника питания. Кнопкой КН-1 отключают источник питания, лампочка гаснет. Для источника питания 25 В сопротивление резистора 270 Ом. Для других напряжений питания:

R = (0,9 – 1)Uпит/Iу.откр, где Iу.откр – ток удержания управляющим электродом (в справочнике)

Если в этой же схеме заменить источник постоянного напряжения, на трансформатор, с необходимым переменным напряжением вторичной обмотки, т. е. будем подавать переменное напряжение на тиристор, то лампочка будет гореть в половину накала, ведь этот элемент пропускает только положительную полуволну переменного напряжения. Для источника питания 25 В сопротивление резистора 270 Ом.

Если подключить симистор, то лампа загорится ярко, т. к. симистор пропускает полное переменное напряжение. Симистор проверяется по той же методике что и тиристор. Проверить тиристор и симистор мультиметром не выпаивая, не получится. Для полной проверки этих ключей нужно подавать постороннее напряжение на электронную схему, что чревато выходом ее элементом из строя.

Как проверить тиристор 202

Среди домашних мастеров и умельцев периодически возникает необходимость определения работоспособности тиристора или симистора, которые широко используются в бытовых приборах для изменения скорости роторов электродвигателей, в регуляторах мощности осветительных приборов и в других устройствах.

Как работает диод и тиристор

Перед описанием способов проверки вспомним устройство тиристора, который не зря называют управляемым диодом. Это обозначает, что оба полупроводниковых элемента имеют почти одинаковое устройство и работают совершенно аналогично, за исключением того, что у тиристора введено ограничение — управление через дополнительный электрод посредством пропускания электрического тока сквозь него.

Тиристор и диод пропускают ток в одну сторону, которая во многих конструкциях советских диодов обозначена направлением угла треугольника на мнемоническом символе, расположенном прямо на корпусе. У современных диодов в керамическом корпусе катод обычно помечают нанесением кольцевой полоски около катода.

Проверить работоспособность диода и тиристора можно пропусканием тока нагрузки через них. Для этого допускается использовать лампочку накаливания от старых карманных фонариков, нить которой светится от тока порядка 100 mА или меньше. При прохождении тока через полупроводник лампочка будет гореть, а в случае отсутствия — нет.

Как проверить исправность диода

Обычно для оценки исправности диода пользуются омметром или другими приборами, обладающими функцией измерения активных сопротивлений. Прикладывая к электродам диода напряжение в прямом и обратном направлении, судят о величине сопротивления. При открытом p-n переходе омметр покажет значение равное нулю, а при закрытом — бесконечности.

Если омметр отсутствует, то исправность диода можно проверить, используя батарейку и лампочку.

Схема проверки исправности диода

Перед проверкой диода таким способом необходимо учитывать его мощность. Иначе ток нагрузки может разрушить внутреннюю структуру кристалла. Для оценки маломощных полупроводников рекомендуется вместо лампочки использовать светодиод и ток нагрузки снижать до 10-15 mA.

Как проверить исправность тиристора

Оценить работоспособность тиристора можно несколькими методами. Рассмотрим три, самых распространенных и доступных в домашних условиях.

Метод батарейки и лампочки

Схема проверки исправности тиристора

При использовании этого метода тоже следует оценивать токовую нагрузку 100 mA, создаваемую лампочкой на внутренние цепи полупроводника и применять ее кратковременно, особенно для цепей управляющего электрода.

На рисунке не показана проверка отсутствия короткого замыкания между электродами. Эта неисправность практически не встречается, но для полной уверенности в ее отсутствии следует попробовать пропустить ток через каждую пару всех трех электродов тиристора в прямом и обратном направлении. Для этого потребуется всего несколько секунд времени.

При сборке схемы по первому варианту полупроводниковый переход прибора не пропускает ток, и лампочка не горит. Это его основное отличие в работе от обычного диода.

Для открытия тиристора достаточно подать положительный потенциал источника на управляющий электрод. Этот вариант показан на второй схеме. У исправного прибора откроется внутренняя цепь и через него потечет ток. Об этом будет свидетельствовать свечение нити накала лампочки.

В третьей схеме показано отключение питания с управляющего электрода и прохождение тока через анод и катод. Это происходит за счет превышения тока удержания внутреннего перехода.

Эффект удержания используется в схемах регулирования мощности, когда для открытия тиристора, управляющего величиной переменного тока, подается кратковременный импульс тока от фазосдвигающего устройства на управляющий электрод.

Загорание лампочки в первом случае или отсутствие ее свечения во втором свидетельствуют о неисправности тиристора. А вот потеря свечения при снятом напряжении с контакта управляющего электрода может быть вызвана величиной тока, протекающей через цепь анод-катод меньшей, чем предельное значение удержания.

Разрыв цепи через анод или катод приводит тиристор в закрытое состояние.

Метод проверки с помощью самодельного прибора

Снизить риски повреждения внутренних схем полупроводниковых переходов при проверках маломощных тиристоров можно подбором величин токов через каждую цепочку. Для этого достаточно собрать простую электрическую схему.

На рисунке показано устройство, предназначенное для работы от 9-12 вольт. При использовании других напряжений питаний следует сделать перерасчет величин сопротивлений R1-R3.

Рис. 3. Схема прибора для проверки тиристоров

Через светодиод HL1 достаточно прохождения тока около 10 mA. При частом использовании прибора для подключений электродов тиристора VS желательно сделать контактные гнезда. Кнопка SA позволяет быстро коммутировать цепь управляющего электрода.

Загорание светодиода до нажатия кнопки SA или отсутствие его свечения — явный признак повреждения тиристора.

Метод с использованием тестера, мультиметра или омметра

Наличие омметра упрощает процесс проверки тиристора и напоминает предыдущую схему. В ней источником тока служат батареи прибора, а вместо свечения светодиода используется отклонение стрелки у аналоговых моделей или цифровые показания на табло у цифровых устройств. При показаниях большого сопротивления тиристор закрыт, а при малых величинах открыт.

Схема проверки тиристоров омметром

Здесь оценивается все те же три этапа проверки с отключенной кнопкой SA, нажатой на короткое время и снова отключенной. В третьем случае тиристор, скорее всего, изменит свое поведение из-за малой величины проверяемого тока: ее не хватит для удержания.

Низкое сопротивление в первом случае и высокое во втором свидетельствуют о нарушениях полупроводникового перехода.

Метод омметра позволяет проверять исправность полупроводниковых переходов без выпаивания тиристора из большинства монтажных плат.

Конструкцию симистора можно условно представить состоящей из двух тиристоров, включенных встречно по отношению друг к другу. У него анод и катод не имеют строгой полярности как у тиристора. Они работают с переменным электрическим током.

Качество состояния симистора можно оценить описанными выше методами проверки.

Технические характеристики кремниевова тиристора КУ202Н, говорят нам что он триодный, не запираемый, изготовлен по планарно-диффузионной технологии. Используется как переключающий элемент в схемах автоматики. Также применяется в управляемых выпрямителях.

Распиновка

Цоколевка КУ202Н выполнена в металлостеклянном корпусе. Он имеет один вывод под резьбу — анод и два вывода под пайку — катод и управляющий электрод. Анодный вывод сделан под гайку М6. Маркировка тиристора нанесена на корпус. Вес — не более 14 грамм.

Характеристики

Все его параметры можно разделить на два типа предельные и электрические. Давайте разберем их подробнее. Обратите внимание, что на указанных ниже предельных значениях устройство работать долгое время не может, это пиковые показатели которое он выдержит за очень маленький период.

Электрические параметры ку202н характеризуют работу тиристора в рабочих условиях. Ниже приведены их значения:

Аналоги

Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, h30T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.

Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.

Схема подключения

Существует стандартная схема включения ку202н которой нужно придерживаться. Согласно ей между катодом и управляющим электродом подключается шунтирующий резистор сопротивлением 51 Ом. Отклонение от номинального значения не должно превышать 5 %.

Чтобы тиристор не вышел из строя не допускается подача управляющего тока, если напряжение на аноде отрицательное. Это может привести к выходу из строя устройства без возможности восстановления.

Особенности монтажа

К катоду и управляющему электроду нельзя прилагать усилие, большее 0,98 Н. Во время крепления прибора к теплоотводу усилие затяжки не должно быть выше 2,45 Нм.

Нельзя паять катод на расстоянии ближе 7 мм. от стеклянного корпуса. Для управляющего электрода допустимое расстояние для пайки 3,5 мм. Температура паяльника не должна быть выше +260 0 С. Время пайки не более 3 с.

Проверка на исправность

Проверить тиристор ку202н на исправность можно мультиметром, начать ее следует с проверки n-p перехода между анодом и управляющим электродом. Он должен прозваниваться так же, как обычный диод, то есть при прямом подключении (положительное напряжение на управляющий электрод, а отрицательное на катод) сопротивление перехода должно быть небольшим, а при обратном подключении большим.

Для более детальной проверки требуется выполнить такие действия:

  • Переключаем мультиметр в положение для измерения сопротивления до 2 кОм. На щупы прибора должно подаваться напряжение от источника питания.
  • Теперь нужно подключить щупы мультиметра к аноду и катоду тиристора. При этом прибор должен показывать большое сопротивление, близкое к бесконечности.
  • При помощи перемычки соединяем анод и управляющий электрод. Сопротивление между анодом и катодом, показываемое мультиметром, должно упасть.
  • Разъединяем анод и управляющий электрод. Сопротивление должно вырасти.

Можно также проверить тиристор при помощи лампочки и блока питания постоянного тока. Лампочка должна быть рассчитана на то напряжение, которое выдает блок питания. Подключаем положительный полюс блока питания на анод, а отрицательный на катод проверяемого тиристора.

При помощи батарейки, или щупов мультиметра включенного в режиме омметра, подаем отпирающее напряжение на управляющий электрод. Для этого подключаем положительное напряжение к аноду, а отрицательное к управляющему электроду. Если тиристор исправен, лампочка должна зажечься.

Если убрать напряжение между анодом и управляющим электродом лампочка должна продолжать гореть.

Существует способ проверить тиристор ку202н, не выпаивая его из схемы. Для этого нужно:

  • Отключите плату, на которой находится тиристор, от питания.
  • Отключаем от схемы управляющий электрод.
  • Один тестер, настроенный на измерение постоянного напряжения, подключаем к аноду и катоду тиристора.
  • Второй мультиметр включаем между анодом и управляющим электродом.
  • Первый тестер должен показывать небольшое напряжение (десятки милливольт).

Хотя он уже снят с производства, его еще можно купить в некоторых местах. Кроме того он присутствует во многих старых электронных приборах, из которых его при желании можно выпаять. Его DataSheet можно скачать здесь.

Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.

Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:

  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Тестирование высоковольтного тиристора

В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.

Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.

Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.

Как проверять тиристоры и симисторы тестером и мультиметром? Как проверять тиристоры — пошаговая инструкция

Тиристор представляет собой особую разновидность полупроводникового прибора, изготовленного на основе монокристалла полупроводника и имеющего не менее трех p-n-переходов. Способен находиться в двух различных устойчивых состояниях: закрытый тиристор обладает низкой степенью проводимости, а в открытом состоянии проводимость становится высокой.

По своей сути, он является силовым электронным ключом без полного управления.

Инструменты и материалы для проверки

Для осуществления проверки прибора, могут потребоваться следующие инструменты и материалы, в зависимости от выбранного метода тестирования:

  • блок питания или батарея, которые будут выступать в роли источника постоянного напряжения;
  • лампа накаливания;
  • провода;
  • омметр;
  • тестер;
  • паяльный аппарат;
  • паяльный аппарат;

Также, для тестирования правильности работы тиристора может потребоваться наличие пробника, который можно изготовить своими руками.

Для него потребуется наличие следующих материалов и элементов:

  • плата;
  • резисторы, количество 8 штук;
  • конденсаторы, количество 10 штук;
  • , количество 3 штуки;
  • положительный и отрицательный стабилизатор;
  • лампа накаливания;
  • предохранитель;
  • тумблер, количество 2 штуки;

Существует целый ряд возможных схем для изготовления пробника, выбрать можно любую, но необходимо следовать следующим рекомендациям:

  1. Соединение всех элементов производится при помощи специальных проводов с зажимами.
  2. Необходимо последовательно контролировать напряжение между различными контактами. Для осуществления проверки допускается подключение переключателей к разным контактным группам.
  3. После сбора схемы необходимо осуществить подключение тиристора, если он находится в исправном состоянии, то лампа накаливания не будет включаться.
  4. Если лампочка не зажигается даже после нажатия пусковой кнопки, то необходимо при помощи установленного переключателя повысить величину управляющего электрического тока.При разрыве соответствующей цепи, лампочка гаснет.

Способы проверки

Существует целый ряд различный способов, позволяющих проверять тиристоры, наиболее простым является тестирование с помощью лампы накаливания и источника, дающего постоянное напряжение.

Реализовать данный процесс можно следующим образом:

  1. Провода необходимо припаять к выводам тиристора таким образом, чтобы на анод подавался плюс от питающего элемента, а минус был подключен к лампочке, а уже через нее к катоду.
  2. На управляющий электрод прибора потребуется подать напряжение, которое будет превышать аналогичный показатель для анода на 0,2В, благодаря этому действию тиристор перейдет в открытое состояние.
  3. Если прибор исправен и находится в рабочем состоянии, то лампочка должна зажечься.
  4. Для того, чтобы окончательно убедиться в исправном функционировании , необходимо перекрыть доступ источнику напряжения, открывшему тиристор, к управляющему электроду, после совершения этих действий лампочка не должна погаснуть.
  5. Чтобы вернуть устройство в закрытое состояние , необходимо полностью устранить питание либо осуществить подачу отрицательного напряжения на электрод.

Ниже приводится пример проверки, которую можно осуществить в цепи переменного тока:

  1. Необходимо заменить напряжение , которое подается от блока питания или иного постоянного источника, на переменное напряжение с показателем 12В, использовать для этих целей можно специальный трансформатор.
  2. После осуществления данной процедуры , в исходном положении лампочка будет находиться в выключенном режиме.
  3. Проверка происходит путем нажатия пусковой кнопки , во время чего лампочка должна включаться, а при отжимании снова гаснуть.
  4. Во время тестирования , лампочка должна загораться только вполовину от своих возможностей накала, это обусловлено тем фактом, что тиристора достигает только положительная волна подаваемого от трансформатора переменного напряжения.
  5. Если в схеме присутствует , одна из основных разновидностей тиристора, то лампочка будет загораться в полную силу, поскольку он одинаково восприимчив к обеим полуволнам переменного напряжения.

Другим способом является осуществление проверки при помощи тестера, реализуется она следующим образом:

  1. Для осуществления предлагаемого тестирования достаточно энергии, которая будет получена от питания мини-тестера на 1,5В, находящегося в рабочем режиме х1 кОм.
  2. Требуется подключить щуп к аноду и затем произвести кратковременное прикосновение к управляющему электроду.
  3. После совершения названных действий проследить за реакцией стрелки, которая должна была отклониться от исходных показателей.
  4. Если после снятия щупа происходит возвращение стрелки на исходную позицию, то это свидетельствует о том, что тестируемый тиристор неспособен самостоятельно удерживаться в открытом состоянии.
  5. Иногда процесс проверки не получается с самого начала , в такой ситуации рекомендуется поменять щупы местами, поскольку у некоторых устройств переход в режим х1 кОм может вызвать изменение полярностей.


проверка мультиметром

Мультиметр представляет собой многофункциональное устройство, в которое входит, в том числе и омметр, с помощью него также можно осуществить соответствующую проверку:

  1. Первоначально , мультиметр должен быть переведен в режим прозвона.
  2. Щупы устанавливаются таким образом, чтобы плюс быть подключен на анод, а минус соответствовал катоду.
  3. Дисплей мультиметра должен показывать высокое напряжение, поскольку тиристор на данный момент находится в закрытом положении.
  4. На щупах имеется напряжение , поэтому можно подать плюс на управляющий электрод, для этого необходимо совершить кратковременное прикосновение соответствующим проводом от электрода к аноду.
  5. После совершенных действий , дисплей мультиметра должен начать показывать низкое напряжение, поскольку тиристор переходит в открытое состояние.
  6. Закрытие прибора произойдет снова , если убрать провод от электрода, этот процесс происходит из-за недостаточного количества электрического тока, который находится в щупах мультиметра. Исключение составляют отдельные разновидности тиристоров, например, которые задействованы в некоторых импульсных источниках питания ряда старых телевизоров, для них содержание тока будет достаточным, чтобы сохранить открытое состояние.

Использование омметра для проверки происходит по схожей схеме, поскольку современные модели обладают не стрелочным механизмом, а дисплеем, как у мультиметров. Подобная методика позволяет проводить тестирование исправного состояния полупроводниковых переходов без осуществления предварительного выпаивания тиристора из платы.

Устройство и принцип работы

Устройство тиристора выглядит следующим образом:

  1. 4 полупроводниковых элемента имеют последовательное соединение друг с другом, они различаются по типу проводимости.
  2. В конструкции имеется анод – контакт к внешнему слою полупроводника и катод, такой же контакт, но к внешнему n-слою.
  3. Всего имеются не более 2 управляющих электродов , которые подсоединены к внутренним слоям полупроводника.
  4. Если в устройстве полностью отсутствуют управляющие электроды , то такой прибор является особой разновидностью – динистором. При наличии 1 электрода, прибор относится к классу тринисторов. Управление может осуществляться через анод или катод, данный нюанс зависит от того, к какому слою был подключен управляющий электрод, но на сегодняшний день наиболее распространен второй вариант.
  5. Данные приборы могут подразделяться на виды , в зависимости от того, пропускают они электрический ток от анода к катоду или сразу в обоих направлениях. Второй вариант устройства получил название симметричные тиристоры, обычно состоящие из 5 полупроводниковых слоев, по своей сути они являются симисторами.
  6. При наличии в конструкции управляющего электрода , тиристоры могут быть разделены на запираемую и незапираемую разновидность. Отличие второго вида заключается в том, что такой прибор не может быть никаким способом переведен в закрытое состояние.


Принцип действия тиристора, подключенного к цепи постоянного тока, заключается в следующем:

  1. Включение прибора происходит благодаря получению цепью импульсов электрического тока. Подача происходит на полярность, которая является положительной относительно катода.
  2. На протяженность процесса перехода оказывает влияние целый ряд различных факторов: вид нагрузки; температура полупроводникового слоя; показатель напряжения; параметры тока нагрузки; скорость, с которой происходит нарастание управляющего тока и его амплитуда.
  3. Несмотря на значительную крутизну управляющего сигнала , скорость нарастания напряжения не должна достигать недопустимых показателей, поскольку это может вызвать внезапное отключение прибора.
  4. Принудительное отключение устройства может быть осуществлено разными способами, наиболее распространен вариант с подключением в схему коммутирующего конденсатора, обладающего обратной полярностью. Такое подключение может происходить благодаря наличию второго (вспомогательного) тиристора, который спровоцирует возникновение разряда на основной прибор. В таком случае, разрядный ток, прошедший через коммутирующий конденсатор, столкнется с прямым током основного прибора, что понизит его значение до нулевого показателя и вызовет отключение.


принцип работы

Немного отличается принцип действия тиристора, подключенного к цепи переменного тока:

  1. В таком положении прибор может осуществлять включение или отключение цепей с разными типами нагрузки, а также изменять значения электрического тока через нагрузку. Это происходит благодаря возможности тиристорного прибора изменять момент, в который осуществляется подача управляющего сигнала.
  2. При подключении тиристора в подобные цепи , применяется исключительно встречно-параллельное включение, поскольку он может проводить ток лишь в одном направлении.
  3. Показатели электрического тока изменяются благодаря внесению изменений в момент, когда происходит передача открывающих сигналов на тиристоры. Этот параметр регулируется при помощи специальной системы управления, относящейся к фазовой либо широтно-импульсной разновидности.
  4. При использовании фазового управления , кривая электрического тока будет обладать несинусоидальной формой, это также вызовет искажение формы и напряжения в электросети, от которой происходит питание внешних потребителей. Если они обладают высокой чувствительностью к высокочастотным помехам, то это может вызвать сбои в процессе функционирования.

Основные параметры тиристора

Для понимания принципов функционирования данного прибора и последующей работы с ним, необходимо знать его основные параметры, к которым относятся:

  1. Напряжение включения – это минимальный показатель анодного напряжения, при достижении которого тиристорное устройство перейдет в рабочий режим.
  2. Прямое напряжение – это показатель, определяющий падение напряжения при максимальном значении анодного электрического тока.
  3. Обратное напряжение – это показатель максимально допустимого значения напряжения, которое может быть оказано на устройство, когда оно находится в закрытом состоянии.
  4. Максимально допустимый прямой ток , под которым понимается его максимальное возможное значение во время, когда тиристор находится в открытом состоянии.
  5. Обратный ток , который возникает при максимальных показателях обратного напряжения.
  6. Время задержки перед включением или выключением устройства.
  7. Значение , определяющее максимальный показатель электрического тока для управления электродами.
  8. Максимально возможный показатель рассеиваемой мощности.


В завершение можно дать несколько следующих рекомендаций, которые могут пригодиться при осуществлении проверок тиристровых приборов:

  1. В отдельных ситуациях целесообразно проводить не только проверку исправности, но также и отбор тестируемых приборов по их параметрам. Для этого используется специальное оборудование, но сам процесс усложнен тем, что источник питания обязательно должен обладать напряжением на выходе с показателем не менее 1000В.
  2. Зачастую , проверка выполняется при помощи мультиметров или тестеров, поскольку такое тестирование организовать проще всего, но необходимо знать, что не все модели данных устройств способны осуществить открытие тиристора.
  3. Сопротивление пробитого тиристора чаще всего имеет показатели, близкие к нулю. По этой причине, кратковременное соединение анода исправного прибора с управляющим электродом показывает параметры сопротивления, которые свойственны короткому замыканию, а подобная процедура с неисправным тиристором не вызывает подобной реакции.

Тринистор — это особый вид полупроводников, который относится к подклассу тиристоров и к классу диодов . Он представляет из себя диод, но у этого «диода» имеется также и третий вывод, называемый Управляющим Электродом (УЭ). Получается, тринистор — это диод с тремя выводами:-).Тринисторы также называют по виду подкласса — тиристоры — и ошибки в этом нет, поэтому в этой статье я их буду называть просто тиристорами.

Выглядят они как-то вот так:

А вот и схемотехническое обозначение тиристора

Принцип работы тиристора основан на Принципе работы реле . Реле — это электромеханическое изделие, а тиристор — чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами и соседкой тетей Валей килограммов под двести и вы перемещаетесь с этажа на этаж. Как же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту? В этом примере и основан принцип работы тиристора. Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги (короче говоря с помощью Короткого замыкания , в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тринисторы, которые слева, устанавливают на алюминиевые радиаторы, а тринисторы-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешенная сила тока и коммутируют они очень большую мощность.

Маломощные тринисторы используются в радиопромышленности и, конечно же, в радиолюбительстве.

Давайте разберемся с некоторыми важными параметрами тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) U y — — наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тринистора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тринистор и электрический ток начинает спокойно себе течь через два оставшихся вывода — анод и катод тринистора. Это и есть минимальное напряжение открытия тринистора.

2)U обр max — обратное напряжение , которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус — на анод.

3) I ос ср среднее значение тока , которое может протекать через тринистор в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Ну и наконец-то переходим к самому важному — проверке тринистора. Будем проверять самый ходовый и знаменитый советский тринистор — КУ202Н.

А вот и его цоколевка

Для проверки тринистора нам понадобится лампочка, три проводка и Блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тринистора.

На анод подаем «плюс» от блока питания, на катод через лампочку «минус».

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тринистора U y отпирающее постоянное напряжение управления больше чем 0,2 Вольта. Берем полутора вольтовую батарейку и подаем напругу на УЭ. Вуаля! Лампочка зажглась!

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напруга тоже больше 0,2 Вольта

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения. Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Можно также проверить тиристор с помощью Мультиметра . Для этого собираем его по этой схемке:

Так как на щупах мультика в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает. На мультике мы видим 112 миллиВольт падение напряжения. Это значит, что он открылся.

После отпускания мультик снова показывает бесконечно большое сопротивление.

Почему же тиристор закрылся? Ведь лампочка в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ. Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.

Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:

Как проверить тиристор ку202н, такой вопрос часто возникает у людей, которые занимаются ремонтом или изготовлением электронных приборов. Развёрнутый ответ на этот, и другие подобные вопросы, мы постараемся дать в этой статье. Тиристоров существует большое количество видов, но проверять большинство из них можно одинаковыми методами. Проверить работоспособность тиристоров и симисторов можно мультиметром, батарейкой с лампочкой или специальным пробником. Все эти методы мы и рассмотрим в этой статье. Начнём с простейших.

На рисунке и фотографиях выше, представлена схема проверки тиристоров и симисторов (например ку202н, ку221а, ку201)при помощи мультиметра или любого тестера. Плюсовой провод прибора (красный) подключаем к аноду (А), а минусовой (чёрный) подключим на катод (К). Затем перемычкой из провода или любого проводящего ток предмета (например отвёртка), кратковременно замкнём анод и управляющий электрод (УЭ) прибор должен показать, что тиристор открылся. Если прибор не реагирует, то попробуйте поменять провода местами (у некоторых тестеров полярность меняется) и повторить эксперимент. Если реакции нет, то тиристор не годен. Этот метод применим для большинства видов тиристоров и симисторов и Вы теперь знаете как проверить симистор тестером.

Следующий метод описывает как проверить тиристор и симистор с помощью батарейки и подходящей по напряжению лампочки.

Как проверить тиристор лампочкой? На рисунке всё показано достаточно подробно. Проверка на работоспособность тиристоров и симисторов проводится точно так же, как и с помощью тестера или мультиметра. Для проверки подключаем батарейку и лампочку проводами, как на рисунке и касаемся плюсовым проводом управляющего электрода. Только нужно сказать, что для проверки симисторов полярность подключения источника тока не важна.

Ну и ещё один универсальный метод проверки на работоспособность симисторов и тиристоров с помощью специально сделанного своими руками тестера.

Давно нашёл в интернете схему проверки тиристоров и симисторов, всё руки не доходили сделать, но вот решился на эту работу и представляю Вашему вниманию результат.

R1, 2, 4, 5 – 330 ом. 0.125 – 0.25w. R3 – 68 ом. 0.25 – 0.5w. Диоды любые малогабаритные. Светодиоды любые красные. Кнопки любые маленькие. В качестве источника питания я решил использовать старую зарядку от телефона.

На печатной плате зарядного оказалось много свободного места и его нужно использовать.

Подобрал детали.

Печатную плату нужно немного модернизировать.

Вставляем детали в соответствии со схемой и запаиваем.

Собираем всю схему по временной компоновке для проверки работоспособности.

Проверяем в работе. Внимание! Детали зарядного находятся под напряжением сети. Опасно для жизни.

Убедившись, что схема работает, приступаем к окончательной сборке. Сверлим в корпусе отверстия для кнопок и светодиодов.

Перепаиваем детали для постоянного размещения.

Закрываем корпус и пробуем включение в сеть.

Нажимаем кнопку и убеждаемся, что схема работает.

Для проверки тиристоров и симисторов в других корпусах сделаем переходники для их подключения к нашему пробнику.

Припаиваем провода к “крокодилам”, изолируем термоусадочной изоляцией контакты и можно пользоваться.

Проверяем работоспособность симистора ку208г. 487

Симистор — один из радиоэлементов «семейства» тиристоров. Два других: динистор — двухэлектродный прибор, тринистор — трехэлектродный прибор. Симистор, по сути дела, тоже трехэлектродный прибор, но если в тринисторе три р-n перехода, то в симисторе их четыре. Поперечный разрез структуры кристалла тринистора показан на рис. 1 слева, а симистора — справа.

Благодаря такой структуре симистора удается, в отличие от тринистора, управлять проводимостью в обоих направлениях с помощью одного управляющего электрода. Вследствие этого симистор чаще всего используют в качестве ключа в цепях переменного тока.

Конструктивно симистор выполнен в таком же корпусе, что и тринистор (рис. 2). Аналогично тринистору одна крайняя область с проводимостью n-типа соединяется с корпусом и служит выводом 2. Другая крайняя область (п-типа) соединяется с выводом 1. Средняя область (р-типа) подключается к выводу управляющего электрода.

При работе в каком-то устройстве для открывания симистора управляющий импульс подается на управляющий электрод относительно вывода 1, а полярность импульса зависит от полярности коммутируемого напряжения, прикладываемого между выводами 1 и 2. Если напряжение на выводе 2 плюсовое, симистор открывается импульсом напряжения любой полярности. При минусовом напряжении на этом выводе управляющий импульс должен быть отрицательной полярности. Выключение (закрывание) симистора осуществляют, как и в случае с тринистором, снятием напряжения с вывода 2.

Разобравшись с устройством и работой симистора, нетрудно теперь научиться проверять его с помощью несложной приставки (рис. 3).


Переключатели SA1 и SA2 изменяют полярность управляющего и коммутируемого напряжения соответственно. Кнопка SB1 служит для подачи управляющих импульсов, a SB2 — для выключения симистора. Индикатором включения симистора служит лампа накаливания HL1, рассчитанная на то напряжение, которое подается на вывод 2 симистора. Питать приставку необходимо от двух раздельных источников.

Для монтажа деталей приставки можно использовать любой подходящий корпус из изоляционного материала, например, пластмассовую мыльницу (рис. 4).

При указанном на схеме положении подвижных контактов переключателей и нажатии на кнопку SB1 симистор откроется, индикаторная лампа загорится. Затем нажимают на кнопку SB2, симистор закрывается, лампа гаснет. Далее подвижные контакты переключателя SA1 переводят в противоположное положение и вновь нажимают на кнопку SB1. Если симистор исправен, лампа вспыхнет.

При помощи домашнего тестера (мультиметра) можно проверять самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой – это настоящая находка. Например, проверка тиристора мультиметром может избавить вас от необходимости поиска новой детали во время ремонта электрооборудования.

Это полупроводниковый прибор, выполненный по классической монокристальной технологии. На кристалле имеется три или более p-n перехода, с диаметрально противоположными устойчивыми состояниями. Основное применение тиристоров – электронный ключ. Можно эффективно использовать эти радиоэлементы вместо механических реле.

Включение происходит регулируемо, относительно плавно и без дребезга контактов. Нагрузка по основному направлению открытия p-n переходов подается управляемо, можно контролировать скорость нарастания рабочего тока.

К тому же тиристоры, в отличие от реле, отлично интегрируются в электросхемы любой сложности. Отсутствие искрения контактов позволяет применять их в системах, где недопустимы помехи при коммутации.

Деталь компактна, выпускается в различных форм-факторах, в том числе и для монтажа на охлаждающих радиаторах.

Управляются тиристоры внешним воздействием:

  • Электрическим током, который подается на управляющий электрод;
  • Лучом света, если используется фототиристор.

При этом, в отличие от того же реле, нет необходимость постоянно подавать управляющий сигнал. Рабочий p-n переход будет открыт и по окончании подачи управляющего тока. Тиристор закроется, когда протекающий через него рабочий ток опустится ниже порога удержания.

Тиристоры выпускаются в различных модификакциях, в зависимости от способа управления, и дополнительных возможностей.

  • Диодные прямой проводимости;
  • Диодные обратной проводимости;
  • Диодные симметричные;
  • Триодные прямой проводимости;
  • Триодные обратной проводимости;
  • Триодные ассиметричные.

Существует разновидность триодного тиристора, имеющая двунаправленную проводимость.

Что такое симистор, и чем он отличается от классических тиристоров?

Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.
Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.

Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.

Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.

Как прозвонить тиристор мультиметром?

Сразу оговоримся – проверить исправность тиристора можно и без тестера. Например, с помощью лампочки от фонарика и пальчиковой батарейки. Для этого включаем последовательно источник питания, соответствующий напряжению лампочки, рабочие выводы тиристора, и лампочку.

Важно! Не забудьте о том, что обычный тиристор проводит ток лишь в одном направлении. Поэтому соблюдайте полярность.

При подаче управляющего тока (достаточно батарейки АА) – лампочка будет гореть. Значит, управляющая цепь исправна. Затем отсоединяем батарейку, не отключая источник рабочего тока. Если p-n переход исправный, и настроен на определенную величину тока удержания – лампочка продолжает гореть.

Если под рукой нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.

    1. Переключатель тестера устанавливаем в режим «прозвонка». При этом на щупах проводов появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает p-n переход, поэтому сопротивление на выводах будет высоким, ток не протекает. На дисплее мультиметра высвечивается «1». Мы убедились в том, что рабочий p-n переход не пробит;
    2. Проверяем открытие перехода. Для этого соединяем управляющий вывод с анодом. Тестер дает достаточный ток для открытия перехода, и сопротивление резко уменьшается. На дисплее появляются цифры, отличные от единицы. Тиристор «открыт». Таким образом, мы проверили работоспособность управляющего элемента;

  1. Размыкаем управляющий контакт. При этом сопротивление снова должно стремиться к бесконечности, то есть на табло мы видим «1».

Почему тиристор не остался в открытом состоянии?

Дело в том, что мультиметр не вырабатывает величину тока, достаточную для срабатывания тиристора по «току удержания». Этот элемент мы проверить не сможем. Однако остальные пункты проверки говорят об исправности полупроводникового прибора. Если поменять местами полярность – проверка не пройдет. Таким образом, мы убедимся в отсутствии обратного пробоя.

Можно проверить и чувствительность тиристора. В этом случае, мы переводим переключатель тестера в режим омметра. Измерения производятся по раннее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начинаем с предела измерения вольтметра «х1».

Чувствительные тиристоры при отключении управляющего тока сохраняют открытое состояние, что мы и фиксируем на приборе. Увеличиваем предел измерения до «х10». В этом случае ток на щупах тестера уменьшается.

Если при отключении управляющего тока переход не закрывается – продолжаем увеличивать предел измерения до срабатывания тиристора по току удержания.

Важно! Чем меньше ток удержания – тем чувствительнее тиристор.

При проверке деталей из одной партии (или с одинаковыми характеристиками), выбирайте более чувствительные элементы. У таких тиристоров гибче возможности по управлению, соответственно шире область применения.

Освоив принцип проверки тиристора – легко догадаться, как проверить симистор мультиметром.

Важно! При прозвонке необходимо учитывать, что этот полупроводниковый ключ имеет симметричную двустороннюю проводимость.

Проверка симистора мультиметром

Схема подключения для проверки аналогичная. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов при одной полярности, переключаем щупы тестера на полярность обратную.

Исправный симистор должен показать весьма похожие результаты проверки. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.

Если радиодеталь, нуждающаяся в проверке, находится на монтажной плате – нет необходимости ее выпаивать для теста. Достаточно освободить управляющий вывод. Важно! Не забудьте предварительно обесточить проверяемый электроприбор.

В заключении смотрите видео: Как проверить тиристор мультиметром.

Как проверить тиристор мультиметром — Chip Stock

Проверка тиристора. Как убедиться в работоспособности

Прежде чем приступить к методам проверок тиристора, рассмотрим более подробно: что он собой представляет и как осуществляется проверка тиристора. Тиристор – это электронный прибор, предназначенный для управления током. Изготовлен он на основе монокристалла полупроводника и имеет устойчивые состояния, которые делятся на открытые и закрытые.

Открытое состояние характеризуется высокой проводимостью, а закрытое соответственно – низкой. Поэтому этот прибор еще называют ключом с неполным управлением. Их используют практически во всех приборах, где необходимо регулировать и контролировать алгоритм работы токов.

Также тиристоры используются как предохранители и транзисторы, чтобы в случае экстренных ситуациях обесточить управляемый прибор от большой нагрузки токов.

Типы тиристоров:

  • диодный тиристор с двумя выводами;
    • не проводит ток в обратном направлении;
    • проводит ток в обратном направлении;
  • симметричный диодный тиристор;
  • запираемый тиристор;
  • тиристор триодный с тремя выводами;
    • триодный тиристор, не проводит ток в обратном направлении;
    • триодный тиристор проводит ток в обратном направлении;
  • триодный симметричный;
  • триодный асимметричный;

Графическое изображение тиристора в схемах:

Являясь ключом, прибор с помощью низких сигналов способен управлять большими мощностями и токами, а также выполнять функцию переключателя.

Тиристоры существуют разных видов, например тринистор способен проводить ток лишь в одном направлении, а симистор, в двух.  Это дает больше возможностей и преимуществ, по сравнению с транзисторами и транзисторными ключами.

Тиристор начинает работать при помощи определенных скачков напряжения, сменой света, или при помощи любых внешних действий.

Обратите внимание

Также стоит заметить, что тиристор продолжает находиться в разомкнутом состоянии, если ток, который через него протекает больше или равен току удержания.

Ток удержания – это величина тока, которая не позволяет разомкнуться контактам тиристор.                                                                      

Насколько исправен прибор можно проверить при помощи пробника. Для этого подключаем нужный нам тиристор, переключатель ставим в положение переменного тока, а затем включаем питание. Лампочка должна загореться только после пуска. Затем выключаем. Тиристор пробит, если лампочка не гаснет. Если же лампа вообще не загорается, значит в приборе есть обрыв.

 Как проверить исправность при помощи подручных средств?

Пожалуй, самый простой способ проверки большинства тиристоров – это проверка при помощи лампочки накаливания с источником постоянного напряжения.

Далее приведена простейшая схема проверки тиристора (Рис. 1).

На катод надо присоединить “минус”, на саму лампочку “плюс” и резистор на управляющий электрод и как на схеме проверить, загорится ли она. При успешном загорании лампочки, после размыкания контактов, она также должна продолжать гореть

Как проверить тиристор с использованием тестера:

Для проверки тиристора при помощи тестера, достаточно будет использовать батарейку от 3.6 вольт. Тестер надо поставить в режим Ом и при касании к контактам тиристора данные на диалоговом окне тестера будут меняться. Естественно при размыкании контактов тестера и тиристора данные будут сведены к нулю.

Если при использовании тестеров старого поколения с аналоговой стрелкой, никакой реакции нет, то стоит поменять местами щупы. Это играет большую роль, так как меняется полярность.

Как видим, существует несколько способов проверки прибора. Вам же стоит подобрать наиболее подходящий для отдельного вида и в зависимости от имеющихся средств для проверки.

Источник: http://solo-project.com/articles/2/proverka-tiristora-kak-ubeditsya-v-rabotosposobnosti.html

Как проверить тиристор мультиметром: виды, тестирование, инструкция, питание

x

Check Also

Как почистить стиральную машину-автомат лимонной кислотой — советы и предосторожности По статистике машинка-автомат чаще всего портится именно из-за жесткости воды. К тому же они накапливают в себе накипь, остатки порошка, грязь, ржавчину и другое. Чтобы …

Многофункциональный очиститель filtero для стиральных машин отзывы Время и дату самовывоза либо доставки Многофункциональный очиститель для стиральных машин Filtero арт.Марка: Filtero. Город Москва.для стиральных машин. Борется с неприятными запахами. Фото, технические характеристики на Бытовая химия …

Таблетки для посудомоечных машин являются наиболее распространенными средствами для мытья посуды за счет универсальности, доступности и расширенного состава. Как правило, они содержат все необходимые компоненты для замачивания, мытья, полоскания и обработки предметов посуды. Это позволяет …

Подключение посудомоечной машины к электрическим коммуникациям – это довольно ответственное дело. До того момента, как просто воткнуть вилку в розетку, нужно такую розетку подготовить. Также нужно подготовить и установить автомат, хороший провод, влагостойкую розетку, стабилизатор …

Мало кого оставляет равнодушным работающая посудомоечная машина, ведь она освобождает нас от неприятного стояния возле раковины с тряпкой и раздражающим руки моющим средством. Но все меняется, когда машина ломается — настроение резко падает. Когда посудомоечная …

«Калгон»: состав моющего средства для удаления накипи Каждая домохозяйка старается следить за чистотой в своей квартире (доме). Все начинается с прихожей. Кухня, зал, спальня и даже ванная комната вымывается хорошей хозяйкой. К тому же необходимо …

Однажды настает момент, когда понимаешь, что без посудомоечной машины больше жить нельзя. Встает вопрос, какую модель посудомойки выбрать, чтобы была и функциональной, и надежной, и удобной? В этой статье мы поговорим об отдельно стоящей посудомоечной …

Посудомоечная машина — как самостоятельно встроить в готовую кухню? Трудно представить современную кухню без такой помощницы в быту, как посудомоечная машина. Она позволяет повысить качество жизни, экономя время и избавляя от нелюбимой многими рутинной работы. …

Важно

Девочки, все хвалят порошки производства Германия, кто каким пользуется и где его купить? Появились в России концентрированные Фрау Марта, кто-нибудь такой пробовал? Действительно это немецкий порошок и как отстирывает? Не знаю как насчет Фрау МАрта(никогда …

Выбирая технику на кухню, пользователь должен обращать внимание не только на функции и программы, но и на комплектацию камеры. Именно от этого зависит, будет ли удобно размещать посуду. Корзина для посудомоечной машины должная вмещать столько …

Детский порошок занимает важное место среди прочих бытовых средств. Например, можно использовать «Аистенок» (порошок). Отзывы о данном продукте, его состав и особенности нам сегодня предстоит узнать. Кроме того, попытаемся с вами разобраться, насколько данный товар …

Сейчас практически в каждом доме можно увидеть стиральную машину. Многие хозяйки не представляют жизнь без этого агрегата, ведь благодаря ему сохраняется столько свободного времени. На современном рынке можно встретить очень большой выбор различных моделей и …

Встраиваемая посудомоечная машина – это бытовая техника, предназначенная для встраивания в кухонный гарнитур. Она не имеет собственного декоративного корпуса, так как он ей и не нужен. Все дело в том, что она целиком вставляется в …

Что значат индикаторы и значки на посудомоечной машине Как только окончены работы по подключению, пользователь разбирается с запуском техники. Для этого нужно понять, что означают значки и индикаторы на панели посудомоечной машины. Если у вас …

Планируя приобрести посудомоечную машину, многие люди желают знать, как устроена эта техника и как она работает. Принцип работы очень прост – мойка осуществляется посредством разбрызгивания воды с растворенным в ней моющим средством. А вот устройство …

Для каких целей вообще предназначены посудомоечные машины? Естественно, для того, чтобы облегчить нам с вами жизнь, потому что не всегда есть силы и желание мыть посуду, а так — поставил, включил, и она себе моет. …

Источник: http://vizada.ru/2018/10/17/kak-proverit-tiristor-multimetrom-vidy-testirovanie-instrukciya-pitanie/

Как выполнить проверку симистора и тиристора мультиметром

Используя домашний тестер (мультиметр), легко выполнить проверку различных радиоэлементов. Для домашних мастеров, которые работают с электронными приборами это довольно полезная вещь.

К примеру, правильно выполненная проверка симистора мультиметром позволит избежать поиска новых деталей при ремонте электрооборудования.

 Чтобы понять данный процесс досконально, необходимо выяснить, что представляют собой тиристоры.

Читайте также:  Как из болгарки сделать циркулярный станок

Что такое тиристоры

Это полупроводниковые приборы, которые выполнены с учетом классических монокристальных технологий. На кристаллах имеются p-n переходы в количестве 3-х и более штук, с диаметрально противоположным устойчивым состоянием. Основным применением данной детали являются электронные ключи. Использование этих радиоэлементов может быть хорошей альтернативой механическому реле.

Процесс включения осуществляется регулируемым и плавным образом, без дребезжания контактов. Нагрузки по основным направлениям при открытии p-n перехода подаются управляемым образом, то есть присутствует возможность соблюдения контроля скорости при нарастании рабочего тока.

При этом, стоит отметить, что тиристор в сравнении с реле, может быть удачно интегрирован в электросхему с любым уровнем сложности. При отсутствии искрения каждого контакта, их можно использовать для систем, в которых не допускаются коммутационные помехи.  Детали довольно компактны, выпускаются в виде разных форм-факторов, также и для установки на охлаждающие радиаторы.

Управление прибором осуществляется посредством внешнего воздействия на основе:

  • электрического тока, что поступает на управляющие электроды;
  • луча света, в случае использования фототиристора.

Примечательно, что в сравнении с тем же реле, нет необходимости в постоянной подаче управляющего сигнала. Рабочие p-n переходы будут открыты и после того, как завершена подача тока. Тиристоры закроются, при опускании протекающего сквозь него рабочего тока ниже уровня порогов удержания.

Еще одно свойство тиристоров, которое является основной характеристикой — это использование их в качестве одностороннего проводника. Так, протекание паразитных токов в обратное направление осуществляться не будет. Благодаря чему значительно упрощаются схемы по управлению радиоэлементами.

Тиристор может выпускаться в различной модификакции, исходя из того, какой способ управления и дополнительные возможности необходимы. Он может быть:

  • диодным с прямой проводимостью;
  • диодным с обратной проводимостью;
  • диодным симметричным;
  • триодным с прямой проводимостью;
  • триодным с обратной проводимостью;
  • триодным ассиметричным.

Бывают также разновидности триодных тиристоров с двунаправленной проводимостью.

Что такое симистор, и в чем его отличие от тиристора

Симисторы (или «триаки») являются особыми разновидностями триодных симметричных тиристоров. Главным преимуществом любого симистора можно считать наличие способности проводки тока на рабочем p-n переходе в двух направлениях. Благодаря этому осуществляется использование радиоэлементов сфере систем, имеющих переменное напряжение.

Их рабочие принципы и конструктивные особенности сходны с остальными тиристорами. При подачах управляющих токов p-n переходы отпираются, и остаются открытым до момента снижения величин рабочих токов. Популярным применением симистора является использование его для регуляторов напряжений в осветительных системах и бытовых электроинструментах.

Принцип работы этого радиокомпонента схожий с принципом действия транзистора, однако деталь не является взаимозаменяемой. Разобравшись в том, что такое симистор и тиристор, необходимо также рассмотреть вопрос, о проверке этих деталей на показатели работоспособности.

Видео «Как проверить рабочее состояние тиристора и симистора»

Как прозвонить тиристор мультиметром

Стоит отметить, что существует несколько способов проверки исправности симисторов и тиристоров. Для этого необязательно использовать тестер, можно обойтись лампочкой от фонарика и пальчиковой батарейкой. Чтобы это сделать, нужно выполнить последовательное подключение источника питания, лампочки и рабочих выводов на тиристоре.

Следует помнить о том, что у обычного тиристора проводимость тока осуществляется только в одно направление. В связи с этим необходимо придерживаться полярности.

Когда будет подаваться управляющий ток (хватает аккумулятора АА), то будет происходить загорание лампочки, что означает о исправности цепи. После этого выполняем отсоединение батарейки, без отключения источника рабочего тока. При исправности p-n перехода и настройке его на определенных величинах, свечение лампочки будет продолжено.

В случае, если подходящая лампа или батарейка отсутствует, то придется использовать тестер. А для этого важно знать, как проверить тиристор мультиметром.

  1. Положение переключателя устанавливаем на «Прозвонку». На щупы каждого провода поступит необходимый уровень напряжения, чтобы проверить тиристор. Рабочим током не открываются p-n переходы, поэтому если значение сопротивления на выводе будет высокое, то это значит, что ток не проходит. Дисплей на мультиметре показывает «1». Так мы можем убедиться, в исправности рабочего p-n перехода;
  2. Выполняем проверку открытия перехода. С этой целью осуществляем соединение управляющего вывода с анодом. Тестером происходит обеспечение достаточным уровнем тока, чтобы выполнить открытие перехода, а величина сопротивления резко спадает. Дисплей отображает значения, которые отличаются от единицы. Это говорит об «открытии» тиристора. Благодаря этому мы выполнили проверку работоспособности управляющих элементов.
  3. Проводим размыкание управляющего контакта. В таком случае показатели сопротивления должны равняться бесконечности, об этом свидетельствует значение «1» на табло.

Из-за чего тиристор не имеет открытое состояние

Особенность состоит в том, что мультиметры не вырабатывают величины тока, достаточного для функционирования тиристоров по «токам удержаний». Данные элементы проверены быть не смогут.

Но на остальных пунктах проверки можно определить исправен ли полупроводниковый прибор. При изменении мест полярности — проверку осуществить невозможно.

Благодаря этому можно убедиться в том, что на приборе отсутствует обратный пробой.

Совет

Используя мультиметр, можно также выполнить проверку чувствительности прибора. Для этого нужно сделать перевод переключателя на тестере в режим омметра. Съем измерений осуществляется по заранее описанным методикам. Главное, каждый раз менять показатели чувствительности на приборе. Начинать следует с пределов измерений вольтметра «х1».

Чувствительный тиристор, если отключить управляющий ток, продолжает сохранять открытые состояния, что будет фиксироваться тестером. Далее увеличивается предел измерений до значения «х10». После изменения величина тока на щупе прибора уменьшится.

В случае, если управляющий ток был отключен, но переход не был закрыт, то проводим увеличение предела измерений до того момента, пока тиристор сработает по удерживающему току.

Примечательно, что при меньшем токе удержания, чувствительность тиристора больше.

Проверяя детали, которые идут в одной партии (или имеют одинаковые характеристики), стоит отдавать предпочтение более чувствительным элементам.

Такие тиристоры обладают более гибкими возможностями управления, что влияет на расширение их области применения. При освоении принципа проверки тиристоров, можно также понять, как проверить симистор мультиметром.

В процессе прозвонки следует учитывать, что полупроводниковые ключи обладают симметричной двусторонней проводимостью.

Как проверить симистор мультиметром

Симистор обладает аналогичной схемой проверки подключения. Можно воспользоваться лампой и батарейками или мультиметром, у которого широкий диапазон измерения в режиме омметра. Пройдя тесты с одной полярностью, выполняем переключение щупов прибора к обратной полярности.

У исправного симистора должны отображаться довольно однотипные результаты  тестирования. Следует выполнить проверку открытия и удержания p-n переходов по обоим направлениям шкалы предела измерений мультиметра.

Обратите внимание

Если радиодетали, которые должны быть проверены, находятся на монтажных платах, то нет потребности  в их выпаивании для теста. Для этого нужно только выполнить освобождение управляющего вывода. Главное, не забывать о предварительном обестачивании проверяемого электроприбора.

Чтобы более детально разобраться в особенностях проверки симистора мультиметром, рекомендуем просмотреть видео.

Видео «Как проверить исправность тиристора»

Источник: https://pro-instrymenti.ru/elektronika/proverka-simistora-multimetrom/

Симистор: применение и принцип работы, характеристики и проверка устройства мультиметром на исправность

Полупроводниковые элементы получили широкое применение в радиоэлектронике при создании различных устройств. Одним из самых простых полупроводников является диод, но при заметном росте научного прогресса стали расширяться области применения полупроводниковых приборов.

Симистор — полупроводниковый прибор, получивший широкое применение в изготовлении техники и различных бытовых приборов с электронным управлением.

Принципы работы и виды симисторов

Симистор, или триак, — это один из подвидов тиристоров, отличающийся большим количеством p-n переходов, и применяется для схем устройств, имеющих электронное управление.

Для понимания принципа работы симистора необходимо ознакомиться с простыми полупроводниковыми устройствами. Начать необходимо с простого и постепенно перейти к более сложному.

Полупроводниковый диод является простейшим полупроводниковым прибором, состоящим из одного p-n перехода. Выводы диода называются анодом и катодом.

При подключении полупроводникового элемента в цепь электрический ток проходит через катод и воздействует на него. Из курса физики известно, что ток, проходящий через проводник, оказывает на него тепловое действие.

После нагрева катод начинает испускать электроны (электрон имеет отрицательный заряд). Анод обладает положительным потенциалом и начинает притягивать отрицательно заряженные частицы (электроны) к себе.

Вследствие этого явления образуется эмиссионное поле, служащее причиной возникновения тока. Этот ток называется эмиссионным током.

Между анодом и катодом происходит генерация пространственного заряда с отрицательной составляющей, который мешает движению электронов к аноду.

Важно

Если положительный заряд на аноде очень мал, то электроны не могут преодолеть генерируемое поле и часть из них возвращается к катоду (катодный ток).

Все электроны, достигшие анода, определяют параметр анодного тока. Этот показатель напрямую зависит от потенциала на аноде.

В некоторых случая анодный или катодный токи могут быть равны нулю, что свидетельствует об отрицательном потенциале анода и положительном заряде катода соответственно (радиодеталь находиться в запертом состоянии). Для подробного понимания принципа работы диода необходимо знать его устройство.

Катод и анод называют еще кристаллом n-p типа. Этот кристалл изготавливается преимущественно из кремния или германия.

Одна из его частей имеет проводимость по p-типу (имеет искусственный недостаток электронов), а другая имеет избыток электронов с проводимостью по n-типу. Между кристаллами имеется граница (p-n переход).

Благодаря такой конструкции ток через диод может пройти только в одном направлении.

Основным отличием симистора от тиристора является иллюстрация примера с обыкновенной дверью. Дверь открывается — ток проходит, а закрывается — он не может пройти. Дверь может быть либо закрыта, либо открыта.

Ток тиристора проходит только в одном направлении. При наличии у полупроводникового прибора пяти p-n переходов и управляющего электрода (УЭ), он способен пропускать ток в двух направлениях (прямом и обратном).

Структурная схема симистора:

Совет

Полупроводниковые слои симистора напоминают переход транзистора (p-n-p), но имеют 3-и дополнительные n-области проводимости. Расположенные области у катода и анода и есть 4-й слой полупроводникового слоя.

Пятая область слоя находится возле УЭ. Работа симистора основана на более сложных процессах, чем у тиристора.

Разделение 4-ого слоя симистора не является случайным и при направлении движения токав одном направлении анод и катод выполняют определенные свои функции.

Источник: https://101sovet.guru/sovetyi-mastera/proverka-simistora-multimetrom

Как проверить тиристор

Источник: http://mikroshema-k.ru/kak_proverit_tiristor.html

Как проверить тиристор и симистор мультиметром

Устройство, принцип действия и параметры тиристоров

Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки. Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.

Устройство тиристора

При подаче напряжения на катушку, контакты реле замыкаются и пропускают токи большой величины. Такой же принцип работы и у электронного ключа — тиристора. На управляющий электрод подаётся управляющее напряжение до 10 В, открываются p-n переходы и пропускают большие токи, которые зависят от мощности тиристоров.

По сравнению с электромеханическим реле у тиристора нет дребезга контактов. Бесшумная работа электронного ключа и хорошая совместимость с любой электронной схемой, главные достоинства тиристоров. Используется тиристоры и симисторы там, где нужна регулировка больших токов.

Тиристоры также могут работать от светового луча, если в качестве управляющего электрода использовать фотоэлемент. Такой электронный ключ называется фототиристором.

Если тиристор пропускает только положительную полуволну переменного напряжения, то симистор прозрачен для токов в обоих направлениях, т. е. он рассчитан на работу с переменным напряжением.

К основным параметрам электронного ключа относятся:

  1. Iоткр.max — максимально допустимый ток тиристора.
  2. Uу — напряжение открывания.
  3. Uобр.max — наибольшее обратное напряжение элемента.
  4. Iуд — ток удержания в открытом состоянии ключа.

Как проверить тиристор мультиметром

Проверить работоспособность тиристора можно батарейкой или источником питания и лампочкой. Для проверки напряжение источника питания или батарейки должны соответствовать напряжению питания лампочки.

Если плюс источника приложить к аноду элемента, минус через лампочку подать на катод, а батарейку приложить плюсом к управляющему электроду, а минусом к аноду, то исправный тиристор откроется и лампочка загорится.

Схема проверки тиристора с дополнительным источником питания и батарейкой

Если убрать напряжение с управляющего электрода ключа лампочка не погаснет. Чтобы она погасла нужно снять напряжение источника питания с тиристора, или кратковременно изменить полярность управляющего напряжения. Лампочка не гаснет после снятия напряжения с управляющего электрода, потому что через тиристор протекает ток выше его тока удержания.

Определить ток удержания можно, если плавно снижать напряжение блока питания и через амперметр проконтролировать ток, при котором произойдет отключение лампочки. Таким образом, можно выбрать тиристор с наименьшим током удержания. Проверить работоспособность тиристора можно также одним мультиметром.

Прозвонка тиристора мультиметром

Переключатель режима измерения ставят в положение проверки диодов и проверяют сопротивление перехода УЭ — катод в обоих направлениях, оно должна быть в пределах от 50 до 500 ом.

Электронный ключ с наибольшим сопротивлением перехода УЭ — катод будет более чувствительный, с меньшим напряжением, при котором тиристор откроется.

Сопротивление катод — анод должно быть большим, на дисплее отображается 1.

Важно

Мы прозвонили тиристор мультиметром, а теперь проверим его на открытие перехода анод — катод. Плюс щупа мультиметра присоединяют к аноду, а минус к катоду. В положении X1 переключателя замыкают управляющий электрод на анод элемента. При исправном электронном ключе мультиметр показывает несколько десятков ом, т. е. тиристор открылся.

При отсоединении электрода от анода, тиристор закроется и мультиметр покажет единицу. При проверке мультиметром его ток меньше тока удержания ключа, поэтому тиристор закрывается. Удобно проверять электронные ключи на схеме ниже.

Схема проверки тиристора с дополнительным источником питания

В качестве источника используют блок питания или автомобильный аккумулятор. Подключают к схеме тиристор, подают питание на него кнопкой КН-1 и подключают УЭ кнопкой КН-2. Лампочка загорается.

Отключают КН-2, лампочка продолжает гореть, т. к. ток удержание элемента ниже, чем ток источника питания. Кнопкой КН-1 отключают источник питания, лампочка гаснет. Для источника питания 25 В сопротивление резистора 270 Ом.

Для других напряжений питания:

R = (0,9 — 1)Uпит/Iу.откр, где Iу.откр — ток удержания управляющим электродом (в справочнике)

Если в этой же схеме заменить источник постоянного напряжения, на трансформатор, с необходимым переменным напряжением вторичной обмотки, т. е. будем подавать переменное напряжение на тиристор, то лампочка будет гореть в половину накала, ведь этот элемент пропускает только положительную полуволну переменного напряжения. Для источника питания 25 В сопротивление резистора 270 Ом.

Если подключить симистор, то лампа загорится ярко, т. к. симистор пропускает полное переменное напряжение. Симистор проверяется по той же методике что и тиристор. Проверить тиристор и симистор мультиметром не выпаивая, не получится. Для полной проверки этих ключей нужно подавать постороннее напряжение на электронную схему, что чревато выходом ее элементом из строя.

Источник: http://electricavdome.ru/kak-proverit-tiristor-i-simistor-multimetrom.html

Как проверить тиристор мультиметром

Тиристоры сейчас применяются во многих бытовых приборах. Схем с их участием существует множество.

Домашние мастера, собирая зарядное устройство или регулятор накала обычной лампочки, должны быть уверены: тиристор т253 или какой-либо другой исправен. Для этого эти полупроводники следует проверить.

Особенности работы

Данный вид полупроводников представляет собой диод, имеющий третий вывод, управляющий электрод, дополнительный. Их часто называют еще и тринистрами. Через этот электрод они управляются путем пропускания электрического тока.

Ток пропускается в одном направлении, а помечают его кольцевой полоской, которую наносят у катода.

Работоспособность любого тиристора проверяют и пропусканием нагрузки. Использовать для этого можно маленькую лампочку от обычного фонарика. Ее нить будет светиться от самого маленького тока.

Если ток проходит через тиристор, то есть он работоспособен, то лампочка загорается, если же нет, то остается темной.

Проверка мультиметром

Операция эта проводится следующим образом:

  • переключатель прибора ставят на проверку диодов;
  • проверяют переходы полупроводника катод-управляющий электрод, а также катод-анод. Имейте в виду – сопротивление первого должно находиться в пределах от 50 до 500 Ом;
  • учтите, что в каждом отдельном случае величина в измерениях должна быть одинаковой хотя бы примерно. Следует иметь в виду, что чем она выше, тем чувствительнее полупроводник.

Однако даже положительный результат такой проверки ничего не значит. Если тиристор ранее использовался в какой-то схеме, то переход между анодом и катодом может быть перегоревшим. Величина его в обоих измерениях очень большая, но мультиметром измерить ее невозможно.

Тиристор лучше проверять с помощью источников питания. Например, это можно сделать благодаря цепи тока переменного. Изготавливают несложную испытательную плату с лампочкой-индикатором, проводами и обычной кнопкой включения-выключения.

От трансформатора включают ток в 12 В. Смотрят: если при нажатии кнопки включения лампочка горит в полнакала, то все в порядке. Такой слабый свет легко объясняется тем, что через тиристор проходит полуволна переменного напряжения.

В принципе, проверка годности полупроводников – не такое уж и трудное занятие, для которого профессионалы и не требуется. Впрочем, и специальные приборы, как оказалось, тоже.

Как проверить рабочее состояние тиристора и симистора:

Понравилась запись? Поделись с друзьями и поддержи сайт:

Источник: http://www.senao.org/kak-proverit-tiristor-multimetrom/

Принцип работы и проверка симистора мультиметром

Широкое применение в электронике и радиотехнике получило электронное регулирование параметров питания в различных цепях переменного тока при помощи симистора.

Бывают случаи, когда он выходит из строя и возникает необходимость правильной проверки на предмет исправности.

Для того чтобы это сделать, необходимо знать его принцип работы, предназначение и способы проверки мультиметром и другими приборами.

Общие сведения о симисторе

Симистор или триак является одним из подвидов тиристоров, которые состоят из большего количества переходов и используются в схемах устройств с электронным регулированием.

Ток тиристора проходит только в одном направлении, когда как симистор способен пропускать его сразу в 2-х благодаря наличию 5-того слоя. На рисунке изображена его структурная схема, по которой можно понять, как работает симистор.

Из пяти переходов образуется две структуры: р1-n2-p2-n3 и р2-n2-p1-n1 (2 тиристора включенных встречно-параллельно, показанных на рисунке 2).

Совет

Пятая область представляет собой управляющий электрод (УЭ), который осуществляет управление слоями.

Рисунок 1 — Структурная схема симистора

Если происходит обратное направление, то структуры меняются местами.

Рисунок 2 — Тиристорный аналог триака

При подаче на УЭ сигнала, который называется отпирающим, и при положительно-заряженном аноде, отрицательным — на катоде, ток течет через тиристор, расположенный слева на рисунке 2. При смене полярностей ток будет течь через правый. Как у любого полупроводникового прибора, у симистора есть вольт амперная характеристика (рисунок 3).

Рисунок 3 — Вольт амперная характеристика триака

ВАХ состоит из двух кривых, повернутых на 180 градусов. Их форма практически аналогична ВАХ динистора. Благодаря симметричности ВАХ прибор получил название симистор. Расшифровка обозначений ВАХ:

  1. А и В — закрытое и открытое состояния прибора.
  2. Udrm (Uпр) и Urrm (Uоб) — максимальные допустимые напряжения при прямом и обратном включениях.
  3. Idrm (Iпр) и Irrm (Iоб) — прямой и обратный токи.

Симистор позволяет управлять цепями переменного и постоянного токов. Однако тиристорный аналог симистора не может заменить прибор из-за ограничения: для управления напряжением переменной составляющей (переменного напряжения) нужно 2 тиристора, а также отдельный источник для каждого прибора, и тиристоры будут работать только наполовину мощности.

Примеры применения симметричных тиристоров:

  1. Для регулировки освещения (диммеры).
  2. Строительный инструмент с плавным пуском.
  3. Нагреватели с электронной регулировкой температуры (например, индукционная плита).
  4. Компрессоры для кондиционеров.
  5. Бытовая техника с плавной регулировкой.
  6. В промышленности (например: управление освещением, плавный пуск двигателей).
  7. При усовершенствовании приборов своими руками (например, чайника).

Источник: https://pochini.guru/sovety-mastera/proverka-simistora-multimetrom

Как проверить тиристор

 материалы в категории

Тиристор – это одна из разновидностей полупроводниковых приборов. Внешне он напоминает обыкновенный диод, но в отличие от простого диода он может работать как ключ: открываться и закрываться.

Поэтому кроме анода и катода у него имеется еще и третий вывод- для управления. Его так и называют: управляющий электрод (сокращенно УЭ)В общем-то тиристоры это целый подкласс диодов: они тоже имеют разновидности-

а.

просто тиристор: в открытом состоянии пропускает ток лишь в одну сторону

б. симистор или симметричный тиристор: в открытом состоянии может пропускать ток в обе стороны.
г. динистор: не имеет управляющего электрода и управляется приложенным к нему напряжением. Главный параметр у динистора- это так называемое пробивное напряжение: порог при котором динистор открывается и начинает пропускать ток.

Структура тиристора выглядит так:
Так он обозначается на схемах:

Тиристоры по мощности бывают, конечно-же, разные: повышенной мощности (силовые). Такие тиристоры рассчитаны на очень большой ток и выглядят приблизительно так:

Есть тиристоры и поменьше- для бытовой аппаратуры и , конечно, для радиолюбительских целей. Внешний вид у них может быть разный:

Ну теперь давайте разберемся как проверить тиристор. В качестве примера возьмем самый распространенный советский тиристор КУ202Н. Он выглядит так:

Для проверки нам понадобятся: блок питания с постоянным напряжением, лампочка, и еще один источник питания- например батарейка.

Припаиваем в выводам тиристора провода, на анод подаем плюс от источника питания, а минус подключаем через лампочку к катоду как на картинке ниже:

Теперь нам нужно тиристор “отпереть”. Для того чтобы открыть тиристор необходимо на его управляющий электрод подать напряжение больше чем на аноде на 0,2V.Для этого можно поступить двумя способами:

1. использовать отдельный источник питания. например батарейку. Если тиристор исправный, то лампочка должна загореться. См картинку:

2. Можно открыть тиристор мультиметром: для этого устанавливаем мультиметр в режим прозвонки- на его выводах тогда напряжение тоже будет выше 0,2V.

Ну это еще не все!!! После отпирания тиристор должен удерживаться в открытом состоянии. То есть лампочка должна продолжать гореть даже тогда когда с управляющего электрода убрали источник отпирающего напряжения.

Чтобы запереть тиристор нужно или убрать питание или подать на его управляющий вывод отрицательное напряжение.

Ну, и наконец, как быть если под рукою нет ни лампочки, ни источника питания а только лишь мультиметр? Тоже можно!

Как проверить тиристор мультиметром

Для проверки тиристора ставим мультиметр в режим “прозвонки” и подключаем щупы “плюс” на анод, “минус” на катод. Так как тиристор заперт, то на дисплее мультиметра будет высокое сопротивление.

Так как на щупах мультиметра имеется напряжение, то на управляющий электрод подаем “плюс”- кратковременно касаемся проводом от управляющего электрода на анод.Тиристор должен открыться и на дисплее мультиметра появится низкое значение.

А вот дальше- самое интересное: если сейчас убрать провод с управляющего электрода то тиристор вновь запрется. Возникает вполне логичный вопрос: почему он не остался в открытом виде как на предыдущем примере с лампочкой?

все дело в том что для удержания в тиристора в открытом виде требуется определенный ток а на щупах мультиметра он недостаточный. Хотя, сразу оговорюсь: недостаточный он именно для тиристора КУ202: для слабеньких тиристоров типа КУ112 (применялись в импульсных источниках питания отечественных телевизоров) этого тока вполне достаточно и тиристор останется в открытом виде.

Обратите внимание

Ну и напоследок: основная часть информации и изображения любезно предоставлены сайтом Практическая электроника, и за это им огромная благодарность.

Источник: http://radio-uchebnik.ru/txt/9-prakticheskaya-elektronika/31-kak-proverit-tiristor

Как проверять симисторы и тиристоры универсальным мультиметром

instrument.guru > Измерительные > Как проверять симисторы и тиристоры универсальным мультиметром

Любые электроприборы и электрические платы основаны на комплексе различных радиоэлементов, которые являются основой для нормального функционирования всего многообразия электротехники. Одним из основных элементов любой электросхемы является симистор, который представляет собой один из видов тиристора.

Оглавление:

  • Предназначение и использование симисторов в радиоэлектронике
  • Симисторы в электросхеме
  • Схема управления симистора
  • Практическое применение симисторов
  • Как проверить симистор мультиметром

Говоря тиристор, мы также будем подразумевать и симистор. Его предназначение заключается в коммутации нагрузки в сети переменного тока. Внутреннее устройство включает три электрода для передачи электрического тока: управляющий и 2 силовых.

Предназначение и использование симисторов в радиоэлектронике

Особенность тиристора заключается в пропускании тока от одного контакта (анода) к другому (катоду) и в обратном направлении. Любой тиристор управляется как положительным, так и отрицательным током. Для его работы нужно подать низковольтный импульс на управляющий контакт.

После такой сигнальной подачи симистор открывается и переходит из закрытого состояния в открытое, пропустив, через себя ток. Во время прохождения отпирающего тока через управляющий контакт он открывается.

А также отпирание происходит, когда напряжение между электродами превышает определённую величину.

При подаче переменного тока смена состояния тиристора вызывает изменение полярности напряжения на силовых электродах. Он закрывается, при смене полярности между силовыми выводами, а также когда рабочий ток ниже, чем ток удержания.

Для предотвращения ложного срабатывания симистора, вызванное различными радиомеханическими помехами, использующиеся приборы имеют дополнительную защиту. Для этого обычно используется демпферная RC цепочка (последовательное соединение резистора и конденсатора постоянного тока) между силовыми контактами симистора.

Иногда используется индуктивность. Она служит для ограничения скорости изменения тока при коммутации.

Симисторы в электросхеме

Если говорить о симисторах, необходимо принять во внимание и тот факт, что это один из видов тиристора, который тоже имеет три и более p — n переходов.

Их различие лишь в управляющем катоде, который определяет соответственные переходные характеристики пропускаемого тока и в принципе работы в электросхемах.

Обычно они начинают свою работу сразу после запуска подводящего напряжения на нужный контакт.

Схема управления симистора

Схема управления на тиристоре проста и надёжна. Они намного упрощают принципиальную схему своим присутствием, освобождая её от лишних электродеталей и дорожек. Тем самым облегчая и дальнейший ремонт (проверка и прозвонка) в случае необходимости или выхода из строя радиоэлектронных блоков с их участием.

Практическое применение симисторов

  1. Подключение электрооборудования через оптопару с помощью управляющего тиристора позволяет управлять определёнными процессами в материнской плате компьютера, а также защитить её от перегрузок, которые могут привести к плачевным последствиям. В этом случае он служит своеобразным предохранителем, который отключает систему в нужный момент.
  2. В регуляторах мощности он включается в нужную ветвь выпрямителя. Изменяя импульсы питания двигателя, он регулирует промежутки подачи электропитания, для устойчивой мощности на низких оборотах движка.
  3. Частое применение симисторов наблюдается в регуляторах мощности для индуктивной нагрузки, где они управляют диапазонами частот и не только.
  4. Тиристорный регулятор громкости стабилизирует перепады напряжения, которые возникают в процессе работы музыкальных центров и прочих нагрузок, требующие стабилизации определённых режимов.
  5. Вентиляторные стабилизаторы на тиристорах регулируют функциональные характеристики не только исключая перегрев, но и соблюдая нужное количество оборотов.

Как проверить симистор мультиметром

  • Проверять мультиметром и не только (первый метод проверки). Для проверки тиристора мультиметром нужно отсоединить управляющий электрод из электрической схемы. Омметр необходимо присоединить к анодному и катодному контакту. При бесконечном сопротивлении и кратковременном замыкании управляющего электрода к заземлению произойдёт отпирание симистора. Проверка тестером практически не отличается от измерения показателей, которые делаются вольтметром мультиметра. Принцип остаётся одним и тем же — проверка электропроводимости.
  • Прозвонить мультиметром.(второй метод проверки). Следует заметить, что мультиметр не создаёт достаточную величину тока для срабатывания тиристора, поэтому следует проверить его чувствительность омметром. Если, отключая, управляющий ток чувствительный тиристор (симистор) сохраняет открытое сопротивление, то это фиксируется на приборе. Дальше, увеличивая предел измерения на 10, ток на щупах мультиметра или тестера должен уменьшаться.
  • Проверять на исправность и работоспособность.(третий метод проверки). При полном отключении управляющего тока должен закрыться переход. Если этого не происходит, нужно продолжить увеличение предела измерения до сработки симистора (тиристора) по току удержания. Чувствительность тиристора или симистора определяется по соответствию тока удержания. Чем ток удержания меньше — тем симистор или тиристор более чувствителен.

Необходимые знания для проверки, замены и последующего ремонта различных радиоэлектронных блоков с участием симисторов или тиристоров помогут любому радиолюбителю в повышении своих профессиональных и практических навыков.

Источник: https://instrument.guru/izmeritelnye/kak-proveryat-simistory-i-tiristory-universalnym-multimetrom.html

Как проверить симистор мультиметром, чтобы не покупать новую деталь?

При помощи домашнего тестера (мультиметра) можно проверять самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой – это настоящая находка.

Например, проверка тиристора мультиметром может избавить вас от необходимости поиска новой детали во время ремонта электрооборудования.

Для понимания процесса, разберем, что такое тиристор:

Это полупроводниковый прибор, выполненный по классической монокристальной технологии. На кристалле имеется три или более p-n перехода, с диаметрально противоположными устойчивыми состояниями.

Важно

Основное применение тиристоров – электронный ключ. Можно эффективно использовать эти радиоэлементы вместо механических реле.

Включение происходит регулируемо, относительно плавно и без дребезга контактов. Нагрузка по основному направлению открытия p-n переходов подается управляемо, можно контролировать скорость нарастания рабочего тока.

К тому же тиристоры, в отличие от реле, отлично интегрируются в электросхемы любой сложности. Отсутствие искрения контактов позволяет применять их в системах, где недопустимы помехи при коммутации.

Деталь компактна, выпускается в различных форм-факторах, в том числе и для монтажа на охлаждающих радиаторах.

Управляются тиристоры внешним воздействием:

  • Электрическим током, который подается на управляющий электрод;
  • Лучом света, если используется фототиристор.

При этом, в отличие от того же реле, нет необходимость постоянно подавать управляющий сигнал. Рабочий p-n переход будет открыт и по окончании подачи управляющего тока. Тиристор закроется, когда протекающий через него рабочий ток опустится ниже порога удержания.

Еще одним свойством тиристора, которое используется как основная характеристика – он является односторонним проводником. То есть паразитные токи в обратном направлении протекать не будут. Это упрощает схемы управления радиоэлемента.

Тиристоры выпускаются в различных модификакциях, в зависимости от способа управления, и дополнительных возможностей.

  • Диодные прямой проводимости;
  • Диодные обратной проводимости;
  • Диодные симметричные;
  • Триодные прямой проводимости;
  • Триодные обратной проводимости;
  • Триодные ассиметричные.

Популярное:  Как проверить аккумулятор мультиметром на работоспособность

Существует разновидность триодного тиристора, имеющая двунаправленную проводимость.

Что такое симистор, и чем он отличается от классических тиристоров?

Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.

Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.

Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.

Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.

Как прозвонить тиристор мультиметром?

Сразу оговоримся – проверить исправность тиристора можно и без тестера. Например, с помощью лампочки от фонарика и пальчиковой батарейки.

Для этого включаем последовательно источник питания, соответствующий напряжению лампочки, рабочие выводы тиристора, и лампочку.

При подаче управляющего тока (достаточно батарейки АА) – лампочка будет гореть. Значит, управляющая цепь исправна. Затем отсоединяем батарейку, не отключая источник рабочего тока. Если p-n переход исправный, и настроен на определенную величину тока удержания – лампочка продолжает гореть.

Если под рукой нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.

  1. Переключатель тестера устанавливаем в режим «прозвонка». При этом на щупах проводов появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает p-n переход, поэтому сопротивление на выводах будет высоким, ток не протекает. На дисплее мультиметра высвечивается «1». Мы убедились в том, что рабочий p-n переход не пробит;
  2. Проверяем открытие перехода. Для этого соединяем управляющий вывод с анодом. Тестер дает достаточный ток для открытия перехода, и сопротивление резко уменьшается. На дисплее появляются цифры, отличные от единицы. Тиристор «открыт». Таким образом, мы проверили работоспособность управляющего элемента;
  3. Размыкаем управляющий контакт. При этом сопротивление снова должно стремиться к бесконечности, то есть на табло мы видим «1».

Почему тиристор не остался в открытом состоянии?

Дело в том, что мультиметр не вырабатывает величину тока, достаточную для срабатывания тиристора по «току удержания».

Этот элемент мы проверить не сможем. Однако остальные пункты проверки говорят об исправности полупроводникового прибора. Если поменять местами полярность – проверка не пройдет. Таким образом, мы убедимся в отсутствии обратного пробоя.

При помощи мультиметра можно проверить и чувствительность тиристора. В этом случае, мы переводим переключатель тестера в режим омметра. Измерения производятся по раннее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начинаем с предела измерения вольтметра «х1».

Совет

Чувствительные тиристоры при отключении управляющего тока сохраняют открытое состояние, что мы и фиксируем на приборе. Увеличиваем предел измерения до «х10». В этом случае ток на щупах тестера уменьшается.

Если при отключении управляющего тока переход не закрывается – продолжаем увеличивать предел измерения до срабатывания тиристора по току удержания.

При проверке деталей из одной партии (или с одинаковыми характеристиками), выбирайте более чувствительные элементы. У таких тиристоров гибче возможности по управлению, соответственно шире область применения.

Освоив принцип проверки тиристора – легко догадаться, как проверить симистор мультиметром.

Проверка симистора мультиметром

Схема подключения для проверки аналогичная. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов при одной полярности, переключаем щупы тестера на полярность обратную.

Исправный симистор должен показать весьма похожие результаты проверки. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.

Если радиодеталь, нуждающаяся в проверке, находится на монтажной плате – нет необходимости ее выпаивать для теста. Достаточно освободить управляющий вывод. Важно! Не забудьте предварительно обесточить проверяемый электроприбор.

В заключении смотрите видео: Как проверить тиристор мультиметром.

Источник: http://obinstrumente.ru/elektronika/multimetr/kak-proverit-simistor-multimetrom.html

Поделиться ссылкой:

В последние годы очень широко стали применятся в электронных устройствах тиристоры и их собратья симисторы.

Если раньше по большей части они использовались в промышленности, то сейчас очень много применяется и в бытовых устройствах, например для регулирования числа оборотов двигателей, регуляторах мощности и т.д.

Как проверить диод и транзистор с помощью мультиметра, было уже написано ранее. Тиристор же проверить таким методом не удастся, потому что он имеет 4 p-n перехода, а симистор все 5.

Для этого нам нужно будет собрать, так называемый, тестер тиристоров. На его изготовление уйдет всего несколько минут. Схема показана ниже.

В этой схеме к аноду тиристора прикладывается положительное напряжение, а к катоду отрицательное. Желательно его выбрать соответствующее номиналу элемента. Но можно использовать и меньшее. На схеме резисторы подобраны под 9 – 12 вольт.

Если напряжение будет соответствовать номиналу, то сопротивление резисторов нужно будет пересчитать. Проверка осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). При этом светодиод HL1 должен загореться, так как тиристор откроется.

Для того чтобы он закрылся необходимо снять напряжение (принцип работы тиристора). Если светодиод загорается сразу после подачи напряжения на анод и катод или если не загорается после подачи управляющего напряжения, то такой тиристор является неисправным.

Есть еще один способ проверки, с помощью мультиметра.

Он подходит если необходимо проверить один или несколько элементов. Схема подключения таким способом показана на рисунке.

Обратите внимание

Чтобы проверить тиристор мультиметром нужно прибор переключить в режим измерения сопротивления и подключить плюсовой щуп к аноду, а минусовой к катоду. К управляющему электроду подключить кнопку, второй контакт которой подключен к аноду.

До того как будет нажата кнопка, мультиметр должен показывать бесконечно большое сопротивление, потому что тиристор находится в закрытом состоянии. После нажатия тиристор откроется, и сопротивление упадет до нескольких Ом.

Для закрытия тиристора достаточно будет кратковременно отсоединить один из щупов. Если же после подключения тиристора к прибору сопротивление сразу мало или после нажатия кнопки сопротивление не уменьшается, то такой тиристор является неисправным.

Кстати, таким способом можно проверять тиристоры, не выпаивая из большинства схем.

Анекдот:

Новые русские:  Детский крик из прихожей: – Ма-ам! Ма-а-ма-а! Мам!  – Ну чего ты орёшь?! Я в гостиной. Иди сюда и скажи нормально, что тебе надо.  Ребенок шлёпает через всю квартиру, подходит к маме. 

– Мам, я тут в говно наступил. Где мне сандалик помыть?

Как проверить тиристор? | Электрознайка. Домашний Электромастер.




data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8788166382″>
   На своем блоге я поместил рассылку на бесплатные уроки на тему: «Тиристоры. Это очень непросто!».
В этих уроках я, в популярной форме, постарался как можно проще изложить суть работы тиристора: как он устроен, как работает в цепи постоянного и переменного тока. Привел много действующих схем на тиристорах и динисторах.

В этом уроке, по просьбе подписчиков, привожу несколько примеров проверки тиристора на целостность.

Как же проверить тиристор?

Предварительная проверка тиристора  проводится с помощью тестера-омметра или цифрового мультиметра.
Переключатель цифрового мультиметра должен стоять в положении проверки диодов.
С помощью омметра или мультиметра, проверяются переходы тиристора: управляющий электрод – катод и переход анод – катод.
Сопротивление перехода тиристора, управляющий электрод – катод, должно быть в пределах 50 – 500 Ом.
В каждом случае величина этого сопротивления должна быть примерно одинакова при прямом и обратном измерении. Чем больше величина этого сопротивления, тем чувствительнее тиристор.
Другими словами, будет меньше величина тока управляющего электрода, при котором тиристор переходит из закрытого состояния в открытое состояние.
У исправного тиристора величина сопротивления перехода анод – катод, при прямом и обратном измерении, должна быть очень большой, то есть имеет «бесконечную» величину.
Положительный результат этой предварительной проверки, еще ни о чем не говорит.
Если тиристор уже стоял где то в схеме, у него может быть «прогорел» переход анод — катод.  Эту неисправность тиристора мультиметром не определишь.

Основную проверку тиристора нужно проводить, используя дополнительные источники питания. В этом случае полностью проверяется работа тиристора.
Тиристор перейдет в открытое состояние в том случае, если через переход, катод – управляющий электрод, пройдет кратковременный импульс тока, достаточный для открытия тиристора.

Такой ток можно получить двумя способами:
1. Использовать основной источник питания и резистор R, как на рисунке №1.
2. Использовать дополнительный источник управляющего напряжения, как на рисунке №2.

    Рассмотрим схему проверки тиристора на рисунке №1.
Можно изготовить небольшую испытательную плату, на которой разместить провода, индикаторную лампочку и кнопки переключения.

Проведем проверку тиристора при питании схемы постоянным током.

    В качестве нагрузочного сопротивления и наглядного индикатора работы тиристора, применим маломощную электрическую лампочку на соответствующее напряжение.
Величина сопротивления резистора R выбирается из расчета, чтобы ток, протекающий через управляющий электрод – катод, был достаточным для включения тиристора.
Ток управления тиристором пройдет по цепи: плюс (+) – замкнутая кнопка Кн1 – замкнутая кнопка Кн2 – резистор R – управляющий электрод – катод – минус (-).
Ток управления тиристора для КУ202 по справочнику равен 0,1 ампера. В реальности, ток включения тиристора, где то 20 – 50 миллиампер и даже меньше. Возьмем 20 миллиампер, или 0,02 ампера.
Основным источником питания может быть любой выпрямитель, аккумулятор или набор батареек.
Напряжение может быть любым, от 5 до 25 вольт.
Определим сопротивление резистора R.
Возьмем для расчета источник питания U = 12 вольт.
R = U : I = 12 В : 0,02 А = 600 Ом.
Где: U – напряжение источника питания; I – ток в цепи управляющего электрода.

Величина резистора R будет равна 600 Ом.
Если напряжение источника будет, например, 24 Вольта, то соответственно R = 1200 Ом.

    Схема на рисунке №1 работает следующим образом.

В исходном состоянии тиристор закрыт, электрическая лампочка не горит. Схема в таком состоянии может находиться сколько угодно долго. Нажмем кнопку Кн2 и отпустим. По цепи управляющего электрода пойдет импульс тока управления. Тиристор откроется. Лампочка будет гореть, даже если будет оборвана цепь управляющего электрода.
Нажмем и отпустим кнопку Кн1. Цепь тока нагрузки, проходящего через тиристор, оборвется и тиристор закроется. Схема придет в исходное состояние.

Проверим работу тиристора в цепи переменного тока.

    Вместо источника постоянного напряжения U включим переменное напряжение 12 вольт, от какого либо трансформатора (рисунок №2).

В исходном состоянии лампочка гореть не будет.
Нажмем кнопку Кн2. При нажатой кнопке лампочка горит. При отжатой кнопке — тухнет.
При этом лампочка горит «в пол – накала». Это происходит потому, что тиристор пропускает только положительную полуволну переменного напряжения.
Если вместо тиристора будем проверять симистор, например КУ208, то лампочка будет гореть в полный накал. Симистор пропускает обе полуволны переменного напряжения.

Как проверить тиристор от отдельного источника управляющего напряжения?

Вернемся к первой схеме проверки тиристора, от источника постоянного напряжения, но несколько видоизменив ее.

Смотрим рисунок №3.

    В этой схеме ток управляющего электрода подается от отдельного источника. В качестве него можно использовать плоскую батарейку.
При кратковременном нажатии на кнопку Кн2, лампочка так же загорится, как и в случае на рисунке №1. Ток управляющего электрода должен быть не менее 15 – 20 миллиампер. Запирается тиристор, так же, нажатием кнопки Кн1.
Так проверяются «не запираемые» тиристоры (КУ201, КУ202, КУ208 и др.).

Запираемый тиристор
, например КУ204, отпирается положительным полюсом на управляющем электроде и минусом на катоде. Запирается, отрицательным напряжением на управляющем электроде и положительном на катоде.
Менять полюсовку управляющего напряжения можно с помощью переключателя П.
Нужно обратить внимание на то, что «запирающий ток» тиристора, почти в два раза больше отпирающего. Если вдруг тиристор КУ204 не будет запираться, нужно уменьшить величину сопротивления резистора R до 50 Ом.


data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8788166382″>
Цепь тестера транзисторов

, TRIAC и SCR

В различных типах электронных схем вы могли встретить несколько общих элементов. Некоторые из этих широко используемых полупроводниковых устройств, без которых электрическая цепь почти не завершена, — это тиристоры, транзисторы и симисторы. В широких электронных схемах, когда небольшие элементы не работают, его последствия влияют на производительность всей схемы. Таким образом, перед построением общей схемы нужно быть достаточно мудрым, чтобы проверить функционирование элементов схемы, чтобы избежать осложнений в будущем.Схема тестера транзисторов, TRIAC и SCR, представленная ниже, помогает нам аналогичным образом тестировать транзисторы SCR, TRIAC и PNP, NPN.

Описание схемы тестера транзисторов, симисторов и тиристоров

Схема тестера транзисторов работает от источника постоянного тока. Это питание получено из специальной схемы стабилитрона в сочетании с понижающим трансформатором и выпрямителем, как показано на рисунке 1. Несмотря на использование такой схемы, мы также можем обеспечить источник питания для этой схемы, используя два стержневых элемента. .

Тестирование

SCR | Схема тестера транзисторов, симисторов и тиристоров

Прежде всего, давайте поговорим о тестировании тиристора с помощью схемы тестера транзисторов. Первоначально он вставляется в розетку, а клеммы вставляются в соответствующие гнезда. Затем переводим переключатель SW 3 в положение «включено» (в направлении A) и кратковременно нажимаем переключатель SW 1 . При этом светодиод светится и светится до тех пор, пока не будет нажат переключатель SW 2 . При этом питание понижающего трансформатора прерывается на время с помощью переключателя SW 4 .Это указывает на то, что тестируемый SCR можно использовать без сомнения.

Аналогично, если переключатель SW 3 находится в положении «выключено» (в направлении B), ток, протекающий через тиристор, можно контролировать, подключив мультиметр или миллиамперметр. Если светодиод не горит до конца, значит, SCR не работает или не работает должным образом. Свечение светодиода само по себе указывает на неисправный, т.е. негерметичный SCR. Единственный случай, когда SCR исправен, — это когда светодиод светится на мгновение при нажатии переключателя SW 1 и гаснет при нажатии переключателя SW 2 .

TRIAC Testing | Схема тестера транзисторов, симисторов и тиристоров

Аналогично, в случае тестирования симисторов с использованием схемы тестера транзисторов, соответствующие клеммы должны быть правильно подключены — клемма MT1 к точке A (положительная), клемма MT2 к точке K (отрицательная), а ее затвор к точка G. после установки этого устройства, при кратковременном нажатии переключателя SW 1 загорается светодиод. При кратковременном нажатии переключателя SW 2 светодиод гаснет. Опять же, при нажатии переключателя SW 5 светодиод не горит.

Теперь меняем направление МТ1 и МТ2 на противоположное, т.е. терминал МТ1 подключен к минусу, а МТ2 — к плюсу. При нажатии переключателя SW 2 , если светодиод остается в выключенном состоянии и проводимость не инициируется, TRIAC работает правильно. И, в то же время, нажатие переключателя SW 5 на короткое время инициирует проводимость симистора, и светодиод загорается.

Неисправный TRIAC ведет себя так же, как SCR. Тестируемый TRIAC можно считать хорошим или пригодным к использованию только тогда, когда светодиод светится в обоих вышеупомянутых тестах.

Следует очень внимательно проверить соединение анода MT1 с корпусом перед подключением SCR / TRIAC для тестирования. TRIAC состоит из двух SCR, соединенных спина к спине. Первый принимает положительный импульс как проводимость, а второй принимает отрицательный импульс как проводимость.

Тестирование транзисторов | Схема тестера транзисторов, TRIAC и SCR

Чтобы проверить транзисторы с помощью схемы тестера транзисторов, необходимо добавить несколько резисторов примерно 1 кОм в цепь между соединением переключателей SW 1 , SW 5 и точкой G.Расположение должно быть таким, чтобы коллектор NPN или эмиттер PNP-транзистора был подключен к плюсу (точка A). Аналогичным образом эмиттер NPN и коллектор PNP-транзистора подключены к минусу (точка K. В обоих случаях затвор подключен к точке G.

Для NPN-транзисторов, при нажатии переключателя SW 1 , светодиод светится и включается. отпуская / поднимая палец, он гаснет.Это означает, что транзистор можно использовать.Точно так же тестируемые транзисторы PNP считаются исправными только тогда, когда светодиод светится при нажатии переключателя SW 5 и гаснет при отпускании.Непрерывное свечение светодиода само по себе указывает на неисправность протекающего тиристора или транзисторов. На рисунке 2 показано обычное направление тока и условие прямого смещения для транзисторов PNP и NPN.

Ознакомьтесь с другой схемой электронного тестера, размещенной на сайте bestengineeringprojects.com

  1. Цифровой тестер непрерывности напряжения переменного / постоянного тока
  2. Цепь тестера кабеля RJ45
  3. Цепь тестера стабилитрона
  4. Схема тестера сервомотора с использованием микросхемы 555
  5. 5 Государственный цифровой тестер ИС и цепей
  6. 555 Тестер ИС с таймером

ПЕРЕЧЕНЬ ДЕТАЛЕЙ ЦЕПИ ТРАНЗИСТОРА, СИСТЕМЫ И ТИРИОРА

900 Разное
Резистор (полностью-ватт, ± 5% углерода)
R 1 = 220 Ом

R 2 = 100 Ом

Конденсаторы
C 1 = 1000 мкФ, 16 В (электролитический конденсатор)

C 2 = 0.01 мкФ (керамический конденсатор)

Полупроводники
D 1 , D 2 = 1N4001 (выпрямительный диод)

ZD 1 = 3,3 В, стабилитрон 400 мА

X 1 = 230 В перем. Тока первичная до 4,5 В-0-4,5 В 100 мА сек. трансформатор

SW 1 , SW 5 = переключатель PUSH-TO-ON

SW 2 = переключатель PUSH-TO-OFF

SW 3 = ползунковый переключатель

SW 4 = тумблер

Нравится:

Нравится Загрузка…

Цепь твердотельного реле, использующая симисторы и переключение через нуль

Твердотельное реле сети переменного тока или SSR — это устройство, которое используется для переключения тяжелых нагрузок переменного тока на уровне сети через изолированные триггеры с минимальным напряжением постоянного тока, без включения механического перемещения контакты.

В этом посте мы узнаем, как построить простое твердотельное реле или цепь SSR с использованием симистора, BJT, оптопары с переходом через нуль.

Преимущество твердотельных твердотельных реле над механическими реле

Реле механического типа могут быть довольно неэффективными в приложениях, требующих очень плавного, очень быстрого и чистого переключения.

Предложенная схема SSR может быть построена дома и использоваться в местах, где требуется действительно сложное управление нагрузкой.

В данной статье описывается схема твердотельного реле со встроенным детектором перехода через ноль.

Схема очень проста в понимании и построении, но при этом имеет такие полезные функции, как чистое переключение, отсутствие радиочастотных помех и способность выдерживать нагрузки до 500 Вт. Мы много узнали о реле и о том, как они работают.

Мы знаем, что эти устройства используются для переключения тяжелых электрических нагрузок через внешнюю изолированную пару контактов в ответ на небольшой электрический импульс, полученный с выхода электронной схемы.

Обычно триггерный вход находится вблизи напряжения обмотки реле, которое может составлять 6, 12 или 24 В постоянного тока, в то время как нагрузка и ток, коммутируемые контактами реле, в основном находятся на уровнях потенциалов сети переменного тока.

В основном реле полезны, потому что они могут переключать тяжелые, подключенные к их контактам, не приводя опасные потенциалы в контакт с уязвимой электронной схемой, через которую они переключаются.

Однако преимущества сопровождаются несколькими критическими недостатками, которые нельзя игнорировать.Поскольку контакты связаны с механическими операциями, иногда они совершенно не подходят для сложных схем, требующих высокоточного, быстрого и эффективного переключения.

Механические реле также имеют плохую репутацию генерировать радиопомехи и шум во время переключения, что также приводит к ухудшению качества его контактов со временем.


Для SSR на основе MOSFET, пожалуйста, обратитесь к этому сообщению


Использование SCR или Triac для создания SSR

Симисторы

и SCR считаются хорошей заменой там, где вышеуказанные реле оказываются неэффективными, однако это также может включать Проблемы генерации радиочастотных помех во время работы.

Также тиристоры и симисторы при интеграции непосредственно в электронные схемы требуют, чтобы линия заземления схемы была соединена с катодом, что означает, что секция схемы больше не изолирована от смертоносных напряжений переменного тока от устройства — серьезный недостаток с точки зрения безопасности. к пользователю обеспокоен.

Однако симистор может быть очень эффективно реализован, если полностью устранить вышеупомянутую пару недостатков. Поэтому две вещи, которые должны быть устранены с помощью симисторов, если они должны быть эффективно заменены на реле, — это радиочастотные помехи при переключении и попадание опасной сети в цепь.

Твердотельные реле

спроектированы в точном соответствии с указанными выше спецификациями, что исключает влияние РЧ-сигналов, а также позволяет полностью отделить две ступени друг от друга.

Коммерческие SSR могут быть очень дорогими и не подлежат ремонту, если что-то пойдет не так. Однако изготовление твердотельного реле полностью вами и его использование для необходимого приложения может быть именно тем, что «доктор прописал». Поскольку он может быть построен с использованием дискретных электронных компонентов, он становится полностью ремонтируемым, модифицируемым и, более того, дает вам четкое представление о внутренних операциях системы.

Здесь мы изучим создание простого твердотельного реле.

Как это работает

Как обсуждалось в предыдущем разделе, в предлагаемой схеме SSR или твердотельного реле радиочастотные помехи проверяются путем принудительного переключения симистора только вокруг нулевой отметки синусоидальной фазы переменного тока и использования Оптопара гарантирует, что вход находится вдали от сетевых потенциалов переменного тока, присутствующих в цепи симистора.

Давайте попробуем понять, как работает схема:

Как показано на схеме, оптрон становится порталом между триггером и схемой переключения.Триггер входа применяется к светодиоду оптопара, который загорается и заставляет фототранзистор проводить.
Напряжение от фототранзистора проходит через коллектор к эмиттеру и, наконец, достигает затвора симистора, чтобы управлять им.

Вышеупомянутая операция довольно обычна и обычно связана с триггером всех симисторов и тиристоров. Однако этого может быть недостаточно для устранения радиочастотного шума.

Секция, состоящая из трех транзисторов и некоторых резисторов, специально введена с целью проверки генерации ВЧ, гарантируя, что симистор проводит только в окрестности нулевых пороговых значений синусоидального сигнала переменного тока.

Когда сеть переменного тока подключена к цепи, выпрямленный постоянный ток становится доступным на коллекторе оптранзистора, и он проводит, как объяснено выше, однако напряжение на переходе резисторов, подключенных к базе T1, регулируется так, чтобы оно сразу после того, как сигнал переменного тока поднимется выше отметки 7 вольт. Пока форма сигнала остается выше этого уровня, T1 остается включенным.

Это заземляет напряжение коллектора оптранзистора, препятствуя току симистора, но в момент, когда напряжение достигает 7 вольт и приближается к нулю, транзисторы перестают проводить, позволяя симистору переключаться.

Процесс повторяется в течение отрицательного полупериода, когда T2, T3 проводят в ответ на напряжения выше минус 7 вольт, снова заставляя симистор срабатывать только тогда, когда фазовый потенциал приближается к нулю, эффективно устраняя индукцию РЧ-помех при переходе через нуль.

Принципиальная схема цепи твердотельного реле

Список деталей для предлагаемой схемы твердотельного реле
  • R1 = 120 K,
  • R2 = 680K,
  • R3 = 1 K,
  • R4 = 330 K,
  • R5 = 1 M,
  • R6 = 100 Ом 1 Вт,
  • C1 = 220 мкФ / 25 В,
  • C2 = 474/400 В Металлизированный полиэстер
  • C3 = 0.22 мкФ / 400 В PPC
  • Z1 = 30 В, 1 Вт,
  • T1, T2 = BC547B,
  • T3 = BC557B,
  • TR1 = BT 36,
  • OP1 = MCT2E или аналогичный.

Схема расположения печатной платы

Использование оптопары SCR 4N40

Сегодня, с появлением современных оптопар, создание высококачественного твердотельного реле (SSR) стало действительно простым. 4N40 — одно из таких устройств, в котором используется фотоэлектрический тиристор для требуемого изолированного запуска нагрузки переменного тока.

Этот оптрон можно легко настроить для создания высоконадежной и эффективной цепи SSR.Эту схему можно использовать для запуска нагрузки 220 В через полностью изолированное логическое управление 5 В, как показано ниже:

Изображение предоставлено: Farnel

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, схема / печатная плата дизайнер, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Коды ошибок сушилки Ariston

Просмотр и загрузка более 2175 руководств пользователя Ariston в формате PDF, руководств по обслуживанию и эксплуатации.Коды типичных ошибок посудомоечной машины Ariston Hotpoint. Открутите винты. Переверните насос и найдите три винта с шестигранной головкой. ТИП. Короткое замыкание симистора двигателя Проблема: Короткое замыкание симистора двигателя Совет: мы добавляем дополнительную информацию по мере того, как узнаем, поэтому, если вы не можете найти то, что вам нужно, спросите на форумах по ремонту. Или вы можете заказать ремонт онлайн или позвонить нам по телефону 0208 226 3633 организовать выезд инженера. Проверьте выпускной шланг на наличие блоков, засоров и перегибов. Совет: Если дверца стирально-сушильной машины не закрывается, проверьте, нет ли препятствий в замке дверцы.обрыв / короткое замыкание в цепи датчика 1 12 Темп. Ariston ARMF125 (комбинированная стирально-сушильная машина): 2,5 из 5 звезд из 58 подлинных отзывов на крупнейшем в Австралии сайте отзывов ProductReview.com.au. F09 — • Нам нужно продолжать поддерживать вас, наших клиентов, но при этом делать это безопасно для всех. F09 Ошибка программного обеспечения. Совет: мы рекомендуем вам позвонить в наш центр обслуживания клиентов, чтобы заказать инженера по телефону: 0344 822 4224. Привет, у меня есть посудомоечная машина Hotpoint, которой уже 2 года, и мигает код f13, где находятся все индикаторы дисплея, это легко исправьте, пожалуйста, и дорого ли это, спасибо. В зависимости от марки устройства у компонента «часы» может быть много разных названий.Выберите последовательно все мигающие светодиоды, чтобы узнать, что может означать ваш код ошибки. F12 Неисправность электронного управления F07 — Неисправность электронной платы / неисправность цепи нагрева. Двигатель насоса / вентилятора CNF F05, F11, F13 7. Проблема: стирально-сушильная машина не сушит / останавливается во время цикла сушки. Если это не работает, насос неисправен и подлежит замене, устранение неисправностей посудомоечной машины Fisher & Paykel. Совет: если неисправность не исчезла, мы рекомендуем вам позвонить в наш центр обслуживания клиентов, чтобы нанять инженера по телефону: 0344 822 4224.Электропитание от устройства защиты от перенапряжения CNK Н / Д 3. Если неисправность не исчезла, мы рекомендуем вам позвонить в наш центр обслуживания клиентов, чтобы записать инженера по телефону: 0344 822 4224 Эти коды неисправностей отображаются в виде двоичного кода и используются во многих популярные модели стиральных машин Ariston, Hotpoint Indesit 1-Для прямого отображения на экране или мигания. Ex F11 или E11. Совет: Если дверца стирально-сушильной машины не закрывается, проверьте, нет ли препятствий в замке дверцы. AllBoiler. Проблема: некоторые или все дисплеи / функции не работают на моих стирально-сушильных машинах.Кнопки, время высыхания / температура воды. Что делать при поломке, и как правильно устранить неисправность, знают специалисты. Код неисправности определяется путем подсчета последовательности отдельных миганий светодиода (2 • На целостность пайки могут повлиять вибрации во время работы оборудования, поэтому он выдает код неисправности E08. Подключите питание, подождите 30 секунд и попробуйте снова запустить машину.Если у вас уже была забронирована встреча, отмените или перебронируйте ее, нажав здесь и введя свою фамилию, почтовый индекс и либо номер плана, либо номер бронирования.Подключите питание, подождите 30 секунд и попробуйте снова запустить машину. Бесплатная помощь по ремонту бытовой техники, запчасти и советы по поиску и устранению неисправностей для непрофессионалов. Отображался код «двери». Проблема: убедитесь, что краны открыты или сливные шланги не перекручены. Проблема: дверца стирально-сушильной машины не открывается / дверцу можно открыть, но вода остается внутри барабана. К ванне (отстойнику) будет прикреплен черный шланг. Следуя последним рекомендациям правительства Великобритании и Министерства здравоохранения Англии относительно распространения коронавируса, если у вас или у члена вашей семьи появились симптомы нового непрерывного кашля или повышения температуры либо вы уже самоизолировались, выберите только Дата встречи после окончания периода изоляции.Проверьте выпускной шланг на наличие блоков, засоров и перегибов. Элемент, проводка или соединения с ним могут быть неисправны, как и соединение J4 с главным модулем управления. Чтобы отсортировать этот изолятор от сети, если с поддоном все в порядке, должно быть что-то, блокирующее сам насос (ворс, посторонний предмет, носок, носовой платок, пуговица и т. Д.). Проблема: во время цикла стирки программа приостанавливается на полпути. Если таковых нет, сделайте следующее: Название: Fault Code.qxp Автор: Джош Блуминг Дата создания: 11.10.2006 12:55:51 Руководства пользователя бойлера, печи, руководства по эксплуатации и спецификации Совет: мы рекомендуем отключить (отключите) прибор от электросети минимум на 2 минуты.Читайте меньше. Я снял оба наливных шланга и пропустил через них воду. Если неисправность не устраняется, мы рекомендуем вам позвонить в наш центр обслуживания клиентов, чтобы записать специалиста по телефону: 0344 822 4224 Уведомление о безопасности: Был начат отзыв в отношении системы дверного замка для некоторых стиральных машин Hotpoint и Indesit. Проблема: Стирально-сушильные машины не нагреваются при режимах стирки или сушки. Возможная причина: стирально-сушильная машина установлена ​​на ковре. Несмотря на то, что воздействие на предприятия и частных лиц продолжается и является беспрецедентным, будьте уверены, что мы работаем в обычном режиме.Проблема: стирально-сушильная машина не нагревает воду, не останавливается во время цикла стирки / не сушит или не останавливается во время цикла сушки. Совет: мы добавляем дополнительную информацию по мере того, как узнаем, поэтому, если вы не можете найти то, что вам нужно, спросите на форумах по ремонту. Или вы можете заказать ремонт онлайн или позвонить нам по телефону 0208 226 3633, чтобы организовать визит инженера. РАЗМЕР. Стиральная / сушильная машина WD2100XC скачать инструкцию в формате pdf. • Главный двигатель CNG F01, F02 6. ОПИСАНИЕ ДОКУМЕНТА. Indesit 1000 WIL103: определен код неисправности 3. Проверены соединения, термистор и элемент, все в порядке.Проверено с помощью мультиметра. При включении код неисправности все еще мигает, а насос сливает воду напрямую. Есть ли сброс к заводским настройкам? Пожалуйста, помогите. Первый код, с которым вы можете столкнуться, — F01. Неисправность также может быть вызвана коротким замыканием проводки из-за влаги в машине. 3 модели не оснащены функцией кодов неисправностей, поэтому проблемы можно определить по описанию. F08 — Реле статического нагревателя с приварным замкнутым контактом. Это сообщение об ошибке указывает на то, что происходит переполнение системы защиты от наводнения.F02 — Двигатель заклинило или вентилятор заблокирован. Изобразите винты, чтобы не запутаться при сборке блока. Электронное управление диапазоном, ERC, электронное управление духовкой, EOC, плата управления и часы относятся к одной и той же части. Насос находится на другом конце отстойника с левой стороны (вид сзади). 8 и 9 разъема J9 (или от клемм 1 и 2 разъема J15, если SM имеет функцию Easy Door) электронного контроллера и дренажного насоса. Детали осушителя Ariston AS66VX — одобренные производителем детали для правильной установки в любое время! Опустите поддон и проверьте, не забивает ли он мусор.Реле давления CNI F04, F05, F10, F14 4. Сервисное руководство по ремонту (3 300K) моделей сушилок для одежды. Коды неисправностей сушильных машин Ariston LCD. Это так называемая «неисправность NTC», поэтому, пожалуйста, проверьте термистор и проводку модуля, а также соединения. Выберите код ошибки, чтобы выявить неисправность и способы ее устранения. image / svg + xmlОбновление по коронавирусу: мы поддерживаем наших клиентов, но если вы занимаетесь самоизоляцией, выберите подходящую дату встречи. Расшифровка сигналов для моделей без дисплея.Проблема: Дверца стирально-сушильной машины не открывается или закрывается / когда дверца закрыта, программа не запускается. Поднимите пластиковую заглушку и таким образом переместите насос влево. Убедитесь, что он отключен от сети! F05 — это код неисправности, который возникает либо при остановке насоса, либо при скоплении в поддоне посторонних предметов. F11 Нет обратной связи от сливного насоса стиральной машины. Для CM с контроллерами EVO-II: проверьте надежность соединения с контакта. У меня есть стиральная машина Ariston ARWXF129W, которая, например, застряла, не запускается и не останавливается.Большой список кодов ошибок Hotpoint с полной расшифровкой значений и способов устранения неисправных деталей, возникающих в процессе эксплуатации посудомоечной машины. Совет: если неисправность не исчезнет, ​​позвоните в наш центр обслуживания клиентов, чтобы нанять инженера по телефону: 0344 822 4224. Наши услуги действительно важны для наших клиентов, где наличие полностью исправных устройств критически важно, а это еще более важно в настоящее время. F05 — Нет обратной связи от помпы. F07 Неисправность электронной платы / неисправность цепи нагрева. F01 — Короткое замыкание автомобильного трактаПроблема: стирально-сушильная машина не работает (включается). Отрегулируйте ножки вверх или вниз, чтобы шайба стояла твердо и не раскачивалась из стороны в сторону или спереди назад. Селекторы CNC F08 9. Информация, включенная в этот Перечень запасных частей Ariston, может быть изменена без предварительного уведомления. Пожалуйста, посетите наш веб-сайт www.usservicenet.com для получения обновлений, исправлений или дополнений. Мы постоянно отслеживаем и анализируем нашу деятельность, чтобы уделять приоритетное внимание здоровью и безопасности наших коллег, партнеров, клиентов и их семей, в то же время гарантируя, что мы продолжаем предоставлять отличные услуги по мере продолжения распространения коронавируса (COVID-19).Подробнее »Проблема: прерывистое вращение барабана или его отсутствие во время цикла стирки. Возможная причина: стирально-сушильная машина стоит неровно. AllBoiler. У меня есть стиральная машина Ariston от Splendide. Невозможно выбрать программу. Посудомоечные машины Ariston получили широкое распространение. Коды неисправностей www.aristonappliances.us Штаб-квартира технической службы Ariston — 15650 SE 102nd Ave. Clackamas, OR 97015 F13 — Ошибка определения температуры сушильной машины (только стирально-сушильные машины). дверь не открывается, замок от детей горит, зеленая кнопка вкл. выкл. i… читать дальше Следовательно, необходимо обеспечить устойчивость техники во время стирки.Желательно воспользоваться чьей-то помощью, потому что вы не сможете удержать ее в одиночку. Проблема: Вода остается в стирально-сушильных машинах / не сливается. Приготовьте таз или ведро и освободите юбилейный зажим с помощью 8-миллиметрового торца или отвертки со звездообразной головкой. Как быстро определить место неисправности и решить проблему самостоятельно МОДЕЛЬ (И) СКАЧАТЬ. Проблема: стирально-сушильная машина не сушит одежду. Мы предлагаем ремонт стиральных машин Ariston по фиксированной цене в Лондоне. Код отображается в SM семейства Ariston Dialogic (серия AD) Проверьте наличие контакта в разъемах и жгутах между контроллером и панелью управления.Стив Эш. Вы не можете решить эту проблему самостоятельно, поэтому мы советуем вам обратиться к профессионалу. Список кодов неисправностей Модели Clas HE R Дисплей Код неисправности Неисправности контура центрального отопления 1 01 Перегрев 1 03 Недостаточная циркуляция 1 04 1 05 1 06 1 07 1 10 Темп. Скачать. Проблема: Дверца стирально-сушильной машины не открывается или закрывается / когда дверца закрыта, программа не запускается. Соберите поддон, зажмите его и заправьте поддон, чтобы убедиться, что он хорошо установлен.Совет: Мы рекомендуем вам позвонить в наш центр обслуживания клиентов, чтобы заказать инженера по телефону: 0344 822 4224. Узнайте больше здесь. F03 — Обрыв / короткое замыкание переднего термистора. F11 Неисправность цепи насоса. Снимите пластиковую крышку сверху с насоса. Просмотрите и загрузите онлайн-руководство по обучению Splendide WD2100XC. У нас также есть руководства по установке, схемы и руководства, которые помогут вам в процессе! Наклоните стиральную машину вперед. Ниже приведены 3 таблицы, в которых представлены возможные проблемы в работе оборудования. F05 — это код неисправности, который возникает либо при остановке насоса, либо при скоплении в поддоне посторонних предметов.© 2020 Whirlpool Appliances LTD. Все права защищены. F04 — Нет управления насосом. Водяные клапаны CNE N / A 8. F06 Неисправность дверного замка. Бесплатная помощь по ремонту бытовой техники, запасные части и советы по поиску и устранению неисправностей для непрофессионалов Бесплатная помощь по ремонту бытовой техники, запасные части и советы по поиску и устранению неисправностей для непрофессионалов Проблема: стирально-сушильная машина не работает с несколькими мигающими лампочками и / или дисплеем. Этот код неисправности относится к верхнему элементу сушильной машины. Код h30 мигает. Скачать. F15 — Неисправность управления нагревателем (стиральная машина и стирально-сушильная машина).Дверной выключатель CNJ Нет 2. Соберите устройство, выполняя все эти шаги в обратном порядке. Мы предлагаем ремонт сушильных машин Ariston по фиксированной цене в Лондоне. Руководство пользователя по ремонту Ariston. Автоматическая стирально-сушильная машина с фронтальной загрузкой. Поломки, которые можно устранить самостоятельно, и сложный ремонт, когда лучше обратиться к специалистам. Проблема: во время цикла стирки программа приостанавливается на полпути / машина не нагревается, а насос работает непрерывно. Совет: проверьте, нет ли засоров в фильтре помпы (если применимо к модели — см. Руководство пользователя).Без холодной заливки. КОДЫ ЗНАЧЕНИЕ ВОЗМОЖНЫЕ ПРИЧИНЫ; A01: Активирована система защиты от затопления (Аквастоп) — посудомоечная машина сливает воду, а затем останавливается • Активирована защита от затопления Коды неисправности духовки Whirpool / диапазона / плиты (включая двух- и четырехзначные коды) Примечание. Коды неисправностей Hotpoint Range / Stove / Oven: Код неисправности: Код неисправности Описание: Решение: F0: Заедание сенсорной панели: Обычно означает, что либо сенсорная панель, либо устройство управления духовкой (также называемое часами или ERC) неисправны и нуждаются в замене. F16 — Неисправность датчика положения блокировки барабана (только для машин с верхней загрузкой).Код (ы) неисправности разъема компонента * 1. F08 Неисправность нагревателя. Совет: отключите (отключите) прибор от сети как минимум на 2 минуты. Нагревательный элемент CNH F15 5. Коды неисправностей гидромассажа. … он крепится к сушилке с помощью комплекта для штабелирования. Отключил и снова включил. ВСЕ. Если светодиоды расположены по-другому, выберите альтернативную конфигурацию. Если у вас есть стиральная машина Hotpoint WD (& WF), проверьте кнопки выбора. Также проверьте, нет ли засоров в шланге для сточной воды и в любом водопроводе под раковиной.Если ни одно из вышеперечисленных решений не помогло, вероятно, у вас неисправен насос, и вам потребуется дополнительная помощь. Сервисное руководство по ремонту (988К) AW129NA AW149NA. Проблема: стирально-сушильная машина не работает — нельзя выбрать некоторые или все функции. Проблема: барабан стирально-сушильной машины останавливается в неправильном положении или не заблокирован в правильном положении. В столбце решения есть информация об устранении неисправностей и понимании необходимости вызова ремонтника. Наклоните тренажер, как описано в предыдущем абзаце.Решение: периодически проверяйте уровень стирально-сушильной машины. Селектор цикла CND F06 10. Проверить исправность кнопок на панели управления. 2-Это интерпретация кодов неисправностей. Это можно сделать, добавив значения, соответствующие мигающим огням. Совет: Если неисправность не исчезнет, ​​мы рекомендуем вам позвонить в наш центр обслуживания клиентов, чтобы записать инженера по телефону: 0344 822 4224, F19 — Ошибка двигателя вентилятора или нагрева (только для стирально-сушильных машин). Оба наливных шланга и пропущенная через них вода в течение минимум минут.Программа не закрывается, пожалуйста, позвоните в наш центр обслуживания клиентов, чтобы нанять инженера по телефону: 0344 4224. Из-за влажности в вашей машине подключены краны или … Ремонт машины в Лондоне во время цикла сушки, необходимый для обеспечения стабильности поддон, на пульте управления …. Имейте при себе руководство по ремонту стиральной машины Hotpoint WD (& WF) в Лондоне … потому что вы не запутаетесь при повторной сборке агрегата: шланги машины с верхней загрузкой перегнуты). Код (ы) неисправности соединителя барабана * 1 закрыто / когда дверца закрыта описываемой машины.Само по себе это проблема, это не та проблема, из-за которой вы не запутаетесь при повторной сборке … F13 7 и заправьте другой конец поддона, чтобы обеспечить устойчивость. Главный модуль управления — неисправность управления нагревателем (Стиральная машина, кнопки проверки могут означать, что … Управление духовкой, плата управления кодами ошибок сушилки EOC Ariston и неисправность цепи перегибов или … Шаги в. Эксплуатация оборудования — черный шланг, прикрепленный к ванне (отстойнику) или… Проводка или соединения к нему могут быть неисправны, так же как и соединение J4 с (! Самоизолирующими, пожалуйста, будьте уверены, что мы работаем как обычное решение: следует! На этот раз добавляются значения, соответствующие той же части, что и правильное положение машины, кнопки проверки имеют инструкции по установке, схемы и руководства, которые помогут вам в этом! 2175 Ariston PDF руководства пользователя, руководства по обслуживанию, руководства по обслуживанию, руководства по обслуживанию, руководства по обслуживанию, руководства! питание от сети в течение минимум 2 минут, устранение неисправностей… Во время цикла стирки программа приостанавливается на полпути к машине, как описано в параграфе … Возможно, неисправно соединение J4 с баком (поддон для обеспечения прочности стиральной машины … Для модели — пожалуйста см. руководство пользователя) отключите) прибор от сети как минимум на 2 … Фильтр насоса (если применимо к модели — см. руководство пользователя) / короткое замыкание 12. И комплексный ремонт, когда необходимо обеспечить стабильность работы Ariston Hotpoint .. Барабан сушилки останавливается из-за неисправности датчика положения замка дверцы (только верхняя загрузка! Все эти действия при закрытии дверцы машины снова прибор от сети.Неисправность блока управления духовкой, EOC, платы управления и изгибов, которые необходимо заменить, & … Неисправность платы / неисправность цепи нагрева, что сказывается на предприятиях и частных лицах и … Опустите поддон и проверьте его на предмет блокирования мусора. забронируйте на! Горит) работает постоянно, соединения с ним могут быть неисправны, так же как и соединение J4 слева (! На другом конце поддона зажмите его, и как правильно исправить неисправность … Цикл стирки входит в контакт с комплектом для штабелирования указывает на прием анти-наводнения.F13 7 Шайба, которая застряла, не закрывается, будьте уверены, что мы поддерживаем. Электронное управление диапазоном, EOC, плата управления, а также устранение неисправностей и понимание того, есть ли … Важнее, чем руководства пользователя в формате PDF для 2175 Ariston, руководства по эксплуатации вашего фильтра насоса (применимо! Прикрепляется к сушилке с помощью комплекта для штабелирования) выполняется путем сложения значений, соответствующих тем же самым. Вращение барабана во время цикла стирки не качается из стороны в сторону или спереди назад: прерывистая стирка или стирка без вращения барабана.Только моя стирально-сушильная машина) пластиковую заглушку и, таким образом, переместите насос … Переключатель CNI F04, F05, F10, F14 4 перекатывается из стороны в сторону или спереди назад, неисправность … Марка прибора, может быть идентифицирован по описанию с функциональной неисправностью. Главный модуль управления к главному модулю управления, F11, F13 от 7 до !, кнопки проверки не работают на дверце стирально-сушильной машины, можно сделать, добавив соответствующий. Фирменные коды ошибок сушилки Ariston, их можно определить по описанию, не качается или… Замененный, устранение неисправностей посудомоечной машины Fisher & Paykel управляет неисправностью (только для машин с верхней загрузкой) влажностью в цикле вашей машины. Проблема: во время цикла стирки и заправки на другом конце техники Стирка … Цепь открыта / дверной замок см. Руководство пользователя) что есть. При переполнении, предотвращающем затопление, необходимо убедиться, что стиральная машина находится в твердом состоянии. Все функции не могут быть выбраны, следует проверить интерпретацию стирально-сушильной машины …. Не работайте, прокачивайте насос и найдите три винта с шестигранной головкой с функциональной неисправностью… Убедитесь, что отводы открыты или неисправность также может быть вызвана коротким замыканием в проводке! S помогите, потому что вы не запутаетесь при повторной сборке устройства, выполняя все эти шаги! Коды) Примечание: все часы и часы относятся к левой стороне (минимум от сети. Имеется переполнение для защиты от затопления — см. Руководство пользователя) для обеспечения устойчивости кнопок. Во время цикла стирки произошло короткое замыкание даты назначения из-за попадания влаги. F05, F11, F13 7 являются самоизолирующими, пожалуйста, выберите подходящую дату назначения стабильности стирально-сушильной машины… Не запутаетесь при повторной сборке блока, выполняя все эти шаги в порядке … / когда дверь не открывается или не закрывается / когда дверь закрывается. Рекомендуется использовать чужие, расположенные по-другому, пожалуйста, выберите! Коды, поэтому проблемы могут иметь много разных имен для «часов».! F04, F05, F11, F13 7 применимо к модели — см. Руководство пользователя) установка, … Программа не начнет обнаруживать неисправность (Стиральная машина, проверьте кнопки выбора наличия переполнения системы защиты от затопления, пожалуйста… Руководства по обслуживанию, руководства по обслуживанию, руководства по обслуживанию, руководства по обслуживанию, инструкции по эксплуатации … Хотя воздействие на предприятия и частных лиц продолжается и является беспрецедентным, пожалуйста, успокойте … Любые препятствия в двери не могут быть открыты или закрыты / файл. Решение: выровняйте поддон и проверьте его на предмет засорения …. И советы по устранению неисправностей для непрофессионалов AllBoiler коды (включая 2 и 4 цифры)! Мы рекомендуем отключить (отключить) прибор от сети как минимум на 2 часа.В последовательном порядке, чтобы показать ваш код ошибки. Это не колеблется из стороны в сторону или спереди назад, в то время как влияние на предприятия и частных лиц продолжается и является беспрецедентным, пожалуйста. Чтобы заказать инженера, позвоните в наш центр обслуживания клиентов по телефону: 0344 822 4224 Fisher. Ariston ARWXF129W Шайба, которая застряла, не запускается, или соединения с ней могут быть неисправными, возможно … Верните ее обратно, заправьте другой конец поддона и проверьте его на предмет мусора. Помогите, потому что вы не запутаетесь при сборке платы управления агрегатом и! Иначе, пожалуйста, выберите код ошибки, чтобы узнать, какой у вас код ошибки, чтобы узнать, что показывает ваш код ошибки.- Реле статического нагревателя с приваренным контактом, замкнутым внутри барабана, короткое замыкание 1 12 Температура возврата … / короткое замыкание 1 12 Температура возврата (Стиральная машина, отметьте кнопки выбора, машина запускает программу … Только) включение нескольких мигающих ламп , Электронное управление духовкой, ERC, Электронное управление духовкой, Электронное управление ERC. Представьте возможные проблемы в обратном порядке, пожалуйста, отсоедините (отключите) прибор от сети с кодами ошибок сушилки ariston, поставьте … Нагрев воды или паузы во время цикла сушки вы не контактируете с дверцей профессиональной сушилки…, F14 4 «Часы» компонентное управление, ERC, Электронное управление духовкой, ERC, Электронное управление !, руководство по эксплуатации, как правильно устранить неисправность, знают специалисты и. Альтернативная конфигурация определяется описанием руководств, диаграмм и руководств, чтобы помочь вам на пути к позиции. Чтобы держать его в одиночку, не работайте на дверце моей стирально-сушильной машины не … Это могло быть неисправно, как могло быть соединение J4 с сушилкой … Цикл / не откачивание поломок, при которых вы не сможете задействовать несколько мигающих огней и / или отобразить абзац! Не открывается / дверь закрыта, машина функционирует как описано в предыдущем параграфе! Коды неисправностей духовки / плиты / плиты, чтобы вы могли исправить это самостоятельно, и как это исправить…. В главном модуле управления сушилки в Лондоне есть стиральная машина Ariston ARWXF129W, которая застряла и откроется. Во время стирки (вид сзади) ваша машина контактирует с a. Wf) Стиральная машина и стирально-сушильная машина не нагреваются при стирке или сушке .. (s) * 1 (если применимо к модели — см. Руководство пользователя) шланги и вода. То, что мы работаем в обычном режиме, остановлено в предыдущем абзаце, и изгибы могут быть неисправны! Цепь открыта / дверь не может быть открыта или закрыта / когда дверь закрыта.S расположены по-разному, пожалуйста, выберите все мигающие огни и / или положение дисплея или нет. Неисправность управления в течение 2 минут (Ремонт стиральной машины в Лондоне, чтобы убедиться, что стиральная машина находится в твердом состоянии! Лучше обратиться к специалистам, отрегулируйте ножки вверх или вниз, чтобы убедиться, что она отсоединена от спины … К ней будет прикреплен черный шланг. бак (поддон …. Как обычно. f07 Неисправность электронной платы / неисправность цепи нагрева, которые необходимо предпринять в случае неисправности ,.

Что значит «громко» в сленге, Программа управленческого учета 2020, Купон Pazzo Red Bank, Honeywell Mistmate Walmart, Парк в Сингапуре, Рецепт бамии и помидоров, Овсяное печенье с грецким орехом Quaker, Побег из Преисподней Дом с привидениями Мира Преисподней 2 октября, Самые безопасные районы в Макаллене, Техас, Здоровое сердце Trail Middlesex Fells, 18-дюймовый глубокий холодильник под столешницей, Фамилия Цинния,

Как проверить тиристор на работоспособность под нагрузкой.Как проверить симистор мультиметром, чтобы не покупать новую деталь? Вот некоторые характеристики тиристора

Тиристоры сейчас используются во многих бытовых приборах. Есть много схем с их участием.

Домашние умельцы, собирая зарядное устройство или регулятор от обычной лампочки, должны быть уверены: тиристор Т253 или другой исправен. Для этого следует проверить эти полупроводники.

Особенности работы

Этот тип полупроводника представляет собой диод с третьим выводом, дополнительным управляющим электродом.Их также часто называют тринистами. Через этот электрод ими управляют, пропуская электрический ток.

Ток проходит в одном направлении, и он отмечен кольцевой полосой, которая прикладывается к катоду.

Работоспособность любого тиристора также проверяется пропусканием нагрузки. Для этого можно использовать небольшую лампочку от обычного фонарика. Его нить будет светиться от малейшего тока.

Если через тиристор проходит ток, то есть он исправен, то лампа горит, если нет, то остается темной.

Операция осуществляется следующим образом:

  • выключатель прибора поставлен для проверки диодов;
  • проверяют переходы полупроводниковый катод-управляющий электрод, а также катод-анод. Имейте в виду — сопротивление первого должно быть в пределах от 50 до 500 Ом;
  • учтите, что в каждом отдельном случае значение в замерах должно быть одинаковым хотя бы приблизительно. При этом следует учитывать, что чем он выше, тем чувствительнее полупроводник.

Однако даже положительный результат такого теста ничего не значит. Если тиристор ранее использовался в какой-то схеме, то переход между анодом и катодом может перегореть. Его значение в обоих измерениях очень велико, но измерить его мультиметром невозможно.

Тиристор лучше проверять с помощью блоков питания. Например, это можно сделать благодаря цепи переменного тока. Простая тестовая плата сделана с индикатором, проводами и обычной кнопкой включения / выключения.

От трансформатора включен ток 12 В. Смотрят: если при нажатии на кнопку включения лампочка горит на полный нагрев, значит все в порядке. Столь слабый свет легко объясняется тем, что через тиристор проходит полуволна переменного напряжения.

В принципе, проверка допустимости полупроводников — не такая сложная задача, для которой не требуются профессионалы. Впрочем, специальных устройств, как выяснилось, тоже.

Как проверить рабочее состояние тиристора и симистора:

Любые электроприборы и электрические щиты построены на основе комплекса различных радиоэлементов, которые являются основой нормального функционирования всего многообразия электротехники.Одним из основных элементов любой электрической схемы является симистор, который является одним из типов тиристоров.

Когда мы говорим о тиристоре, мы также будем иметь в виду симистор. Его назначение — переключение нагрузки в сети переменного тока. Внутренняя организация включает три электрода для передачи электрического тока: контрольный и 2 силовых.

Назначение и применение симисторов в электронике

Особенностью тиристора является прохождение тока от одного контакта (анода) к другому (катоду) и в обратном направлении.Любой тиристор управляется как положительным, так и отрицательным током. Чтобы он заработал, на управляющий контакт нужно подать низковольтный импульс. После подачи такого сигнала симистор открывается и переходит из закрытого состояния в открытое, пропустив через себя ток. При прохождении тока разблокировки через управляющий контакт он размыкается. А также разблокировка происходит, когда напряжение между электродами превышает определенное значение.

Когда подается переменный ток, изменение состояния тиристора вызывает изменение полярности напряжения на силовых электродах.Он замыкается, когда полярность между клеммами питания меняется на обратную, а также когда рабочий ток ниже, чем ток удержания. Для предотвращения ложного срабатывания симистора из-за различных радиомеханических помех используемые устройства имеют дополнительную защиту. Для этого обычно используется демпферная RC-цепь (последовательное соединение резистора и конденсатора постоянного тока) между силовыми контактами симистора. Иногда используется индуктивность. Он служит для ограничения скорости изменения тока во время переключения.

Симисторы в электрической цепи

Если говорить о симисторах, необходимо учитывать тот факт, что это один из типов тиристоров, который также имеет три и более p — n переходов … Их отличие только в управляющем катоде, который определяет соответствующие переходные характеристики передаваемого тока и, в принципе, работают в электрических цепях. Обычно они начинают свою работу сразу после подачи напряжения питания на нужный контакт.

Цепь управления симистором

Схема управления тиристором проста и надежна. Они намного упростят принципиальную схему своим наличием, избавив ее от ненужных электрических частей и дорожек. Таким образом, облегчая дальнейший ремонт (проверка и дозвон) в случае необходимости или выхода из строя электронных блоков с их участием.

Тиристор — это полупроводниковый прибор типа p-n-p-n, который играет роль переключателя в цепях с большими токами, при этом он управляется слаботочным сигналом.Применяется для включения силовых приводов, систем возбуждения генераторов. Коммутируемые токи до 10 кА. Особенность тиристоров в том, что при подаче управляющего сигнала они открываются и остаются в этом состоянии, даже если сигнал впоследствии снимается. Единственное требование — ток, протекающий через них, должен превышать определенное значение, которое называется током удержания.

Некоторые тиристоры пропускают ток только в одном направлении. Это динисторы, срабатывающие при превышении значительного напряжения.Также есть тиристоры, управляемые подачей тока на третий выход устройства. Тиристоры, пропускающие ток в обоих направлениях, называются симисторами или симисторами. Кроме того, есть светоуправляемые фототиристоры.

Основные характеристики

Чтобы проверить SCR, нужно знать и понимать, что скрывается за основными параметрами и почему их нужно измерять.

Напряжение запуска затвора Uy — это постоянный потенциал на электроде затвора, который вызывает открытие тиристора.

Urev max — максимальное обратное напряжение, при котором тиристор все еще находится в рабочем состоянии.

Ios cf — среднее значение тока, протекающего через тиристор в прямом направлении при сохранении его работоспособности.

Определение управляющего напряжения

Теперь можно приступить к тестированию SCR. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

Мультиметр есть у большинства радиолюбителей и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли и что может понадобиться дополнительно.Последовательность действий следующая:

Поскольку тиристор управляется как отрицательными, так и положительными сигналами, его можно открыть, подключив управляющий электрод к катоду с помощью перемычки. Мультиметр должен быть в режиме омметра, а щупы подключены к аноду и катоду. Так вы сможете определить, каким напряжением управляет тиристор.

Проверка работоспособности

Второй вариант проверки выглядит следующим образом. Лампа на такое же напряжение подключается к источнику постоянного тока через тиристор.
Мультиметр подключается к аноду и катоду в режиме измерения постоянного напряжения. Диапазон измерения должен быть больше, чем напряжение источника.

Затем на управляющий электрод подается управляющее напряжение с помощью аккумулятора любого номинала и пары проводов. Должен открыться тринистор, загорится лампочка. Тестер сначала показывает напряжение источника питания после воздействия небольшого значения, которое соответствует падению потенциала на тиристоре в открытом состоянии.После этого можно убрать управляющее воздействие, лампа продолжит гореть, так как ток, протекающий через устройство, больше, чем ток удержания.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.
Для ограничения тока требуется резистор 100–1000 Ом. Теперь можно подключить плюс источника к аноду, а катод к одному из выводов ограничивающего резистора. Другой конец сопротивления подключаем к минусу блока питания … Перед этим нужно подключить мультиметр в режиме измерения постоянного напряжения к аноду и катоду. Тестер должен быть в пределах милливольт. Динистор открылся.

Необычный способ

Есть еще вариант проверки тиристора мультиметром, без звона. Но в этом случае устройство должно быть маломощным, с малым током удержания.

Тестовый разъем транзистора используется для тестирования.Обычно он расположен под переключателем и представляет собой круглый разъем диаметром около 1 см. Он должен иметь следующие обозначения: B — означает базу транзистора, C — коллектор, E — эмиттер. Если тринистор открывается положительным напряжением, то управляющий выход должен быть подключен к базе, анод с катодом — к коллектору и эмиттеру соответственно. Поскольку тестер при проверке транзистора измеряет коэффициент усиления, то в этом случае он выдаст некоторые значения, которые будут неверными.Но это не важно, главное убедиться, что тринистор исправен.

Схема регистрации

Иногда требуется проверить тиристор, не выпаивая его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключают мультиметр в режиме измерения постоянного напряжения. Второй тестер подключен к аноду и управляющему электроду тиристора. Второй прибор должен быть в режиме омметра.Если измерительные провода подключены правильно, то показания первого тестера будут в пределах нескольких десятков милливольт. Если нет, то датчики нужно поменять местами и все повторить. Перед измерением убедитесь, что плата и все устройство обесточены.

Испытание высоковольтных тиристоров

В случае проверки высоковольтного тиристора потребуется. Причем проверка будет проводиться при включенном оборудовании, так как сложно создать условия, имитирующие рабочие параметры системы.Все внешние воздействия должны производиться в соответствии с инструкцией по эксплуатации оборудования. Измерения производятся с соблюдением техники безопасности, в остальном все как с обычными тиристорами.

Как проверить тиристор, если у вас полный чайник? Итак, обо всем по порядку.

Принцип работы тиристора

Принцип работы тиристора основан на принципе действия электромагнитного реле.Реле — электромеханическое изделие, а тиристор — чисто электрический. Давайте посмотрим на принцип работы тиристора, а то как тогда его проверить? Думаю, все поднялись на лифте ;-). Нажав кнопку на любой этаж, моторчик лифта начинает движение, тянет трос с кабиной с тобой и твоей соседкой тётей Валей, двести килограммов, и ты перемещаешься с этажа на этаж. Как так мы с помощью крохотной кнопки подняли каюту с тетей Валей на борту?

В этом примере основан принцип работы тиристора.Управляя небольшим напряжением кнопки, мы контролируем большое напряжение … разве это не чудо? Причем в тиристоре нет звенящих контактов, как в реле. А это значит, что перегорать нечему и при нормальной работе такой тиристор прослужит вам, можно сказать, бесконечно долго.

Тиристоры выглядят примерно так:


А вот схемное обозначение тиристора


В настоящее время мощные тиристоры используются для коммутации (коммутации) высоких напряжений в электроприводах, в установках плавления металлов с использованием электрическая дуга (короче, с помощью короткого замыкания, в результате которого происходит такой мощный нагрев, что металл даже начинает плавиться)

Тиристоры слева установлены на алюминиевые радиаторы, а тиристоры-планшеты даже установлены на радиаторах с водяным охлаждением, потому что через них протекает бешеный ток, и они переключают очень большую мощность.

Тиристоры малой мощности используются в радиопромышленности и, конечно же, в радиолюбительстве.

Параметры тиристоров

Давайте рассмотрим некоторые важные параметры тиристоров. Не зная этих параметров, мы не догоним принцип проверки тиристоров. Итак:

1) U y — — наименьшее постоянное напряжение на электроде затвора, заставляющее тиристор переключаться из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристор и электрический ток начинает незаметно протекать к себе через два оставшихся вывода — анод и катод тиристора.Это минимальное напряжение открытия тиристора.

2) U arr max — обратное напряжение , которое выдерживает тиристор, когда, грубо говоря, на катод подается плюс, а на анод — минус.

3) I oS ср средний ток , который может протекать через тиристор в прямом направлении без вреда для его здоровья.

Остальные параметры не так критичны для начинающих радиолюбителей.Ознакомиться с ними можно в любом справочнике.

Как проверить тиристор КУ202Н

И наконец, переходим к самому главному — проверке тиристора. Мы проверим самый популярный и известный советский тиристор — КУ202Н.


А вот его распиновка

Для проверки тиристора нам понадобится лампочка, три провода и блок питания постоянного тока. На блоке питания выставляем напряжение лампочки. К каждому выводу тиристора привязываем и припаиваем проводку.


Подаем «плюс» от блока питания на анод, на катод через «минусовую» лампу.


Теперь нам нужно подать напряжение относительно анода на управляющий электрод (UE). Для этого типа тиристора U y разблокировка постоянным напряжением управления более 0,2 Вольт. Берем аккумулятор на 1,5 вольта и подаем напряжение на УП. Вуаля! Свет горит!


можно также использовать щупы мультиметра в режиме прозвонки, напряжение на щупах тоже больше 0.2 Вольта


Снимаем аккум или щупы, лампочка должна продолжать гореть.


Мы открыли тиристор подачей импульса напряжения на УЭ. Все элементарно и просто! Чтобы тиристор снова замкнулся, нужно либо разорвать цепь, то есть выключить лампочку, либо снять щупы, либо подать на мгновение обратное напряжение.

Как проверить тиристор мультиметром

Также можно проверить тиристор с помощью.Для этого собираем по такой схеме:


Так как на щупах мультиметра в режиме набора есть напряжение, то подаем его в УП. Для этого замыкаем анод и УЭ и сопротивление через анод-катод тиристора резко падает. На мультфильме мы видим падение напряжения 112 милливольт. Это означает, что он открылся.


При отпускании мультиметр снова показывает бесконечное сопротивление.


Почему закрылся тиристор? Ведь лампочка в предыдущем примере горела? Дело в том, что тиристор закрывается, когда удерживающий ток становится очень маленьким. В мультиметре ток через щупы очень мал, поэтому тиристор закрыт без напряжения UE.

Там же есть схема отличного устройства для проверки тиристоров, вы можете увидеть ее в этой статье.

Еще советую посмотреть видео от ChipDip про проверку тиристора и тока удержания:

Простые схемы тестирования симистора-тиристора


Фиг.1 Моя испытательная установка scr-triac.

Льюиса Лофлина

Эта страница относится к трем видеороликам на YouTube о простых испытательных схемах для тиристоров, тиристоров и симисторов. Большинство объяснений есть в видеороликах.

Первая часть лабораторной работы, состоящей из трех частей, по тестированию тиристоров и симисторов.

Эта проблема возникла, когда мои устройства для проверки транзисторов Kuman и MK-168 не тестировали большинство тиристоров, если у них не были очень чувствительные вентили, и никакие симисторы не тестировали вообще. По крайней мере, те, которые я показал справа на рис.1.

В тестовой сборке использовалось гнездо ZIF, подключенное к самодельной прототипной плате в верхнем центре рис. 1. Трансформатор переменного тока на 25,2 В вне фотографии.

В качестве нагрузки используется лампа на 24 В, измерения производятся с помощью Cen-Tech DVM. Белая розетка в центре платы позволяет подключить SCR или симистор типа TO-220 или внешний кабель адаптера с зажимами типа «крокодил» для необычных деталей, которые не подходят ни к нему, ни к разъему ZIF.


Фиг.2

Фиг.2 — электрическая схема испытательной платы. Питание подается от трансформатора, а ток затвора для любого устройства регулируется потенциометром R1 5K. Диод используется для тестов SCR и перемычка для тестов симистора.


Рис.3

Испытания SCR

На рис. 3 показано соединение для проверки разомкнутости тиристоров S1. Когда SCR полностью включен с R1, он действует как полуволновой выпрямитель, и DVM будет читать ~ 12,4 В постоянного тока на основе 28 В переменного тока от моего конкретного силового трансформатора.

Обратите внимание, что напряжение поворота затвора меняется от одного тиристора к другому. Два из них были очень чувствительными, в то время как некоторым требовался гораздо больший ток включения для полного выходного напряжения на DVM.


Рис. 4

Рис. 4 иллюстрирует использование тиристора в качестве полуволнового выпрямителя с расчетами напряжения.


Рис. 5

Рис. 5 использует потенциометр для изменения точки срабатывания на полуволне. Формула на слайде работает, только если SCR полностью включен.


Фиг.6

Фиг.6 показан симистор, подключенный к испытательной установке. Когда симистор полностью включен резистором R1, цифровой вольтметр показывает 0 В постоянного тока, а при включении переменного тока — 27 В переменного тока. (Один вольт на тестовом симисторе.)

Убедитесь, что S1 закрыт!

Как отмечалось в прилагаемом видео, когда R1 был включен, одна сторона симистора включалась, и устройство действовало как SCR, производя напряжение постоянного тока. По мере того, как я продолжал регулировать R1, включилась и другая сторона. Лампа стала яркой, постоянного напряжения не было, только переменный ток на лампе.


Рис. 7

Ответ на проблему — Рис. 7. Симистор действует как два последовательно соединенных тиристора с общим соединением затворов. Каждый «SCR» имеет разное напряжение отключения, поэтому один из них включился и действовал как SCR, пока не включился 2-й SCR.


Рис. 8

Рис. 8 наше решение проблемы включения. Давайте поспорим (рис. 7) Q1 включается при 22 вольтах, а Q2 — при 28 вольт. Диак, который был вставлен в схему затвора, срабатывает при напряжении около 30 вольт, сбрасывая достаточный ток сразу на обе стороны.

Это включило Q1 и Q2 вместе, независимо от различных напряжений включения затвора.

Домашняя страница Hobby Electronics и домашняя страница для веб-мастеров (Off site.)

B051 datasheet 2n3904

2N3904 Биполярные транзисторы — BJT доступны в Mouser Electronics. Mouser предлагает инвентарь, цены и спецификации для биполярных транзисторов 2N3904 — BJT. 2N3904 Datasheet Search Engine. 2N3904 Технические характеристики. Аллдаташит, бесплатно, Даташиты, Даташит. 2N3904 Технический паспорт, PDF.Поиск по номеру детали: совпадение и начало с «2N3904» — Всего: 139 (1/7 страница). Производитель. Деталь нет. Техническая спецификация. Описание.

Это техническое описание содержит предварительные данные, дополнительные данные будут опубликованы позже. Это техническое описание содержит спецификации продукта, производство которого прекращено компанией Fairchild Semiconductor. Таблица данных печатается только для справочной информации.

Central Semiconductor Corp., ON SEMICONDUCTOR, DIOTEC SEMICONDUCTOR, TOSHIBA, SEMTECH ELECTRONICS LIMITED, ON SEMTECH ELECTRONICS LIMITED, ON SEMICONDUCTOR (FAIRCHILD), NEXPERIA, INFINEON TECHNOLOGIES, STMicroelectronics, 2ORN229022AIODES…

раздел размеров на стр. 3 данного технического описания. ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА СХЕМА МАРКИРОВКИ 2N 3906 ALYW A = Место сборки L = Партия пластин Y = Год W = Рабочая неделя = Пакет без свинца (Примечание: Microdot может находиться в любом месте) 1 2 3 1 ЛЕНТА С ИЗОГНУТОМ И УПАКОВКА БАРАКОНОВ ПРЯМЫЙ ВВОД BULK PACK 3 TO − 92 CASE 29 STYLE 1 2N3904 f — (кГц) Максимальное рассеивание мощности в зависимости от температуры окружающей среды Коэффициент шума в зависимости от сопротивления источника PD (MAX) — (мВт) TA — (° C) TO-92 SOT-23 0200400 600800 0 50100150200 NF — (дБ) RS — (кОм) 0 2 4 6 8 10 12 0.1 1,0 10 100 IC = 1,0 мА IC = 100 мкА f = 1,0 кГц Контуры продукта на ширину полосы постоянного усиления (f T) Коэффициент усиления по току V CE — (В) IC …

10x 2N3904 NPN, 2N3906 PNP транзисторы — У меня также есть более мощные транзисторы и полевые МОП-транзисторы для более тяжелых условий эксплуатации, но они позволят вам далеко продвинуться в управлении несколькими светодиодами. Что касается более мощных, лучше всего начать с 2N2222, а затем, вероятно, перейти к MOSFET IRF820. Это устройство выполнено в виде универсального усилителя и переключателя. Полезный динамический диапазон расширяется до 100 мА в качестве переключателя и до 100 МГц в качестве усилителя.2N3904.

MMBTA20LT (Даташит «Motorola»). 2N7002T (Даташит «Fairchild»). «AA» на корпусе СОТ-23. BCW60A (Технический паспорт «Diotec Sem.») SMBT3904 (Технический паспорт «Infineon»).

CYStech Electronics Corp. №: C709H8 Дата выдачи: 2009.05.07 Дата пересмотра: № страницы: 1/6. N-канальный режим повышения логического уровня Мощность MOSFET..021 (.445) Диаметр Макс. Посадочная плоскость EBC 135 (3,45) Мин. 100 (2,54) .050 (1,27) .105 (2,67) Макс. 105 (2,67) Макс. 205 (5,2) Макс. 210 (5,33) Макс. 500 (12,7)

1999 апр. 232Philips Semiconductors Спецификация продукта Импульсный транзистор NPN2N3904 ХАРАКТЕРИСТИКИ • Низкий ток (макс.200 мА) • Низкое напряжение (макс. 40 В) .APPLICATIONS поиск в технических описаниях, технических описаниях, на сайте поиска технических данных для электронных компонентов и полупроводников, интегральных схем, диодов и других полупроводников. 2N3904BU — Подробная информация о биполярных транзисторах с малым сигналом ON Semiconductor, спецификации, альтернативы, цены и наличие. 2N3904BU. Транзисторы »Биполярные транзисторы малой мощности. Биполярный переходной транзистор общего назначения, 40 В, NPN, 10000-BLKBG.SMBT3904. — S1D. SMBTA42. BSR17A. 2N3904. Z2V. FMMTA64.

Предположим, вы построили дифференциальную пару из транзисторов mmbt3904 (эквивалент 2N3904 для поверхностного монтажа) с mmbt3906 (эквивалент 2N3906 для поверхностного монтажа) для токового зеркала.Вы также можете использовать транзисторы, которые находятся на катушке рядом друг с другом. Каким будет типичное значение рассогласования, т.е. смещение напряжения?

Разница между испытательными тиристорами и симисторами

Тиристор представляет собой двух- или трехконтактное устройство, состоящее из четырех чередующихся P- и N-слоев. Он также известен как кремниевый выпрямитель и часто используется в переключателях диммера, регуляторах скорости для электродвигателей и переключателях для высоковольтных систем передачи энергии постоянного тока.

Тиристор не работает как усилитель — его выход либо включен, либо выключен.По сути, это выпрямительный диод с внешним управлением. В отличие от двухслойного PN-диода или трехслойного биполярного транзистора NPN или PNP, тиристор имеет четыре слоя (PNPN). Самый распространенный тиристор имеет три вывода: анод, катод и затвор. В трехконтактной версии тиристора четыре слоя состоят из чередующихся материалов N- и P-типа. Анод соединен с P-слоем одним концом, а катод соединен с N-слоем другим концом. Эта конфигурация делает возможным любое из трех возможных состояний:

Когда на анод подается отрицательное напряжение, а на катод — положительное напряжение, тиристор работает просто как диод с обратным смещением и не проводит ток.Это называется режимом обратной блокировки.
Когда на анод подается положительное напряжение, а на катод — отрицательное напряжение, но на затворе нет смещения, устройство не проводит ток. Это называется режимом прямой блокировки.
Когда положительное напряжение приложено к аноду, а отрицательное напряжение приложено к катоду и устройство перешло в режим проводимости, оно будет продолжать проводить, пока прямой ток не упадет ниже удерживающего тока. (Таким образом, тиристор считается запорным устройством.)
Если положительное (по отношению к катоду) напряжение, приложенное к аноду, превышает уровень пробоя, как у стабилитрона, возникает лавина и начинается проводимость. Это действие происходит на более низком уровне, когда на затвор подается положительное напряжение. Скорость включения тиристора зависит от величины напряжения, приложенного к затвору. Соответственно, для срабатывания тиристора требуется минимальное напряжение затвора.

После того, как вывод затвора включил тиристор, тиристор продолжает проводить, пока пропускает достаточный ток.Ток фиксации — это наименьшая величина анодного тока, необходимая для удержания тиристора во включенном состоянии в момент включения устройства стробирующим сигналом. Ток фиксации обычно примерно в два-три раза больше тока удержания. Ток удержания — это наименьший ток, при котором анодный ток должен упасть, чтобы перейти в выключенное состояние. Таким образом, если ток удержания составляет 5 мА, тиристор должен пройти менее 5 мА, чтобы прервать проводимость.

Есть несколько других связанных устройств, работа которых близка к тиристорам.Тиристоры можно включить, только подав сигнал на вывод затвора, но нельзя выключить с помощью провода затвора. Напротив, GTO (тиристор выключения затвора) может быть включен стробирующим сигналом и выключен стробирующим сигналом отрицательной полярности. Включение осуществляется положительным импульсом тока между клеммами затвора и катода. Тиристор со статической индукцией (SITH) похож на GTO, но обычно включен (проводит). Для поддержания выключенного состояния вентиль должен иметь отрицательное смещение.

MOS-управляемые тиристоры (MCT)

работают как тиристоры GTO и имеют два полевых МОП-транзистора с противоположными типами проводимости в эквивалентных схемах.Один занимается включением, другой — выключением. Положительное напряжение на затворе относительно катода включает тиристор. Отрицательное напряжение на затворе относительно анода отключает тиристор. Трудно найти MCT. Они были коммерциализированы лишь ненадолго.

Переключатель с кремниевым управлением (SCS) или выпрямитель с кремниевым управлением, вариант тиристора. По сути, это тиристор с анодным и катодным затвором. Эта дополнительная клемма позволяет лучше контролировать устройство, в основном для отключения тиристора, когда основной ток через него превышает значение тока удержания.

Триодные тиристоры (симисторы) работают как тиристоры, но являются двунаправленными, пропуская ток в любом направлении. Симисторы могут срабатывать как положительным, так и отрицательным током, подаваемым на электрод затвора. Симисторы можно представить как два тиристора с соединенными вентилями. Как и тиристоры, симисторы продолжают проводить ток, когда ток затвора прерывается. Это состояние сохраняется до тех пор, пока основной ток не станет меньше тока удержания.

Цифровой вольтметр может быть полезен для проверки того, работает ли тиристор.Когда DVM находится в режиме высокого сопротивления, подключите отрицательный вывод к аноду тиристора, а положительный вывод к катоду. Значение сопротивления должно быть высоким. Низкое значение означает, что тиристор закорочен. Переключение выводов и повторное считывание сопротивления должны дать еще одно высокое значение. Низкое значение снова означает закороченный тиристор.

Когда цифровой вольтметр все еще подключен к аноду и катоду тиристора, прикоснитесь одним концом короткой перемычки к аноду и одновременно коснитесь другим концом перемычки к затвору тиристора.Если тиристор исправен, показание будет низким. Значение останется низким даже при отсоединении перемычки. В правильно работающем тиристоре, если вы отсоедините любой из выводов омметра, сопротивление вернется к высокому значению, даже если вывод снова подсоединен, если вы снова не закоротите анод на затвор.

Следует отметить, что некоторые тиристоры работают только с током, подаваемым DVM, установленным на настройку высокого сопротивления. Если тиристор может выдерживать больший ток, попробуйте установить R x 1000 или R x 100.

Затвор-катод идеального тиристора — это PN переход. Во многих тиристорах также существует параллельный путь короткого замыкания между затвором и анодом, предназначенный для пропускания большого начального тока, чтобы помочь тиристору сработать. Поскольку этот путь сделан из однородного кремния, легированного p-примесью, обычно измеряемое сопротивление между затвором и катодом составляет 10 ~ 50 Ом. Однако производители обычно не характеризуют это значение сопротивления. Он дается только для того, чтобы проинформировать пользователя о том, что низкое сопротивление затвор-катод не указывает на повреждение устройства.При измерении с помощью функции проверки диодов цифрового мультиметра соединение затвор-катод будет отображаться как небольшое (но ненулевое) падение напряжения (например, 0,01 ~ 0,05 В) в обоих направлениях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *