Закрыть

Расчет делителя напряжения: Калькулятор делителя напряжения

Расчет сборка и изучение схемы делителя напряжения. Делитель напряжения

В составе делителя напряжения для получения фиксированного значения напряжения используют резисторы. В этом случае выходное напряжение U вых связано с входным U вх (без учета возможного сопротивления нагрузки) следующим соотношением:

U вых = U вх х (R2 / R1 + R2)

Рис. 1. Делитель напряжения

Пример. С помощью резисторного делителя нужно получить на нагрузке сопротивлением 100 кОм напряжение 1 В от источника постоянного напряжения 5 В. Требуемый коэффициент деления напряжения 1/5 = 0,2. Используем делитель, схема которого приведена на рис. 1.

Сопротивление резисторов R1 и R2 должно быть значительно меньше 100 кОм. В этом случае при расчете делителя сопротивление нагрузки можно не учитывать.

Следовательно, R2 / (R1 +R2) R2 = 0,2

R2 = 0 ,2R1 + 0,2R2 .

R1 = 4R2

Поэтому можно выбрать R2 = 1 кОм, R1 — 4 кОм. Сопротивление R1 получим путем последовательного соединения стандартных резисторов 1,8 и 2,2 кОм, выполненных на основе металлической пленки с точностью ±1% (мощностью 0,25 Вт).

Следует помнить, что сам делитель потребляет ток от первичного источника (в данном случае 1 мА) и этот ток будет возрастать с уменьшением сопротивлений резисторов делителя.

Для получения заданного значения напряжения следует применять высокоточные резисторы.

Недостатком простого резисторного делителя напряжения является то, что с изменением сопротивления нагрузки выходное напряжение (U вых) делителя изменяется. Ддя уменьшения влияния нагрузки на U выхнеобходимо выбирать соротивление R2 по крайней мере в 10 раз меньше минимального сопротивления нагрузки.

Важно помнить о том, что с уменьшением сопротивлений резисторов R1 и R2 растет ток, потребляемый от источника входного напряжения. Обычно этот ток не должен превышать 1-10 мА.

Резисторы используются также для того, чтобы заданную долю общего тока направить в соответствующее плечо делителя. Например, в схеме на рис. 2 ток I составляет часть общего тока I вх, определяемую сопротивлениями резисторов Rl и R2, т.

е. можно записать, что I вых = I вх х (R1 / R2 + R1)

Пример. Стрелка измерительного прибора отклоняется на всю шкалу в том случае, если постоянный ток в подвижной катушке равен 1 мА. Активное сопротивление обмотки катушки составляет 100 Ом. Рассчитайте сопротивление так, чтобы стрелка прибора максимально отклонялась при входном токе 10 мА (см. рис. 3) .

Рис. 2 Делитель тока

Рис. 3.

Коэффициент деления тока определяется соотношением:

I вых / I вх = 1/10 = 0,1 = R1 / R2 + R1 , R2 = 100 Ом.

Отсюда,

0,1R1 + 0,1R2 = R1

0,1R1 + 10 = R1

R1 = 10/0 ,9 = 11,1 Ом

Требуемое сопротивление резистора R1 можно получить путем последовательного соединения двух стандартных резисторов сопротивлением 9,1 и 2 Ом, выполненных на основе толстопленочной технологии с точностью ±2% (0,25 Вт). Заметим еще раз, что на рис. 3 сопротивление R2 — это .

Для обеспечения хорошей точности деления токов следует использовать высокоточные (± 1 %) резисторы.

Делители напряжения получили широкое распространение в электронике, потому что именно они позволяют оптимальным образом решать задачи регулировки напряжения. Существуют различные схематичные решения: от простейших, например, в некоторых настенных светильниках, до достаточно сложных, как в платах управления переключением обмоток нормализаторов сетевого напряжения.

Что такое делитель напряжения? Формулировка проста — это устройство, которое в зависимости от коэффициента передачи (настраивается отдельно) регулирует значение выходного напряжения относительно входного.

Раньше на прилавках магазинов часто можно было встретить светильник-бра, рассчитанный на две лампы. Его особенностью являлось то, что сами лампы были рассчитаны на работу с напряжением 127 Вольт. При этом вся система подключалась к бытовой электросети с 220 В и вполне успешно работала. Никаких чудес! Все дело в том, что способ соединения проводников формировал не что иное, как делитель напряжения. Вспомним основы электротехники, а именно потребителей.

Как известно, при последовательном способе включения равна, а напряжение изменяется (вспоминаем закон Ома). Поэтому в примере со светильником однотипные лампы включены последовательно, что дает уменьшение питающего их напряжения в два раза (110 В). Также делитель напряжения можно встретить в устройстве, распределяющем сигнал с одной антенны на несколько телевизоров. На самом деле примеров много.

Давайте рассмотрим простейший делитель напряжения на основе двух резисторов R1 и R2. Сопротивления включены последовательно, на свободные выводы подается входное напряжение U. Из средней точки проводника, соединяющего резисторы, есть дополнительный вывод. То есть получается три конца: два — это внешние выводы (между ними полное значение напряжения U), а также средний, формирующий U1 и U2.

Выполним расчет делителя напряжения, воспользовавшись законом Ома. Так как I = U / R, то U является произведением тока на сопротивление. Соответственно, на участке с R1 напряжение составит U1, а для R2 составит U2. Ток при этом равен Учитывая закон для полной цепи, получаем, что питающее U является суммой U1+U2.

Чему же равен ток при данных условиях? Обобщая уравнения, получаем:

I = U / (R1+R2).

Отсюда можно определить значение напряжения (U exit) на выходе делителя (это может быть как U1, так и U2):

U exit = U * R2 / (R1+R2).

Для делителей на регулируемых сопротивлениях существует ряд важных особенностей, которые необходимо учитывать как на этапе расчетов, так и при эксплуатации.

Прежде всего, такие решения нельзя использовать для регулировки напряжения мощных потребителей. Например, таким способом невозможно запитать электродвигатель. Одна из причин — это номиналы самих резисторов. Сопротивления на киловатты если и существуют, то представляют собой массивные устройства, рассеивающие внушительную часть энергии в виде тепла.

Значение сопротивления подключенной нагрузки не должно быть меньше, чем схемы самого делителя, в противном случае всю систему потребуется пересчитывать. В идеальном варианте различие R делителя и R нагрузки должно быть максимально большим. Важно точно подобрать значения R1 и R2, так как завышенные номиналы повлекут за собой излишнее а заниженные будут перегреваться, затрачивая энергию на нагрев.

Рассчитывая делитель, обычно подбирают значение его тока в несколько раз (например, в 10) больше, чем ампераж подключаемой нагрузки. Далее, зная ток и напряжение, вычисляют суммарное сопротивление (R1+R2). Далее по таблицам подбирают ближайшие стандартные значения R1 и R2 (учитывая их допустимую мощность, чтобы избежать чрезмерного нагрева).

Делить…всем Вам знакомо это слово. Делить водку, делить бабло, делить хавку:-) А вот кто-нибудь из Вас делил когда-нибудь напряжение? Думаю, таких мало. Ну что же, давайте разберемся, как можно его поделить.

Для того, чтобы поделить напряжение, нам нужно всего-навсего два и более резисторов. Для начала рассмотрим вот такой рисуночек:

Наш схемка состоит из двух резисторов, подключенных последовательно. На эти резисторы подается напряжение, оно может быть как переменное, так и постоянное. Назовем его U. Ну вот пропускаем мы напряжение через эти резисторы и нас сразу же заработал Закон Ома . Мы знаем, если резисторы соединены последовательно, то их Сопротивление будет равняться сумме их номиналов. То есть получается, что

I=U/R общее, где R общее =R1+R2

то есть можно написать

I=U/(R1+R2)

При последовательном соединении резисторов, сила тока — I , проходящая через каждый резистор одинакова — это есть закон последовательного соединения резисторов, вам его надо бы запомнить, иначе можно вообще не лезть в электронику:-). Так, разобрались. Но у нас каждый резистор обладает своим каким то сопротивлением. Отсюда напрашивается вывод из Закона Ома , что и на каждом сопротивлении у нас будет абсолютно разное напряжение, все зависит от закона Ома.

На сопротивлении R1 у нас будет напряжение U1 , а на сопротивлении R2 у нас будет напряжение U2

I=U2/R2=U1/R1=U/(R1+R2)

Давайте найдем значения U1 и U2 . Думаю, все учились в школе, и сможете без проблем решить эту уравнение. Умножаем, сокращаем, материмся и бошку ломаем, и в конце концов получаем, что

U1=UxR1/(R1+R2)

U2=UxR2/(R1+R2)

А вы знаете, что если сложить правые части уравнения, получим U ? Не верите? Проверьте! Отсюда получаем, что U=U1+U2 . Короче говорю простым языком чайника: если резисторы включены в цепь последовательно, то на каждом резисторе падает напряжение (падает, значит на концах резистора имеется это напряжение) и сумма падений напряжений на всех резисторах будет равняться напряжению источника (батарейки, блока питания или какого-нибудь генератора напряжения). Мы тупо разделили напряжение источника U на два разных напряжения U1 и U2.

R1 и R2 — это условные обозначения резисторов. Если допустим у нас источник напруги 50 Вольт, и нам надо закрутить 5 вольтовый вентилятор от компа, то измеряем сопротивление обмотки вентилятора и высчитываем по формуле, какой резистор цеплять последовательно к вентилятору.

Думаю, с этим все понятно. Формулы есть, оперируйте с ними.

Итак у нас имеются вот такие два резистора и наш любимый мультик:

Замеряем сопротивление мелкого резистора, R1=109,7 Ом.

Замеряем сопротивление толстого резистора R2=52,8 Ом.

Выставляем на блоке питания ровненько 10 Вольт, замеряем напругу с помощью мультика (не смотрите на показания блока питания, он обладает бОльшей погрешностью, чем мультик) .

Цепляемся блоком питания за эти два резистора, запаянные последовательно, напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке тоже немного неточны, силу тока мы будем замерять с помощью мультика тоже.

Замеряем напругу на толстом резисторе. На толстом резисторе падает напруга 3,21 Вольт.

Замеряем напругу на тонком резисторе. На тонком резисторе падает напруга 6,77 Вольт

Ну что, с математикой думаю у всех в порядке. Складываем эти два значения напряжения 3,21+6,77 =9,98 Вольт. А куда делись еще 0,02 Вольта? Они упали на сопротивлении щупов, они ведь тоже обладают сопротивлением, если вы помните. Вот наглядный пример того, чтобы мы смогли разделить напряжение на два разных напряжения.

Давайте же и убедимся, что сила тока при последовательном соединении резисторов везде одинакова. 0,04 А или 40 мА.

Ну, убедились? 🙂

Для того, чтобы делить напряжение плавно, человек изобрел очень удобную вещь, переменный резистор .

Принцип такой: между двумя крайними контактами постоянное сопротивление, сопротивление относительно среднего контакта по отношению к крайним может меняться в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и сопротивление 330 Ом. Давайте же глянем, как он будет делить напряжение!

Так как мощность небольшая, всего 1 Вт, то не будем нагружать его большой напругой, формула мощности P=IхU. Ток потребления из закона Ома I=U/R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.

Для этого выставляем на блоке напругу в 1 Вольт и цепляемся к нашему резику по крайним контактам.

Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напругу между левым и средним контактом:

Замеряем напругу между средним и правым контактом

Суммируем напругу и получаем 0,34+0,64=0,98 вольт. 0,02 Вольта опять потеряли на щупах.

Такие переменные резисторы используются для добавления громкости на ваших колонках от компа, на радиоприемниках, а также на допотопных ТВ.

В настоящее время делители напряжения создаются с помощью абсолютно других законов электроники. Это может быть полупроводниковые схемы или даже схемы с использованием микроконтроллеров. Но, если требуется быстро получить делитель напряжения и изменять малую мощность напряжения или сигнала в электронике, то делитель напряжения на резисторах вам пригодится как нельзя кстати.

Устройство, в котором входное и выходное напряжение связаны коэффициентом передачи. Делитель можно представить, как два участка цепи, называемые плечами, сумма напряжений на которых равна входному напряжению. Чаще всего делитель напряжения строится из двух резисторов. Такой делитель называют резисторным. Каждый резистор в таком делителе называют плечом. Плечо соединённое с землёй называют нижним, то что соединено с плюсом — верхним. Точка соединения двух резисторов называется средним плечом или средней точкой. Если говорить совсем упрощённо, то можно представить среднее плечо, как бассейн. Делитель напряжения позволяет нам управлять двумя «шлюзами», «сливая» напряжение в землю (уменьшая сопротивление нижнего плеча) или «подливая» напряжения в бассейн (уменьшая сопротивление верхнего плеча). Таким образом, делитель может использоваться для того, чтобы получить из исходного напряжения лишь его часть.

Принципиальная схема делителя напряжения

В рассматриваемом примере на вход (Uвх) подаётся напряжение 9В. Предположим, нам нужно получить на выходе (Uвых) 5В. Каким образом расчитать резисторы для делителя напряжения?

Расчёт делителя напряжения

Многие сталкиваются с тем, что не существует формул для расчёта сопротивлений в делителе. На самом деле, такие формулы легко вывести. Но обо всё по порядку. Для наглядности, начнём расчёт с конца, т.е. расчитаем напряжение на выходе, зная номиналы резисторов.

Ток, протекающий через R1 и R2 одинаков, пока к среднему плечу (Uвых) ничего не подключено. Общее сопротивление резисторов при последовательном соединении равняется сумме их сопротивлений:

Rобщ = R1 + R2 = 400 + 500 = 900 Ом

По закону Ома находим силу тока, протекающего через резисторы:

I = Uвх / Rобщ = 9В / 900 Ом = 0.01 А = 10 мА

Теперь, когда нам известен ток в нижнем плече (ток, проходящий через R2), раcчитаем напряжение в нижнем плече (Опять закон Ома):

Uвых = I * R2 = 0.01А * 500 Ом = 5В

Или упрощая цепочку вычислений:

Uвых = Uвх * (R2 / (R1+R2))

Применив немного математики и прочих знаний, сдобрив всё законом Ома, можно получить следующие формулы:

R1 = (Uвх-Uвых)/Iд+Iн

R2 = Uвых / Iд

Здесь и — ток делителя и ток нагрузки соответственно. В общем случае, не нужно даже знать, что это за токи такие. Можно просто принять их равными = 0.01 А (10 мА), а = 0. То есть рассматривать делитель без нагрузки. Это приемлемо до тех пор, пока мы используем делитель только для измерений напряжения (а во всех примерах в нашей базе знаний он именно так и используется). Тогда формулы упростятся:

R1 = (Uвх-Uвых) * 100

R2 = Uвых * 100

P.S. Это совсем не важно, но обратите внимание: 100 — это не физическая величина. После принятия условия, что у нас всегда равен 0.01 А, это просто коэффициент, получившийся при переносе 0.01 в числитель.

Проверяем:

Входящее напряжение у нас 9 вольт, хотим получить 5 вольт на выходе. Подставляем значения в формулу, получаем:

R1 = (9-5) * 100 = 400 Ом

R2 = 5 * 100 = 500 Ом

Всё сходится!

Применение делителя напряжений

В основном делитель напряжения используется там, где нужно измерить изменяющееся сопротивление. На этом принципе основано считывание значений с фоторезистора: фоторезистор включается в делитель в качестве одного плеча. Второе плечо представляет собой постоянный резистор. Аналогичным образом можно считывать показания терморезистора.

Расчет делителя напряжения. Делитель напряжения на резисторах

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов .

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе V out ? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу V out ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

Таким образом, сила тока протекающая через резисторы

Теперь, когда нам известен ток в R2 , расчитаем напряжение вокруг него:

Или если отавить формулу в общем виде:

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.

Применение делителя для считывания показаний датчика

Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.

Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, V out будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.

Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта V out .

Подключение нагрузки

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой (load):

В этом случае V out уже не может быть расчитано лишь на основе значений V in , R1 и R2 : сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление

В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:

Подставив значение в общую формулу расчёта V out , получим:

Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L . Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.

Пропорция сохраняется, V out не меняется:

А потери уменьшатся:

Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.

Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка на R1 равна:

А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень вероятно, что результатом будет возгарание.

Применимость

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора .

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.

Если потребление тока нагрузкой неравномерно во времени, V out также будет неравномерным.

Как сделать делитель напряжения на резисторах? Часто в практике электронщика возникает необходимость снизить величину входного напряжения либо напряжение на отдельном участке цепи в строго определенной количество раз. Например, величина входного напряжения 50 В , а выходное напряжение нужно получить в 10 раз меньше, т. е. 5 В (рис. 1 ). Для этого используются делители напряжения.

Рис. 1 — Структурная схема делителя напряжения

Они бывают разных типов и выполняются на безе , катушек индуктивности (рис. 2 ). Однако мы рассмотрим только наиболее применяемые на практике делители напряжения.


Рис. 2 — Элементы, применяемые в качестве делителей напряжения

Наиболее простым делителем напряжения являются два последовательно соединенных резистора R1 и R2 , которые подключены к источнику напряжения U (рис. 3 ). Если сопротивление резисторов одинаковы R1 = R2 , то напряжение источника питания разделится поровну на них U1 = U2 = U/2 .


Рис. 3 — Общая схема делителя напряжения на резисторах

Расчет делителя напряжения на резисторах

Давайте разберемся как происходит деление напряжения. Для этого нам понадобится знание только закона Ома, который, если говорить очень обобщенно, звучит так: ток I , протекающий в цепи (или на ее участке), прямопропорционален приложенному напряжению U и обратнопропорционален сопротивлению цепи (или ее участка) R , т. е.


откуда

Также следует знать, что в последовательной цепи, т. е. в цепи, в которой все резисторы соединены последовательно, ток I протекает одной и той же величины через все резисторы, а общее сопротивление последовательно соединенных резисторов равно сумме сопротивлений всех резисторов Rобщ = R1+R2 .

Теперь, на основании выше сказанного, давайте определим напряжения на резисторах в зависимости от величины их сопротивлений и напряжения источника питания.

Ток I , протекающий в цепи, равен отношению напряжения U к сумме сопротивлений R1+R2 , т. е.

Падение напряжения на первом резисторе равно

По аналогии находим падение напряжения на втором резисторе

Теперь в выражение (2) и (3) подставим значение тока из выражения (1), в результате получим

Делитель напряжения на резисторах. Различные номиналы резисторов

С помощью полученных формул можно определить падение напряжения на резисторе, зная только величину входного напряжения и сопротивления самих резисторов. Однако такие формулы часто применимы лишь в теоретических расчётах. На практике же гораздо проще пользоваться основным свойством любого делителя напряжения, которое заключается в том, что при соответствующем подборе сопротивлений резисторов R1 и R2 выходное напряжение составляет часто входного (рис. 4 ).


Рис. 4 — Схемы делителей напряжения на резисторах

Следует обратить внимание на то, что величина выходного напряжения зависит от относительного значения сопротивлений резисторов R1 и R2 , а не от абсолютного.


Рис. 5 — Схемы делителей напряжения с одинаковым коэффициентом деления при разных номиналах резисторов

Здесь возникает вопрос: какие же номиналы резисторов R1 и R2 применять, 3 кОм и 1 кОм или 30 кОм и 10 кОм ? Все зависит от конкретного случая. Однако есть рекомендация, которая исходит из закона Ома, чем меньше значение сопротивления R1 и R2 , тем больший ток будет протекать в цепи и тем большую мощность можно получить с выхода делителя напряжения, но нужно помнить, что эта мощность ограничивается мощностью источник питания и не может ее превысить.

Также делитель напряжения можно выполнять из нескольких последовательно соединенных резисторов (рис. 6 ).


Рис. 6 — Схема делителя напряжения с несколькими резисторами

И так, мы рассмотрели резисторный делитель напряжения с фиксированным значением выходного напряжения. Однако часто возникает необходимость в плавном изменении выходного напряжения. Например, при регулировании громкости звука мы плавно изменяем напряжение на усилителе.

Для плавного регулирования величины выходного напряжения применяются переменные и подстроечные резисторы (рис. 7 ).


Рис. 7 — Переменные и подстроечные резисторы

Переменный резистор еще называют потенциометром. Конструктивно он состоит из корпуса, имеющего три вывода, и рукоятки. При вращении ручки осуществляется скользящих контакт подвижной металлической пластины, которая замыкает две токопроводящие графитные дорожки, имеющие разную проводимость в зависимости от длины. Благодаря этому изменяется сопротивление межу двумя, рядом расположенными, выводами. А сопротивление между двумя крайними выводами остается всегда неизменным.

Схема подключения переменного резистора или же потенциометра приведена ниже (рис. 8 ). Два крайних вывода подключаются к источнику питания, а между средним и одним из крайних выводов снимается выходное напряжение, величину которого можно изменять от нуля до значения входного напряжения Uвых = 0…Uвх .


Рис. 8 — Схема включения переменного резистора для деления напряжения

Если, проворачивая ручку резистора, мы введем все сопротивление (как показано на схеме (рис. 9 )), то выходное напряжение будет равно входному Uвых = Uвх , так как подводимое напряжение будет полностью падать на сопротивлении резистора.

Если же вывести все сопротивление, то выходное напряжение будет равно нулю Uвых = 0 .


Рис. 9 — Схема плавного изменения напряжения

Некоторые виды переменных резисторов

В зависимости от степени относительного изменения сопротивления при вращении рукоятки переменного резистора их разделяют на три типа (рис. 10 ):

1) с линейной зависимостью;

2) с логарифмической зависимостью;

3) с экспоненциальной зависимостью.


Рис. 10 — Зависимости переменных резисторов

Переменные резисторы с логарифмической зависимостью часто используются для регулировки уровня звука, поскольку ухо человека воспринимает звук именно по такой зависимости.

Кроме того переменные резисторы бывают как одинарные, так и сдвоенные. Последние находят широкое применение в звуковой технике.

Делители напряжения на резисторах одинаково работают и рассчитываются как для постоянного, так и для переменного напряжения. Однако, в качестве делителей переменного напряжения также часто используются конденсаторы и реже – катушки индуктивности.

Делитель напряжения применяется, если нужно получить заданное напряжение при условии стабилизированного питания. Сейчас мы поговорим о постоянном токе и резисторных делителях. О делителях с использованием конденсаторов, диодов, стабилитронов, индуктивностей и других элементов будет отдельная статья. Подпишитесь на новости, чтобы ее не пропустить. В конце для примера расскажу, как сделать делитель напряжения для осциллографа, чтобы снимать осциллограммы высокого напряжения.

Резисторные делители также могут применяться для уменьшения в заданное количество раз сигналов сложной формы. На делителях напряжения с регулируемым коэффициентом ослабления строятся, например, регуляторы громкости.

Вашему вниманию подборка материалов:

Схема традиционного резисторного делителя напряжения

Для применения делителя напряжения нам надо уметь рассчитывать три величины: напряжение на выходе делителя, его эквивалентное выходное сопротивление, его входное сопротивление. С напряжением все понятно. Эквивалентное выходное сопротивление скажет нам, насколько изменится напряжение на выходе с изменением тока нагрузки делителя. Если эквивалентное выходное сопротивление равно 100 Ом, то изменение тока нагрузки на 10 мА приведет к изменению напряжения на выходе на 1 В. Входное сопротивление показывает, насколько делитель нагружает источник сигнала или источник питания. Дополнительно посчитаем коэффициент ослабления сигнала. Он может пригодиться при работе с сигналами сложной формы.

Расчет резистивного делителя напряжения

[Напряжение на выходе, В ] = [Напряжение питания, В ] * / ( + [Сопротивление резистора R2, Ом ])

Из этой формулы, в частности, видно, что резисторные (резистивные) делители выдают стабильное выходное напряжение, если напряжение питания фиксировано.

= [Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ]

Эта формула верна для ненагруженного делителя. Если делитель работает на нагрузку, то [Входное сопротивление делителя, Ом ] = [Сопротивление резистора R1, Ом ] + 1 / (1 / [Сопротивление резистора R2, Ом ] + 1 / [Сопротивление нагрузки, Ом ])

[Эквивалентное выходное сопротивление делителя, Ом ] = 1 / (1 / [Сопротивление резистора R1, Ом ] + 1 / [Сопротивление резистора R2, Ом ])

= [Сопротивление резистора R2, Ом ] / ([Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ])

[Действующее / мгновенное / амплитудное напряжение на выходе делителя, В ] = [Коэффициент ослабления сигнала ] * [Действующее / мгновенное / амплитудное напряжение на входе делителя, В ]

Эта формула верна, если ток нагрузки делителя равен нулю.

Совет! Сохраните адрес этой страницы в избранном. Возможно, Вам понадобится повторить расчет.

Пример — делитель для осциллографа

Если мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала.

Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал. Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг. Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором.


Качество усилителей звуковой частоты. Обзор, схемы….

Как не спутать плюс и минус? Защита от переполярности. Описание…
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст…

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис…
Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис…

Соединение светодиодов. Последовательное, параллельное включение оптоэ…
Как правильно включить светодиод, соединять их и входные цепи приборов на их осн…

Параллельное, последовательное соединение резисторов. Расчет сопротивл…
Вычисление сопротивления и мощности при параллельном и последовательном соединен…


Как работают делители напряжения. Основы схем

Делитель напряжения — это простая схема, которая может уменьшать напряжение. Он распределяет входное напряжение между компонентами схемы. Лучшим примером делителя напряжения являются два последовательно соединенных резистора, при этом входное напряжение прикладывается к паре резисторов, а выходное напряжение берется из точки между ними. Он используется для получения различных уровней напряжения от общего источника напряжения, но с одинаковым током для всех компонентов в последовательной цепи.

Цепь делителя напряжения

Падение напряжения и входное напряжение

Падение напряжения на резисторе R2 — это выходное напряжение, а также напряжение, разделенное по цепи. Делитель напряжения относительно земли создается путем последовательного соединения двух резисторов.   Входное напряжение подается на последовательные сопротивления R 1  и R 2  , а выходное напряжение представляет собой напряжение на R 2 . Отсюда следует, что одной и той же величине электрического тока, протекающего через каждый резистивный элемент цепи, деваться больше некуда. Таким образом обеспечивается падение напряжения IxR на каждом резистивном элементе.

Имея напряжение питания, мы можем применить закон Кирхгофа для напряжения и закон Ома, чтобы найти падение напряжения на каждом резисторе, полученное с точки зрения общего тока, протекающего через них.

Используя KVL (закон напряжения Кирхгофа),

Используя закон Ома,

Используя два приведенных выше уравнения, вы получите:

Уравнения делителя напряжения

9000 2 В делителе напряжения выходное напряжение всегда масштабируется вниз входное напряжение и ток, протекающий через последовательную сеть, которые можно рассчитать с помощью закона Ома, I = V/R. Поскольку ток общий для обоих резисторов, токи через них равны. Мы можем рассчитать падение напряжения на резисторе R 2  используя это уравнение:

Из приведенного выше уравнения можно найти падение напряжения на резисторе R 2 :

Аналогично, для резистора R 1 можно использовать уравнение:

Затем вычислить падение напряжения между R1:

Пример задачи

Рассчитайте падение напряжения на каждом резисторе и какой ток будет течь через резистор 30 Ом, соединенный последовательно с резистором 50 Ом, когда напряжение питания на последовательной комбинации составляет 10 вольт постоянного тока.

Расчет сопротивления

Рассчитайте общее сопротивление в цепи и просто сложите все это, так как резисторы соединены последовательно.

Общее сопротивление позволит вам рассчитать ток, протекающий через резисторы.

Используя приведенные выше уравнения, можно рассчитать падение напряжения на резисторах.

Делитель напряжения и правило 10%

При создании делителя напряжения для конкретной нагрузки необходимо знать напряжение, которое вы будете подавать, и сопротивление нагрузки. Делитель напряжения должен иметь только 10% тока сброса — ток, непрерывно потребляемый от источника напряжения, чтобы уменьшить влияние изменений нагрузки или обеспечить падение напряжения на резисторе. Это означает, что ток, проходящий через нагрузку, в десять раз превышает ток, проходящий через нижнюю часть делителя напряжения на землю.

Например:

Требование к этому делителю напряжения состоит в том, чтобы обеспечить напряжение 25 В и ток 910 мА на нагрузку от источника с напряжением 100 В.

Расчет R1 и R2

Определите размер резистора, используемого в цепи делителя напряжения, используя эмпирическое правило 10%. Ток в резисторе делителя должен составлять примерно 10% от тока нагрузки. Этот ток, который не протекает ни через одно из нагрузочных устройств, называется током отвода.

Сначала определите требования к нагрузке и доступный источник напряжения.

Затем определите ток утечки, применив правило 10%.

Получив ток сброса, теперь можно рассчитать сопротивление сброса через R1.

Затем определите общий ток, добавив нагрузку и ток утечки.

Из рассчитанных значений теперь можно найти значение R2.

Теперь вы можете перерисовать схему делителя напряжения, следуя правилу 10%.

На первом рисунке обратите внимание, что значение сопротивления параллельной сети всегда меньше, чем значение наименьшего резистора в сети, поскольку нагрузка, подключенная между точкой B и землей, образует параллельную сеть нагрузки и резистора R1. .

Цепь напряжения

Цепь напряжения представляет собой цепь, состоящую из нескольких резисторов, соединенных последовательно, с напряжением, подаваемым на всю сеть резисторов. Каждый резистор в сети имеет более высокое падение напряжения, чем предыдущий. Поскольку резисторы в лестнице включены последовательно, ток везде одинаков. Чтобы получить его значение, следует общее напряжение разделить на общее сопротивление. Падение напряжения на каждом резисторе можно рассчитать, умножив общий ток на номинал каждого резистора. Напряжение относительно земли в любом узле может быть определено как сумма напряжений, падающих на каждом резисторе между этим узлом и землей.

Лестничная схема напряжения

Надеемся, что эта статья помогла вам лучше понять делители напряжения. Не стесняйтесь оставлять комментарии ниже, если у вас есть вопросы о чем-либо.


Делитель напряжения — Инженерный

Справа показан простой делитель напряжения. Вам нужен источник напряжения (как батарейка) и два резистора. «Выходное напряжение» — это напряжение «по» R2.

Чтобы проанализировать эту схему, вы должны сначала заметить, что R1 и R2 соединены последовательно. Их общее сопротивление равно сумме (R1 + R2).

Ток в цепи везде одинаков, так как путь тока только один, т. е. последовательная цепь. Ток можно рассчитать, разделив Vin на (R1 + R2). Итак, I = Vin/(R1 + R2).

Выходное напряжение рассчитывается, как показано на схеме.

Делитель напряжения имеет ряд практических применений. В этих приложениях обычно требуется уменьшить входное напряжение на некоторый постоянный коэффициент. Например, если вы хотите получить половину, 10% или одну треть Vin, вы можете сделать это с помощью делителя напряжения.

В Интернете есть много информации — больше, чем мы рассмотрим на нашем занятии. Если вы ищете информацию, будьте осторожны, чтобы узнать, что мы не рассматриваем в нашем классе, и пусть это не сбивает вас с толку.

Вот страница Википедии о делителе напряжения. А вот еще сайт. И эта страница Hyper-Physics показывает, какое влияние оказывает «нагрузка» и мощность, рассеиваемая в цепи. (Рассеиваемая мощность также важна.)

Вот калькулятор делителя напряжения; иди проверь себя! Вот еще один калькулятор; попробуйте этот, если другой не работает.

В этом видео на YouTube больше информации, чем нам нужно, но все в порядке.

Делитель напряжения
Вопросы рассеивания мощности

Разработчики схем также должны учитывать рассеивание мощности. Каждый электронный компонент имеет абсолютную номинальную мощность. Это определяется тем, сколько тепла может «выдержать» устройство. Резисторы бывают различной мощности, включая 1/8, 1/4, 1/2, 1, 5 и 10 Вт. Более высокая мощность означает физически больший резистор. (Наиболее распространенным в этом классе является резистор 1/4 Вт.)

Несмотря на то, что устройство может быть рассчитано на определенную мощность, важно эксплуатировать его ниже этого значения. Это называется снижением мощности . Это обеспечивает безопасную и долговечную цепь. Аналогия — ваша машина: она может развивать максимальную скорость 100 миль в час, но вы не будете ездить на ней так быстро все время. (Вы бы хотели?) Типичное снижение мощности составляет 80 %. Это означает, например, что ваш резистор 0,25 Вт должен рассеивать не более 0,8 (0,25) = 0,2 Вт.

Вот несколько практических задач…

  1. Сделайте любой делитель напряжения, который вдвое уменьшает входное напряжение, т. е. Vout = 0,5 (Vin).
  2. Найдите номинальное выходное напряжение, если Vin=6 В, R1=100 Ом и R2=200 Ом.
  3. Найдите ток в предыдущей задаче.
  4. Каков диапазон возможных значений для резистора 240 Ом с допуском +/- 5 %?
  5. Выполните анализ наихудшего случая, чтобы найти минимально возможное выходное напряжение для делителя напряжения из задачи 2.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *