Закрыть

Реактивная мощность формула – , ,

Реактивная мощность | Все формулы

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng! 
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока

Реактивная мощность связана с полной мощностью и активной :


Зная Активную мощность и Полную мощность определяем Реактивную мощность из прямоугольного треугольника

Если рассмотреть Физически «реактивная мощность» — это, энергия, затрачиваемая на перемагничивание короткозамкнутой обмотки асинхронного двигателя при его работе, то есть ЛЮБОЙ асинхронный двигатель потребляет реактивную мощность из сети независимо от момента на своем валу.

Реактивная мощность

может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Отрицательное значение активной мощности нагрузки характеризовало бы нагрузку как генератор энергии. Активное, индуктивное, ёмкостное сопротивление не могут быть источниками постоянной энергии.

Так же есть :

Полная мощность тока

Активная мощность тока

В формуле мы использовали :

— Реактивная мощность

— Напряжение в цепи

— Сила тока

— Угол сдвига фаз

— Полная мощность тока

— Активная мощность тока

xn--b1agsdjmeuf9e.xn--p1ai

Реактивная мощность | Все Формулы

    \[ \]

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока

    \[\Large Q=U*Isin\varphi \]

Реактивная мощность связана с полной мощностью и активной :

    \[\Large \left

Зная Активную мощность и Полную мощность определяем Реактивную мощность из прямоугольного треугольника

Если рассмотреть Физически «реактивная мощность» — это, энергия, затрачиваемая на перемагничивание короткозамкнутой обмотки асинхронного двигателя при его работе, то есть ЛЮБОЙ асинхронный двигатель потребляет реактивную мощность из сети независимо от момента на своем валу.

Реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Отрицательное значение активной мощности нагрузки характеризовало бы нагрузку как генератор энергии. Активное, индуктивное, ёмкостное сопротивление не могут быть источниками постоянной энергии.

Так же есть :

Полная мощность тока

    \[\large  S=U*I\]

Активная мощность тока

    \[\large P=UIcos\varphi\]

В формуле мы использовали :

Q — Реактивная мощность

U — Напряжение в цепи

I — Сила тока

    \[\varphi\]

— Угол сдвига фаз

S — Полная мощность тока

P — Активная мощность тока

xn----ctbjzeloexg6f.xn--p1ai

Реактивная мощность в электрической сети: мероприятия по компенсации

Электрическая мощность, потребляемая промышленными предприятиями и жилыми домами, бывает двух видов. Активная – затрачивается на выполнение полезной, нужной потребителю работы. Реактивная – увеличивает нагрузку на сеть и приводит к дополнительным расходам на электроэнергию.

Треугольник мощностей

Треугольник мощностей

Определение

Реактивная мощность не выполняет полезной работы. Она обусловлена наличием у потребителя индуктивной или ёмкостной составляющей нагрузки. На предприятиях реактивная мощность возникает при работе электрических двигателей, трансформаторов или ламп ДРЛ. В домашних условиях это моторы пылесосов, стиральных машин или компрессоров холодильников. На корпусе данных агрегатов часто можно увидеть параметр cosф, называемый коэффициентом мощности. Он количественно характеризует долю реактива.

Обратите внимание! Cosф – параметр крайне нестабильный. Он способен меняться в широком диапазоне с течением года и временем суток. Также коэффициент мощности тесно связан с будними и выходными днями.

Бирка на двигателе

Бирка на двигателе

Все перечисленное служит примером источников индуктивной составляющей. Гораздо реже встречается ёмкостная. К её примерам относятся мощные импульсные блоки питания и всё, что во входной части содержит конденсаторы.

Физика процесса

Для понимания процесса образования реактивной мощности следует заострить внимание на двух фактах:

  1. Природа переменного тока такова, что он периодически изменяет своё направление. Т.е. «+» и «-» в розетке переставляются местами 50 раз в секунду. Происходит это не рывками, а плавно по синусоидальному закону. Смена направления тока чем-то схожа с колебаниями качель.
  2. На создание электромагнитного поля, например, обмоткой трансформатора, требуется некоторое время.

В итоге получается следующая картина. Напряжение на выводах обмотки достигает своего пикового значения. Ток из-за индуктивного характера потребителя всё никак не может выйти на максимум. Если нагрузка ёмкостная, то эффект обратный: ток опережает напряжение.

Такое рассогласование источника и потребителя приводит к ощутимым потерям полезной мощности. Поэтому для борьбы с этими нежелательными свойствами индуктивностей и ёмкостей используют специальные устройства компенсации реактивной мощности (УКРМ).

Для чего компенсация реактивной мощности

Компенсировать реактивную составляющую мощности необходимо для повышения эффективности энергосистемы и снижения нагрузки на питающие кабеля и коммутирующие аппараты.

На производстве в основном преобладают потребители индуктивного характера. Для компенсации реактивной мощности, возникающей из-за их работы, чаще всего применяют конденсаторные установки.

Их использование позволяет добиться следующих положительных эффектов:

  • снизить нагрузку на сеть, избавив её от бесполезных реактивных токов;
  • ощутимо уменьшить счета на электроэнергию;
  • повысить качество напряжения за счёт устранения помех, шумов и высших гармоник.

Основные компоненты УКРМ

Для компенсации индуктивной составляющей реактивной мощности применяют конденсаторные установки. Иногда их объединяют в целые батареи и оснащают различной коммутирующей аппаратурой. Она необходима для автоматического переключения конденсаторов с целью повышения или понижения конечной ёмкости батареи. Дополнительно требуется к.л. измерительный прибор для отслеживания коэффициента мощности cosф и прочих параметров УКРМ. На сегодняшний день такие контроллеры выполняются на основе микропроцессоров, которые делают всю работу без вмешательства человека.

Конденсаторный компенсатор

Конденсаторный компенсатор

Ёмкостная составляющая компенсируется похожим образом. Здесь уже в качестве выравнивающего cosф устройства выступают синхронные двигатели или специальные реакторы (катушки, дроссели). Ёмкостная составляющая свойственна протяжённым кабельным и воздушным линиям, а не самому промышленному оборудованию.

Виды компенсаторов и их принцип действия

Чаще всего в роли компенсирующего устройства применяется либо батареи конденсаторов, либо двигатели. При этом может использоваться как один компенсатор, так и множество подключенных параллельно.

В течение дня баланс мощности в сети может изменяться, на что УКРМ должно реагировать соответствующим образом. С этой точки зрения компенсаторы бывают:

  • нерегулируемые – без возможности переключения составных элементов;
  • автоматические – компенсатор сам отслеживает cosф, производит расчеты и решает, какое количество конденсаторов следует добавить в схему;
  • с ручным управлением – человек сам анализирует cosф по приборам и производит соответствующие переключения.

В зависимости от условий эксплуатации выделяют следующие типы коммутирующих устройств:

  • контакторные – только статические переключения;
  • тиристорные – работа в реальном времени;
  • вакуумные выключатели – для напряжений свыше 1 кВ.

Определение емкости конденсаторов

При проектировании УКРМ следует уделить внимание расчету ёмкости и мощности конденсаторных установок. Важно это по той причине, что в случае неправильного выбора этих параметров установка может нанести электросети больше вреда, чем пользы. Формула для расчета необходимой ёмкости конденсатора имеет следующий вид.

Ёмкость конденсатора

Ёмкость конденсатора

Здесь:

  • C – ёмкость конденсаторной установки, Ф;
  • U – сетевое напряжение, В;
  • f – частота, Гц;
  • Q – реактивная мощность конденсатора, вар;
  • p – 3.14.

Переменная Q, в свою очередь, определяется по следующему выражению.

Реактивная мощность конденсатора

Реактивная мощность конденсатора

Где:

  • P – активная мощность потребителя;
  • К – коэффициент, подбираемый из таблицы.
Таблица для расчёта УКРМ

Таблица для расчёта УКРМ

Дополнительная информация. На просторах интернета полно ресурсов, содержащих в себе калькуляторы для онлайн расчета различных параметров компенсаторов.

Компенсаторы реактивной мощности в квартире

Многие промышленные предприятия, особенно крупные, применяют в целях экономии устройства компенсации реактивной мощности. Однако этот трюк не пройдёт в обычной квартире. Вытекает это из ряда причин:

  1. Бытовые однофазные счётчики электроэнергии, используемые в жилых домах, не способны вычислять реактивную мощность. Соответственно, никто не сможет взыскать за неё оплату. Особенно это относится к старым индукционным счётчикам.
  2. Организации, поставляющие электроэнергию, ведут учёт реактивной мощности только для крупных промышленных предприятий. Установка подобных устройств в жилых домах не является требованием ПУЭ.
  3. С технической точки зрения, проблематично и дорого будет рассчитать УКРМ для каждой квартиры или тем более поставить автоматические системы на микропроцессоре, ведь данные приборы стоят внушительных денег.
Cosф бытовых потребителей

Cosф бытовых потребителей

Важно! По интернету гуляют предложения купить мошенническую чудо-коробочку. Она подключается к розетке и тем самым избавляет квартиру от излишков реактивной мощности. Как показывают обзоры, внутри этого прибора не содержится ничего, кроме светодиода. Соответственно, такое устройство никак не поможет сэкономить.

Эффективность применения конденсаторных установок

История применения метода компенсации реактивной мощности охватывает ещё советский период. Его экономическая эффективность на промышленных предприятиях доказана исследованиями и десятками лет практического использования.

Конденсаторные УКРМ предназначены в основном для компенсации реактивной мощности электрических двигателей. Энергия, потребляемая асинхронными моторами, может доходить до 40 % от всей нагрузки предприятия. Поэтому экономии на двигателях уделяют особое внимание. Масло в огонь подливает и то, что мотор, работающий с номинальной нагрузкой на валу, имеет cosф = 0,75-0,8. Это считается нормой. Однако тот же двигатель без нагрузки имеет гораздо более низкий коэффициент мощности порядка 0,3. Использование УКРМ позволяет повысить cosф до 0,99. Это хороший показатель, ведь, чем ближе этот параметр к единице, тем эффективнее расходуется электроэнергия.

Наличие устройств, компенсирующих реактивную мощность, благотворно сказывается на расходах промышленного предприятия. Помимо этого, уменьшается нагрузка на электрическую систему объекта. Это позволяет снизить сечение и конечную стоимость воздушных и кабельных линий, а также уменьшить долгосрочные затраты на их ремонт и обслуживание.

Видео

amperof.ru

Активная мощность | Все формулы

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по моей ссылке и получите два бесплатных урока в школе английского языка SkyEng! 
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Активная мощность — среднее за период значение мгновенной мощности переменного тока

В цепях однофазного синусоидального тока :


Активная мощность характеризует среднюю скорость преобразования электромагнитной энергии и в др. формы (тепловую, механическую, световую и т. д.). Измеряется в ваттах.

Активная мощность — есть ничто иное как полезная мощность, которая расходуется на совершение работы. Она необходима для определения коэффициента мощности (отношение активной мощности к полной мощности)

Активная мощность связана с полной мощностью формулой:

Может ли Активная мощность быть отрицательной? Конечно нет. Но если рассмотреть пример и идти в тупую, то оказывается, что активная мощность может быть отрицательна. Пример : Допустим вы потребляете электрическую энергию дома и у вас стоит электрический счётчик активной мощности. И тут вы притащили домой свой генератор, подключили и начали электроэнергию не потреблять, а отдавать в общую сеть. И что произойдёт со счётчиком? правильно — он уменьшит показания, тоесть к показаниям до генератора прибавится отрицательная активная мощность (Но все же это не так)

Так же есть :

Полная мощность тока

Реактивная мощность

В формуле мы использовали :

— Активная мощность

— Реактивная мощность

— Полная мощность

— Коэффициент мощности

— Напряжение в цепи

— Сила тока

— Угол сдвига фаз

— Период

xn--b1agsdjmeuf9e.xn--p1ai

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *