Расчёт делителя напряжения на резисторах онлайн
Р/л технология
Схема такого делителя предназначена для получения заданного выходного напряжения, которое будет ниже, чем входное. Например, источник напряжения 24 Вольта, в нужно получить 6 Вольт. Самым простым способом решить этот вопрос – это применить делитель напряжения, состоящий из двух споротивлний.
Он применяется, как при проектировании схем, так и по прямому назначению. Для его расчета используются формулы, которые основаны на законе Ома. Эти формулы позволяют подобрать нужный номинал сопротивлений. Потребуется лишь знать сопротивление нагрузки, входное и выходное напряжения. От этого сопротивления зависит, насколько точно удастся рассчитать весь делитель и получить точно указанное выходное напряжение. Как правило, сопротивление нагрузки выше, чем сопротивление делителя напряжения.
Если неизвестно выходное напряжение, но известно сопротивление и входное напряжения, то неизвестную величину можно вычислить по указанной формуле.
Для того чтобы не считать постоянно по формулам эти величины, были придуманы онлайн-калькуляторы, которые позволяют точно определить значения резисторов или выходного напряжения. Потребуется лишь внести известные величины. Такой расчет можно производить, как на компьютере, с доступом в сеть Интернет, так и при помощи смартфона. Это значительно экономит время и дает стабильную точность расчетов.
Стоит отметить, что современные калькуляторы-онлайн могут рассчитать и мощность, на которую должен быть установлен резистор.
В радиоэлектронике делители напряжения представлены и в готовых конструктивных решениях. Ими служат, к примеру, переменные резисторы и фоторезисторы, которые имеют возможность менять значение сопротивления, при повороте ручки потенциометра или попадании света. В переменном резисторе присутствуют три вывода, с которых можно получить два сопротивления.
Автор: RadioRadar
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Поля, обязательные для заполнения
Добавить
Очистить
напряжения на резисторе и после
При разработке печатных плат для электронного оборудования специалистам часто приходится выполнять расчет делителя. С виду простая схема помогает уменьшить выходное напряжение, необходимое для питания отдельных элементов цепи. Такая компоновка является базовой для электроники. В основу изучения принципа действия входят два момента: схематическое исполнение и формула для вычисления параметров работы делителя.
Что такое делитель напряжения
Схематическое исполнение понижающего устройства представляет собой последовательную цепь, состоящую из двух резистивных элементов. Суммарные значения сопротивлений позволяют уменьшить входящее напряжение до необходимых параметров на выходе. Между собой они связаны передаточным коэффициентом, находящимся в интервале от 0 до 1, включая границы (0<=aplha<=1).
Общее представление делителя напряженияСуществует несколько вариантов схематического исполнения приборов, но все они обладают одним и тем же функционалом — понижать вольтаж для потребителей, однако ток на всех полюсах остается одинаковым. Два последовательных участка цепи называют плечами. Нижнее плечо находится между центральной точкой и нулевым потенциалом. Именно здесь необходимо снимать показатели работы схемы. Другое плечо является верхним.
Простая схема на резисторах
В зависимости от расположения резисторов, различают линейные и нелинейные схемы делителей. Первый вариант используют для создания разности потенциалов и вольтажа в нескольких точках рабочих узлов. Понижение входного напряжения определяется по линейному закону.
Дополнительная информация! Понижающие узлы применяют для постоянного и переменного тока. Структурное исполнение обоих отличается друг от друга, поскольку в некоторых случаях требует включение дополнительных фильтров для подавления помех и шумов.
В нелинейных схемах разница определяется по передаточному коэффициенту. Такие устройства активно применяют в потенциометрах. Здесь учитывают присутствие активного и реактивного сопротивления, включая нелинейные и токовые нагрузки.
Принцип работы делителя напряжения
В состав простейшей понижающей схемы всегда входит не меньше одного резистора. Если элементы обладают одинаковыми коэффициентами сопротивляемости электронов, то на выходе вольтаж понизится в два раза. Для каждого узла понижение рассчитывается по закону Ома.
Внимание! Сумма пониженных величин в каждой точке равна общему вольтажу источника питания.
Схема с несколькими резисторамиРезисторы используют в принципиальных схемах с источником питания постоянного тока. В цепях переменного напряжения присутствует еще и реактивное сопротивление, куда входят конденсаторы, индуктивные катушки и другие элементы с электромагнитными полями.
В цепях с синусоидальным током в качестве резистивного элемента выступает конденсатор или катушка.
Кроме конденсаторов, в качестве реактивных компонентов также могут выступать индуктивные катушки, которые могут присутствовать в платах переменного тока. Коэффициент реактивного сопротивления обмоток также прямо пропорционален их номинальным значениям. Для вычислений также необходимо постоянное число ПИ, частота переменного магнитного поля (Гц) и индуктивность (Генри).
Делитель на индукционных катушках Внимание! В описании выше токовая нагрузка равна бесконечности, поэтому все значения верны только при полученных показателях делителя на сопротивления нагрузки. Они в несколько раз больше внутреннего.Формула для расчета делителя напряжения
Начинающие радиолюбители часто задаются главным вопросом, как правильно рассчитать напряжение после резистора. Для этого необходимо знать, какой ток пойдет по цепи. В простейших схемах постоянного тока его вычисляют по линейному закону Ома. Формула расчета выглядит U=I*R, где:
- U — напряжение, В;
- I — ток, А;
В цепях с синусоидальным током, где присутствует реактивное сопротивление катушки или конденсатора, формула выглядит как R=1/(2*pi*f*L) и R=1/(2*pi*f*C) соответственно. В формуле использованы показатели:
График зависимости показателей от сопротивления- R — реактивное сопротивление;
- R — сопротивление, Ом.
- pi — постоянное число Пи, равное 3,14;
- f — частота, Гц;
- L — индуктивность катушки, Генри;
- C — емкость конденсатора, Фарад.
Получив в расчетах внутреннюю резистивность элементов, далее можно воспользоваться линейной формулой для вычисления выходного значения.
На резисторе
В схеме делителя всегда участвует не меньше двух узлов нагрузки. Их коэффициенты могут быть равны другу, но и отличаться. Поэтому порой возникает необходимость получить номинал выходного вольтажа для каждого из них. Для этого используют всем известную формулу закона Ома: U=I*R.
После резистора
Для расчета показателя после резистора необходимо учитывать номиналы обоих элементов, так как они работают совместно друг с другом. Применив закон Ома, получается следующая формула: Uвых=Uпит*R1/(R1+R2), где:
- Uвых — вольтаж на выходе, В;
- Uпит — входной вольтаж, В;
- R1 — первый узел, Ом;
- R2 — второй узел, Ом.
Падение потенциалов за резистором рассчитывают для каждого узла в отдельности. То есть для второго элемента формула будет выглядеть так: Uвых=Uпит*R2/(R1+R2).
Делитель позволяет разработчикам получить несколько номинальных значений выходного напряжения от одного питающего источника. По этой причине схема получила широкое применение в электронике как в понижающих блоках питания, так и в качестве интегрированного узла электроцепи.
Делитель напряжения расчет онлайн. Делитель напряжения на резисторах
Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов .
В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе V out ? Или эквивалентный вопрос: какое напряжение покажет вольтметр?
Ток, протекающий через R1 и R2 одинаков пока к выходу V out ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:
Таким образом, сила тока протекающая через резисторы
Теперь, когда нам известен ток в R2 , расчитаем напряжение вокруг него:
Или если отавить формулу в общем виде:
Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.
Применение делителя для считывания показаний датчика
Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, V out будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.
Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта V out .
Подключение нагрузки
С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют
В этом случае V out уже не может быть расчитано лишь на основе значений V in , R1 и R2 : сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление
В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:
Подставив значение в общую формулу расчёта V out , получим:
Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L . Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.
Пропорция сохраняется, V out не меняется:
А потери уменьшатся:
Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.
Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка на R1 равна:
А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень вероятно, что результатом будет возгарание.
Применимость
Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер).
Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.
Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.
Если потребление тока нагрузкой неравномерно во времени, V out также будет неравномерным.
Делитель напряжения применяется, если нужно получить заданное напряжение при условии стабилизированного питания. Сейчас мы поговорим о постоянном токе и резисторных делителях. О делителях с использованием конденсаторов, диодов, стабилитронов, индуктивностей и других элементов будет отдельная статья. Подпишитесь на новости, чтобы ее не пропустить. В конце для примера расскажу, как сделать делитель напряжения для осциллографа, чтобы снимать осциллограммы высокого напряжения.
Резисторные делители также могут применяться для уменьшения в заданное количество раз сигналов сложной формы. На делителях напряжения с регулируемым коэффициентом ослабления строятся, например, регуляторы громкости.
Вашему вниманию подборка материалов: Схема традиционного резисторного делителя напряженияДля применения делителя напряжения нам надо уметь рассчитывать три величины: напряжение на выходе делителя, его эквивалентное выходное сопротивление, его входное сопротивление. С напряжением все понятно. Эквивалентное выходное сопротивление скажет нам, насколько изменится напряжение на выходе с изменением тока нагрузки делителя. Если эквивалентное выходное сопротивление равно 100 Ом, то изменение тока нагрузки на 10 мА приведет к изменению напряжения на выходе на 1 В. Входное сопротивление показывает, насколько делитель нагружает источник сигнала или источник питания. Дополнительно посчитаем коэффициент ослабления сигнала. Он может пригодиться при работе с сигналами сложной формы. Расчет резистивного делителя напряжения[Напряжение на выходе, В ] = [Напряжение питания, В ] * / ( + [Сопротивление резистора R2, Ом ]) Из этой формулы, в частности, видно, что резисторные (резистивные) делители выдают стабильное выходное напряжение, если напряжение питания фиксировано. = [Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ] Эта формула верна для ненагруженного делителя. Если делитель работает на нагрузку, то [Входное сопротивление делителя, Ом ] = [Сопротивление резистора R1, Ом ] + 1 / (1 / [Сопротивление резистора R2, Ом ] + 1 / [Сопротивление нагрузки, Ом ]) [Эквивалентное выходное сопротивление делителя, Ом ] = 1 / (1 / [Сопротивление резистора R1, Ом ] + 1 / [Сопротивление резистора R2, Ом ]) = [Сопротивление резистора R2, Ом ] / ([Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ]) [Действующее / мгновенное / амплитудное напряжение на выходе делителя, В ] = [Коэффициент ослабления сигнала ] * [Действующее / мгновенное / амплитудное напряжение на входе делителя, В ] Эта формула верна, если ток нагрузки делителя равен нулю. Пример — делитель для осциллографаЕсли мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала. Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал. Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг. Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором. Качество усилителей звуковой частоты. Обзор, схемы…. Как не спутать плюс и минус? Защита от переполярности. Описание… Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида… Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис… Соединение светодиодов. Последовательное, параллельное включение оптоэ… Параллельное, последовательное соединение резисторов. Расчет сопротивл… |
Делитель напряжения на резисторах — это схема, позволяющая получить из высокого напряжения пониженное напряжение. Используя всего два резистора, мы можем создать любое выходное напряжение, составляющее меньшую часть от входного напряжения. Делитель напряжения является фундаментальной схемой в электронике и робототехнике. Для начала рассмотрим электрическую схему и формулу для расчета.
Как работает делитель напряжения на резисторах
Для того, чтобы разобраться в принципе работы резисторного делителя напряжения и понять, как рассчитать делитель напряжения на резисторах, следует ознакомиться с его принципиальной схемой (см. картинку ниже — несколько вариантов изображения делителя). Схема включает в себя входное напряжение и два резистора.
Резистор, находящийся ближе к плюсу входного напряжения Vвх , обозначен R1 , резистор находящийся ближе к минусу обозначен R2 . Падение напряжения Vвых — это пониженное выходное напряжение, полученное в результате резисторного делителя напряжения. Для расчета выходного напряжения необходимо знать три величины из приведенной схемы — входное напряжение и сопротивление обоих резисторов.
Расчет делителя напряжения на резисторах основан на законе Ома .
V вых = R2 х V вых / R1 + R2
Эта формула показывает, что выходное напряжение резисторного делителя прямо пропорционально входному напряжению и обратно пропорционально отношению сопротивлений R1 и R2. На этом принципе работают потенциометры (переменные резисторы) и многие резистивные датчики, например, датчик освещенности на фоторезисторе . Смотрите калькулятор делителя напряжения на резисторах онлайн.
Как сделать делитель напряжения на резисторах? Часто в практике электронщика возникает необходимость снизить величину входного напряжения либо напряжение на отдельном участке цепи в строго определенной количество раз. Например, величина входного напряжения 50 В , а выходное напряжение нужно получить в 10 раз меньше, т. е. 5 В (рис. 1 ). Для этого используются делители напряжения.
Рис. 1 — Структурная схема делителя напряжения
Они бывают разных типов и выполняются на безе , катушек индуктивности (рис. 2 ). Однако мы рассмотрим только наиболее применяемые на практике делители напряжения.
Рис. 2 — Элементы, применяемые в качестве делителей напряжения
Наиболее простым делителем напряжения являются два последовательно соединенных резистора R1 и R2 , которые подключены к источнику напряжения U (рис. 3 ). Если сопротивление резисторов одинаковы R1 = R2 , то напряжение источника питания разделится поровну на них U1 = U2 = U/2 .
Рис. 3 — Общая схема делителя напряжения на резисторах
Расчет делителя напряжения на резисторахДавайте разберемся как происходит деление напряжения. Для этого нам понадобится знание только закона Ома, который, если говорить очень обобщенно, звучит так: ток I , протекающий в цепи (или на ее участке), прямопропорционален приложенному напряжению U и обратнопропорционален сопротивлению цепи (или ее участка) R , т. е.
откуда
Также следует знать, что в последовательной цепи, т. е. в цепи, в которой все резисторы соединены последовательно, ток I протекает одной и той же величины через все резисторы, а общее сопротивление последовательно соединенных резисторов равно сумме сопротивлений всех резисторов Rобщ = R1+R2 .
Теперь, на основании выше сказанного, давайте определим напряжения на резисторах в зависимости от величины их сопротивлений и напряжения источника питания.
Ток I , протекающий в цепи, равен отношению напряжения U к сумме сопротивлений R1+R2 , т. е.
Падение напряжения на первом резисторе равно
По аналогии находим падение напряжения на втором резисторе
Теперь в выражение (2) и (3) подставим значение тока из выражения (1), в результате получим
Делитель напряжения на резисторах. Различные номиналы резисторовС помощью полученных формул можно определить падение напряжения на резисторе, зная только величину входного напряжения и сопротивления самих резисторов. Однако такие формулы часто применимы лишь в теоретических расчётах. На практике же гораздо проще пользоваться основным свойством любого делителя напряжения, которое заключается в том, что при соответствующем подборе сопротивлений резисторов R1 и R2 выходное напряжение составляет часто входного (рис. 4 ).
Рис. 4 — Схемы делителей напряжения на резисторах
Следует обратить внимание на то, что величина выходного напряжения зависит от относительного значения сопротивлений резисторов R1 и R2 , а не от абсолютного.
Рис. 5 — Схемы делителей напряжения с одинаковым коэффициентом деления при разных номиналах резисторов
Здесь возникает вопрос: какие же номиналы резисторов R1 и R2 применять, 3 кОм и 1 кОм или 30 кОм и 10 кОм ? Все зависит от конкретного случая. Однако есть рекомендация, которая исходит из закона Ома, чем меньше значение сопротивления R1 и R2 , тем больший ток будет протекать в цепи и тем большую мощность можно получить с выхода делителя напряжения, но нужно помнить, что эта мощность ограничивается мощностью источник питания и не может ее превысить.
Также делитель напряжения можно выполнять из нескольких последовательно соединенных резисторов (рис. 6 ).
Рис. 6 — Схема делителя напряжения с несколькими резисторами
И так, мы рассмотрели резисторный делитель напряжения с фиксированным значением выходного напряжения. Однако часто возникает необходимость в плавном изменении выходного напряжения. Например, при регулировании громкости звука мы плавно изменяем напряжение на усилителе.
Для плавного регулирования величины выходного напряжения применяются переменные и подстроечные резисторы (рис. 7 ).
Рис. 7 — Переменные и подстроечные резисторы
Переменный резистор еще называют потенциометром. Конструктивно он состоит из корпуса, имеющего три вывода, и рукоятки. При вращении ручки осуществляется скользящих контакт подвижной металлической пластины, которая замыкает две токопроводящие графитные дорожки, имеющие разную проводимость в зависимости от длины. Благодаря этому изменяется сопротивление межу двумя, рядом расположенными, выводами. А сопротивление между двумя крайними выводами остается всегда неизменным.
Схема подключения переменного резистора или же потенциометра приведена ниже (рис. 8 ). Два крайних вывода подключаются к источнику питания, а между средним и одним из крайних выводов снимается выходное напряжение, величину которого можно изменять от нуля до значения входного напряжения Uвых = 0…Uвх .
Рис. 8 — Схема включения переменного резистора для деления напряжения
Если, проворачивая ручку резистора, мы введем все сопротивление (как показано на схеме (рис. 9 )), то выходное напряжение будет равно входному Uвых = Uвх , так как подводимое напряжение будет полностью падать на сопротивлении резистора.
Если же вывести все сопротивление, то выходное напряжение будет равно нулю Uвых = 0 .
Рис. 9 — Схема плавного изменения напряжения
Некоторые виды переменных резисторовВ зависимости от степени относительного изменения сопротивления при вращении рукоятки переменного резистора их разделяют на три типа (рис. 10 ):
1) с линейной зависимостью;
2) с логарифмической зависимостью;
3) с экспоненциальной зависимостью.
Рис. 10 — Зависимости переменных резисторов
Переменные резисторы с логарифмической зависимостью часто используются для регулировки уровня звука, поскольку ухо человека воспринимает звук именно по такой зависимости.
Кроме того переменные резисторы бывают как одинарные, так и сдвоенные. Последние находят широкое применение в звуковой технике.
Делители напряжения на резисторах одинаково работают и рассчитываются как для постоянного, так и для переменного напряжения. Однако, в качестве делителей переменного напряжения также часто используются конденсаторы и реже – катушки индуктивности.
делитель напряжения на резисторах калькулятор онлайн
Вы искали делитель напряжения на резисторах калькулятор онлайн? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и делитель напряжения расчет онлайн, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «делитель напряжения на резисторах калькулятор онлайн».
Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как делитель напряжения на резисторах калькулятор онлайн,делитель напряжения расчет онлайн,калькулятор делителя напряжения на резисторах онлайн,калькулятор напряжения,калькулятор напряжения на резисторах калькулятор,онлайн расчет падения напряжения на резисторе,онлайн расчет резистивного делителя,расчет делителя онлайн,расчет падения напряжения на резисторе онлайн,расчет резистивного делителя онлайн. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и делитель напряжения на резисторах калькулятор онлайн. Просто введите задачу в окошко и нажмите «решить» здесь (например, калькулятор делителя напряжения на резисторах онлайн).
Где можно решить любую задачу по математике, а так же делитель напряжения на резисторах калькулятор онлайн Онлайн?
Решить задачу делитель напряжения на резисторах калькулятор онлайн вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.
Порядок расчета делителей напряжения на резисторе: схемы и формулы
Автор Aluarius На чтение 5 мин. Просмотров 611 Опубликовано
Делитель напряжения на резисторах
Резисторный делитель напряжения — это устройство, с помощью которого из источника с высоким напряжением можно получить лишь необходимую для устройства часть. Это нужно сделать для питания потребителя с низкой мощностью. Ниже вы узнаете о разновидностях такого приспособления, для чего оно используется в физике, а также, как произвести необходимые расчёты самостоятельно и при помощи программ.
Что такое делитель тока
Делитель тока — это устройство, позволяющее разделить поток тока на две части, чтобы в дальнейшем использовать одну из них. Он нужен, когда устройство не работает с большим током и нужно отделить его меньшее количество, необходимое для использования аппаратуры.
Состоит делитель обычно из двух резисторов, параллельно соединённых, так в каждом из них будет уменьшаться ток.
При последовательном соединении будет уменьшаться напряжение.
Виды и принцип действия
В основе принципа действия устройства, уменьшающего нагрузку сети, лежит первый закон Кирхгофа: сумма сходящихся в узле токов равна нулю.
Принцип работы у всех одинаковый: в них есть U исходное: такое же, как в источнике питания и получаемое на выходе из сети, зависящее от соотношения резисторов в плечах делителя.
Схема, позволяющая понять принцип действия:
Различают разные устройства, в зависимости от элементов в составе:
- резистивный — более популярен из-за простоты устройства.
- ёмкостный;
- индуктивный.
Формула для расчёта делителя напряжения
Как рассчитать резистор для понижения напряжения ?
Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.
Делитель рассчитывается с учётом того, что проходящий через него ток минимум в 10 раз больше, чем на выходе и меньше, чем входящий в сеть.
Можно рассчитать общее сопротивление в резисторах:
R=R1*R2/(R1+R2)
В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток:
I=I1+I2
Найти общий ток можно, зная закон Ома
Уменьшаемое в итоге напряжение на резисторах находится по формуле:
U1=(R1/(R1+R2))*U
U2=(R2/(R1+R2))*U
Остаётся узнать, как найти ток на обоих резисторах:
I=U/R
Также, рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу):
r – внутреннее сопротивление устройства.
Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях
Делитель на резисторах — отличается своей универсальностью: используют при постоянном и переменном токе, но только при пониженном сопротивлении цепи.
Согласно закону Ома и правилу Кирхгофа через всю цепь будет проходить один и тот же ток.
Тогда на каждом из резисторов: U1= I х R1 и U2 = I х R2
Ток в цепи устройства:
Уменьшение на конденсаторах применяют для цепей с высоким переменным током. В нём минимальная потеря энергии на выходе. Реактивное сопротивление конденсатора зависит от его электроёмкости и частоты напряжения в цепи.
Формула для вычисления сопротивления:
Делитель на индуктивностях используется при переменном низком токе на высоких частотах. Сопротивление катушки переменного тока прямо пропорционально зависит от индуктивности и частоты. У провода катушки имеется активное сопротивление, из-за чего мощность такого прибора больше, чем у аналогов.
Сопротивление катушки находится по формуле:
Расчет делителя напряжения калькулятором онлайн
Калькулятор онлайн — это программа, с помощью которой вы можете произвести необходимые вычисления для расчёта U выходного. Её используют, когда в расчётах много резисторов или при больших значениях. Для этого вам сначала нужно определить U исходное, сопротивление каждого из резисторов и ёмкость конденсатора.
Практическое применение параллельного и последовательного соединения
Составные элементы прибора соединяют в цепь, чтобы получить из сети нужную для устройства часть энергии.
Пример работы делителя напряжения на фоторезисторе.
Исходное сопротивление меняется от 1кОм в момент полного освещения до 10кОм при отсутствии света, то можно увеличить диапазон сопротивления. При добавлении резисторов с R=5,6кОм, исходящее напряжение меняется следующим образом:
Освещённость | R1 (кОм) | R2(кОм) | R2/(R1+R2) | U выходное (В) |
Яркая | 5,6 | 1 | 0,15 | 0,76 |
Тусклая | 5,6 | 7 | 0,56 | 2,78 |
Темнота | 5,6 | 10 | 0,67 | 3,21 |
Таким образом, увеличивается диапазон выходного напряжения, и оно становится подходящим для большинства сетей.
Потенциометры
Потенциометры используют в качестве делителя в системе с постоянным током. Их применяют в основном для изменения отдельных параметров в механизме.
На потенциометр подается напряжение, регулируемое подвижным контактом, который действует, когда крутят ручку, в результате оно может меняться от нуля до исходного значения.
Потенциометры используют в быту, как регулятор громкости, и в электронике, например, в качестве датчика.
Резистивные датчики
Резистивные датчики также называют омическими. Это приборы, в которых изменяется сопротивление, если изменяется длина, площадь сечения или удельное сопротивление. Их используют в устройствах для изменения сопротивления, а также при помощи микроконтроллера с его помощью вы можете измерить напряжение. Существуют различные датчики, одним из некоторых является фоторезистор — переменный резистор, сопротивление которого зависит от попадающего на него света.
Переменный резистор в качестве делителя напряжения
Переменный резистор позволяет напряжению изменяться более плавно. Работает он так: крайние выводы подключаются к положительному и отрицательному заряду, а из центрального на выходе получается пониженное напряжение
Делитель применяют в различных конструкциях, если нагрузка сети слишком высока для устройства, в датчиках и электронных схемах. Он является одним из основных аспектов электроники, позволяет приспособить параметры сети для механизма. Теперь вы знаете, для чего применяют резисторный делитель, основные для использования вычисления, например, как рассчитать резистор для понижения напряжения.
Делитель тока
Пользователи также искали:
делитель напряжения, делитель тока формула, делитель тока онлайн, формула делителя напряжения, формула делителя тока и напряжения, индуктивный делитель тока, конденсаторный делитель, Делитель, делитель, напряжения, тока, делитель напряжения, делитель тока, Электротехника, электротехника, делителями, тока делитель, делителя, делители, электроника, электротехнике, делители напряжения, электротехнических, делителей, электротехники, делителя напряжения, делителей напряжения, электротехнике делитель, делителя тока, делители тока, формула, электротехнические, формула делителя, electrical, электротехнического, делителем, Электротехника Делитель тока,
…
Индукционный делитель тока SU 208105. Схема на рисунке 8.3 называется делитель и находит широкое. Более подробно применение делителя тока мы рассмотрим позже,. .. Делители тока. Назначение и устройство YouTube. Для уменьшения неравномерности распределения токов по ветвям параллельно включённых вентилей применены трёхстержневые делители тока.. .. это Что такое Делитель тока?. 19 июн 2016 Больше информации по данной теме вы можете найти на нашем сайте http: В некоторых устройствах при параллельном. .. ГОСТ 11282 93 МЭК 524 75 Резистивные делители. 24 мар 2013 Индуктивный делитель тока имеет высоковольтную, разделительную и низковольтную части, при этом высоковольтная часть. .. Он лайн калькуляторы для радиолюбителя. Делитель. В электротехнике очень часто применяются делители напряжения, работу которых можно рассмотреть, применяя правило. .. Делитель напряжения: теория и принцип действия. Делитель тока – устройство позволяющее поделить ток в цепи на две составные части, с целью использования одной из них.. .. Делитель тока. где UR1, UR2 падения напряжения на резисторах R1 и R2 соответственно, I ток цепи. В схемах делителей выходное напряжение обычно снимают. .. Потенциометр и делитель напряжения Класс робототехники. Настоящий стандарт распространяется на резистивные делители напряжения постоянного тока с фиксированными коэффициентами деления,. .. Делитель: перевод на английский, примеры, транскрипция. В, И. Ленин Заявитель ИНДУКЦИОННЫЙ ДЕЛИТЕЛЬ ТОКА 2 тельно с одной из цспочек параллельно рабтающих вентилей 3,Если сопротивление. .. Онлайн калькулятор делителя тока на резисторах Вольтик.ру. Делитель электротехническое устройство, позволяющее разделять ток и использовать только часть от подаваемого в цепь тока посредством. | Защита от перенапряжений линий электропитания сети 230 400. Делитель представляет из себя несколько от двух и более сопротивлений, соединенных параллельно. При это сила тока, проходящая через такие. .. делитель Викисловарь. стабилизатора и. расчет делителя напряжения. Два вида Он лайн калькулятор закона Ома для постоянного тока.. .. Емкостной делитель тока. 20 мар 2019 одном из предыдущих уроков, для ограничения тока через светодиод, мы Обычно, переменные резисторы делают в виде делителя. .. Делитель тока YouTube. Онлайн калькулятор позволяет рассчитать силу тока при использовании последовательных резистивных делителей на любом участке цепи по. .. Устройство для поверки измерительных трансформаторов тока. Делитель тока Реактор, имеющий магнитосвязанные обмотки, предназначенный для выравнивания токов в параллельных цепях Источник: ГОСТ 19350. .. Делитель тока Практическая электроника. 18 май 2016 Из этого вы узнаете как работает тока. В нём так же разобран пример задачи. Упомянутые видео: Делитель. .. это Что такое Делитель тока?. Варианты перевода слова с русского на английский, divisor, denominator, в словаре WooordHunt, делитель тока current divider. .. Резистивный делитель тока. Формула для расчета делителя. Делитель тока на резисторах электротехническое устройство, позволяющее разделять ток и использовать только часть от подаваемого в цепь. .. Урок 8. Делим ток и роняем напряжение. Делитель. Если посмотрим, то увидим, что суммарный ток перенапряжения, который приходит наши зажимы, разделяется на два тока – это. .. Делители напряжения и тока Школа для электрика: все об. 31 дек 2009 Достоинством схемы емкостного делителя тока является отсутствие выделения мощности в виде тепла, но при этом приходится. |
Расчет делителя напряжения. Делитель напряжения на резисторах
Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов .
В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе V out ? Или эквивалентный вопрос: какое напряжение покажет вольтметр?
Ток, протекающий через R1 и R2 одинаков пока к выходу V out ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:
Таким образом, сила тока протекающая через резисторы
Теперь, когда нам известен ток в R2 , расчитаем напряжение вокруг него:
Или если отавить формулу в общем виде:
Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.
Применение делителя для считывания показаний датчика
Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.
Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, V out будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.
Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта V out .
Подключение нагрузки
С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой (load):
В этом случае V out уже не может быть расчитано лишь на основе значений V in , R1 и R2 : сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление
В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:
Подставив значение в общую формулу расчёта V out , получим:
Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L . Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.
Пропорция сохраняется, V out не меняется:
А потери уменьшатся:
Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.
Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка на R1 равна:
А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень вероятно, что результатом будет возгарание.
Применимость
Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора .
Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.
Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.
Если потребление тока нагрузкой неравномерно во времени, V out также будет неравномерным.
Как сделать делитель напряжения на резисторах? Часто в практике электронщика возникает необходимость снизить величину входного напряжения либо напряжение на отдельном участке цепи в строго определенной количество раз. Например, величина входного напряжения 50 В , а выходное напряжение нужно получить в 10 раз меньше, т. е. 5 В (рис. 1 ). Для этого используются делители напряжения.
Рис. 1 — Структурная схема делителя напряжения
Они бывают разных типов и выполняются на безе , катушек индуктивности (рис. 2 ). Однако мы рассмотрим только наиболее применяемые на практике делители напряжения.
Рис. 2 — Элементы, применяемые в качестве делителей напряжения
Наиболее простым делителем напряжения являются два последовательно соединенных резистора R1 и R2 , которые подключены к источнику напряжения U (рис. 3 ). Если сопротивление резисторов одинаковы R1 = R2 , то напряжение источника питания разделится поровну на них U1 = U2 = U/2 .
Рис. 3 — Общая схема делителя напряжения на резисторах
Расчет делителя напряжения на резисторахДавайте разберемся как происходит деление напряжения. Для этого нам понадобится знание только закона Ома, который, если говорить очень обобщенно, звучит так: ток I , протекающий в цепи (или на ее участке), прямопропорционален приложенному напряжению U и обратнопропорционален сопротивлению цепи (или ее участка) R , т. е.
откуда
Также следует знать, что в последовательной цепи, т. е. в цепи, в которой все резисторы соединены последовательно, ток I протекает одной и той же величины через все резисторы, а общее сопротивление последовательно соединенных резисторов равно сумме сопротивлений всех резисторов Rобщ = R1+R2 .
Теперь, на основании выше сказанного, давайте определим напряжения на резисторах в зависимости от величины их сопротивлений и напряжения источника питания.
Ток I , протекающий в цепи, равен отношению напряжения U к сумме сопротивлений R1+R2 , т. е.
Падение напряжения на первом резисторе равно
По аналогии находим падение напряжения на втором резисторе
Теперь в выражение (2) и (3) подставим значение тока из выражения (1), в результате получим
Делитель напряжения на резисторах. Различные номиналы резисторовС помощью полученных формул можно определить падение напряжения на резисторе, зная только величину входного напряжения и сопротивления самих резисторов. Однако такие формулы часто применимы лишь в теоретических расчётах. На практике же гораздо проще пользоваться основным свойством любого делителя напряжения, которое заключается в том, что при соответствующем подборе сопротивлений резисторов R1 и R2 выходное напряжение составляет часто входного (рис. 4 ).
Рис. 4 — Схемы делителей напряжения на резисторах
Следует обратить внимание на то, что величина выходного напряжения зависит от относительного значения сопротивлений резисторов R1 и R2 , а не от абсолютного.
Рис. 5 — Схемы делителей напряжения с одинаковым коэффициентом деления при разных номиналах резисторов
Здесь возникает вопрос: какие же номиналы резисторов R1 и R2 применять, 3 кОм и 1 кОм или 30 кОм и 10 кОм ? Все зависит от конкретного случая. Однако есть рекомендация, которая исходит из закона Ома, чем меньше значение сопротивления R1 и R2 , тем больший ток будет протекать в цепи и тем большую мощность можно получить с выхода делителя напряжения, но нужно помнить, что эта мощность ограничивается мощностью источник питания и не может ее превысить.
Также делитель напряжения можно выполнять из нескольких последовательно соединенных резисторов (рис. 6 ).
Рис. 6 — Схема делителя напряжения с несколькими резисторами
И так, мы рассмотрели резисторный делитель напряжения с фиксированным значением выходного напряжения. Однако часто возникает необходимость в плавном изменении выходного напряжения. Например, при регулировании громкости звука мы плавно изменяем напряжение на усилителе.
Для плавного регулирования величины выходного напряжения применяются переменные и подстроечные резисторы (рис. 7 ).
Рис. 7 — Переменные и подстроечные резисторы
Переменный резистор еще называют потенциометром. Конструктивно он состоит из корпуса, имеющего три вывода, и рукоятки. При вращении ручки осуществляется скользящих контакт подвижной металлической пластины, которая замыкает две токопроводящие графитные дорожки, имеющие разную проводимость в зависимости от длины. Благодаря этому изменяется сопротивление межу двумя, рядом расположенными, выводами. А сопротивление между двумя крайними выводами остается всегда неизменным.
Схема подключения переменного резистора или же потенциометра приведена ниже (рис. 8 ). Два крайних вывода подключаются к источнику питания, а между средним и одним из крайних выводов снимается выходное напряжение, величину которого можно изменять от нуля до значения входного напряжения Uвых = 0…Uвх .
Рис. 8 — Схема включения переменного резистора для деления напряжения
Если, проворачивая ручку резистора, мы введем все сопротивление (как показано на схеме (рис. 9 )), то выходное напряжение будет равно входному Uвых = Uвх , так как подводимое напряжение будет полностью падать на сопротивлении резистора.
Если же вывести все сопротивление, то выходное напряжение будет равно нулю Uвых = 0 .
Рис. 9 — Схема плавного изменения напряжения
Некоторые виды переменных резисторовВ зависимости от степени относительного изменения сопротивления при вращении рукоятки переменного резистора их разделяют на три типа (рис. 10 ):
1) с линейной зависимостью;
2) с логарифмической зависимостью;
3) с экспоненциальной зависимостью.
Рис. 10 — Зависимости переменных резисторов
Переменные резисторы с логарифмической зависимостью часто используются для регулировки уровня звука, поскольку ухо человека воспринимает звук именно по такой зависимости.
Кроме того переменные резисторы бывают как одинарные, так и сдвоенные. Последние находят широкое применение в звуковой технике.
Делители напряжения на резисторах одинаково работают и рассчитываются как для постоянного, так и для переменного напряжения. Однако, в качестве делителей переменного напряжения также часто используются конденсаторы и реже – катушки индуктивности.
Делитель напряжения применяется, если нужно получить заданное напряжение при условии стабилизированного питания. Сейчас мы поговорим о постоянном токе и резисторных делителях. О делителях с использованием конденсаторов, диодов, стабилитронов, индуктивностей и других элементов будет отдельная статья. Подпишитесь на новости, чтобы ее не пропустить. В конце для примера расскажу, как сделать делитель напряжения для осциллографа, чтобы снимать осциллограммы высокого напряжения.
Резисторные делители также могут применяться для уменьшения в заданное количество раз сигналов сложной формы. На делителях напряжения с регулируемым коэффициентом ослабления строятся, например, регуляторы громкости.
Вашему вниманию подборка материалов: Схема традиционного резисторного делителя напряженияДля применения делителя напряжения нам надо уметь рассчитывать три величины: напряжение на выходе делителя, его эквивалентное выходное сопротивление, его входное сопротивление. С напряжением все понятно. Эквивалентное выходное сопротивление скажет нам, насколько изменится напряжение на выходе с изменением тока нагрузки делителя. Если эквивалентное выходное сопротивление равно 100 Ом, то изменение тока нагрузки на 10 мА приведет к изменению напряжения на выходе на 1 В. Входное сопротивление показывает, насколько делитель нагружает источник сигнала или источник питания. Дополнительно посчитаем коэффициент ослабления сигнала. Он может пригодиться при работе с сигналами сложной формы. Расчет резистивного делителя напряжения[Напряжение на выходе, В ] = [Напряжение питания, В ] * / ( + [Сопротивление резистора R2, Ом ]) Из этой формулы, в частности, видно, что резисторные (резистивные) делители выдают стабильное выходное напряжение, если напряжение питания фиксировано. = [Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ] Эта формула верна для ненагруженного делителя. Если делитель работает на нагрузку, то [Входное сопротивление делителя, Ом ] = [Сопротивление резистора R1, Ом ] + 1 / (1 / [Сопротивление резистора R2, Ом ] + 1 / [Сопротивление нагрузки, Ом ]) [Эквивалентное выходное сопротивление делителя, Ом ] = 1 / (1 / [Сопротивление резистора R1, Ом ] + 1 / [Сопротивление резистора R2, Ом ]) = [Сопротивление резистора R2, Ом ] / ([Сопротивление резистора R1, Ом ] + [Сопротивление резистора R2, Ом ]) [Действующее / мгновенное / амплитудное напряжение на выходе делителя, В ] = [Коэффициент ослабления сигнала ] * [Действующее / мгновенное / амплитудное напряжение на входе делителя, В ] Эта формула верна, если ток нагрузки делителя равен нулю. Пример — делитель для осциллографаЕсли мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала. Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал. Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг. Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором. Качество усилителей звуковой частоты. Обзор, схемы…. Как не спутать плюс и минус? Защита от переполярности. Описание… Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида… Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис… Соединение светодиодов. Последовательное, параллельное включение оптоэ… Параллельное, последовательное соединение резисторов. Расчет сопротивл… |
— Инструменты для электротехники и электроники
Делитель напряжения — это схема, используемая для создания напряжения, меньшего или равного входному напряжению.
Как найти выходное напряжение схемы делителя
Двухрезисторный делитель напряжения — одна из наиболее распространенных и полезных схем, используемых инженерами. Основная цель этой схемы — уменьшить входное напряжение до более низкого значения в зависимости от соотношения двух резисторов.Этот калькулятор помогает определить выходное напряжение схемы делителя с учетом входного (или исходного) напряжения и значений резистора. Обратите внимание, что выходное напряжение в реальных схемах может отличаться, так как допуск резистора и сопротивление нагрузки (где подключено выходное напряжение) становятся факторами.
Уравнение
$$ V_ {out} = V_ {in} * \ frac {R_ {2}} {R_ {1} + R_ {2}} $$
Где:
$$ V_ {out} $$ = Выходное напряжение. Это уменьшенное напряжение.
$$ V_ {in} $$ = Входное напряжение.
$$ R_ {1} $$ и $$ R_ {2} $$ = номиналы резисторов. Соотношение $$ \ frac {R_ {2}} {R_ {1} + R_ {2}} $$ определяет коэффициент масштабирования.
Приложения
Поскольку делители напряжения довольно распространены, их можно найти во многих приложениях. Ниже приведены лишь некоторые из мест, где встречается эта схема.
Потенциометры
Пожалуй, наиболее распространенная схема делителя напряжения — это схема с потенциометром, который представляет собой переменный резистор.Принципиальная схема потенциометра показана ниже:
«Горшок» обычно имеет три внешних контакта: два — это концы резистора, а один подключен к рычагу стеклоочистителя. Стеклоочиститель разрезает резистор пополам и перемещает его, регулируя соотношение между верхней и нижней половинами резистора. Соедините два внешних выводы к напряжению (вход) и ссылкам (земля) со средним (стеклоочистители штифтом) в качестве выходного контакта и вы сам делитель напряжения.
Переключатели уровня
Еще одна область, где полезны делители напряжения, — это когда необходимо выровнять напряжение.Наиболее распространенный сценарий — передача сигналов между датчиком и микроконтроллером с двумя разными уровнями напряжения. Большинство микроконтроллеров работают при 5 В, в то время как некоторые датчики могут принимать только максимальное напряжение 3,3 В. Естественно, вы хотите выровнять напряжение с микроконтроллера, чтобы избежать повреждения датчика. Пример схемы показан ниже:
Схема выше показывает схему делителя напряжения с резистором 2 кОм и 1 кОм. Если напряжение с микроконтроллера составляет 5 В, то пониженное напряжение на датчике рассчитывается как:
$$ V_ {out} = 5 * \ frac {2k \ Omega} {2k \ Omega + 1k \ Omega} = 3.33 В $$
Этот уровень напряжения теперь безопасен для датчика. Обратите внимание, что эта схема работает только для понижения напряжения, а не для повышения.
Ниже приведены некоторые другие комбинации резисторов, используемые для понижения часто встречающихся напряжений:
Комбинация резисторов | Использование |
4,7 кОм и 6,8 кОм | от 12 В до 5 В |
4,7 кОм и 3,9 кОм | от 9 В до 5 В |
3.6 кОм и 9,1 кОм | от 12 В до 3,3 В |
3,3 кОм и 5,7 кОм | от 9 В до 3,3 В |
Показания резистивного датчика
Многие датчики являются резистивными устройствами, и большинство микроконтроллеров считывают напряжение, а не сопротивление. Таким образом, резистивный датчик обычно подключается к схеме делителя напряжения с резистором для взаимодействия с микроконтроллером. Пример настройки показан ниже:
Термистор — это датчик, сопротивление которого изменяется пропорционально температуре.Допустим, термистор имеет сопротивление при комнатной температуре 350 Ом. Сопротивление пары также выбрано равным 350 Ом.
Когда термистор находится при комнатной температуре, выходное напряжение:
$$ V_ {out} = 5 * \ frac {350 \ Omega} {350 \ Omega + 350 \ Omega} = 2,5V $$
При повышении температуры сопротивление термистора изменяется до 350,03 Ом, выходной сигнал изменяется на:
$$ V_ {out} = 5 * \ frac {350.03 \ Omega} {350 \ Omega + 350.03 \ Omega} = 2.636V $$
Такое небольшое изменение напряжения обнаруживает микроконтроллер.Если передаточная функция термистора известна, теперь можно рассчитать эквивалентную температуру.
Дополнительная литература
Техническая статья — Делители напряжения и тока: что это такое и что они делают
Учебник — Глава 6 — Делительные цепи и законы Кирхгофа
Учебное пособие — Потенциометр как делитель напряжения
Рабочий лист — Схема делителя напряжения
Делитель потенциала — онлайн-калькулятор
Делитель потенциала — это простейший способ получения источника с более низким e.м.ф. от источника с более высокой э.д.с.
Выходное напряжение делителя потенциала можно рассчитать как
U out = U in R 2 / (R 1 + R 2 ) (1)
где
U out = выходное напряжение (В)
R = сопротивление (Ом, Ом)
U in = входное напряжение (В)
Пример — делитель потенциала — Высокое энергопотребление
Выходное напряжение делителя потенциала с двумя резисторами R 1 = 10 Ом и R 2 = 20 Ом и входное напряжение 12 В можно рассчитать как
U выход = (12 В) (20 Ом) / ((10 Ом) + (20 Ом))
= 8 (В)
Ток через делитель потенциала R 1 и 901 рэнд 33 2 (напр.выходной ток) можно рассчитать по закону Ома
I = U / R
= (12 В) / ((10 Ом) + (20 Ом))
= 0,4 А
можно рассчитать потребляемую мощность делителя
P = UI
= (12 В) (0,4 A)
= 4,8 Вт
Пример — Делитель потенциала — меньшее энергопотребление
Выходное напряжение от делителя потенциала с двумя резисторами R 1 = 1000 Ом и R 2 = 2000 Ом и входное напряжение 12 В можно рассчитать как
U out = (12 В) ( 2000 Ом) / ((1000 Ом) + (2000 Ом))
= 8 (В)
Ток через делитель потенциала R 1 и R 2 (пример.выходной ток) можно рассчитать по закону Ома
I = U / R
= (12 В) / ((1000 Ом) + (2000 Ом))
= 0,004 А
можно рассчитать потребляемую мощность делителя
P = UI
= (12 В) (0,004 A)
= 0,048 Вт
Потребляемую мощность в делителе потенциала можно уменьшить за счет увеличения сопротивления .
Делитель потенциала — Калькулятор
входное напряжение U дюйм (вольт)
резистор R 1 (ом)
резистор R 2 (ом)
Номограмму ниже можно использовать для оценки потенциального делителя.Загрузите и распечатайте номограмму делителя потенциала!
Значения по умолчанию на приведенной ниже номограмме для U в = 12 В , R 2 = 47 Ом и U out = 3,3 В . Так как сумма сопротивлений (R 1 + R 2 ) по номограмме составляет примерно 170 Ом — сопротивление R 1 можно рассчитать как
R 1 ≈ ( 170 Ом — 47 Ом)
≈ 123 Ом.
Калькулятор делителя напряжения — Хорошие калькуляторы
Вы можете использовать этот калькулятор делителя напряжения для определения любой из четырех переменных, связанных с простым двухрезисторным делителем напряжения, когда доступны значения трех других переменных.
В двухрезисторном делителе напряжения используются четыре переменных: входное напряжение (V в ), выходное напряжение (V из ), сопротивление 1 (R1) и сопротивление 2 (R2).
Калькулятор также строит принципиальную схему и генерирует значения компонентов.
Как пользоваться вычислителем делителя напряжения:
- Введите три известные переменные
- Нажмите кнопку «Рассчитать»
- Калькулятор отобразит оставшееся значение и принципиальную схему.
Дополнительная информация
Инженеры очень часто используют схему двухрезисторного делителя напряжения. Делитель напряжения, который также часто называют делителем потенциала, предлагает явное преимущество, заключающееся в том, что он может поляризовать другие элементы в цепи, включая интегральные схемы и транзисторы, с напряжением, отличным от напряжения основного источника напряжения.
Основная причина, по которой используется эта схема, состоит в том, чтобы уменьшить входное напряжение до более низкого значения в соответствии с соотношением двух резисторов.
Это достигается следующим образом:
- Соотношение резисторов (R1 и R2) снижает входное напряжение до более низкого выходного напряжения.
- Выходное напряжение представляет собой часть входного напряжения. Эта дробь принимает форму R2, деленного на сумму R1 + R2.
- Основная формула, которая используется для определения выходного напряжения, основана на законе Ома и выглядит следующим образом:
В выход = В вход * R2 / (R1 + R2)
Например, предположим, что мы работаем со схемой, которая имеет вход 12 В.Однако одной из микросхем в схеме нужно 9 вольт, а другой — всего 3 вольта. Делитель напряжения может использоваться для распределения напряжения между различными микросхемами в соответствии с их требованиями.
Если один резистор имеет значение 2 кОм, а другой — 6 кОм, вход 12 В будет разделен на 3 В и 9 В.
Обратите внимание: Никогда не используйте делитель напряжения для высоких напряжений, потому что полный ток должен пройти через резисторы, и это может привести к повреждению.В этом случае лучшим вариантом будет стабилизатор напряжения.
Пример:
Допустим, мы хотели бы определить выходное напряжение, если сопротивление резистора R1 составляет 5 кОм, сопротивление резистора R2 равно 10 кОм, а входное напряжение равно 9 В.
Решение:
В на выходе = В на входе * R2 / (R1 + R2) = (9 В) (10 кОм) / (5 кОм + 10 кОм) = 6 В
В, выход, = 6 В.
Формулы
В этом калькуляторе делителя напряжения используются следующие формулы:
В выход = В вход * R2 / (R1 + R2)
V вход = V выход * (R1 + R2) / R2
R1 = R2 * (V на выходе — V на выходе ) / V на выходе
R2 = R1 * V выход / (V выход — V выход )
Где, В на выходе = выходное напряжение (вольт), В в = входное напряжение (вольт), R1 и R2 = значения резистора (Ом).
Возможно, вас заинтересует наш Калькулятор цветовой маркировки резистора или Калькулятор трансформатора
Калькулятор делителя напряжения| Лучший калькулятор закона Ома
Что такое делитель напряжения?
Делитель напряжения — это пассивная линейная схема, выходное напряжение которой составляет часть входного напряжения. Делитель напряжения отвечает за распределение входного напряжения в компонентах схемы.
Что такое схема делителя напряжения?
Рассмотрим коробку, которая может содержать один источник или любую другую комбинацию элементов схемы.Он будет подключен к нескольким резисторам, которые выстроены параллельно, и нам нужно рассчитать падение напряжения на каждом из резисторов.
Согласно закону тока Кирхгофа и закону напряжения Кирхгофа (KVL) совокупное падение потенциала (напряжения) на всех последовательных резисторах в сумме будет равняться значению, выходящему из нашего источника (прямоугольник). Потенциал напряжения будет начинаться со значения источника и падать на определенный процент при встрече с каждым из резисторных элементов.
Чтобы вычислить падение напряжения на 1-м резисторе, источник напряжения умножается на значение этого резистора и делится на общее сопротивление.
Результирующее значение — это падение напряжения на первом резисторе. Следовательно, остается значение Vin — V resistor1, которое остается на втором резисторе.
Как рассчитать напряжение?
Рассмотрим схему, о которой мы говорили выше, с двумя резисторами R1 и R2.Оба резистора R1 и R2 включены последовательно, поэтому
Закон Ома
По закону Ома получаем V = IR
Поскольку у нас есть два резистора, приведенное выше уравнение становится
V1 = R1i …………… (1)
V2 = R2i …………… (2)
Закон Кирхгофа о напряжении
Теперь применяем закон напряжения Кирхгофа
-V + v1 + v2 = 0
В = V1 + v2
Следовательно, уравнение принимает вид
В (t) = R1i + R2i = (R1 + R2)
Отсюда
i (t) = v / R1 + R2 …………….(3)
Подставляя 3 в 1 и 2 уравнения, получаем
V1 = R1 (v / R1 + R2)
В (R1 / R1 + R2)
V2 = R2 (v / R1 + R2)
В (R2 / R1 + R2)
Это уравнение показывает напряжение, разделенное между двумя резисторами, которое прямо пропорционально их сопротивлению. Мы можем использовать это правило делителя напряжения для расширения схем, также предназначенных для использования нескольких резисторов.
Уравнение делителя напряжения
Мы уже приводим уравнение правила делителя напряжения, которое использует три входных значения в любой цепи, входное напряжение и два значения резистора.Используя сопутствующее условие, мы можем определить напряжение текучести
Выход = Вин x R2 / R1 + R2
Из вышеуказанного условия мы заключаем, что напряжение текучести обоснованно относительно информационного напряжения и соотношения двух резисторов R1 и R2.
Узнайте больше о расчетах частоты и длины волны с помощью калькулятора частоты и калькулятора длины волны в Интернете.
Как найти Vout или выходное напряжение?
Пример 1. Предположим, что в цепи есть два резистора R1 и R2 со значениями 1 кОм и 3 кОм соответственно.Vin или входное напряжение схемы составляет 12 В.
Согласно уравнению делителя напряжения,
Выход = Вин R2 / R1 + R2
Подставив значения входного напряжения и R1 и R2 в это уравнение, мы получим
Vout = 12 В. 3 кОм / 1 кОм + 3 кОм
Vout = 12 В. 3 кОм / 4 кОм
Vout = 12 В 3/4 = 9 В
Итак, выходное напряжение 9В.
Мы можем проверить выходное напряжение и подключить резисторы, чтобы снизить выходное напряжение.
Что такое калькулятор делителя напряжения?
Будучи людьми, мы можем совершать ошибки, чтобы привести к нежелательным результатам.Для решения этой проблемы Calculatored предлагает лучшее решение для расчета напряжения. Калькулятор делителя напряжения может найти правильное выходное напряжение для сложных схем.
Наш калькулятор делителя напряжения — это бесплатный и самый простой в использовании инструмент. Он использует чистое уравнение или формулу делителя напряжения для эффективного решения ваших числовых задач.
Как пользоваться калькулятором делителя напряжения?
Калькулятор делителя напряженияочень прост и удобен в использовании. Шаги использования вычислителя делителя напряжения:
.Шаг № 1: Введите источник напряжения (для входного напряжения)
Шаг 2: введите сопротивление 1 (R1 в Ом)
Шаг 3: введите сопротивление 2 (R2 в Ом)
Шаг №4: Нажмите кнопку «РАССЧИТАТЬ».
После того, как вы нажмете кнопку «Рассчитать», вы получите выходное напряжение в течение нескольких секунд, что делает наш калькулятор делителя напряжения самым простым в использовании.
Мы надеемся, что наш инструмент и теория вам понравились. Вы также можете бесплатно воспользоваться калькулятором силы на нашем портале.
Делитель напряжения бесплатный онлайн калькулятор
Калькулятор делителя напряжения: вычисляет падение напряжения на каждой резисторной нагрузке при последовательном подключении.
Введите общее напряжение питания и нажмите кнопку Рассчитать :
Линейка делителя напряжения
Для цепи постоянного тока с источником постоянного напряжения V T и Если резисторы включены последовательно, падение напряжения V i на резисторе R i определяется по формуле:
Делитель напряжения »
В настоящее время у нас есть около 931 калькулятора, таблицы преобразования и полезные онлайн-инструменты и функции, которые сделают вашу жизнь проще или просто помогут вам выполнять свою работу или обязанности быстрее и эффективнее.Ниже приведены наиболее часто используемые многими пользователями.
И мы все еще разрабатываем другие. Наша цель — стать универсальным сайтом для людей, которым нужно быстро производить расчеты или которым нужно быстро найти ответ на базовые конверсии.
Кроме того, мы считаем, что Интернет должен быть источником бесплатной информации. Таким образом, все наши инструменты и услуги полностью бесплатны и не требуют регистрации. Мы кодировали и разрабатывали каждый калькулятор индивидуально и подвергали каждый строгому всестороннему тестированию.Однако, пожалуйста, сообщите нам, если вы заметите даже малейшую ошибку — ваш вклад очень важен для нас. Хотя большинство калькуляторов на Justfreetools.com предназначены для универсального использования во всем мире, некоторые из них предназначены только для определенных стран.
Нашли ошибку? Дайте нам знать !
Мы получили ваше сообщение, мы свяжемся с вами в ближайшее время.
Ой! Что-то пошло не так, обновите страницу и попробуйте еще раз.
Онлайн калькулятор делителя напряженияс формулой
Калькулятор делителя напряжения:
Введите сопротивление резистора в омах и напряжение источника в вольтах, затем нажмите кнопку вычисления, чтобы получить напряжение на этом конкретном резисторе. Наш калькулятор делителя напряжения работает на основе модели с тремя резисторами, как указано в схеме. Здесь третье сопротивление необязательно. По крайней мере, вы должны ввести два значения резистора.
Калькулятор делителя напряжения для цепи с тремя сопротивлениямиНапряжение на этом конкретном сопротивлении равно напряжению источника, умноженному на это сопротивление, деленное на сумму всех сопротивлений.
Таким образом, вы можете рассчитать напряжение на трех резисторах одновременно, и формула будет
Формула делителя напряженияДелитель потенциала — это электрическая цепь, используемая для пошагового уменьшения напряжения с помощью резистора. Ниже приведена формула для расчета напряжения на любой цепи сопротивления.
Возьмем простую схему, состоящую из трех сопротивлений,
Многократный резисторR1 => Сопротивление 1-го резистора в Ом (Ом).
R2 => Сопротивление 2-го резистора в Ом (Ом).
Ri => Сопротивление резистора i th в Ом (Ом).
В выход => Выходное напряжение на резисторе R2 в вольтах.
Vin => Напряжение источника в вольтах.
Vi => Напряжение на резисторе i th .
Для расчета напряжения на резисторе i th формула принимает следующий вид:
делитель напряжения для нескольких резисторовДля расчета напряжения на нескольких резисторах просто используйте вышеупомянутую формулу.
Пример:
R1 = 10 Ом, R2 = 20 Ом, R3 = 10 Ом, входное напряжение = 24 В, Рассчитайте напряжение на резисторе R3.
Используйте нашу формулу,
В 3 = 24 x 10 / (10 + 20 + 10)
В 3 = 6 В
В 3 = Напряжение на третьем сопротивлении равно 6 В
Делитель напряжения — нагруженная и разомкнутая цепь Калькулятор дБ демпфирующее напряжение потенциометр демпфирующая площадка импеданса децибел дБ согласование полного сопротивления аттенюатора напряжения
делитель напряжения — нагруженная и разомкнутая цепь децибел-калькулятор демпфирующее напряжение потенциометр импеданс цепи демпфирующая площадка децибел дБ согласование импеданса аттенюатора напряжения мостовое согласование — sengpielaudio Sengpiel Берлин Используя согласование импеданса или согласование мощности , вы делаете выходное сопротивление источника равным входному сопротивлению нагрузки, к которой он в конечном итоге подключен. T- и H-образные площадки используются в радиостанции частотные (RF) цепи для ослабления сигнала (демпфирования). Применяется при максимальной энергии (мощности) передается между источником и нагрузкой. Затем Z источник = Z загрузка . Но в звукозаписи (аудио), публичном адресе и Hi-Fi используется только мостовое соединение с импедансом с: Z источник << Z нагрузка или Z S << Z 903 Z из << Z из Выходное сопротивление источника всегда намного меньше входного сопротивления нагрузки. В этом случае никогда не пытайтесь рассчитывать и использовать схемы T- и H-образных контактных площадок — лучше используйте вместо них делители напряжения. асимметричный симметричный Исторические причины показывают значения импеданса, в частности, 50 Ом, 200 Ом или 600 Ом. Калькулятор делителя напряжения № 1 При вводе трех или четырех значений вычисляются остальные. Дополнительно можно ввести значение Z нагрузка , в противном случае он автоматически использует нагрузку 1 МОм — разомкнутая цепь без нагрузки. Используйте левую кнопку мыши — щелкните на свободном месте. |
В без нагрузки означает В на выходе без Z L . При желании Z источник генератора может быть добавлен к Z 1 .
Отрицательное решение означает затухание (потерю) — положительное решение означает усиление (усиление).
Демпфирование напряжения:
Выходное напряжение:
Параллельное сопротивление:
См. Также: Расчет демпфирования
Мостовое соединение по сопротивлению или по напряжению Zout
Делитель напряжения без нагрузки Практическое правило: Напряжения пропорциональны сопротивлениям. Формулы для ненагруженного делителя напряжения: |
Калькулятор делителя напряжения № 2
Этот калькулятор, учитывая любые три или четыре из пяти возможных значений, будет
дать результаты для оставшегося. Значение Z L является необязательным, если не указано, калькулятор использует 1 МОм. Полезно, если вам нужно ввести В из . Заполните любые три или четыре поля в форме ниже, затем нажмите кнопку «рассчитать». Оставшееся поле будет вычислено, и результаты будут отображены. Если вы сделаете новый расчет, всегда используйте кнопку «сброс», чтобы очистить все поля. Z = R . |
Для вычисления входного напряжения введите Z 1 , выходное напряжение и Z 2 , а затем нажмите кнопку «Рассчитать». Для вычисления Z 1 введите Входное напряжение, Выходное напряжение и Z 2 , а затем нажмите кнопку «Рассчитать». Для вычисления Z 2 введите Входное напряжение, Выходное напряжение и Z 1 , а затем нажмите кнопку «Рассчитать». Для вычисления выходного напряжения введите «Входное напряжение», Z 1 и Z 2 , а затем нажмите кнопку «Рассчитать». При желании Z источник генератора может быть добавлен к Z 1 . |
Коэффициент деления напряжения α = Отношение (выходное напряжение к входному) = В выход / В дюйм
Z 2 = ( α × Z 1 ) / (1- α )
дБ (уровень) = 20 × log α
V out = V дюйм × [ Z 2 / ( Z 1 + Z 2 )]
Делитель напряжения (потенциометр) с различными характеристиками управления
Рисунок: © Detlef Mietke — http: // www.