Закрыть

Расчет варистора: Варисторы как средство защиты радиоэлектронной аппаратуры

Варисторы как средство защиты радиоэлектронной аппаратуры

   Надежность работы радиоэлектронной аппаратуры во многом определяется качеством питающих электрических сетей, в которых могут иметь место перенапряжения длительностью от сотен миллисекунд до нескольких секунд, провалы напряжения длительностью до десятков миллисекунд, пропадания (отсутствие напряжения более одного периода) и так далее. На рис. 1 показаны наиболее часто встречающиеся неполадки в электросети и их процентное соотношение.

   Особенно опасны высоковольтные импульсы амплитудой до нескольких киловольт и длительностью от десятков наносекунд до сотен микросекунд. Именно они могут приводить к серьезным сбоям электронной аппаратуры и выходу ее из строя, а также быть причиной пробоя изоляции проводов и даже их возгорания.

   Импульсы напряжения, которые можно отнести к внешним сетевым помехам (рис. 2), возникают в различных цепях аппаратуры, в первую очередь, в проводах питания.

   Во-первых, они могут наводиться электромагнитными импульсами искусственного происхождения от передающих радиостанций, высоковольтных линий электропередач, сетей электрифицированных железных дорог, электросварочных аппаратов.

Рис. 1

   Идентифицировать и систематизировать причины таких помех практически невозможно. Однако для бытовых электрических сетей напряжением 220 В приняты следующие ориентировочные параметры внешних импульсных напряжений:

  • амплитуда — до 6 кВ;
  • частота — 0,05…5 МГц;
  • длительность — 0,1…100 мкс.

   Во-вторых, они могут быть естественного происхождения и наводиться мощными грозовыми разрядами.

Рис. 2

   В-третьих, они могут создаваться статическим напряжением, разряд которого достигает 25 кВ. Высоковольтные импульсы способны возникать и в самой аппаратуре при ее функционировании в результате переходных процессов, при срабатывании электромагнитов, размыкании контактов реле, коммутации реактивных нагрузок и так далее. Наибольшую угрозу представляют импульсы, возникающие при отключении индуктивной нагрузки.

   По указанным причинам радиоэлектронная аппаратура должна быть защищена от высоковольтных импульсных помех. Чтобы аппаратура могла быть сертифицирована, она должна пройти проверку на устойчивость к воздействию импульсных помех. Например, ГОСТ Р 51317.4.4-99 (МЭК 61000-4-4-95) распространяется на электротехнические, электронные и радиоэлектронные изделия и устанавливает требования и методы их испытаний на устойчивость к наносекундным импульсным помехам (НИП).

   В настоящее время для защиты радиоэлектронной аппаратуры от внешних импульсных воздействий применяются различные виды экранировки, RC- и LC-фильтры, газоразрядные приборы (разрядники) и полупроводниковые ограничители напряжения (ПОН). К сожалению, разрядники не обладают необходимым быстродействием, а быстродействующие ПОН, с высокой нелинейностью вольтамперной характеристики (ВАХ) не способны рассеивать большую мощность из-за малого объема p-n-перехода. Это обуславливает резкое уменьшение допустимого тока в импульсе, протекающем через прибор.

   В последнее время наиболее эффективным средством защиты аппаратуры от любых импульсных напряжений признаны оксидно-цинковые варисторы. Варисторы [англ. varistor, от vari (able) — переменный и (resi) stor — резистор] — это нелинейные резисторы, сопротивление которых зависит от приложенного напряжения. Отличительной чертой варистора является двухсторонняя симметричная и резко выраженная нелинейная ВАХ (рис. 3).

Рис. 3

   Электрические характеристики варистора определяются большим сопротивлением утечки и емкостью, которая незначительно изменяется под воздействием напряжения и температуры.

   При больших напряжениях на варисторе, и соответственно, больших токах, проходящих через него, плотность тока в точечных контактах оказывается также большой. Разогрев точечных контактов приводит к уменьшению их сопротивления и, как следствие, к нелинейности ВАХ. Малые объемы активных областей обеспечивают малую инерционность тепловых процессов, что определяет их высокое быстродействие. Наряду с этим варисторы способны хорошо поглощать высокоэнергетические импульсы напряжения, так как тепловая энергия рассеивается не на отдельных зернах полупроводника, а на всем его объеме.

   Особенностью ВАХ варистора является наличие участка малых токов (условно от нуля до нескольких миллиампер), в котором находится рабочая точка варистора и участок больших токов, который определяет защитные свойства и, в частности, напряжение ограничения. В области малых токов ВАХ описывается выражением:

   I=AUβ,
где I — ток, A; U — напряжение, В; А — коэффициент, значение которого зависит от типа варистора и от температуры; β — коэффициент нелинейности, который характеризует крутизну ВАХ и определяется отношением статического сопротивления варистора (R = U/I) к дифференциальному (r = dU/dI) в определенной точке:

β=R/r = U/l·dl/dU.

   Экспериментально коэффициент нелинейности можно оценить по формуле:

   β= lgI2-lgI1/lgU2-lgU1 = lgI2/I1/lgU2/U1.

   Чаще всего коэффициент нелинейности определяется при токе 1 мА и 10 мА, поэтому:

   β=1/lgU2/U1.

   Для варисторов на основе оксида цинка коэффициент нелинейности обычно составляет 20…60. Варисторы имеют достаточно большую емкость (100…50000 пф) в рабочем режиме (когда нет импульсов напряжения). При воздействии импульса их емкость падает практически до нуля.

   Одной из важнейших характеристик варистора является классификационное напряжение — Uкл — напряжение на варисторе при токе, равном 1 мА. Иногда приводится коэффициент защиты варистора — отношение напряжения на варисторе при токе 100 А к напряжению при токе 1 мА (то есть к классификационному напряжению). Он характеризует способность варистора ограничивать импульсы перенапряжения и для варисторов на основе оксида цинка находится в пределах 1,4…1,6. Таким образом, при росте напряжения в 1,4…1,6 раза ток через них возрастает в 100 000 раз.

   Важной характеристикой варистора является допустимая мощность рассеивания, определяемая его геометрическими размерами и конструкцией выводов. Для увеличения мощности рассеивания часто применяют массивные выводы, играющие роль радиатора.

   При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При этом через варистор может протекать импульсный ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после исчезновения помехи его сопротивление вновь становится большим. Таким образом, включение варистора параллельно защищаемому устройству не влияет на работу последнего в нормальных условиях, но гасит импульсы опасного напряжения (рис. 4).

Рис. 4

   Выбор типа варистора осуществляется на основе анализа его работы в двух режимах: в рабочем и импульсном. Рабочий режим определяется классификационным напряжением Uкл, а импульсный — рассеиваемой мощностью. Для ориентировочных расчетов рекомендуется, чтобы рабочее постоянное напряжение на варисторе не превышало 0,85 Uкл, а при переменном токе действующее значение рабочего напряжения не превышало 0,6 Uкл.

   В импульсном режиме через варистор протекает большой ток, вследствие чего необходимо опасаться выхода его из строя из-за перегрева. С этой целью необходимо использовать варисторы с рассеиваемой мощностью большей, чем расчетная.

   Для расчета варисторов, защищающих те или иные цепи от грозового разряда, иногда приводят сведения о напряжении на варисторе при воздействии стандартного грозового импульса. На рис. 5 показана форма этого импульса, который часто называют «импульсом 8/20 мкс».

Рис. 5

   Очевидно, что варисторы могут работать и при последовательном включении. При этом в них протекает одинаковый ток, а общее напряжение делится пропорционально сопротивлениям (в первом приближении — классификационным напряжениям), в той же пропорции разделится поглощаемая энергия. Сложнее обеспечить параллельную работу варисторов — необходимо строгое совпадение их ВАХ. Эта задача вполне разрешима при последовательно-параллельной схеме включения — т. е. варисторы последовательно собираются в столбы, а столбы соединяются параллельно. При этом подбором варисторов обеспечивают совпадение ВАХ столбов, которые собираются в блоки с нужными параметрами. Варисторы изготавливаются в обычном исполнении (дисковые, прямоугольные), в виде блоков различной формы и в виде чипов, что позволяет существенно экономить место на печатной плате (рис. 6).

   Отечественные предприятия выпускают варисторы для различных сфер применения, это серии СН, ВР, МЧВН/ВС, МОВН/ВС и другие.

   Из зарубежных производителей варисторов большую номенклатуру выпускает компания EPCOS. Ее приборы имеют следующую систему обозначений:

Чип и прямоугольные варисторы


SIOV- CN 1210 M 4 G

Варистор

_________________________|

Тип варистора(CN,CU,SR)

_______________|

Размер

__________________________________|

Точность: K-10%, M-20%

_______________________|

Классификационное напряжение

__________________|

Тип упаковки

_____________________________________|

Дисковые варисторы


SIOV S 14 K 250 G5 S6

Варистор

________________________|

Тип варистора(S,B25 и др. )

___________|

Диаметр варисторного диска

_____________|

Точность: K-10%, M-20%

__________________|

Классификационное напряжение

______________|

Тип упаковки

_________________________________|

Тип формовки выводов

___________________________|

   Другие зарубежные компании-производители часто используют следующую систему обозначений выпускаемых варисторов:

DNR 0,5 D 181 M R S

Производитель

________________________________________________|

Диаметр в мм, может быть 0,5;0,7;10;14;20

______________________________|

Дисковый варистор

____________________________________________________|

Классификационное напряж. (расшиф.»18″ и «0»= 180 В)

_______________________|

Точность:J=5%, K-10%, M-20%

________________________________________________|

Упаковка(R-катушка, В-россыпь)

________________________________________________|

Выводы (S-прямые, К-формованные)

______________________________________________|

Рис. 6

Таблица 1

Типы варисторов
Параметры
ЧипДисковыеАвтомобильные
CNCUSSRCN-
AUTO
SU-
AUTO
S-
AUTO
SR-
AUTO
Импульсный ток (8/20 мкс), кА1,21012
Поглощаемая энергия, Дж234101225100
Средняя рассеиваемая мощность, Вт0,251,00,030,2
Время срабатывания, нс
Рабочая температура,
°С
-55. .125-40..85-40..+85-55..125-40..85-55..125-40..85
Типоразмер0603..220
0
3225; 032SO5..S2O1210; 22200805..2220S07..S201210; 1812; 2200

   В табл. 1, 2 приведены параметры оксидно-цинковых варисторов, выпускаемых компанией EPCOS.

Рис. 7

Таблица 2

Типы варисторов
Параметры
Для тяжелых условийБлокиКомбинированные
В25; ВЗО; 40; LS40В6ОВ80PD80Е32SHCV-SR1, SR2
Импульсный ток (8/20 мкс), кА4070100100651
Поглощаемая энергия, Дж120030006000600012
Средняя рассеиваемая мощность, Вт1,41,62,02,00,03
Время срабатывания, нс
Рабочая температура °С-40. ..85-40…85-40…85-40…85-25…60-40…85

   В заключение следует отметить, что для эффективной защиты аппаратуры от воздействия различных сетевых помех необходимо использовать сетевые фильтры с многоступенчатой защитой. Например, в сетевом фильтре «АРС PowerManager» (рис. 7) массивные стержневые индукторы 1 обеспечивают фильтрацию электромагнитных помех, оксидно-цинковые варисторы 2 обеспечивают общий и нормальный режимы защиты от высоковольтных импульсов, а конденсаторы 3 фильтруют радиочастотные помехи и выравнивают слабые и средние колебания напряжения.

Особенности расчета и проектирования универсальных импульсных генераторов для испытания варисторов

При серийном производстве варисторов, на основе которых изготавливаются «ограничители перенапряжений нелинейные» (ОПН), обязательным условием контроля качества изделий являются их импульсные испытания в соответствии со стандартом Международной электротехнической комиссии (МЭК) 99-4 [1]. Основные испытания, характеризующие варистор, — это испытания «грозовым» (8/20 мкс) импульсом; прямоугольным импульсом большой длительности (2 мс) или эквивалентными импульсами полусинусоидальной формы.

Величины остающихся напряжений варисторов при большой номенклатуре изделий могут изменяться от сотен вольт до нескольких киловольт, а величины токов — от сотен ампер до десятков тысяч ампер. Поэтому возникает потребность в универсальных генераторах импульсов, способных обеспечить испытания варисторов во всем диапазоне требуемых величин токов и остающихся напряжений, с учетом того, что нагрузка таких генераторов нелинейная.

Варисторы — это быстродействующие устройства, время переключения которых составляет доли микросекунд. В связи с этим можно рассматривать варисторы как резистивную безынерционную нелинейную нагрузку.

Схема замещения варистора в режиме больших импульсных токов может быть представлена в виде источника противо-ЭДС U0, последовательно с которым включен резистор Rдиф, где U0 — остающееся напряжение варистора, а Rдиф — его дифференциальное сопротивление, определяющее угол наклона вольт-амперной характеристики (ВАХ) относительно оси абсцисс [2].

Величина Rдиф обычно составляет несколько миллиом и в большинстве случаев может не учитываться при анализе электромагнитных процессов в генераторах импульсов.

Для формирования в варисторах импульсов тока большой длительности прямоугольной формы широкое применение нашли генераторы на основе высоковольтных однородных искусственных линий (ОИЛ). В качестве коммутаторов в этих генераторах используются управляемые воздушные или вакуумные разрядники, игнитронные разрядники или тиристоры. При проектировании ОИЛ возникает проблема обеспечения согласованных режимов их работы.

В самом общем виде согласованный режим работы любого формирующего двухполюсника, в том числе и ОИЛ, определяется как Wл=Wн, где Wл — энергия, запасенная в линии, а Wн — энергия, выделенная в нагрузке за время длительности импульса τ. Тогда условие согласования ОИЛ с линейными и нелинейными безынерционными резистивными нагрузками произвольного вида выглядит как

где Uн — напряжение на нагрузке.

Для длинной линии с распределенными параметрами (ДЛРП), эквивалентной ОИЛ, величина запасенной энергии равна

Величина энергии, выделенной в нагрузке, равна

В этом случае ток нагрузки определяется разностью напряжений заряда линии и напряжения на нагрузке:

Суммарная емкость ДЛРП [3]

Энергия импульса тока любой формы, выделенная в нагрузке в виде противо-ЭДС, равна

где Iср — среднее значение тока нагрузки за время длительности импульса τ.

Для прямоугольного импульса Iср = Im условие согласования принимает вид

отсюда

Решением уравнения (3) является равенство Uзар = 2Uн, что и определяет согласованный режим работы как ДЛРП, так и ОИЛ при любых линейных и нелинейных резистивных нагрузках.

Если испытания проводятся импульсами полусинусоидальной формы, то условие согласования имеет тот же вид, но при этом в качестве накопителя и формирователя используется последовательный LC-колебательный контур.

Для нагрузок в виде противо-ЭДС регулирование в широком диапазоне тока нагрузки при сохранении согласованного режима работы возможно только путем изменения величины волнового сопротивления формирующего двухполюсника, что трудно выполнимо на практике. В связи с этим параметры формирующих двухполюсников, работающих в составе импульсных испытательных стендов, однозначно могут быть определены только для варисторов одного типа. В этом случае параметры задаются либо требуемой величиной амплитуды тока импульса Im, либо величиной энергии Wн, которая должна быть выделена в варисторе, исходя из прогнозируемой величины остающегося напряжения на варисторе U0.

Поскольку для прямоугольного импульса

то все расчеты сводятся к определению величины Im.

Тогда Uзар ≈ 2U0, а волновое сопротивление ОИЛ

Суммарная емкость ОИЛ равна Cл = τ/2,2ρ, а суммарная индуктивность — Lл = ρ2Cл. Для получения прямоугольных импульсов тока с достаточно малыми длительностями фронта и среза применяются ОИЛ с числом ячеек n, равным 10–12. При этом величины элементов ячеек равны Lя = Lл/n и Cя = Cл/n.

При отсутствии согласования ОИЛ находится либо в колебательном, либо в апериодическом режиме работы. При этом на отрезке времени t > τ к варистору и коммутатору будет приложено прямое или обратное остаточное напряжение Uост.

При разряде ДЛРП на нагрузку можно рассматривать процесс разряда линии, заряженной до напряжения

Uзар = kU0, как эквивалентный процесс заряда линии от источника ЭДС.

Напряжение заряда в момент времени t = τ равно:

Поскольку начальный заряд линии был равен kU0, то остаточное напряжение равно:

При значениях k = 2 режим разряда линии будет согласованным, Uост = 0, и вся энергия, запасенная в линии, выделится в нагрузке за время t = τ.

При значениях k > 2 режим будет колебательным, а к нагрузке и коммутатору по окончании основного импульса (t ≥ τ) будет приложено обратное напряжение Uобр = U0(2 – k).

При значениях k < 2 режим будет апериодическим, а к нагрузке и коммутатору с момента времени

t ≥ τ будет приложено прямое напряжение Uпр = U0(2 – k).

Силовые коммутаторы, применяемые в подобных установках, например воздушные разрядники, обычно не обладают вентильной проводимостью, а вентильные приборы (игнитронные разрядники) при коммутации больших токов плохо держат обратное напряжение. Использование тиристоров в импульсных высоковольтных установках не всегда целесообразно из-за сложности конструкции высоковольтного тиристорного ключа. Более предпочтительным представляется использование в качестве быстродействующего ключа непосредственно самого варистора, который обеспечивает практически полное отсутствие тока в нагрузке при t ≥ τ, если остаточное напряжение на формирующем двухполюснике меньше классификационного напряжения этого варистора.

Будем считать, что с момента времени

t ≥ τ коммутатор остается в проводящем состоянии и к варистору приложено остаточное напряжение линии. Для того чтобы энергия, выделяемая в варисторе с этого момента времени, была несущественна и не влияла на результаты процесса испытания, воспользуемся запирающими свойствами самого варистора, ограничив величину остаточного напряжения линии на уровне классификационного напряжения варистора, то есть

Поскольку варистор обладает высоким быстродействием, классические проблемы обеспечения условий деионизации коммутаторов при этом не возникают, а токи варисторов при выполнении условия (4) не влияют на процесс испытаний.

Поэтому появляются возможность расширить допустимый диапазон регулировки напряжения заряда линии. Поскольку

Остающееся напряжение варистора связано с классификационным напряжением как

где β — коммутационный коэффициент, величина которого является практически постоянной для одной партии варисторов. Тогда из (5) получим

Для согласованного режима

k = 2. Приняв среднее значение β = 1,5 с учетом зависимости (6) и условия, что Uзар = kU0 = kβUкл, получим

или

то есть для колебательного режима kmax = 2,66, а для апериодического режима kmin = 1,33.

Подобный подход существенно расширяет возможность регулирования амплитуды тока нагрузки при неизменном волновом сопротивлении линии. При невыполнении условия (7) необходимо изменить волновое сопротивление линии, заложив возможность дискретного изменения ρ в установке еще на стадии ее проектирования.

При испытаниях варисторов необходимо стабилизировать либо ток варистора Im, либо величину поглощаемой варистором энергии Wн. В одной партии варисторов допускаются отклонения классификационного и остающегося напряжения от номинального значения на ±10%. В силу этого для стабилизации тока варисторов

Im необходимо каждый раз прогнозировать и устанавливать уровень напряжения заряда Uзар для отдельно взятого образца по значению его классификационного напряжения. Это затрудняет автоматизацию процесса испытаний и осложняет работу оператора, а величина энергии, поглощаемой варисторами, не стабильна. Значительно проще стабилизировать не ток разряда, а уровень напряжения заряда ОИЛ с помощью простейших средств автоматизации. При этом в случае увеличенного значения величины остающегося напряжения отдельно взятого варистора его ток будет пропорционально меньше и наоборот. Поэтому следует ожидать существенного уменьшения влияния разброса величин остающихся напряжений на величину поглощаемой варисторами энергии.

Предлагается использовать следующий подход для определения требуемой величины напряжения заряда ОИЛ при испытании отдельной партии варисторов, классификационные напряжения которых предварительно измеряются в обязательном порядке.

Примем величину зарядного напряжения

где Uсркл и Uср0 — среднеарифметические значения классификационных и остающихся напряжений варисторов отдельной партии.

Оценим влияние разброса величин остающихся напряжений варисторов на разброс величин поглощаемой ими энергии.

Энергия, поглощенная отдельным варистором, равна

Поскольку τ и ρ — константы, то величина энергии, выделенной в нагрузке за один импульс, зависит как от коэффициента согласования, так и от разброса параметров варисторов, то есть Wн = ƒ (k, ΔUср0).

В таблице приведены значения относительных величин энергии W*н = WΔUн/Wсрн для различных величин коэффициента согласования k при неизменной величине уровня зарядного напряжения Uзар, где WΔUн — энергия, поглощенная варистором с величиной отклонения остающегося напряжения ΔU, Wсрн — энергия, поглощенная варистором с нулевой величиной отклонения остающегося напряжения.

Таблица

Из таблицы видно, что в согласованном режиме работы (k = 2) влияние разброса параметров варисторов минимально, в колебательном режиме (2 ≤ k ≤ 2,66) разброс параметров несущественно влияет на энергетику процесса, а в апериодическом режиме (1,33 ≤ k ≤ 2) это влияние возрастает.

Отсюда следует, что более предпочтительны согласованный или колебательный режимы разряда. При этом появляется возможность автоматизировать процесс испытаний путем стабилизации напряжения заряда, поскольку отклонения величины поглощаемой варисторами энергии от заданной величины будут несущественны.

Приемлемое конструктивное решение, позволяющее дискретно регулировать волновое сопротивление линии, — это изготовление формирующего реактивного двухполюсника в виде нескольких ОИЛ, формирующих импульсы равных длительностей и имеющих либо равные волновые сопротивления, либо волновые сопротивления ρk, величины которых меняются по закону

При использовании различных вариантов последовательного и параллельного включения таких ОИЛ можно в широких пределах менять суммарное волновое сопротивление формирующего двухполюсника.

На рис. 2 приведены результаты численного моделирования в Micro-Cap 7, демонстрирующие работу универсального испытательного стенда «Магнус». Стенд состоит из трех 12-звенных ОИЛ и обеспечивает возможность их параллельного или последовательного включения при неизменной величине тока нагрузки и различных суммарных волновых сопротивлениях линии.

На рис. 3–5 приведены результаты экспериментов при неизменной величине тока нагрузки и различных волновых сопротивлениях линии (сплошной линией показано остающееся напряжение варистора, а пунктирной — ток).

Экспериментально получено подтверждение как аналитических, так и численных расчетов, сделанных в данной работе. Особо следует отметить тот факт, что несогласованные режимы работы могут приводить к тепловому пробою испытываемых варисторов на отрезках времени, существенно превышающих длительность самого импульса. Это может быть объяснено наличием остающихся в формирующей линии напряжений, что существенно искажает результаты испытаний и поэтому требует особого внимания.

Литература

  1. Международная электротехническая комиссия. (МЭК 99-4) Международный стандарт. Ограничители перенапряжений. Часть 4. Металлооксидные ограничители перенапряжений без искровых промежутков для электрических сетей переменного тока. СПб., 1992.
  2. Библиотека электронных компонентов. Выпуск 12: Варисторы и разрядники фирмы Siemens & Matsushita. М.: ДОДЭКА, 2000.
  3. Ицхоки Я. С. Импульсные устройства. М.: Советское радио, 1959.
  4. Свидетельство на полезную модель № 25095. Высоковольтный стенд для испытания ограничителей перенапряжений / Саенко И. В., Опре В. М., Коротаев Н. В. // Бюллетень. 2002. № 25.

Расчет параметров варистора для защиты линии переменного тока

спросил

Изменено 3 года, 5 месяцев назад

Просмотрено 895 раз

\$\начало группы\$

Есть задача подобрать варистор для защиты цепи переменного тока, управляющей несколькими катушками магнитных пускателей.

Характеристики:

  1. Напряжение сети 230-240 В переменного тока
  2. Частота: 50 Гц
  3. Пусковой ток катушек магнитных пускателей: не более 3А

Для этих целей хочу использовать варисторы серии LA от LittleFuse.

Модель: V275LA20AP

Характеристики:

  1. Vm (AC): 275 В
  2. Вм (постоянный ток): 369 В
  3. Напряжение варистора: 387 В (мин.) — 473 В (макс.)
  4. Напряжение фиксации: 710 В

Вопросы:

  1. Vm (AC) — Это нормальное напряжение сети?
  2. Нужно ли мне найти пиковую амплитуду напряжения, чтобы выбрать Vm (AC)?

Например:

Напряжение сети: 230 В

Я должен умножить это значение на √2 и добавить запас 10%. 230 * 1,41 = 324,3 В + 10% = 347,3 В

  • варистор

\$\конечная группа\$

2

\$\начало группы\$

Варистор V275LA20AP рассчитан на среднеквадратичное напряжение до 275 вольт, и в спецификациях это четко указано при умножении 275 вольт примерно на \$\sqrt2\$, чтобы получить 287 вольт. Это минимальное напряжение, при котором в устройство поступает 1 мА. Но вы можете получить устройство с такой же маркировкой, которое потребляет всего 1 мА при напряжении 473 вольта (на 22% выше).

Это позволяет мне сделать вывод, что напряжение фиксации 710 вольт (импульс 50 ампер) может в некоторых случаях быть на 22% выше, возможно, 868 вольт. Вы должны учитывать это, если ваша защита должна быть эффективной.

Но хватит ли перенапряжения в 50 ампер? С точки зрения стандартных характеристик молниезащиты, испытания EN 61000-4-5 могут подавать сотни, если не тысячи ампер. Это заставляет меня спросить вас, считаете ли вы, что проектируете с использованием правильного компонента.

\$\конечная группа\$

3

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

защита от перенапряжения — Как выбрать правильный металлооксидный варистор (MOV)

Я хотел бы защитить вход трансформатора от скачков высокого напряжения, но я не понимаю, как мне выбрать правильный MOV, несмотря на то, что я читал пока о них.

Ниже показано, как я пытался подобрать нужный компонент.

смоделируйте эту схему – Схема создана с помощью CircuitLab

У меня есть источник питания 115 В / 60 Гц, и я питаю нагрузку 24 В постоянного тока через трансформатор 24 В / 52 ВА и правые фильтрующие конденсаторы. Показанные значения являются номинальными, но моя система может работать до 160 В (RMS) на входе трансформатора.

Я хочу защитить свою систему от скачков напряжения (макс. 1000 В). Я часто использовал диоды TVS в своих предыдущих схемах, но среда была другой (значение перенапряжения, постоянный ток …). Насколько я понял, MOV хорошо подходят для защиты системы от скачков напряжения в системе с питанием от переменного или постоянного тока. На самом деле я часто вижу их на входе трансформаторов, поэтому в этой конкретной схеме я хотел бы использовать MOV (плюс я научусь их использовать).

Так вот хотелось бы, чтобы даже при появлении броска 1000В напряжение на входе трансформатора не превышало 160В. Это что-то достижимое с MOV? Из того, что я читал, да. Из того, что я понял до сих пор, нет. Возможно, это не тот компонент, который нужно использовать.

Чтобы убедиться, что я не ошибаюсь, варистор — это резистор, зависящий от напряжения. Его электрическое сопротивление уменьшается с приложенным напряжением. Он имеет два функциональных режима работы: когда приложенное напряжение ниже напряжения фиксации, MOV не проводит ток (нормальная работа). Выше он становится проводящим, и напряжение на нем ограничивается значением чуть выше значения напряжения фиксации (из того, что я прочитал здесь).

Ну, просто я не понимаю. Для меня фиксирующее напряжение — это значение напряжения, от которого MOV станет проводящим, и, следовательно, напряжение на нем не будет превышать это значение (или совсем немного, как фактически стабилитрон).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *