Закрыть

Пускатель для двигателя – Как выбрать магнитный пускатель для двигателя – пусковой выключатель

Содержание

Как выбрать контактор для электродвигателя с частыми пусками

Выбор контактора для электродвигателей с частыми пусками отличается от выбора для обычных силовых соединений. Прежде всего необходимо обратить внимание на категории применения, допустимую частоту включения, механическую и коммутационную износостойкость.

В связи с тем, что у каждого электродвигателя собственный характер работы, данные параметры подбираются индивидуально для каждой модели.

Категории применения

 

Первое, на что нужно обратить внимание при выборе, это категории применения - режимы срабатывания расцепителя. Электродвигатель - сложный механизм с пусковым током и повторно-кратковременными включениями, при которых он работает не в штатном режиме. При этом нагрузка на сеть также отличается от номинальной, и механизм расцепления должен нормально срабатывать в нестандартных условиях.

 

Для переменного тока категории применения обозначаются маркировкой AC. Отличаются характером срабатывания:

 

  • AC-1 - для электрических моторов с активной или малоиндуктивной нагрузкой;
  • AC-2 - старт с фазным ротором, реверсивное торможение;
  • AC-3 - прямой пуск короткозамкнутого ротора, отключение вращающихся двигателей;
  • AC-4 - пуск и остановка электромоторов с короткозамкнутым ротором посредством противовключения. Для такого режима применяются спаренные (реверсивные) контакторы с механической блокировкой, не допускающей одновременного запуска нескольких потребителей. При этом уменьшается In и базовое количество циклов.
  •  

Для постоянного существуют собственные категории - DC:

 

  • DC-1 (аналог AC-1) - активная или малоиндуктивная нагрузка;
  • DC-2 - пуск электродвигателей с параллельным возбуждением, отключение при номинальной частоте вращения;
  • DC-3 - запуск моторов с параллельным возбуждением, отключение при медленном вращении ротора или в неподвижном состоянии;
  • DC-4 - пуск электродвигателей с последовательным возбуждением и остановка при номинальных оборотах;
  • DC-5 - старт двигателей с последовательным возбуждением и остановка с неподвижным или медленно вращающимся ротором, торможение противотоком.

Промышленные электромоторы с частыми пусками должны поддерживать категорию AC-3, AC-4 - для переменного электротока, и DC-3, DC-4, DC-5 для постоянного.

 

Номинальный ток и напряжение питания катушки управления

 

Номинальный ток - наиболее значимый параметр, подбираемый по мощности потребителя. Главный вопрос: как правильно считать? Любой электродвигатель при запуске кратковременно выдает мощность, часто в 5-7 раз превышающую номинальную. Тем не менее такая нагрузка сохраняется долю секунды и на работу расцепителя не влияет. Исходя из этого, берем во внимание только номинальную мощность.

Для определения номинала необходимо рассчитать In . В этом нам поможет формула из учебника по физике: In = P/(U √3xcosφ), где P - мощность (Вт), U - напряжение (В), а cosφ- коэффициент мощности двигателя.

Для наглядности рассмотрим конкретный пример: предположим, что у Вас трехфазный станок на 5,5 кВт c cosφ= 0,8 (данное значение записано в паспорте электрооборудования). При включении, по сети будет протекать:

5500Вт / (380Вx√3x30,8)= 10,6А.

К полученному значению еще необходимо прибавить 30% запаса, в итоге оптимальным номиналом будет 13А.

Например, если In будет равен 11,8А, ни в коем случае нельзя брать модель на 12А, иначе при увеличении мощности она сгорит.

Электропитание катушки управления подбирается по двум критериям: тип электротока (переменный или постоянный) и напряжение (от 12В до 440В - постоянный, от 12В до 660В - переменный при частоте 50 Гц и от 24В до 660В - переменный при 60 Гц). Существуют также универсальные модели с катушкой работающей и от переменного, и от постоянного тока.

 

Механическая и коммутационная износостойкость

 

Данная характеристика показывает предельное количество циклов включения-выключения - срабатываний расцепителя. Чем их больше, тем дольше будет срок службы. Это значение особенно важно для двигателей с частыми пусками.

Механическая износостойкость показывает количество включений-выключений при отсутствии напряжения. Как правило, средний механизм выдерживает около 10-20 млн. операций.

Коммутационная износостойкость определяет допустимое количество циклов срабатывания и зависит от категории применения. Например, если контактор в режиме AC-3 может переносить 1,7 млн циклов, то в AC-4 - 200 тыс. Как правило, данную характеристику производитель всегда указывает в техническом паспорте.

Коммутационная износостойкость делится на три класса:

  • А - самый высокий, гарантирует от 1,5 млн. до 4 млн. операций срабатывания магнитного пускателя в рабочем режиме;
  • Б - средний, модели данного класса выдерживают от 630 тыс. до 1,5 млн. переключений;
  • В - самый низкий, количество циклов от 100 тыс. до 500 тыс.
  •  

Частота включений и время срабатывания

 

Для электродвигателей с частыми пусками важна частота включений, группируемая по собственным классам.

Допустимое количество циклов в час

30

120

300

1200

3600

Для нормальной работы важно, чтобы максимально возможная частота включения была близка соответствующему параметру механизма расцепления. В ином случае, механизм расцепления может выйти из строя. Например, для промышленного станка оптимальным будет класс 3, допускающий 300 включений в час (в среднем - 5 в минуту).

Скорость срабатывания электромагнитного расцепителя определяется временем:

  1. включения - промежутком с момента подачи сигнала и до замыкания главных контактов;
  2. отключения - периодом с момента обесточивания электромагнита до расцепления линии.

При постоянном токе время срабатывания магнитного расцепителя равно нескольким сотням миллисекунд, а при переменном нескольким десяткам миллисекунд.

 

Дополнительные критерии для правильного выбора

 

Представленные выше характеристики влияют на работоспособность контактора, тем не менее дополнительные критерии делают пользование более эффективным. Прежде всего это касается конструкционных особенностей электромоторов и условий их эксплуатации.

 

Коэффициент возврата

 

Данный параметр рассчитывается по формуле Kв=Uотп/Uср, где:

  • Uотп - это напряжение отпускания якоря,
  • Uср - напряжение срабатывания.

Для катушек запитанных постоянным током коэффициент возврата равен 0,2-0,3, из-за чего невозможно применить контактор для защиты нагрузки от падения напряжения. Для переменного данное значение равно 0,6-0,7, что допускает такую защиту.

Наличие реверса

 

Для управления реверсивным двигателем лучше выбрать реверсивный контактор с двумя пускателями в корпусе, соединенными между собой. Между ними установлена механическая защита, блокирующая при коммутации одного контакта включение второго. Это обеспечивает максимально удобную эксплуатацию.

 

Степень пылевлагозащиты

Выбор данного параметра такой же, как и у любого другого электрооборудования. Если местом размещения будет защищенный шкаф, можно смело брать IP20. В случае размещения в условиях запыленности или влажности, лучше выбрать IP54. При высоком риске попадания воды или оседания конденсата на корпусе, лучше отдать предпочтение IP65.

 

Как защитить контактор от перегрузок?

 

Для защиты промышленных электромоторов совместно с контактором необходимо докупить и установить тепловое реле. Его главная функция заключается в размыкании главных контактов при нагревании до предельно высоких температур. Подобирать тепловые реле и дополнительные контакты советую у оффициального дистрибьютора - в интернет магазине АксиомПлюс.

Если надумаете покупать, то там же можно это и сделать. Но главное то что это САМЫЙ вменяемый (на мой взгляд) каталог со всеми характеристиками, которые при этом можно подбирать, а не листать печатные каталоги.

 

Обязательная защита

 

Исходя из того, что сверхвысокие температуры выведут из строя рабочий механизм, а силовые соединения при этом могут спаяться - такая защита обязательна. В данной ситуации понадобится аварийная остановка двигателя посредством обесточивания цепи.

Кроме того, тепловое реле стоит от 150 грн, и такое приобретение полностью оправдано. По сути, это страховка на будущее - она увеличит срок эксплуатации электромагнитного расцепителя и защитит его от поломки.

 

Совмещенный и более дешевый вариант

 

У популярных производителей, например IEK, есть контакторы (серия КМИ) укомплектованные вмонтированными внутри корпуса тепловыми реле. Если приобрести один из таких аналогов, можно хорошо сэкономить, так как нивелируется необходимость приобретения дополнительных защитных устройств.

 

Альтернативное и универсальное решение

 

В качестве альтернативы можно установить один из таких вот универсальных блоков защиты (УБЗ). Он защищает сеть (и электродвигатель) от:

  • коротких замыканий;
  • скачков напряжения;
  • нарушений сопротивлений изоляции;
  • технологических перегрузок;
  • климатических условий - экстремальных температур, повышенной влажности.

Данная система автоматически измеряет и контролирует все рабочие параметры мотора и не допускает возникновения аварийной ситуации. УБЗ включает функции теплового реле и защищает от ряда других негативных факторов.

Тепловое реле и УБЗ подбираются по номинальному току и напряжению. По конструкционному исполнению монтируются в панель управления или DIN-рейку.

 

Каким должен быть контактор для электродвигателя с частыми пусками?

 

Проанализировав вышеизложенные характеристики, можно выделить оптимальные критерии выбора:

  • Поддержка категорий применения AC-3 и AC-4 для переменного тока, и DC-3, DC-4, DC-5 - для постоянного;
  • Класс коммутационной износостойкости не ниже Б;
  • Дополнительная защита тепловым реле или УБЗ;
  • Рекомендуемая частота включений не ниже 1200.

Тем не менее такие параметры как, например, напряжение питания катушки управления лучше подбирать исходя из частного случая, а именно марки электродвигателя и специфики его работы. С этим Вам всегда помогут опытные специалисты Аксиом-Плюс.

При написании использовались материалы AXIOMPLUS.COM.UA

Владислав Ромаха специально для METALSTANKI.COM.UA

Копирование для последующей публикации без разрешения автора ЗАПРЕЩЕНО

www.metalstanki.com.ua

Схема подключения однофазного двигателя через пускатель

Подключение однофазного электродвигателя чрез трехфазный магнитный пускатель — довольно распространенная практика защиты однофазных моторов. Ниже приведена схема как подключить однофазный электродвигатель к питающей сети (220В) через трехфазный магнитный пускатель (380В).

Для защиты однофазного электродвигателя от перегрузки мы рекомендуем подключать электродвигатель к питающей сети через магнитный пускатель c правильно подобранным тепловым реле. Однако в большинстве случаев пускатели и тепловые реле выпускаются трехфазными (для 380 В).  Для правильной работы трехфазного теплового реле с однофазным электродвигателем необходимо два полюса этого теплового реле включить последовательно. Ниже привожу схему, как  это сделать  и, тем самым, произвести подключение однофазного электродвигателя 220 В к питающей сети (220В) через трехфазный пускатель. В моем примере пускатель типа ПМЛ с тепловым реле типа РТЛ. Схема:

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

ОГЛАВЛЕНИЕ

  • Обмотки электромотора
  • Особенности формирования вращающего момента
  • Конденсаторы
  • Косвенное включение
  • Особенности применения магнитного пускателя
  • Заключение

Обмотки электромотора

схема подключения однофазного двигателя через пускатель

Укладка обмоток в статоре однофазного электродвигателя

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

схема подключения однофазного двигателя через пускатель

Варианты создания сдвига фаз

Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Конденсаторы

Наши читатели рекомендуют!

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

схема подключения однофазного двигателя через пускатель

Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

Емкость дополнительного пускового компонента выбирается в два-три раза выше по сравнению с основным. Такая величина обеспечивает максимальный стартовый момент.

Для включения пускового элемента может использоваться как обычная кнопка, так и более сложные схемы.

Косвенное включение

схема подключения однофазного двигателя через пускатель

Подключение однофазного двигателя

Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

Особенности применения магнитного пускателя

В управляющей части устройства предусмотрено несколько пар контактов, на которых собирается схема релейной автоматики. Один из них всегда является нормально замкнутым, а второй – нормально разомкнутым.

У кнопки «Пуск» рабочим считается нормально разомкнутый контакт, а у кнопки «Стоп» задействован нормально замкнутый элемент.

При выполнении подключения рассматриваемого устройства осуществляются соединения нескольких типов.

схема подключения однофазного двигателя через пускатель

Схема подключения однофазного двигателя

Фаза, наряду с входной клеммой, подключается также к входу контакта кнопки «Стоп», а ноль соединяется с входной клеммой катушки, что обеспечивает протекание через нее управляющего тока.

Активный контакт кнопки «Пуск» при работающем двигателе шунтируется аналогичным элементом катушки. Для формирования этой цепи выполняются два дополнительных соединения, схема которых показана на рисунке выше:

  • выход рабочего контакта кнопки «Стоп» параллельно соединяется с контактами выхода кнопки «Пуск» и входа управляющей катушки;
  • выход нормально разомкнутого контакта управляющей катушки параллельно соединяется с ее выходной клеммой и с входом рабочего контакта кнопки «Пуск».

Заключение

Процесс подключения однофазного электромотора к сети 220в не отличается большой сложностью и фактически требует только желания, минимального набора простейших инструментов, наличия схемы соединений и аккуратности в работе. Из расходных материалов нужны только провода. Из-за опасности короткого замыкания и больших величин токов, протекающих через обмотки двигателя, необходимо обязательно выполнять требования техники безопасности и не забывать про старое, но очень действенное правило: «Семь раз отмерь, один раз отрежь».

схема подключения однофазного двигателя через пускатель

Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.

Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.

На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.

Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического «отключения» оборудования при «пропадание» электричества.

Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма.

При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка «Пуск» .

Схемы подключения магнитного пускателя

Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

схема подключения однофазного двигателя через пускатель В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.

Цепь управления получает питание от фазы «А».

В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на «3» контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

Обратите внимание. В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.

Например если катушка магнитного пускателя на 220 вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.

Если номинал катушки на 380 вольт — один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.

Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.

В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.

схема подключения однофазного двигателя через пускатель

Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.

Как выглядит монтажная (практическая) схема подключения магнитного пускателя?

схема подключения однофазного двигателя через пускатель

Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на «3» контакт кнопки «Пуск».

схема подключения однофазного двигателя через пускатель

Как подключить магнитный пускатель в однофазной сети

Схема подключения электродвигателя с тепловым реле и защитным автоматом

Как выбрать автоматический выключатель (автомат) для защиты схемы?

Прежде всего выбираем сколько «полюсов», в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.

Следующим важным параметром будет ток сработки.

Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять).  Значит, трехполюсный автомат надо ставить на 3 или 4А.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.

Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.

Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.

Например для двигателя на 4кВт, можно ставить автомат на 10А.

Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.

В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.

Подключение электродвигателя через реверсивный пускатель

Данная необходимость возникает, тогда когда нужно чтобы движок вращался поочередно в обоих направлениях.

Смена направления вращения реализуется простим способом,  меняются местами любые две фазы.

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед» и «Пуск назад«, выключение — одной, общей кнопкой «Стоп» , как и в схемах без реверса.

В таких схемах запуска всегда должна быть защита от одновременного включения кнопок «вперед» и «назад».

Реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними должен стоять специальный механический блокиратор.

Вторая защита — электрическая. Контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если случайно нажать обе кнопки «пуск», ничего не получится — электродвигатель будет слушаться той кнопки, которая нажата раньше.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но так-как пятого контакта, в большинства магнитных пускателей нет, можно поставить дополнительный контакт. Например приставка ПКИ.

с катушкой на 220 вольт

с катушкой на 380 вольт

Электродвигатели однофазные 220В широко используются в разнообразном промышленном и бытовом оборудовании: насосах, стиральных машинах, холодильниках, дрелях и обрабатывающих станках.

Разновидности

Существуют две наиболее востребованных разновидности этих устройств:

  • Коллекторные.
  • Асинхронные.

Последние по своей конструкции более просты, однако обладают рядом недостатков, среди которых можно отметить трудности с изменением частоты и направления вращения ротора.

Устройство асинхронного двигателя

Мощность данного двигателя зависит от конструктивных особенностей и может варьироваться от 5 до 10 кВт. Его ротор представляет короткозамкнутую обмотку – алюминиевые или медные стержни, которые замкнуты с торцов.

Как правило, электродвигатель асинхронный однофазный оборудован двумя смещенными на 90° относительно друг друга обмотками. При этом главная (рабочая) занимает существенную часть пазов, а вспомогательная (пусковая) – оставшуюся. Свое название электродвигатель асинхронный однофазный получил лишь потому, что он имеет только одну рабочую обмотку.

Принцип работы

Протекающий по главной обмотке переменный ток создает магнитное периодически меняющееся поле. Оно состоит из двух кругов одинаковой амплитуды, вращение которых происходит навстречу друг другу.

В соответствии с законом электромагнитной индукции, меняющийся в замкнутых витках ротора магнитный поток образует индукционный ток, который взаимодействует с полем, порождающим его. Если ротор находится в неподвижном положении, моменты сил, действующих на него, одинаковы, в результате он остается неподвижным.

При вращении ротора, нарушится равенство моментов сил, так как скольжение его витков по отношению к вращающимся магнитным полям станет разным. Таким образом, действующая на роторные витки от прямого магнитного поля сила Ампера будет существенно больше, чем со стороны обратного поля.

В витках ротора индукционный ток может возникать только в результате пересечения ими силовых линий магнитного поля. Их вращение должно осуществляться со скоростью, чуть меньше частоты вращения поля. Собственно отсюда и пошло название асинхронный однофазный электродвигатель.

Вследствие увеличения механической нагрузки уменьшается скорость вращения, возрастает индукционный ток в роторных витках. А также повышается механическая мощность двигателя и переменного тока, который он потребляет.

Схема подключения и запуска

Естественно, что вручную раскручивать при каждом запуске электродвигателя ротор неудобно. Поэтому для обеспечения первоначального пускового момента применяется пусковая обмотка. Так как она составляет прямой угол с рабочей обмоткой, для образования вращающегося магнитного поля на ней должен быть сдвинут по фазе ток относительно тока в рабочей обмотке на 90°.

Этого добиться можно посредством включения в цепь фазосмещающего элемента. Дроссель или резистор не могут обеспечить сдвиг фазы на 90°, поэтому целесообразней в качестве фазосмещающего элемента использовать конденсатор. Такая схема однофазного электродвигателя обладает отличными пусковыми свойствами.

Если в качестве фазовращающего элемента выступает конденсатор, электродвигатель конструктивно может быть представлен:

  • С рабочим конденсатором.
  • С пусковым конденсатором.
  • С рабочим и пусковым конденсатором.

Наиболее распространенным является второй вариант. В таком случае предусмотрено недолгое подключение пусковой обмотки с конденсатором. Это происходит только на время пуска, затем они отключаются. Реализовать такой вариант можно при помощи реле времени или посредством замыкания цепи при нажатии пусковой кнопки.

Подобная схема подключения однофазного электродвигателя характеризуется довольно невысоким пусковым током. Однако в номинальном режиме параметры низкие по причине того, что поле статора – эллиптическое (оно сильнее в направлении полюсов).

Схема с постоянно включенным рабочим конденсатором в номинальном режиме работает лучше, при этом пусковые характеристики имеет посредственные. Вариант с рабочим и пусковым конденсатором, по сравнению с двумя предыдущими, является промежуточным.

Коллекторный двигатель

Рассмотрим однофазный электродвигатель коллекторного типа. Это универсальное оборудование может питаться от источников постоянного или переменного тока. Его часто используют в электрических инструментах, стиральных и швейных машинах, мясорубках – там, где требуется реверс, его вращение с частотой свыше 3000 оборотов в минуту или регулировка частоты.

Обмотки ротора и статора электродвигателя соединяются последовательно. Ток подводится посредством щеток, соприкасающихся с пластинами коллектора, к которым подходят концы обмоток ротора.

Осуществление реверса происходит за счет изменения полярности подключения ротора или статора в электрическую сеть, а скорость вращения регулируется посредством изменения в обмотках величины тока.

Недостатки

Коллекторный однофазный электродвигатель имеет следующие недостатки:

  • Создание радиопомех, трудное управление, значительный уровень шума.
  • Сложность оборудования, практически невозможно произвести его ремонт самостоятельно.
  • Высокая стоимость.

Подключение

Чтобы электродвигатель в однофазной сети был подключен должным образом, необходимо соблюдать определенные требования. Как уже было сказано, существует целый ряд двигателей, способных функционировать от однофазной сети.

Перед подключением важно убедиться в том, что частота и напряжение сети, указанные на корпусе, соответствуют главным параметрам электрической сети. Все работы по подключению необходимо производить только при обесточенной схеме. Также следует избегать заряженных конденсаторов.

Как подключить однофазный электродвигатель

Для подключения двигателя необходимо соединить последовательно статор и якорь (ротор). Клеммы 2 и 3 соединяются, а две другие нужно подключить в цепь 220B.

По причине того, что электродвигатели однофазные 220В функционируют в цепи переменного тока, в магнитных системах возникает магнитный переменный поток, что провоцирует образование вихревых токов. Именно поэтому магнитную систему статора и ротора выполняют из электротехнических стальных листов.

Подключение без регулирующего блока с электроникой может привести к тому, что в момент запуска образуется значительный пусковой ток, и в коллекторе произойдет искрение. Изменение направления вращения якоря выполняется посредством нарушения последовательности подключения, когда меняются местами выводы якоря или ротора. Главным недостатком этих двигателей считается присутствие щеток, которые следует заменять после каждой длительной эксплуатации оборудования.

Таких проблем в асинхронных электродвигателях не существует, так как в них отсутствует коллектор. Магнитное поле ротора образуется без электрических связей за счет внешнего магнитного поля статора.

Подключение через магнитный пускатель

Рассмотрим, как можно подключить однофазный электродвигатель через магнитный пускатель.

1. Итак, в первую очередь необходимо выбрать магнитный пускатель по току таким образом, чтобы его контактная система выдерживала нагрузку электрического двигателя.

2. Пускатели, к примеру, делятся на величину от 1 до 7, и чем больше данный показатель, тем больший ток выдерживает контактная система этих устройств.

  • 10A – 1.
  • 25A – 2.
  • 40A – 3.
  • 63A – 4.
  • 80A – 5.
  • 125A – 6.
  • 200A – 7.

3. После того как была определена величина пускателя, необходимо обратить внимание на катушку управления. Она может быть на 36B, 380B и 220B. Желательно остановиться на последнем варианте.

4. Далее, собирается схема магнитного пускателя, и подключается силовая часть. На разомкнутые контакты выполняется ввод 220B, на выход силовых контактов пускателя подключается электродвигатель.

5. Подключаются кнопки «Стоп – Пуск». Их питание осуществляется от ввода силовых контактов пускателя. К примеру, фаза соединяется с кнопкой «Стоп» замкнутого контакта, затем с нее переходит на пусковую кнопку разомкнутого контакта, а с контакта кнопки «Пуск» – на один из контактов катушки магнитного пускателя.

6. На второй вывод пускателя подключается «ноль». Чтобы зафиксировать включенное положение магнитного пускателя, необходимо шунтировать пусковую кнопку замкнутого контакта к блоку контактов пускателя, подающего питание с кнопки «Стоп» на катушку.

otoplenie-help.ru

Схема подключения магнитного пускателя | Способы подсоединения и проверка работы (видео + 145 фото)

Подача электропитания на двигатели осуществляется либо через контактор, либо через магнитный пускатель. По выполняемым функциям эти устройства очень схожи между собой, и нередко в прайс-листах их даже путают. Между ними, тем не менее, существуют и серьезные различия. Виды магнитных пускателей, с фото и примерами, а также схема их подключения будут разобраны в рамках статьи.

Краткое содержимое статьи:

Сходство и различие контакторов и пускателей

Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.

Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.

Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.

Контакторы нередко изготавливаются без корпуса, поэтому в процессе эксплуатации для них необходимо предусмотреть защитный кожух, предохраняющий его от влаги и загрязнения, и поражения людей током.

electrikexpert.ru

Магнитный пускатель

Магнитный пускатель — это коммутационный аппарат, предназначенный для частого включения — выключения мощной нагрузки постоянного и переменного тока.

Наиболее распространенное применение магнитных пускателей — управление асинхронными двигателями, при помощи пускателя осуществляется пуск, останов и реверс (изменение направления вращения) двигателей, а также при наличии теплового реле — защита от токовой перегрузки. Но помимо этого пускатели нашли широкое применение и в схемах дистанционного управления освещением, управлении электронагревательными приборами, насосами, компрессорами и т.д.

Магнитные пускатели классифицируются по:

степени защиты

  • открытого исполнения ( степень защиты IP00) — предназначены для установки в закрытых шкафах, а также других местах, защищенных от пыли, влаги, посторонних предметов.
  • защищенного исполнения (степень защиты IP40) — предназначены для установки внутри неотапливаемых помещений, в которых окружающая среда не содержит значительного количества пыли и исключено попадание влаги.
  • пылевлагозащищенного исполнения ( степень защиты IP54) — используются в условиях повышенного содержания пыли и влаги, например при наружней установке.

номинальному току нагрузки на силовые контакты

Номинальный ток нагрузки или величина пускателя — один из наиболее важных параметров магнитного пускателя. Он показывает максимально допустимый ток, который может протекать через контакты главной цепи пускателя. В основном используются пускатели первой величины (10А), второй величины (25А), третьей величины (40А), четвертой величины (63А). При указании этих величин считается, что напряжение составляет 380 В и пускатель работает в режиме AC-3. В зависимости от напряжения на контактах главной цепи и категории применения -AC-1,AC-3 или AC-4 допустимый ток будет отличаться.

категории применения

Для большинства пускателей используются три категории — AC-1, AC-3 и AC-4.

  • AC-1 — активная нагрузка или слабоиндуктивная, печи сопротивления.
  • AC-3 — асинхронные двигатели с короткозамкнутым ротором; пуск, отключение без предварительной остановки.
  • AC-4 — асинхронные двигатели с короткозамкнутым ротором: пуск, торможение противотоком, повторно-кратковременные включения.

напряжению управляющей катушки

Наибольшее применение получили катушки на 220 и 380 В, хотя могут быть и на 24, 36, 42, 110 Вольт.

напряжению силовой цепи

Кроме того различают реверсивные и нереверсивные магнитные пускатели. Реверсивные пускатели представляют из себя два обычных пускателя с общими техническими характеристиками, объединенных общим основанием. Чтобы исключить возможность одновременного срабатывания двух пускателей, выполняется электрическая и механическая блокировка.

Конструктивно магнитный пускатель состоит из сдвоенного корпуса, верхней части, в которой находится подвижная часть магнитопровода (якорь) с прикрепленной траверсой с подпружиненными подвижными контактами и неподвижные контакты и нижней части, в которой находятся катушка управления, возвратная пружина и неподвижная часть магнитопровода (сердечник) с короткозамкнутыми витками, необходимыми для уменьшения вибраций.

Подвижная и неподвижная часть магнитопровода должны иметь гладкую, шлифованную поверхность без каких-либо загрязнений, иначе при работе пускатель будет издавать сильный гул.

При подаче напряжения в катушке управления возникает электромагнитное поле, под воздействием которого якорь притягивается к сердечнику, замыкаются главные и вспомогательные контакты. При снятии напряжения катушка обесточивается, якорь под действием возвратной пружины возвращается в исходное положение, контакты размыкаются и цепь обесточивается.

Основная характеристика, на которую надо ориентироваться — это величина пускателя, которая подбирается в зависимости от тока нагрузки. Здесь надо учитывать, что ток, на который рассчитаны силовые контакты пускателя должен быть больше максимального тока нагрузки. Помимо величины пускателя подбираем рабочее напряжение катушки — оно должно быть таким же, как у цепей управления, степень защиты, наличие вспомогательных замыкающих или размыкающих контактов, наличие теплового реле, класс износостойкости.

Схема подключения нереверсивного пускателя

QF — автоматический выключатель

KM1 — магнитный пускатель

P — тепловое реле

M — двигатель

ПР — предохранитель

С-Стоп, Пуск — кнопки управления

При включении автомата QF и нажатии кнопки Пуск, питание с фазы B поступает на катушку управления пускателя. На другой вывод катушки питание приходит с фазы C через нормально замкнутый вспомогательный контакт теплового реле.

После того как нажали кнопку Пуск, замыкаются разомкнутые силовые контакты пускателя и питание через замкнутые силовые контакты теплового реле подается на электродвигатель. В случае перегрузки электродвигателя тепловое реле сработает и своим вспомогательным контактом разорвет цепь питания катушки пускателя.

Для того, чтобы при работе не нужно было все время удержать кнопку Пуск, ее шунтируют нормально разомкнутым контактом БК. При срабатывании пускателя контакт замыкается и ток на катушку потечет уже через него. Это так называемая схема самоподхвата.

Отключается двигатель нажатием кнопки Стоп — нормально замкнутый контакт Стоп размыкается и питание на катушку пускателя прекращается. При этом сердечник пускателя возвращается в исходное положение, силовые контакты размыкаются и двигатель обесточивается.

Тепловое реле в схеме применяется для защиты электродвигателя от токовых перегрузок ( например в случае заклинивания ротора), а также в случае обрыва одной из фаз. При срабатывнии теплового реле разомкнется нормально замкнутый контакт Р и цепь обесточится.

Схема подключения реверсивного пускателя

Принцип реверсивной схемы подключения аналогичен нереверсивной, кроме того что добавились еще один пускатель КМ2 и кнопка Пуск2.

Рассмотрим подробнее эту схему.

При включении автомата QF и нажатии кнопки Пуск1 напряжение подается на катушку КМ1, силовые контакты пускателя КМ1 замыкаются, двигатель включается. Также как и в случае нереверсивной схемы кнопка Пуск шунтируется нормально разомкнутым блок контактом КМ1. Блокировка пускателя КМ2 осущестляется нормально замкнутым контактом КМ1. При срабатывании пускателя КМ1 он размыкается.

Для реверса электродвигатель сначала отключается нажатием кнопки Стоп, которая размыкается и питание на катушку пускателя прекращается.

Для запуска двигателя в обратном направлении нажимаем кнопку Пуск2, напряжение подается на катушку КМ2, силовые контакты пускателя КМ2 замыкаются, двигатель включается. Шунтирование кнопки Пуск2 осуществляется блок контактом КМ2, а блокировка пускателя КМ1 — размыканием нормально замкнутого контакта КМ2.

Кроме электрической блокировки часто применяют также механическую блокировку, которая не дает срабатывать одному из контакторов, пока включен другой.

Узел механической блокировки

Схема подключения магнитного пускателя на 220 В аналогична схеме на 380 В.

electric-blogger.ru

через магнитный пускатель и реле, с помощью контактора, меры предосторожности

Схемы подключения прибораЛюбой электрический прибор имеет устройство для его подключения к электросети, будь то чайник, кофемолка или более сложный механизм. Это может быть как простое устройство, так и более сложное. Порой, если оно вышло из строя, необходимо заменить его либо самому собрать для электроприбора.

Способы подключения

В чем может быть сложность подключения? Необходимо обеспечить безопасность пользователей от поражения электрическим током или пожара, сохранность самого прибора от полного или значительного повреждения при его неисправности. По принципам, которые используются в этих устройствах, их можно разделить на:

  • электронные;
  • электромеханические.

Как подключить двигатель через пускательЭлектронные аппараты полностью состоят из приборов, в которых не используется механическая, мускульная сила. Для коммутации в них используются транзисторы и тиристоры. Такие устройства полностью автоматизированы. Они отличаются быстродействием, отсутствием шума. В них не возникают искры или электрическая дуга. По размерам они значительно меньше электромеханических. Также они выигрывают по весу и, что немаловажно, по цене.

Тем не менее электромеханические устройства еще широко используются. Пожалуй, единственным преимуществом у них является сравнительная простота. Если их классифицировать по разъединяемому току, то можно выделить три группы:

  • реле;
  • пускатели;
  • контакторы.

Через реле

Подключение двигателя  через релеРеле — самые маломощные, работают с малым током и напряжением. В связи с этим могут работать с относительно большими частотами, чем остальные два. Используются в автоматике, телефонии, для маломощных агрегатов. Могут применяться в виде основного коммутатора либо совместно с более мощным, например, пускателем.

Реле имеет металлический или пластиковый корпус и диэлектрическую пластину, из которой выходят вывода для крепления проводов. К пластине крепится катушка и контакты. По числу контактов можно выделить:

  • одноконтактные;
  • много контактные.

Катушка представляет собой намотанный на каркас провод, а в центре ее находится металлический сердечник. Вблизи сердечника располагается металлическая пластина, к которой через изолирующую прокладку крепится один или несколько контактов. В некоторых конструкциях их может быть 20−30. Когда по катушке проходит ток, сердечник намагничивается и притягивает пластину с коммутирующим устройством. Чтобы коммутатор вернулся в свое первоначальное положение после снятия напряжения с обмотки катушки, к нему с противоположной стороны крепится пружина.

Те коммутирующие устройства, которые находятся в движении, называют подвижными. Другие — неподвижные, они не перемещаются во время работы реле. На каждый подвижный контакт приходится один или два неподвижных. В связи с этим их можно разделить на три группы:

  • замыкающие;
  • размыкающие;
  • переключающие.

Схема  реле       Замыкающими называют пару контактов, которые при срабатывании катушки замыкаются. Размыкающие, естественно, будут размыкаться при подаче на катушку напряжения. У переключающих подвижной коммутатор находится между двумя неподвижными, причем при отсутствии магнитного поля подвижные соединены с одним контактом, а при появлении магнитного поля они переключаются на другой.

Обычно на корпусе реле есть схема контактов, где показано, в каком положении при отсутствии напряжения на катушке находятся подвижные. Они пронумерованы, как и выводы на корпусе, что помогает определить, какой вывод соответствует тому или иному контакту. Отдельно показаны выводы катушки, они обозначаются буквами «А» и «Б».

На электрической схеме реле обозначается прямоугольником, а рядом ставится буква К. Если в схеме несколько реле, рядом с буквой ставится цифра — индекс. Сам прямоугольник обозначает обмотку катушки. Чтобы легче было читать схему, контакты могут располагаться отдельно от реле. Для идентификации рядом с ними ставится буква «К» и цифры (индекс), указывающие принадлежность к тому или иному реле. Если в реле несколько пар контактов, в индексе указывается их порядковый номер.

Магнитный пускатель

Что представляет собой катушка В быту и производстве широкое применение получил магнитный пускатель. Он используется для подключения потребителей различных мощностей. Корпус, изготовленный из электроизоляционного материала, полностью защищает человека от случайного поражения электрическим током.

Внутри корпуса крепится катушка с сердечником. Она подключается, на это необходимо обратить особое внимание, к напряжению 220 или 380 вольт. Несоблюдение этого требования приведет либо к плохой работе пускателя, либо к выходу из строя катушки. Номинальное напряжение указывается на самой катушке, а она ставится таким образом, что эту надпись можно было увидеть, не разбирая корпуса.

Как и в реле, обмотка с сердечником образует электромагнит, но гораздо большей мощности. Это позволяет увеличить скорость размыкания коммутирующего устройства за счет увеличения упругости пружины, что, в свою очередь, дает возможность подключать значительные токи к цепи.

Из-за размыкания больших токов возникает электрическая дуга. Она опасна тем, что может перекрыть соседние коммутирующие устройства, это приведет к короткому замыканию. Также увеличивается время разрыва цепи. Сами контакты под действием высокой температуры начинают плавиться и выгорать. Повышается сопротивление в них, что может плохо повлиять на работу электроприбора. Хуже всего, пожалуй, когда коммутирующие устройства слипаются, а то и вовсе привариваются, тогда цепь не сможет разомкнуться. Последствия предугадать несложно.

Для борьбы с этим нежелательным явлением существует несколько способов:

  1. Увеличение площади достигается засчет размера самого контакта. По сравнению с реле у пускателя она намного больше. Позднее придумали более оригинальный способ, сделали спаренный контакт. На самом подвижном контакте находится не одна, а две площадки. На неподвижном, соответственно, их тоже две.
  2. Использование контакторовВторой метод сводится не только к подбору материала стойкого к температуре. Необходимо обеспечить малое сопротивление в контактах, в противном случае будет происходить потеря энергии. Таким требованиям больше всего соответствует серебро.
  3. В дугогасительных устройствах применяются разные принципы. Самый простой состоит в том, что между контактами в момент их разрыва вставляется изоляционная пластина. Она перерезает дугу. Другой способ заключается в выдувании дуги с помощью магнитного поля. Для этого к контакту подключается катушка, намотанная на ферромагнитный сердечник. К сердечнику крепятся две пластины из того же материала. Пластины же находятся возле контактов. Когда контакты размыкаются, по катушке проходит ток, создавая в сердечнике магнитное поле, а оно, в свою очередь, переходит на пластины. Между пластинами возникает мощное магнитное поле, которое разрывает электрическую дугу. Иногда пластины заменяют решеткой, которая действует аналогично. Но здесь используется еще и другой принцип. Поскольку дуга — это раскаленный ионизированный газ, то пластина или решетка выполняет роль огнетушителя, поскольку забирает тепло.
  4. Шунтирование контактов. При разрыве цепи, в которую включена индуктивность, а это катушки, двигатели, трансформаторы, ток не может сразу остановиться, поэтому возникает дуга. Чтобы предотвратить ее, необходимо ток направить по другому направлению. Это можно сделать двумя способами через конденсатор и резистор.

При использовании конденсатора необходимо подобрать емкость такой величины, чтобы она соответствовала индуктивности нагрузки. При малой емкости между контактами будут появляться искры, а при большой — сдвиг синуса по временной шкале, в худшем случае — срезание верхушек. Простым языком, ток будет выпрямляться, а это скажется на работе электроприборов.

Резистор устраняет эту проблему, но добавляет свою. При малом сопротивлении при разомкнутых контактах через пускатель будет идти ток. Это приведет к потере энергии и может представлять опасность для людей, находящихся, например, в сырых помещениях. При большом сопротивлении опять может возникнуть дуга.

Использование контактора

Контактор похож на магнитный пускатель, но работает со значительно большими токами. Обязательно имеет дугогасительную камеру, отличается быстрым срабатыванием. В отличие от магнитного пускателя не имеет защиты по току. В некоторых устройствах имеется не один, а два электромагнита. Для замыкания контактов используется основной, мощный, а для удержания применяется меньшей мощности.

Особенности подключения трехфазного двигателя

Что может быть причиной неисправности релеВ домашних условиях иногда возникает необходимость подключения трехфазного двигателя через магнитный пускатель. На что необходимо обратить внимание? В магнитных пускателях предусмотрена защита по току. Она представляет собой биметаллическую пластину, по которой проходит ток. При нагревании пластина меняет форму, это используется для замыкания или размыкания контактов управления.

На корпусе пускателя имеются внешние контакты, которые также используются в цепи управления. Их обычно две пары, одни замыкающие, другие — размыкающие.

Основные контакты пускателя непосредственно подключают двигатель к трехфазной сети. Конструктивно две фазы уже проходят через биметаллические пластины, которые, в случае необходимости, разрывают цепь питания катушки пускателя.

Второй конец катушки идет по двум направлениям:

  • к нормально разомкнутым контактам на корпусе;
  • к кнопке «пуск».

После чего цепь вновь объединяется и идет к кнопке «Откл». После чего подсоединяется к фазе или нулю, в зависимости от типа катушки.

Если необходимо чтобы двигатель работал в двух направлениях, ставят второй пускатель по той же схеме и со своими кнопками управления. Разница будет заключаться в фазировке. Это можно будет сделать опытным путем. Двигатель пускается через один пускатель, отключается, пускается через другой. Если вращение происходит в одну и ту же сторону, две любые фазы на пускателе меняют местами.

Возможные неисправности

В процессе работы из-за износа или внешних факторов могут возникнуть неисправности:

  1. При включении пускателя контакты начинают дребезжать или не включаются.
  2. При отключении — залипают, между контактами появляются искры.

Что может быть причиной в первом случае? При замене катушки выбрали номинал большего значения. Стояла на 220 в, поставили на 380. Если не меняли, в катушке появились короткозамкнутые витки, и магнитное поле уменьшилось. Необходимо заменить катушку. При полном разборе пускателя поставили более мощную пружину на контактах.

Во втором случае либо контакты подпорчены, либо слишком большая нагрузка. Необходимо сверить ток потребителя и номинал пускателя. Если соответствуют — поменять контакты.

tokar.guru

Как правильно выбрать электромагнитный пускатель?

Электромагнитный пускатель (контактор) – один из самых распространенных аппаратов для коммутации и управления электрической нагрузкой. При наличии двигателей и насосов без электромагнитных пускателей обойтись практически невозможно.

Я уже писал про выбор электромагнитных пускателей. Там в основном  рассматривал различные схемы построения пускателей и сколько это стоит. Этой заметкой хотелось бы дополнить и завершить тему выбора электромагнитных пускателей.

Сейчас я расскажу более подробно, на какие факторы следует обращать внимание при выборе электромагнитного пускателя или контактора.

1 Определяемся с производителем.

Для наших целей обычно  достаточно пускателей ПМЛ, КМИ, КТИ (никогда не применял). По своему опыту могу сказать, что около 90% применяемых пускателей -на ток до 25А, поэтому с КТИ как-то не пришлось еще поработать. Если по каким-либо причинам вы не можете указать производителя, можно перечислить все параметры. Все электромагнитные пускатели взаимозаменяемые.

2 Определяем номинальный ток пускателя.

Номинальный ток пускателя — максимальный ток, который может пропустить через контактную группу электромагнитный пускатель. Здесь существует классификация пускателей до 16А (первая величина), 25А (вторая величина), 40А (третья величина), 63А (четвертая величина). Есть пускатели и на большие токи, но они применяются в наших проектах очень редко. Следует иметь ввиду, что чем больше пускатель, тем у него больше габаритные размеры.

3 Выбираем степень защиты.

В случае установки электромагнитного пускателя в щите, то электромагнитный пускатель будет без защитной оболочки IP00. Очень хорошо подходят для этих целей малогабаритные пускатели серии КМИ. При установке пускателя в производственном помещении – IP54, в бытовых помещениях с нормальной категорий можно взять и IP40.

4 Выбираем напряжение катушки.

Как правило, выбираем пускатель с катушкой на 230В. Пускатель с катушкой на 400В позволяет экономить одну жилу кабеля. Выбор за вами… на форуме этот вопрос как-то поднимался.

5 В основном применяются нереверсивные пускатели.

В некоторых случаях, например для управления задвижкой нужно использовать реверсивный пускатель. Он представляет из себя два нереверсивных пускателя, соединенных особым образом.

6 Выбираем наличие кнопок управление и сигнальной лампы.

При установке пускателя в щите пускатель выбирается без кнопок и сигнальной лампы. Кнопки управления могут быть дополнительно установлены на передней дверке щита (обычные утопленные без фиксации кнопки ПУСК с одним замыкающим контактом и СТОП с одним размыкающим контактом). Возможен еще вариант установки поста кнопочного управления типа ПКУ (ПУСК, СТОП) у места управления.

В случае установки электромагнитного пускателя вне щита, то кнопки могут быть встроены в корпус пускателя (при необходимости).

Сигнальная лампа служит для сигнализации включенного состояния. Я почти никогда ее не ставлю.

7 Выбираем тепловое реле.

Для защиты двигателя можно использовать тепловое реле. Расчетный ток нашей нагрузки должен быть в диапазоне выбранного нами теплового реле.

При выборе силового щита необходимо помнить, что с тепловым реле электромагнитный пускатель имеет больший габарит, в прочем как и с другими дополнительными устройствами.

8 Выбираем дополнительные контакты.

В основном применяются пускатели с одним дополнительным замыкающим контактом, который используется в схеме управления пускателя. При организации более сложных процессов иногда недостаточно одного контакта. В этом случае можно  поставить дополнительную приставку контактную с нужным количеством замыкающих и размыкающих контактов (до 4 шт.).

У вас может возникнуть вопрос: а можно ли в пускатель ПМЛ с IP54 установить приставку контактную ПКЛ? Вот ответ на этот вопрос…

Возможность установки приставки ПКЛ на пускатели ПМЛ

Еще хотелось бы отметить контакторы модульные (ИЕК). Особенность их в том, что они изготавливаются в двухполюсном и четырехполюсном исполнении и  по габариту наверное почти как модульные автоматы.

 Надеюсь данную тему можно закрыть, если что не понятно…пЕшЫте;)

Советую почитать:

220blog.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *