Закрыть

Резистор что это такое: Что такое резистор [подробная статья]

Содержание

Что такое резистор [подробная статья]

Обновлена: 11 Октября 2022 2926 1

Поделиться с друзьями

Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.

В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.

Содержание статьи

  • Для чего нужен резистор в электрической цепи
  • Основные характеристики резисторов
  • Способ монтажа
    • Выводные резисторы
    • SMD-резисторы
  • Виды резисторов по характеру изменения сопротивления
  • Типы резисторов по характеру вольтамперной характеристики
  • Виды резисторов по назначению
  • Шумы резисторов и способы их уменьшения
  • Обозначение резисторов на схеме
  • Цветовая маркировка резисторов с проволочными выводами
  • Виды соединения резисторов в электроцепи
    • Последовательное соединение
    • Параллельное соединение
    • Смешанное соединение
    • Соединение нескольких резисторов в одной схеме
  • Видео: что такое резистор простым языком

Для чего нужен резистор в электрической цепи

Наглядный пример работы резистора

С помощью резистора в электроцепи ограничивают ток, получая нужную его величину.

В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.

Закон Ома выражается формулой U = I*R, в которой:

  • U – напряжение, В;
  • I – сила тока, А;
  • R – сопротивление, Ом.

Также резисторы работают как:

  • преобразователи тока в напряжение и наоборот;
  • делители напряжения, это свойство применяется в измерительных аппаратах;
  • элементы для снижения или полного удаления радиопомех.

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность — предельная мощность, которую способен рассеивать элемент при долговременном использовании.
    На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

SMD-резисторы

SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.

SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.

Из чего делают чип-резисторы

Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.

Виды резисторов по характеру изменения сопротивления

Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.

В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.

Что делают подстроечные резисторы

Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.

Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.

Типы резисторов по характеру вольтамперной характеристики

По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.

Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.

Виды резисторов по назначению

Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:

  • Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
  • Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
  • Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.

Шумы резисторов и способы их уменьшения

Собственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды.

При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.

Способы борьбы с шумами:

  • Применение в схеме типов резисторов, в которых шумы невелики, благодаря технологии изготовления.
  • Переменные резисторы шумят больше постоянных, поэтому в схеме стараются использовать элементы с переменным сопротивлением минимального номинала или не применять их вообще.
  • Использование резюков с бОльшей мощностью, чем требуется по технологии.
  • Принудительное охлаждение элемента путем установки поблизости вентилятора.

Обозначение резисторов на схеме

Обозначение по ГОСТ 2.728-74 Описание
Постоянный резистор без указания номинальной мощности рассеивания
Постоянный резистор номинальной мощностью рассеивания 0,05 Вт
Постоянный резистор номинальной мощностью рассеивания 0,125 Вт
Постоянный резистор номинальной мощностью рассеивания 0,25 Вт
Постоянный резистор номинальной мощностью рассеивания 0,5 Вт
Постоянный резистор номинальной мощностью рассеивания 1 Вт
Постоянный резистор номинальной мощностью рассеивания 2 Вт
Постоянный резистор номинальной мощностью рассеивания 5 Вт

Обозначение переменных, подстроечных и нелинейных резисторов на схемах:

Обозначение по ГОСТ 2. 728-74 Описание
Переменный резистор (реостат).
Переменный резистор, включенный как реостат (ползунок соединён с одним из крайних выводов).
Подстроечный резистор.
Подстроечный резистор, включенный как реостат (ползунок соединён с одним из крайних выводов).
Варистор (сопротивление зависит от приложенного напряжения).
Термистор (сопротивление зависит от температуры).
Фоторезистор (сопротивление зависит от освещённости).

Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок.

Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:

  • 25 Ом – 25 R;
  • 25 кОм – 25 K;
  • 25 МОм – 25 M.

Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:

  • 0,25 Ом – R 25;
  • 0,25 кОм – K 25;
  • 0,25 МОм – M 25.

Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:

  • 2,5 Ом – 2R5;
  • 2,5 кОм – 2K5;
  • 2,5 МОм – 2M5.

Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.

Допустимая погрешность, ±%

20

10

5

2

1

0,5

0,2

0,1

Буква

Русская

В

С

И

Л

Р

Д

У

Ж

Латинская

M

K

J

G

F

D

C

B

Цветовая маркировка резисторов с проволочными выводами

Для резисторов применяют цветовую кодировку, которая наносится 3, 4, 5, 6 цветовыми кольцами. Если кольца смещены к одному из выводов, то первым (с него и начинается расшифровка кода) считается кольцо, находящееся к выводу ближе всего. Если кольца расположены приблизительно равномерно, то следует помнить, что первое кольцо не делают серебристым или золотистым. В некоторых моделях чтение кода начинают с той стороны, где находятся парные кольца, отдельно стоящее кольцо обычно находится в конце шифра.

Таблица расшифровки цветовых колец

Цвет

Число

Десятичный множитель

Класс точности, %

Температурный коэффициент сопротивления

% отказов

Черный

0

1*100

-

-

-

Коричневый

1

1*101

1

100

1

Красный

2

1*102

2

50

0,1

Оранжевый

3

1*103

-

15

0,01

Желтый

4

1*104

-

25

0,001

Зеленый

5

1*105

0,5

-

-

Синий

6

1*106

0,25

10

-

Фиолетовый

7

1*107

0,1

5

-

Серый

8

1*108

0,05

-

-

Белый

9

1*109

-

1

-

Серебристый

-

1*10-2

10

-

-

Золотой

-

1*10-1

5

-

-

В четырехполосном коде первые две полосы означают два знака номинала, третья полоска – это десятичный множитель, то есть это степень, в которую нужно возвести число, обозначающее номинал. Четвертая полоска указывает класс точности элемента. В пятиполосном шифре третья полоса обозначает знак номинала, четвертая – десятичный множитель, а пятая – класс точности. Если присутствует шестая полоса, то она обозначает температурный коэффициент. Если же это кольцо шире остальных в полтора раза, то оно характеризует процент отказов.

В расшифровке кодов проволочных резисторов помогут удобные онлайн-программы. Тем более имеет смысл к ним обратиться при расшифровке кода SMD-резистора, поскольку существует несколько вариантов маркировок, с которыми самостоятельно разобраться будет очень непросто.

Виды соединения резисторов в электроцепи

Эффективная работа элементов электроцепи с резистором зависит от правильного выбора не только самого сопротивления, но и способа его соединения в цепи, который может быть последовательным, параллельным или смешанным.

Последовательное соединение

Последовательное соединение резисторов

В такой схеме каждый последующий резистор подсоединяется к предыдущему, образуя неразветвленную цепь. Ток в последовательно соединенных «резюках» одинаковый, напряжение разное. Общее сопротивление нескольких последовательно расположенных «резюков» определяется очень просто – суммированием их номиналов.

Формула: Rобщ. = R1 + R2 +…+ Rn

Чем больше элементов в последовательной схеме, тем больше суммарное сопротивление.

Параллельное соединение

Параллельное соединение резисторов

При параллельном соединении резисторы соединяются между собой вводами и выводами. Напряжение на этих элементах одинаково, а ток между ними распределяется. Чем больше ветвей образуется, тем больше вариантов протекания тока и тем меньше общее сопротивление.

Формула: Rобщ. = 1/R1 + 1/R2 +…+ 1/Rn

Смешанное соединение

Смешанное соединение резисторов

При таком способе варианты соединения элементов комбинируют. Сопротивление каждого участка с определенным типом соединения рассчитывается по указанным выше правилам.

Соединение нескольких резисторов в одной схеме

Если у вас под рукой не оказалось сопротивления нужного номинала, то можно его получить при помощи правильного соединения нескольких резюков. Так, если вам нужно сопротивление 100 кОм, а есть две резистивные детали по 50 кОм, то их можно соединить последовательно и получить нужный результат. Сопротивление в 100 кОм можно получить параллельным соединением элементов по 200 кОм.

Видео: что такое резистор и как он работает


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Радиоэлектроника для начинающих — статьи по основам радиоэлектроники для новичка

#SMD-резистор #резистор #биполярный_транзистор #транзистор #варистор #аналоги_конденсаторов #конденсатор #диод #термодатчик #батарейки #источник_питания #отвертки #электронный_переключатель #электромеханический_переключатель #танталовый_конденсатор #выпрямитель_напряжения #герконовое_реле #реле #радиодетали #схемы #динистор #диод_Шоттки #контрактор #заземление #фототиристор #тиристор #паяльник_для_микросхем #паяльник_для_проводов #мультиметр #акустический_кабель #диодный_мост #тестер_для_транзистора #туннельный_диод #маркировка_резиторов #печатная_плата #конвертер_конденсатора #керамический_конденсатор #маркировка_конденсаторов #микросборка #варикап #переключатель_фаз #переменный_резистор #МОП-транзистор #светодиод #тепловое_реле #твердотельное_реле #тумблер #стабилитрон #защитный_диод #осциллограф

Переменный резистор: типы, устройство и принцип работы

10 Октября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью416

#резистор #переменный_резистор

Тумблеры

11 Октября 2022 — Анатолий Мельник

Конструктивные особенности тумблеров. Типы, виды. Какие характеристики нужно учитывать при выборе. Как правильно подключить тумблер. Инструкция и советы в одной статье.

Читать полностью427

#тумблер

Как проверять транзисторы тестером – отвечаем

10 Октября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью662

#тестер_для_транзистора #транзистор

Как пользоваться мультиметром

10 Октября 2022 — Анатолий Мельник

Что такое и как устроен мультиметр. Как правильно пользоваться мультиметром: как измерить напряжение, силу тока и напряжение. Как проверить емкость и индуктивность

Читать полностью745

#мультиметр

Выпрямитель напряжения: принцип работы и разновидности

10 Октября 2022 — Анатолий Мельник

Выпрямитель напряжения электрической сети: как устроен, применение, обозначение на схемах. Как работает и для чего предназначается выпрямитель напряжения.

Читать полностью1226

#выпрямитель_напряжения

Переключатель фаз (напряжения): устройство, принцип действия, виды

10 Октября 2022 — Анатолий Мельник

Подробная статья о переключателях фаз: устройство и разновидности. Рекомендации по подключению и настройке. Рекомендации по выбору: популярные модели.

Читать полностью438

#переключатель_фаз

Как выбрать паяльник для проводов и микросхем

10 Октября 2022 — Анатолий Мельник

Особенности выбора хорошего паяльника для проводов и микросхем: разновидности конструкций, требования. Какие существуют нагреватели и жала. Дополнительные возможности.

Читать полностью630

#паяльник_для_микросхем #паяльник_для_проводов

Что такое защитный диод и как он применяется

10 Октября 2022 — Анатолий Мельник

В статье разбираются особенности защитных диодов, их устройство и маркировка, а также применения в реальных условиях. Даны рекомендации по проверке и подбору супрессоров.

Читать полностью75

#защитный_диод #диод

Варистор: устройство, принцип действия и применение

20 Сентября 2022 — Анатолий Мельник

В статье разбирается устройство варисторов: маркировка, основные параметры. Вы узнаете в чем заключаются достоинства и недостатки варисторов, а также как выбрать и проверить компоненты.

Читать полностью900

#варистор

Виды отверток по назначению и применению

10 Октября 2022 — Анатолий Мельник

Виды отверток по сферам применения. В статье рассматриваются простые, ударные, диэлектрические и другие отвертки.

Читать полностью680

#отвертки

Виды шлицов у отверток

10 Октября 2022 — Анатолий Мельник

В статье рассматривается, что такое шлицы и какие бывают виды, их маркировка, основные размеры: крестообразные, прямые, звездочки, наружные, комбинированные и другие виды шлицов.

Читать полностью1199

#отвертки

Виды и типы батареек

10 Октября 2022 — Анатолий Мельник

Подробная статья о батарейках: виды и типы батереек, как различаются батарейки. Как обозначаются батарейки (маркировка)

Читать полностью1178

#батарейки #источник_питания

Для чего нужен контактор и как его подключить

20 Сентября 2022 — Анатолий Мельник

Для чего нужен контактор и как он устроен. Как правильно выбрать и подключить контактор для управления в автоматическом режиме электрическими приборами.

Читать полностью2251

#контрактор

Как проверить тиристор: способы проверки

10 Октября 2022 — Анатолий Мельник

Как самому проверить тиристор? Способы проверки тиристора мультиметром, тестером. Проверка тиристора без выпаивания. Пошаговые инструкции с фото.

Читать полностью1040

#тиристор

Как правильно выбрать акустический кабель для колонок

10 Октября 2022 — Анатолий Мельник

Статья про выбор акустического кабеля: типы и виды акустического кабеля. Как маркируется кабель. Как рассчитать сечение кабеля. Правила эксплуатации и советы по выбору.

Читать полностью1171

#акустический_кабель

Что такое цифровой осциллограф и как он работает

20 Сентября 2022 — Анатолий Мельник

Обзор принципа работы цифровых осциллографов. Виды осциллографов, их отличия от аналоговых. Применение цифрового осциллографа

Читать полностью1380

#осциллограф

Как проверить варистор: используем мультиметр и другие способы

11 Октября 2022 — Анатолий Мельник

Статья-инструкция о том, как проверить варистор на исправность мультиметром или тестором. Принцип работы варистора и основные параметры варисторов, обнозначение на схеме.

Читать полностью3317

#варистор #мультиметр

Герконовые реле: что это такое, чем отличается, как работает

10 Октября 2022 — Анатолий Мельник

Статья об устройстве герконовых реле: обзор конструкции, характеристик и принципа работы. Преимущества и недостатки. Назначение герконовых реле, где используются компоненты.

Читать полностью4548

#герконовое_реле #реле

Диоды Шоттки: что это такое, чем отличается, как работает

10 Октября 2022 — Анатолий Мельник

Статья ответит на вопросы: что такое диоды Шоттки, как они устроены, плюсы и минусы данного вида диодов. Обозначение диодов на схемах. Сферы применения.

Читать полностью5285

#диод_Шоттки #диод

Как правильно заряжать конденсаторы

10 Октября 2022 — Анатолий Мельник

Способы зарядки и разрядки конденсаторов. Виды конденсаторов: основные параметры, принципы работы и области применения.

Читать полностью2537

#конденсатор

Светодиоды: виды и схема подключения

11 Октября 2022 — Анатолий Мельник

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode). На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер.

Читать полностью4552

#светодиод #диод

Микросборка

10 Октября 2022 — Анатолий Мельник

Микросборка (МСБ) – конструктивная составляющая радиоэлектронной аппаратуры микроминиатюрного исполнения, предназначенная для реализации определенной функции. МСБ обычно не выпускаются в качестве самостоятельных изделий, предназначенных для широкого применения.

Читать полностью2865

#микросборка

Применение, принцип действия и конструкция фототиристора

10 Октября 2022 — Анатолий Мельник

Фототиристор (ТФ) – полупроводниковое устройство со структурой, сходной с обычным тиристором, но с одним существенным отличием. Он включается не подачей напряжения, а с помощью света, падающего на него. Этот прибор сочетает функции управляемого тиристора и фотоприемника, преобразующего световую энергию в электрический управляющий импульс. Изготавливается обычно из кремния, имеет спектральную характеристику, аналогичную другим фоточувствительным элементам с кремниевой полупроводниковой структурой.

Читать полностью279

#тиристор #фототиристор

Схема подключения теплового реле – принцип работы, регулировки и маркировка

10 Октября 2022 — Анатолий Мельник

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключение в схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Читать полностью5910

#тепловое_реле #реле

Динисторы – принцип работы, как проверить, технические характеристики

10 Октября 2022 — Анатолий Мельник

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Читать полностью1991

#динистор

Маркировка керамических конденсаторов

10 Октября 2022 — Анатолий Мельник

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Читать полностью1803

#керамический_конденсатор #конденсатор

Компактные источники питания на печатную плату

11 Октября 2022 — Анатолий Мельник

Выбор ИП печатной платы напрямую влияет на ее работоспособность. Главная задача такого прибора – получить переменное напряжение от питающей сети, преобразовать его в постоянное и подать на оборудование. Если компонент выбран неверно или неисправен, он может перегореть или не справиться с входным напряжением. В худшем случае пострадает и плата – ее придется либо ремонтировать, либо выбрасывать и покупать новую.

Читать полностью820

#источник_питания #печатная_плата

SMD-резисторы: устройство и назначение

11 Октября 2022 — Анатолий Мельник

SMD-резисторы – это мелкие электронные компоненты, разработанные для поверхностного монтажа на печатную плату. Ранее при сборке радиоэлектронной аппаратуры осуществлялся навесной монтаж элементов или их продевание в печатную плату через предусмотренные отверстия.

Читать полностью84

#SMD-резистор #резистор

Принцип работы полевого МОП-транзистора

10 Октября 2022 — Анатолий Мельник

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем).

Читать полностью2897

#МОП-транзистор #транзистор

Проверка микросхем мультиметром: инструкция и советы

10 Октября 2022 — Анатолий Мельник

Как проверить микросхему? Рассмотрим как проверить микросхему на исправность и работоспособность мультиметром, влияние разновидности микросхем на способы проверки.

Читать полностью8966

#мультиметр

Характеристики, маркировка и принцип работы стабилитрона

11 Октября 2022 — Анатолий Мельник

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении.

Читать полностью201

#стабилитрон

Что такое реле: виды, принцип действия и устройство

10 Октября 2022 — Анатолий Мельник

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. В этой статье мы подробно разберем, что такое реле, какие виды реле существуют и для чего они применяются.

Читать полностью909

#реле

Конденсатор: что это такое и для чего он нужен

10 Октября 2022 — Анатолий Мельник

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем, в чем суть конденсатора, что он делает, из чего состоит и какие его основные параметры.

Читать полностью10912

#конденсатор

Все о танталовых конденсаторах — максимально подробно

10 Октября 2022 — Анатолий Мельник

В этой статье я максимально подробно расскажу о назначении, видах, области применения танталовых конденсаторов. Покажу как они выглядят в живую и на схеме, объясню, как считать буквенную маркировку конденсаторов.

Читать полностью13732

#танталовый_конденсатор #конденсатор

Как проверить резистор мультиметром

11 Октября 2022 — Анатолий Мельник

Рассказываем как правильно проверить резистор мультиметром на плате, как узнать его сопротивление и определить работоспособность не выпаивая. Узнайте, как настроить тестер для проверки резисторов.

Читать полностью4323

#резистор #мультиметр

Что такое резистор

11 Октября 2022 — Анатолий Мельник

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Читать полностью2911

#резистор

Как проверить диодный мост мультиметром

10 Октября 2022 — Анатолий Мельник

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Читать полностью13723

#диодный_мост #мультиметр #диод

Что такое диодный мост

11 Октября 2022 — Анатолий Мельник

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Читать полностью1375

#диодный_мост #диод

Виды и принцип работы термодатчиков

10 Октября 2022 — Анатолий Мельник

Принцип работы и виды термодатчиков. Особенности различных типов датчиков.

Читать полностью4582

#термодатчик

Заземление: виды, схемы

11 Октября 2022 — Анатолий Мельник

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Из нашей статьи вы узнаете о видах заземления и их изображении на схемах.

Читать полностью2396

#заземление

Как определить выводы транзистора

11 Октября 2022 — Анатолий Мельник

Способы определения выводов от базы, эмиттера и коллектора полупроводникового транзистора.

Читать полностью1689

#транзистор

Назначение и области применения транзисторов

10 Октября 2022 — Анатолий Мельник

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. В этой статье мы кратко перечислим области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов.

Читать полностью2133

#транзистор

Как работает транзистор: принцип и устройство

10 Октября 2022 — Анатолий Мельник

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Читать полностью8478

#транзистор

Виды электронных и электромеханических переключателей

10 Октября 2022 — Анатолий Мельник

Переключатель (свитчер) – устройство, служащее в радиоэлектронике для коммутации электроцепей постоянного и переменного тока и обеспечивающее требуемый рабочий режим. От функциональности этого компонента часто зависит работоспособность всего аппарата. В этой статье мы расскажем об основных видах переключателей

Читать полностью912

#электронный_переключатель #электромеханический_переключатель

Как устроен туннельный диод

11 Октября 2022 — Анатолий Мельник

Рассказываем про устройство туннельных диодов, их отличия от обычных, цветовую маркировку и обозначение туннельных диодов на схемах. Также из этой статьи вы узнаете об истории создания данного типа диодов.

Читать полностью4000

#туннельный_диод #диод

Виды и аналоги конденсаторов

10 Октября 2022 — Анатолий Мельник

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Читать полностью6596

#аналоги_конденсаторов #конденсатор

Твердотельные реле: подробное описание устройства

10 Октября 2022 — Анатолий Мельник

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике.

Читать полностью3673

#твердотельное_реле #реле

Конвертер единиц емкости конденсатора

10 Октября 2022 — Анатолий Мельник

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Читать полностью2126

#конвертер_конденсатора #конденсатор

Графическое обозначение радиодеталей на схемах

10 Октября 2022 — Анатолий Мельник

Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.

Читать полностью300

#радиодетали #схемы

Биполярные транзисторы: принцип работы, характеристики и параметры

10 Октября 2022 — Анатолий Мельник

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читать полностью3413

#биполярный_транзистор #транзистор

Как подобрать резистор по назначению и принципу работы

10 Октября 2022 — Анатолий Мельник

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Читать полностью408

#резистор

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

20 Сентября 2022 — Анатолий Мельник

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т.е. ток пропускается только в одну сторону). Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока.

Читать полностью1806

#тиристор

Зарубежные и отечественные транзисторы

10 Октября 2022 — Анатолий Мельник

Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!

Читать полностью4245

#транзистор

Исчерпывающая информация о фотодиодах

11 Октября 2022 — Анатолий Мельник

Обзор фотодиодной технологии с подробным описанием основ, принципа работы, а также различных типов фотодиодов и их применения.

Читать полностью4238

#фототиристор #тиристор

Калькулятор цветовой маркировки резисторов

10 Октября 2022 — Анатолий Мельник

Резисторы – это элементы для построения электрических схем, предназначенные для контроля и регулирования величины силы тока. Разделяют на постоянные, переменные, подстроечные. Для идентификации постоянных резисторов SMD – устройств, монтируемых на поверхность, – все производители разработали буквенно-цифровые обозначения для крупных элементов и цветовой код для деталей очень маленьких размеров.

Читать полностью2514

#маркировка_резиторов #резистор

Область применения и принцип работы варикапа

11 Октября 2022 — Анатолий Мельник

Варикап – полупроводниковый диод, главным параметром которого является изменяемая под напряжением емкость. В устройстве применяется зависимость емкости p-n перехода и приложенного обратного напряжения.

Читать полностью5879

#варикап

Маркировка конденсаторов

10 Октября 2022 — Анатолий Мельник

Выбор конденсаторов по маркировке – процесс достаточно сложный, поскольку разные производители используют различные системы кодирования. Особенно трудно прочесть зашифрованную информацию на незначительной поверхности маленьких конденсаторов.

Читать полностью6497

#маркировка_конденсаторов #конденсатор

Виды и классификация диодов

11 Октября 2022 — Анатолий Мельник

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.

Читать полностью1306

#диод


Как работают резисторы? Что внутри резистора?

Фото: четыре типичных резистора, расположенных рядом в электронной схеме. Резистор работает путем преобразования электрической энергии в тепло, которое рассеивается в воздухе.

Содержание

  1. Что такое сопротивление?
  2. Измерение сопротивления
  3. Сопротивление бесполезно?
  4. Как работают резисторы
  5. Как размер резистора влияет на его сопротивление?
  6. Сопротивление и температура
  7. Цветовые коды резисторов
  8. Узнать больше

Что такое сопротивление?

Электричество течет через материал, переносимый электронами, мельчайшие заряженные частицы внутри атомов. широко говоря, материалы, которые хорошо проводят электричество, это те, которые позволяют электронам течь свободно. через них.

В металлах, например, атомы заперты в твердая, кристаллическая структура (немного похожая на металлическую раму для лазанья в детская площадка). Хотя большинство электронов внутри этих атомов закрепленные на месте, некоторые из них могут пробираться сквозь конструкцию, неся с собой электричество. Вот почему металлы являются хорошими проводниками: металл выдерживает относительно небольшое сопротивление электронам, протекающим через него.

Анимация: Электроны должны проходить через материал, чтобы проводить через него электричество. Чем труднее электронам течь, тем больше сопротивление. Металлы обычно имеют низкое сопротивление потому что электроны могут легко проходить через них.

Пластмассы совсем другие. Хотя они часто солидны, они не одинаковы кристаллическая структура. Их молекулы (обычно очень длинные повторяющиеся цепи, называемые полимерами) связаны друг с другом в таких таким образом, что электроны внутри атомов полностью заняты. Там Короче говоря, это не свободные электроны, которые могут двигаться в пластике. проводить электрический ток. Пластмассы являются хорошими изоляторами: они помещают создают высокое сопротивление электронам, протекающим через них.

Все это немного расплывчато для такого предмета, как электроника, которая требует точного контроля электрического тока. Вот почему мы определяем сопротивление, точнее, как напряжение в вольтах, необходимое для создания по цепи течет ток 1 ампер. Если для этого потребуется 500 вольт. сделать поток 1 ампер, сопротивление 500 Ом (написано 500 Ом). Ты можешь см. это соотношение, записанное в виде математического уравнения:

В = Я × Р

Это известно как закон Ома для немецкого языка. физик Георг Симон Ом (1789 г.–1854).

Сопротивление бесполезно?

Сколько раз вы слышали, как плохие парни говорят это в кино? Это часто верно и в науке. Если материал имеет высокое сопротивление, он означает, что электричеству будет трудно пройти через него. Чем больше электричеству приходится бороться, чем больше энергии потрачено впустую. Это звучит вроде плохая идея, но иногда сопротивление далеко не «бесполезно» и правда очень полезно.

Фото: Нить накаливания внутри старинной лампочки. Это очень тонкий провод с умеренным сопротивлением. Он разработан, чтобы нагреваться, поэтому он ярко светится и излучает свет.

В лампочке старого образца, например, электричество течет по очень тонкому проводу называется нитью. Провод настолько тонкий, что электричество действительно нужно бороться, чтобы пройти через это. Это делает провод чрезвычайно горячо — настолько сильно, что излучает свет. Без сопротивление, такие лампочки не будут работать. Конечно недостатком является то, что мы должны тратить огромное количество энергии на нагрев нить. Такие лампочки старого образца излучают свет, создавая тепло, поэтому их и называют лампами накаливания; новые энергосберегающие лампочки излучают свет, не выделяя много тепла, благодаря совершенно другому процессу флуоресценции.

Тепло, выделяемое нитями, не всегда тратится впустую. В приборах, таких как электрические чайники, электрические радиаторы, электрических душей, кофеварок и тостеров существуют более крупные и прочные версии нитей, называемые нагревательные элементы. Когда через них проходит электрический ток, они получают достаточно горячей, чтобы вскипятить воду или приготовить хлеб. По крайней мере, в нагревательных элементах сопротивление далеко не бесполезно.

Сопротивление также полезно в таких вещах, как транзисторные радиоприемники и телевизоры. наборы. Предположим, вы хотите уменьшить громкость на телевизоре. Ваш ход регулятор громкости, и звук становится тише — но как это происходит? Ручка громкости на самом деле является частью электронного компонента, называемого переменный резистор. Если вы уменьшите громкость, вы на самом деле повышая сопротивление в электрической цепи, которая приводит в движение громкоговоритель телевизора. Когда вы включаете сопротивление, электрич. ток, протекающий по цепи, уменьшается. С меньшим током, меньше энергии для питания громкоговорителя, поэтому он звучит намного тише.

Фото: «Переменный резистор» — это очень общее название компонента, сопротивление которого можно изменять с помощью перемещение циферблата, рычага или какого-либо элемента управления. Более конкретные виды переменных резисторов включают потенциометры (небольшие электронные компоненты с тремя клеммами) и реостаты (обычно намного большего размера и состоят из нескольких витков спирального провода со скользящим контактом, который перемещается по катушкам, чтобы «отбить» некоторую часть сопротивления) . Фотографии: 1) Небольшой переменный резистор, служащий регулятором громкости в транзисторном радиоприемнике. 2) Два больших реостата от силовой установки. Вы можете см. циферблатные регуляторы, которые «отбивают» большее или меньшее сопротивление. Фотография Джека Баучера из журнала Historic American Engineering Record любезно предоставлена ​​Библиотекой Конгресса США.

Как работают резисторы

Люди, изготавливающие электрические или электронные схемы для выполнения конкретных рабочие места часто должны ввести точное количество сопротивления. Они могут сделать это, добавив крошечные компоненты, называемые резисторами. Резистор – это небольшой пакет сопротивления: подключите его к цепи, и вы уменьшите ток на точную сумму. Внешне все резисторы выглядят более или менее одинаково. Как вы можете видеть на верхней фотографии на этой странице и на фотографии ниже, Резистор представляет собой короткий червячный компонент с цветными полосками на сторона. Он имеет два соединения, по одному с каждой стороны, так что вы можете подключить его в цепь.

Фото: Типовой резистор.

Что происходит внутри резистора? Если вы сломаете один открытый, и соскоблите внешнее покрытие изоляционной краски, вы можете увидеть изолирующий керамический стержень, проходящий посередине с медной проволокой, намотанной снаружи. Такой резистор называется проволочным. Количество медных витков определяет сопротивление очень точно: чем больше медных витков, и чем тоньше меди, тем выше сопротивление. В резисторах меньшего номинала предназначенный для цепей меньшей мощности, медная обмотка заменена на спиральный узор углерода. Такие резисторы намного дешевле. делают и называются углеродной пленкой. Как правило, проволочные резисторы более точны и более стабильны при более высоких рабочих температурах.

Фото: Внутри проволочного резистора. Разломите один пополам, соскребите краску, и вы сможете ясно увидеть изолирующий керамический сердечник и обмотанную вокруг него проводящую медную проволоку.

Как размер резистора влияет на его сопротивление?

Предположим, вы пытаетесь протолкнуть воду через трубу. Различные виды трубок будут более или менее услужливыми, так что более толстая труба меньше сопротивляется воде, чем более тонкая и короткая. будет оказывать меньшее сопротивление, чем более длинный. Если вы наполните трубу, скажем, галькой или губкой, вода по-прежнему будет просачиваться через него, но гораздо медленнее. Другими словами, длина, площадь поперечного сечения (площадь вы видите, смотрите в трубу, чтобы увидеть, что внутри), и все, что находится внутри трубы, влияет на ее устойчивость к воде.

Электрические резисторы очень похожи — на них влияют одни и те же три фактора. Если вы сделаете проволоку тоньше или длиннее, электронам будет труднее перемещаться по ней. И, как мы уже видели, электричеству труднее проходить через одни материалы (изоляторы), чем через другие (проводники). Хотя Георг Ом больше всего известен тем, что связывал напряжение, ток и сопротивление, он также исследовал взаимосвязь между ними. между сопротивлением и размером и типом материала, из которого изготовлен резистор. Это привело его к другому важному уравнению:

R = ρ × L / А

Проще говоря, сопротивление (R) материала увеличивается по мере увеличения его длины (поэтому более длинные провода обеспечивают большее сопротивление) и увеличивается по мере уменьшения его площади (более тонкие провода имеют большее сопротивление). Сопротивление также связано с типом материала, из которого изготовлен резистор, и это обозначено в этом уравнении символом ρ, который называется удельным сопротивлением и измеряется в единицах Ωm (омметры). У разных материалов очень разное удельное сопротивление: у проводников удельное сопротивление намного ниже, чем у изоляторов. При комнатной температуре алюминий имеет размер около 2,8 x 10 9 . 0089 -8 Ом·м, в то время как медь (лучший проводник) значительно ниже и составляет 1,7 -8 Ом·м. Кремний (полупроводник) имеет удельное сопротивление около 1000 Ом·м и стекло (хороший изолятор). меры около 10 12 Ом·м. Из этих цифр видно, насколько сильно различаются проводники и изоляторы по своей способности проводить электричество: кремний примерно в 100 миллиардов раз хуже меди, а стекло снова примерно в миллиард раз хуже!

Таблица: Хорошие проводники: Сравните удельное сопротивление 10 распространенных металлов и сплавов с сопротивлением серебра при комнатной температуре. Например, вы можете видеть, что нихром, сплав, используемый в нагревательных элементах, имеет примерно в 66 раз большее сопротивление, чем аналогичный кусок серебра. Данные из разных источников.

Сопротивление и температура

Сопротивление резистора непостоянно, даже если это определенный материал фиксированной длины и площади: оно неуклонно 90 103 возрастает 90 104 с повышением температуры. Почему? Чем горячее материал, тем сильнее колеблются его атомы или ионы, и тем труднее он воспринимается. электроны извиваются, что приводит к более высокому электрическому сопротивлению. Говоря в широком смысле, удельное сопротивление большинства материалов увеличивается линейно с температурой (поэтому, если вы увеличите температуры на 10 градусов удельное сопротивление увеличивается на определенную величину, а если его увеличить еще на 10 градусов удельное сопротивление снова возрастает на такую ​​же величину). если вы охладите материал, вы понизите его удельное сопротивление, и если вы охладите его до чрезвычайно низкого температуры, вы можете иногда заставить удельное сопротивление полностью исчезнуть в явлении, известном как сверхпроводимость.

Таблица: Сопротивление материала увеличивается с температурой. На этой диаграмме показано, как удельное сопротивление (базовое сопротивление материала, не зависящее от его длины или площади) увеличивается почти линейно при повышении температуры от абсолютного нуля до примерно 600 К (327°C) для четырех распространенных металлов. Нарисовано с использованием исходных данных из «Удельного электрического сопротивления выбранных элементов» П. Десаи и др., J. Phys. хим. Ссылка Данные, Том 13, № 4, 1984 и «Удельное электрическое сопротивление меди, золота, палладия и серебра» Р. Матулы, J. Phys. хим. Ссылка Data, Vol 8, No 4, 1979, любезно предоставлено Национальным институтом стандартов и технологий США. Открытые данные.

Узнайте больше

Статьи по теме на нашем сайте

  • Конденсаторы
  • Диоды и светоизлучающие диоды (СИД)
  • Электричество
  • Электроника
  • Нагревательные элементы
  • Транзисторы

Видео

  • MAKE Presents: The Resistor: 5-минутное вступительное видео от Колина Каннингема из журнала MAKE. Охватывает основную концепцию резисторов и немного истории, а затем показывает, как сделать собственный резистор с помощью карандаша 2В!
  • Что такое резистор?: В этом видео довольно много времени объясняется, как читать цветовые коды; если вы находите всю цветовую систему запутанной, это хорошее место, чтобы прояснить ваши идеи.

Книги

Для юных читателей
  • Easy Electronics Чарльза Платта. Maker Media, 2017. Упрощенное введение в стиле комиксов на 50 страницах с упором на обучение на практике.
Для читателей постарше
  • Производитель: Electronics by Charles Platt. Maker Media, 2015. Более длинное и подробное введение от Чарльза Платта, но с использованием того же практического подхода.
  • Электричество и электроника, Стэн Гибилиско. Макгроу Хилл, 2011.
  • Начало работы в области электроники, Форрест М. Мимс III. Издательство Мастер, 2003.

Статьи

  • Исторически важные уравнения Ньютона, Ома и Планка Пола Г. Хьюитта. Учитель естественных наук, сентябрь 2019 г. Почему закон Ома лучше всего преподавать, уделяя больше внимания току (I = V/R).
  • Нужен фокус на вечеринке с законом Ома? Измерьте температуру лампочки Ретта Алена. Wired, 18 марта 2019 г. В новом повороте автор измеряет сопротивление лампы, чтобы определить ее температуру.
  • Начало электрического сопротивления, измеренное впервые Дэйвом Мошером. Wired, 21 декабря 2011 г. Физики нашли способ наблюдать, как замедляющиеся электроны вызывают сопротивление.
  • Компонент месяца: резисторы Джона Байхтала. MAKE, 1 апреля 2013 г. Альтернативное введение, которое охватывает те же темы, что и эта статья.
  • Таинственный мемристор Салли Ади. IEEE Spectrum, 1 мая 2008 г. История четвертого основного элемента схемы, мемристора (запоминающего резистора).

Как работают резисторы? Что внутри резистора?

Когда вы впервые узнаете об электричестве, вы обнаружите, что материалы делятся на две основные категории, называемые проводниками и изоляторы. Проводники (например, металлы) пропускают электричество через их; изоляторы (такие как пластик и дерево) обычно этого не делают. Но все не так просто, не так ли? Любое вещество будет проводить электричество, если к нему приложить достаточно большое напряжение: даже воздух, который обычно является изолятором, внезапно становится проводником, когда в облаках накапливается мощное напряжение — и это заставляет молния. Вместо того, чтобы говорить о проводниках и изоляторах, часто яснее говорить о сопротивлении: легкости, с которой что-нибудь пропускает через себя электричество. Проводник имеет низкое сопротивление, в то время как изолятор имеет гораздо более высокое сопротивление. Устройства под названием резисторы позволяют вводить точно контролируемые величины сопротивления в электрические цепи. Давайте подробнее рассмотрим, что они из себя представляют и как они работают!

Фото: четыре типичных резистора, расположенных рядом в электронной схеме. Резистор работает путем преобразования электрической энергии в тепло, которое рассеивается в воздухе.

Содержание

  1. Что такое сопротивление?
  2. Измерение сопротивления
  3. Сопротивление бесполезно?
  4. Как работают резисторы
  5. Как размер резистора влияет на его сопротивление?
  6. Сопротивление и температура
  7. Цветовые коды резисторов
  8. Узнать больше

Что такое сопротивление?

Электричество течет через материал, переносимый электронами, мельчайшие заряженные частицы внутри атомов. широко говоря, материалы, которые хорошо проводят электричество, это те, которые позволяют электронам течь свободно. через них.

В металлах, например, атомы заперты в твердая, кристаллическая структура (немного похожая на металлическую раму для лазанья в детская площадка). Хотя большинство электронов внутри этих атомов закрепленные на месте, некоторые из них могут пробираться сквозь конструкцию, неся с собой электричество. Вот почему металлы являются хорошими проводниками: металл выдерживает относительно небольшое сопротивление электронам, протекающим через него.

Анимация: Электроны должны проходить через материал, чтобы проводить через него электричество. Чем труднее электронам течь, тем больше сопротивление. Металлы обычно имеют низкое сопротивление потому что электроны могут легко проходить через них.

Пластмассы совсем другие. Хотя они часто солидны, они не одинаковы кристаллическая структура. Их молекулы (обычно очень длинные повторяющиеся цепи, называемые полимерами) связаны друг с другом в таких таким образом, что электроны внутри атомов полностью заняты. Там Короче говоря, это не свободные электроны, которые могут двигаться в пластике. проводить электрический ток. Пластмассы являются хорошими изоляторами: они помещают создают высокое сопротивление электронам, протекающим через них.

Все это немного расплывчато для такого предмета, как электроника, которая требует точного контроля электрического тока. Вот почему мы определяем сопротивление, точнее, как напряжение в вольтах, необходимое для создания по цепи течет ток 1 ампер. Если для этого потребуется 500 вольт. сделать поток 1 ампер, сопротивление 500 Ом (написано 500 Ом). Ты можешь см. это соотношение, записанное в виде математического уравнения:

В = Я × Р

Это известно как закон Ома для немецкого языка. физик Георг Симон Ом (1789 г.–1854).

Сопротивление бесполезно?

Сколько раз вы слышали, как плохие парни говорят это в кино? Это часто верно и в науке. Если материал имеет высокое сопротивление, он означает, что электричеству будет трудно пройти через него. Чем больше электричеству приходится бороться, чем больше энергии потрачено впустую. Это звучит вроде плохая идея, но иногда сопротивление далеко не «бесполезно» и правда очень полезно.

Фото: Нить накаливания внутри старинной лампочки. Это очень тонкий провод с умеренным сопротивлением. Он разработан, чтобы нагреваться, поэтому он ярко светится и излучает свет.

В лампочке старого образца, например, электричество течет по очень тонкому проводу называется нитью. Провод настолько тонкий, что электричество действительно нужно бороться, чтобы пройти через это. Это делает провод чрезвычайно горячо — настолько сильно, что излучает свет. Без сопротивление, такие лампочки не будут работать. Конечно недостатком является то, что мы должны тратить огромное количество энергии на нагрев нить. Такие лампочки старого образца излучают свет, создавая тепло, поэтому их и называют лампами накаливания; новые энергосберегающие лампочки излучают свет, не выделяя много тепла, благодаря совершенно другому процессу флуоресценции.

Тепло, выделяемое нитями, не всегда тратится впустую. В приборах, таких как электрические чайники, электрические радиаторы, электрических душей, кофеварок и тостеров существуют более крупные и прочные версии нитей, называемые нагревательные элементы. Когда через них проходит электрический ток, они получают достаточно горячей, чтобы вскипятить воду или приготовить хлеб. По крайней мере, в нагревательных элементах сопротивление далеко не бесполезно.

Сопротивление также полезно в таких вещах, как транзисторные радиоприемники и телевизоры. наборы. Предположим, вы хотите уменьшить громкость на телевизоре. Ваш ход регулятор громкости, и звук становится тише — но как это происходит? Ручка громкости на самом деле является частью электронного компонента, называемого переменный резистор. Если вы уменьшите громкость, вы на самом деле повышая сопротивление в электрической цепи, которая приводит в движение громкоговоритель телевизора. Когда вы включаете сопротивление, электрич. ток, протекающий по цепи, уменьшается. С меньшим током, меньше энергии для питания громкоговорителя, поэтому он звучит намного тише.

Фото: «Переменный резистор» — это очень общее название компонента, сопротивление которого можно изменять с помощью перемещение циферблата, рычага или какого-либо элемента управления. Более конкретные виды переменных резисторов включают потенциометры (небольшие электронные компоненты с тремя клеммами) и реостаты (обычно намного большего размера и состоят из нескольких витков спирального провода со скользящим контактом, который перемещается по катушкам, чтобы «отбить» некоторую часть сопротивления) . Фотографии: 1) Небольшой переменный резистор, служащий регулятором громкости в транзисторном радиоприемнике. 2) Два больших реостата от силовой установки. Вы можете см. циферблатные регуляторы, которые «отбивают» большее или меньшее сопротивление. Фотография Джека Баучера из журнала Historic American Engineering Record любезно предоставлена ​​Библиотекой Конгресса США.

Как работают резисторы

Люди, изготавливающие электрические или электронные схемы для выполнения конкретных рабочие места часто должны ввести точное количество сопротивления. Они могут сделать это, добавив крошечные компоненты, называемые резисторами. Резистор – это небольшой пакет сопротивления: подключите его к цепи, и вы уменьшите ток на точную сумму. Внешне все резисторы выглядят более или менее одинаково. Как вы можете видеть на верхней фотографии на этой странице и на фотографии ниже, Резистор представляет собой короткий червячный компонент с цветными полосками на сторона. Он имеет два соединения, по одному с каждой стороны, так что вы можете подключить его в цепь.

Фото: Типовой резистор.

Что происходит внутри резистора? Если вы сломаете один открытый, и соскоблите внешнее покрытие изоляционной краски, вы можете увидеть изолирующий керамический стержень, проходящий посередине с медной проволокой, намотанной снаружи. Такой резистор называется проволочным. Количество медных витков определяет сопротивление очень точно: чем больше медных витков, и чем тоньше меди, тем выше сопротивление. В резисторах меньшего номинала предназначенный для цепей меньшей мощности, медная обмотка заменена на спиральный узор углерода. Такие резисторы намного дешевле. делают и называются углеродной пленкой. Как правило, проволочные резисторы более точны и более стабильны при более высоких рабочих температурах.

Фото: Внутри проволочного резистора. Разломите один пополам, соскребите краску, и вы сможете ясно увидеть изолирующий керамический сердечник и обмотанную вокруг него проводящую медную проволоку.

Как размер резистора влияет на его сопротивление?

Предположим, вы пытаетесь протолкнуть воду через трубу. Различные виды трубок будут более или менее услужливыми, так что более толстая труба меньше сопротивляется воде, чем более тонкая и короткая. будет оказывать меньшее сопротивление, чем более длинный. Если вы наполните трубу, скажем, галькой или губкой, вода по-прежнему будет просачиваться через него, но гораздо медленнее. Другими словами, длина, площадь поперечного сечения (площадь вы видите, смотрите в трубу, чтобы увидеть, что внутри), и все, что находится внутри трубы, влияет на ее устойчивость к воде.

Электрические резисторы очень похожи — на них влияют одни и те же три фактора. Если вы сделаете проволоку тоньше или длиннее, электронам будет труднее перемещаться по ней. И, как мы уже видели, электричеству труднее проходить через одни материалы (изоляторы), чем через другие (проводники). Хотя Георг Ом больше всего известен тем, что связывал напряжение, ток и сопротивление, он также исследовал взаимосвязь между ними. между сопротивлением и размером и типом материала, из которого изготовлен резистор. Это привело его к другому важному уравнению:

R = ρ × L / А

Проще говоря, сопротивление (R) материала увеличивается по мере увеличения его длины (поэтому более длинные провода обеспечивают большее сопротивление) и увеличивается по мере уменьшения его площади (более тонкие провода имеют большее сопротивление). Сопротивление также связано с типом материала, из которого изготовлен резистор, и это обозначено в этом уравнении символом ρ, который называется удельным сопротивлением и измеряется в единицах Ωm (омметры). У разных материалов очень разное удельное сопротивление: у проводников удельное сопротивление намного ниже, чем у изоляторов. При комнатной температуре алюминий имеет размер около 2,8 x 10 9 .0089 -8 Ом·м, в то время как медь (лучший проводник) значительно ниже и составляет 1,7 -8 Ом·м. Кремний (полупроводник) имеет удельное сопротивление около 1000 Ом·м и стекло (хороший изолятор). меры около 10 12 Ом·м. Из этих цифр видно, насколько сильно различаются проводники и изоляторы по своей способности проводить электричество: кремний примерно в 100 миллиардов раз хуже меди, а стекло снова примерно в миллиард раз хуже!

Таблица: Хорошие проводники: Сравните удельное сопротивление 10 распространенных металлов и сплавов с сопротивлением серебра при комнатной температуре. Например, вы можете видеть, что нихром, сплав, используемый в нагревательных элементах, имеет примерно в 66 раз большее сопротивление, чем аналогичный кусок серебра. Данные из разных источников.

Сопротивление и температура

Сопротивление резистора непостоянно, даже если это определенный материал фиксированной длины и площади: оно неуклонно 90 103 возрастает 90 104 с повышением температуры. Почему? Чем горячее материал, тем сильнее колеблются его атомы или ионы, и тем труднее он воспринимается. электроны извиваются, что приводит к более высокому электрическому сопротивлению. Говоря в широком смысле, удельное сопротивление большинства материалов увеличивается линейно с температурой (поэтому, если вы увеличите температуры на 10 градусов удельное сопротивление увеличивается на определенную величину, а если его увеличить еще на 10 градусов удельное сопротивление снова возрастает на такую ​​же величину). если вы охладите материал, вы понизите его удельное сопротивление, и если вы охладите его до чрезвычайно низкого температуры, вы можете иногда заставить удельное сопротивление полностью исчезнуть в явлении, известном как сверхпроводимость.

Таблица: Сопротивление материала увеличивается с температурой. На этой диаграмме показано, как удельное сопротивление (базовое сопротивление материала, не зависящее от его длины или площади) увеличивается почти линейно при повышении температуры от абсолютного нуля до примерно 600 К (327°C) для четырех распространенных металлов. Нарисовано с использованием исходных данных из «Удельного электрического сопротивления выбранных элементов» П. Десаи и др., J. Phys. хим. Ссылка Данные, Том 13, № 4, 1984 и «Удельное электрическое сопротивление меди, золота, палладия и серебра» Р. Матулы, J. Phys. хим. Ссылка Data, Vol 8, No 4, 1979, любезно предоставлено Национальным институтом стандартов и технологий США. Открытые данные.

Узнайте больше

Статьи по теме на нашем сайте

  • Конденсаторы
  • Диоды и светоизлучающие диоды (СИД)
  • Электричество
  • Электроника
  • Нагревательные элементы
  • Транзисторы

Видео

  • MAKE Presents: The Resistor: 5-минутное вступительное видео от Колина Каннингема из журнала MAKE. Охватывает основную концепцию резисторов и немного истории, а затем показывает, как сделать собственный резистор с помощью карандаша 2В!
  • Что такое резистор?: В этом видео довольно много времени объясняется, как читать цветовые коды; если вы находите всю цветовую систему запутанной, это хорошее место, чтобы прояснить ваши идеи.

Книги

Для юных читателей
  • Easy Electronics Чарльза Платта. Maker Media, 2017. Упрощенное введение в стиле комиксов на 50 страницах с упором на обучение на практике.
Для читателей постарше
  • Производитель: Electronics by Charles Platt. Maker Media, 2015. Более длинное и подробное введение от Чарльза Платта, но с использованием того же практического подхода.
  • Электричество и электроника, Стэн Гибилиско. Макгроу Хилл, 2011.
  • Начало работы в области электроники, Форрест М. Мимс III. Издательство Мастер, 2003.

Статьи

  • Исторически важные уравнения Ньютона, Ома и Планка Пола Г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *