Закрыть

Расчет электрической цепи постоянного тока онлайн – Расчет электрической цепи постоянного тока

Расчёт электрической цепи постоянного тока методом узловых и контурных уравнений.

Этот принцип основан на первом и втором законе Кирхгофа. Он не требует преобразования схемы.

Порядок расчёта:

  1. Произвольно задаёмся направлением токов в ветвях. (Токи в ветвях надо направлять так, что бы хотя бы один ток выходил из узла и один входил в узел)


Красным выделены изменения после первого действия

Синим выделены изменения после второго пункта

  1. Составляем уравнение для узлов по первому закону Кирхгофа. Их должно быть n минус 1 . (n – число узлов)
    1. Обозначаем узлы буквами.
    2. Берём один конкретный узел (Например узел А) и смотрим как направлены токи в ветвях образующих узел. Если ток направлен в узел, то записываем его со знаком плюс, если из него то со знаком минус. 0=I1-I4-I6 (Полученное уравнение)
    3. Повторяем пункт B ещё для двух узлов.0=-I3+I4+I5(Узел В)                                         0=I3-I1-I2(Узел D)
  2. Произвольно задаёмся обходом контура (по часовой или против часовой). И составляем уравнения для контуров цепи по второму закону Кирхгофа. В данном примере направление обхода контура выберем по часовой стрелке.

 3.1 Смотрим, как направлена ЭДС относительно обхода контура. Если направление обхода контура совпадает, то значение ЭДС записываем со знаком плюс (в левой части уравнения), если не совпадает, то со знаком минус (записываем также в левой части уравнения)

3.2 Смотрим, как направлено падение напряжения на сопротивлении контура.(То есть смотрим как направлены токи, только записываем в уравнение произведение тока на сопротивление через которое ток протекает в данном контуре). Если направление обхода контура совпадает, то падение напряжения записываем со знаком плюс (в правой части уравнения), если не совпадает, то со знаком минус (записываем также в правой части уравнения)

3.3 Произвести действия 3.1 и 3.2 для остальных контуров. У вас должна получится система из n уравнений, где n — количество контуров в цепи.

Контур ABDA E1=I1*(R1+R01)+I4*R4+I3*R3

Контур BCDB E2=I2*(R2+R02)+I3*R3+I5*R5

Контур ABCA 0=I6*R6-I4*R4+I5*R5

  • Решаем полученную систему уравнений и находим величины токов во всех ветвях. 

Уберём лишние токи из системы используя уравнения полученные во втором пункте поскольку у нас три уравнения поэтому мы оставляем только три любых тока. Для данного примера я рекомендую оставить токи I1 I2 I4.

0=I1-I4-I6 (Узел А)

0=-I3+I4+I5(Узел В)

0=I3-I1-I2(Узел D)

Выражаем из трёх уравнений токи I3 I5 I6 через токи I1 I2 I4.

I6=I1-I4(Узел А)

I3=I1+I2(Узел D)

I5=I3-I4(Узел В)

I5=I3-I4(Узел В) В этом уравнении сразу не получилось выразить I5 через токи I1 I2 I4, поэтому вместо тока I3 подставим уравнение для узла D и получим:

I5=I1+I2-I4

Заменим токи I3 I5 I6 и получим уравнения с тремя токами :

 E1=I1*(R1+R01)+I4*R4+(I1+I2)*R3

 E2=I2*(R2+R02)+(I1+I2)*R3+(I1+I2-I4)*R5

 0=(I1-I4)*R6-I4*R4+(I1+I2-I4)*R5

Раскрываем скобки подставляем значения сопротивлений из условия и получаем например вот такие три уравнения:

40 = 71*I1 + 24*I2 + 14*I4

20 = 55*I1 + 93*I2 — 61*I4

0 = 60*I1 + 16*I2 — 81*I4

Дальше для решения системы можно воспользоваться бесплатной онлайн программой на нашем сайте.

  • Если при решении системы ток получается отрицательным (со знаком —), значит его действительное направление противоположно тому направлению которое мы задали в первом действии.
  • Правильность  решения можно проверить с помощью баланса мощностей.

electrikam.com

Расчёт электрической цепи постоянного тока методом контурных токов.

Метод основан на использовании только второго закона Кирхгофа.

Схема делится на ячейки (независимые контуры). Для каждого контура вводится свой ток Ik, который является расчётной величиной.

Итак, в заданной цепи (рис. 1.38) можно рассмотреть три контура-ячейки (АДСВА, ABA’А, А’СВА’) и ввести для них контурные токи Iк1 Iк2, Iк3.

Если в контуре ячейки имеется ветвь не входящая в другие контуры то она называется внешней. В таких ветвях контурные токи Ik являются действительными токами в внешних ветвях Ikn = In.

Ветви принадлежащие двум смежным контурам называются смежными ветвями. В них действительный ток равен алгебраической сумме контурных токов смежных контуров с учётом их направления. 


Порядок расчёта:

  1. Произвольно выбираем направление (против часовой или по часовой) контурных токов в контурах (ячейках).
  2. Направление обхода контура принимаем таким же как направление контурного тока.
  3. Составляем уравнения для каждого контура:

3.1 Смотрим, как направлена ЭДС относительно обхода контура. Если направление обхода контура совпадает, то значение ЭДС записываем со знаком «+» (в левой части уравнения), если не совпадает, то со знаком «–» (записываем также в левой части уравнения). Эдс в контуре может быть несколько то тогда выполняем выше указанное действие для каждого эдс. Если в контуре нету ни одного эдс то записываем ноль;

3.2 В левой части записываем:

3.2.1 Произведение контурного тока и сумму всех сопротивлений данного контура.

3.2.2 Произведение контурного тока который протекает по смежной ветви и сумму всех сопротивлений которые включены в смежную цепь.(знак произведения выбираем в зависимости совпадает ли направление обхода контура с направлением контурного тока протекающего по смежной цепи).

Если в контуре есть несколько смежных ветвей то повторяем пункт 3.2.2 для всех ветвей по отдельности.

После третьего пункта у вас должно получиться уравнение данного типа:
ЭДС = Контурный ток * сумма всех сопротивлений данного контура — или + контурный ток смежной цепи * сумма всех сопротивлений смежной ветви.

40 = 44*Iк1 + 24*Iк2 — 20*Iк3

60 = 24*Iк1 + 104*Iк2 + 40*Iк3

20 = -20*Iк1 + 40*Iк2 + 110*Iк3

4. Полученные уравнения записываем в систему и решаем. После решения системы получаем контурные токи равные токам действительным во внешних ветвях.

5. Находим действительные токи в смежных ветвях из алгебраической суммы контурных токов.

electrikam.com

Расчёт электрической цепи постоянного тока методом наложения (суперпозиции токов)

Этот метод заключается в том, что воздействие нескольких источников на какой либо элемент цепи можно рассматривать как результат воздействия на элемент каждой ЭДС по отдельности независимо от других источников.

Если  в рассчитываемой цепи присутствует несколько источников ЭДС, то расчет электрической цепи сводится к расчету нескольких цепей с одним источником. Ток в любой ветви рассматривается как алгебраическая сумма частных токов созданных каждой ЭДС по отдельности.

Рассмотрим метод наложения на примере данной схемы рисунок 1.

Дано:

E1=100 B, E2=50 B; R1=4 Om, R2=10 Om; R3=12 Om, r01=1Om, r02=2 Om.

Найти: Все токи.

Порядок расчета:

  1. Определяем количество источников в схеме. В данной схеме два  источника, значит нам нужно рассчитать две схемы.
  2. Предположим, что в цепи действует только Е1 рисунок 2. Укажем на этой схеме направление частных токов создаваемые источником Е1 (токи обозначим с одним штрихом I’1; I’2: I’3). Обратите внимание, если у источника (E1; E2) есть  внутреннее сопротивление (r01; r02), то при исключения данного источника его внутренне сопротивление остоётся в схеме.
  3. Найдем ток I’1. Rэкв — сопротивление всей цепи.
  4. Найдем ток I’2; I’3 по формуле разброса токов. 
  5. Мы нашли все частные токи в первой схеме (рисунок 2).
  6. Рассмотрим вторую схему без E1, но с E2 (рисунок 3). Укажем на этой схеме направление частных токов создаваемые источником Е2 (токи обозначим с двумя штрихами I»1; I»2: I»3)
  7. Найдем ток I»2. RЭКВ рассчитываем заново.
  8. Найдем токи I»1; I»3 по формуле разброса токов. 
  9. Мы нашли все частные токи для второй схемы (рисунок 3).
  10. Найдем действующие токи в изначальной схеме (рисунок 1) путем алгебраического сложения частных токов первой (рисунок 2) и второй (рисунок 3) схемы. Для этого смотрим как направлены токи в одинаковых ветвях на рисунке 2 и 3. Если токи направлены в одном направлении, то тогда они складываются, а если токи направлены в разные стороны тогда отнимаем.
  11. Если конечные токи получаются положительные, то токи направлены так же как на рисунке 2, а если токи получились отрицательными, то тогда они направлены так же как на рисунке 3.
  12. Правильность решения можно проверить при помощи баланса мощности.

electrikam.com

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Главная → Примеры решения задач ТОЭ → Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Основными законами, определяющими расчет электрической цепи, являются законы Кирхгофа.

На основе законов Кирхгофа разработан ряд практических методов расчета электрических цепей постоянного тока, позволяющих сократить вычисления при расчете сложных схем.

Существенно упростить вычисления, а в некоторых случаях и снизить трудоемкость расчета, возможно с помощью эквивалентных преобразований схемы.

Преобразуют параллельные и последовательные соединения элементов, соединение «звезда» в эквивалентный «треугольник» и наоборот. Осуществляют замену источника тока эквивалентным источником ЭДС. Методом эквивалентных преобразований теоретически можно рассчитать любую цепь, и при этом использовать простые вычислительные средства. Или же определить ток в какой-либо одной ветви, без расчета токов других участков цепи.

В данной статье по теоретическим основам электротехники рассмотрены примеры расчета линейных электрических цепей постоянного тока с использованием метода эквивалентных преобразований типовых схем соединения источников и потребителей энергии, приведены расчетные формулы.

Решение задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований


Задача 1. Для цепи (рис. 1), определить эквивалентное сопротивление относительно входных зажимов a−g, если известно: R1 = R2 = 0,5 Ом, R3 = 8 Ом, R4 = R5 = 1 Ом, R6 = 12 Ом, R7 = 15 Ом, R8 = 2 Ом, R9 = 10 Ом,

R10= 20 Ом.

Рис. 1

Решение

Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g:


Задача 2. Для цепи (рис. 2, а), определить входное сопротивление если известно: R1 = R2 = R3 = R4= 40 Ом.

Рис. 2

Решение

Исходную схему можно перечертить относительно входных зажимов (рис. 2, б), из чего видно, что все сопротивления включены параллельно. Так как величины сопротивлений равны, то для определения величины эквивалентного сопротивления

можно воспользоваться формулой:

где R – величина сопротивления, Ом;

n – количество параллельно соединенных сопротивлений.


Задача 3. Определить эквивалентное сопротивление относительно зажимов a–b, если R1 = R2 = R3 = R4 = R5 = R6 = 10 Ом (рис. 3, а).

Рис. 3

Решение

Преобразуем соединение «треугольник» f−d−c в эквивалентную «звезду». Определяем величины преобразованных сопротивлений (рис. 3, б):

По условию задачи величины всех сопротивлений равны, а значит:

На преобразованной схеме получили параллельное соединение ветвей между узлами e–b, тогда эквивалентное сопротивление равно:

И тогда

эквивалентное сопротивление исходной схемы представляет последовательное соединение сопротивлений:


Задача 4. В заданной цепи (рис. 4, а) определить методом эквивалентных преобразований входные сопротивления ветвей a−b, c–d и f−b, если известно, что: R1 = 4 Ом, R2 = 8 Ом, R3 =4 Ом, R4 = 8 Ом, R5 = 2 Ом, R6 = 8 Ом, R7 = 6 Ом, R8 =8 Ом.

Решение

Для определения входного сопротивления ветвей исключают из схемы все источники ЭДС. При этом точки c и d, а также b и f соединяются накоротко, т.к. внутренние сопротивления идеальных источников напряжения равны нулю.

Рис. 4

Ветвь a−b разрывают, и т.к. сопротивление Ra–b = 0, то входное сопротивление ветви равно эквивалентному сопротивлению схемы относительно точек a и b (рис. 4, б):

Аналогично методом эквивалентных преобразований определяются входные сопротивления ветвей Rcd и Rbf. Причем, при вычислении сопротивлений учтено, что соединение накоротко точек a и b исключает ( «закорачивает») из схемы сопротивления R1, R2, R3, R4 в первом случае, и R5, R6, R7, R8 во втором случае.


Задача 5. В цепи (рис. 5)

определить методом эквивалентных преобразований токи I1, I2, I3 и составить баланс мощностей, если известно: R1 = 12 Ом, R2 = 20 Ом, R3 = 30 Ом, U = 120 В.

Рис. 5

Решение

Эквивалентное сопротивлениедля параллельно включенных сопротивлений:

Эквивалентное сопротивление всей цепи:

Ток в неразветвленной части схемы:

Напряжение на параллельных сопротивлениях:

Токи в параллельных ветвях:

Баланс мощностей:


Задача 6. В цепи (рис. 6, а), определить методом эквивалентных преобразований

показания амперметра, если известно: R1 = 2 Ом, R2 = 20 Ом, R3 = 30 Ом, R4 = 40 Ом, R5 = 10 Ом, R6 = 20 Ом, E = 48 В. Сопротивление амперметра можно считать равным нулю.

Рис. 6

Решение

Если сопротивления R2, R3, R4, R5 заменить одним эквивалентным сопротивлением RЭ, то исходную схему можно представить в упрощенном виде (рис. 6, б).

Величина эквивалентного сопротивления:

Преобразовав параллельное соединение сопротивлений RЭ и R6 схемы (рис. 6, б), получим замкнутый контур, для которого по второму закону Кирхгофа

можно записать уравнение:

откуда ток I1:

Напряжение на зажимах параллельных ветвей Uab выразим из уравнения по закону Ома для пассивной ветви, полученной преобразованием RЭ и R6:

Тогда амперметр покажет ток:


Задача 7. Определить токи ветвей схемы методом эквивалентных преобразований (рис. 7, а), если R1 = R2 = R3 = R4 = 3 Ом, J = 5 А, R5 = 5 Ом.

Рис. 7

Решение

Преобразуем «треугольник» сопротивлений R1, R2, R3 в эквивалентную «звезду» R6, R7, R

8 (рис. 7, б) и определим величины полученных сопротивлений:

Преобразуем параллельное соединение ветвей между узлами 4 и 5

Ток в контуре, полученном в результате преобразований, считаем равным току источника тока J, и тогда напряжение:

И теперь можно определить токи I4 и I5:

Возвращаясь к исходной схеме, определим напряжение U32 из уравнения по второму закону Кирхгофа:

Тогда ток в ветви с сопротивлением R3 определится:

Величины оставшихся неизвестными токов можно определить из уравнений по первому закону Кирхгофа для узлов 3 и 1:


Электронная версия статьи Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Примеры решения задач

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Расчет электрических цепей постоянного тока методом эквивалентных преобразований


Метод эквивалентных преобразований 

02.09.2011, 250531 просмотр.

rgr-toe.ru

Как использовать программу для расчета электрической цепи постоянного тока методом узловых и контурных уравнений, и методом контурных токов

Алгоритм использования программы. Для начала мы должны составить уравнения для контуров цепи по второму закону Кирхгофа. Это нужно сделать самому используя вот эти статьи:

После этого у нас получится примерно такие уравнения (для метода контурных токов алгоритм будет такой же, что и для метода узловых и контурных уравнений только вместо I1 I2 I3 …. будет Iк1 Iк2 Iк3…)

40 = ( 23+1)*I2 + 14*I4+71*I1

20 = 55*I1 — (59+2)*I4 + 93*I2

0 = 60*I1 + 16*I2 — 81*I4

Для удобство надо немного упорядочим уравнения, то есть всё, что можно просто сложить — складываем, и упорядочиваем последовательность слагаемых в уравнениях, так что бы в каждом из уравнений  последовательность слагаемых была одинакова.

E        I1          I2          I4

40 = 71*I1 + 24*I2 + 14*I4

20 = 55*I1 + 93*I2 — 61*I4

0 = 60*I1 + 16*I2 — 81*I4

Как видите у нас получилось четыре столбика E, I1, I2, I4 у вас названия столбиков может быть другим например E, I2, I3, I5 после этого принимаем токае равенство:

E=E

Второй третий и четвёртый столбик равны IA, IB, IC.

E=E

IA = I1

IB = I2

IC = I4

Потом наши уравнения будут иметь вид:

40 = 71* + 24* + 14*

20 = 55* + 93* — 61*

0 = 60* + 16* — 81*

После этого записываем уравнение в программу.

Нажимаем кнопку вычислить и получаем подробный ответ.

IA = I1 = 0.427

IB = I2 = 0.195

IC = I4 = 0.355

Перейти к программе.

Остальные токи находятся в соответствии со своим методом решения.

 

electrikam.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *